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Abstract: The triangular inequality is a defining property of a metric space, while the
stronger ultrametric inequality is a defining property of an ultrametric space. Ultramet-
ric distance is defined from p-adic valuation. It is known that ultrametricity is a natural
property of spaces in the sparse limit. The implications of this are discussed in this article.
Experimental results are presented which quantify how ultrametric a given metric space
is. We explore the practical meaningfulness of this property of a space being ultrametric.
In particular, we examine the computational implications of widely prevalent and perhaps
ubiquitous ultrametricity.
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1. Introduction

The triangular inequality holds for a metric space: d(z, z) < d(z,y) +
d(y, z) for any triplet of points x,y, z. In addition the properties of symme-
try and positive definiteness are respected. The “strong triangular inequality”
or ultrametric inequality is: d(z,z) < max {d(z,y),d(y, =)} for any triplet
x,v, z. An ultrametric space implies respect for a range of stringent properties.
For example, the triangle formed by any triplet is necessarily isosceles, with the
two large sides equal; or is equilateral.
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Ultrametricity is a natural property of high-dimensionphses (Rammal,
Toulouse and Virasoro, 1986, p. 786); and ultrametricityegyas as a conse-
gquence of randomness and of the law of large numbers (Ranirah| £986;
Ogielski and Stein, 1985).

An ultrametric topology is associated with the p-adic nureli¢lahler,
1981; Gouea, 2003). Furthermore, the ultrametric inequality imphes-
respect of a relation between a triplet of positive valusitermed the Archi-
medean inequality. Consequently, ultrametric spaceslip+aumbers, non-
Archimedean numbers, and isosceles spaces all expresantiegising.

P-adic numbers were introduced by Kurt Hensel in 1898. Thamit-
ric topology was introduced by Marc Krasner (Krasner, 1944g ultrametric
inequality having been formulated by Hausdorff in 1934. Asvell known,
in clustering a bijection is defined between a rooted, binamyked, indexed
tree, called a dendrogram, and a set of ultrametric distaf®enzcri, 1979,
representing work going back to the early 1960s; Johnsdi])19

Watson (2003) attributes to &ard, Parisi, Sourlas, Toulouse and Vira-
soro (1984) the basis for take-off in interest in ultranetin statistical mechan-
ics and optimization theory. Brard et al. (1984) developed a mean-field theory
of spin glasses (magnetic materials), showing that theiloligion of pure states
in a configuration space is ultrametric. “Frustrated optitidzaproblems” are
ultrametric, and have been shown as such for spin glass dagdespecial
cases. Parisi and Ricci-Tersenghi (2000), consideringpireglass model that
has become a basic model for complex systems, state thearhdtricity im-
plies that the distance between the different states is thattthey can be put
in a taxonomic or genealogical tree such that the distanangrtwo states is
consistent with their position on the tree”. An optimizatigrocess can be mod-
eled using random walks so if local ultrametricity existsrttrandom walks in
ultrametric spaces are important (Ogielski and Stein, 19B&jther historical
insight into the recent use of ultrametric spaces is pra/tdeRammal, Angles
d’Auriac and Doucot (1985) and for linguistic research byBus (2001).

Essential motivation for the study of this area is providedSuikhof
(1984) as follows. Real and complex fields gave rise to theadletudying any
field K with a complete valuatioh| comparable to the absolute value function.
Such fields satisfy the “strong triangle inequality’ + y| < max(|z|, |y|).
Given a valued field, defining a totally ordered Abelian groupulrametric
space is induced throudh — y| = d(x, y). The natural geometric ordering of
metric valuations is on the real line, whereas in the ulttaimease the natural
ordering is a hierarchical tree.

P-adic numbers, which provide an analytic version of ultraimé&polo-
gies, have a crucially important property resulting frontr@wski’s theorem:
Each non-trivial valuation on the field of the rational numkersquivalent ei-
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ther to the absolute value function or to some p-adic vadagtschikhof, 1984,

Gouwea, 2003). Essentially this theorem states that the raticcet be ex-

pressed in terms of reals, or p-adic numbers, and no otlegnative system.
Our objectives in this work are the following:

1. We will demonstrate the pervasiveness of ultrametritityfocusing on
the fact that sparse high-dimensional data tend to be udtirgen For this
objective we need to quantify ultrametricity. Note that &goathmically
induced ultrametric determined from a non-ultrametriceaimultrametric
set of points is not necessarily unique, which implies owwd® have a
measure of ultrametricity that is independent of any hidrial cluster-
ing algorithm.

2. Insofar as ultrametricity is pervasive, we look at two lizggtions which
have the goal of bypassing Bellman’s (1961) “curse of dirrearadity”
when carrying out data analysis in very high dimensionatepaFirstly
we look at the computational advantages of carrying outaipmers like
nearest neighbor searching in an ultrametric space. Secaedpresent
a short review of how and where Euclidean data can be (perhdysets
wise) effectively ultrametrically embedded, and how tlaisilitates oper-
ations like nearest neighbor or best match searching.

2. Lerman’s H-classifiability
2.1 Lerman’s H Measure

The principle adopted in any constructive assessment @iroétricity is
to construct an ultrametric on data and see what discrepecy is between
input data and induced ultrametric data structure. Quantjfultrametricity us-
ing a constructive approach is less than perfect as a sojugieen the potential
complications arising from known problems, e.g. chainingingle link, and
non-uniqueness, or even inversions, with other methodscadhelusion here is
that the “measurement tool” used for quantifying ultrarncgir itself occupies
an overly prominent role relative to that which we seek to snea. For such
reasons, we need an independent way to quantify ultraritgtite begin with
Lerman’s (1981) H-classifiability index.

From the isosceles triangle principle, whele:, y) # d(y, z) we have
d(z,z) = max{d(z,y),d(y, z)}, it follows that the largest and second largest of
the numbersl(z,y), d(y, z), d(z, z) are equal. Lerman’s H-classifiability mea-
sure essentially looks at how close these two numbers @argecond largest)
are. So as to avoid influence of distribution of the distancee&lLerman’s
measure is based on ranks (of these distances) only.
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A unifying framework for pairs of objects, and the distaneduation on
them, is that of @&inary relation On a setF, a binary relation is @reorderif
it is reflexive and transitive; it is aaquivalence relatiorif the binary relation
is reflexive, transitive and symmetric; and it is@uder if the binary relation is
reflexive, transitive, and anti-symmetric. Furthermore,dnlecase, the binary
relation can beotal, i.e. the binary relation is defined for &ll, j) € F x E, or
partial, if the binary relation is not defined for all paifs 7).

An order has defined maximum, minimum, sup and inf. An equivade
relation is used to model the classes of a partition. A prenisiused to model
a set of partitions, using a lattice. An example of a preorsiéne relation “Is
created before or at the same time as” definedigra hierarchy of classes of
E,i.e.H c 2F, where2” is the power set of.

With a preorder, we can associat@rordonnanceas follows. A pre-
ordonnance orF is associated with a preorder @nx E satisfying(i,j) =
(7,i) V(i,7) € E x E. An extensive review of these topics can be found in
Cailliez and Pags (1976).

Let F' denote the set of pairs of distinct unitsih A distance defines a
total preorder on F:

V{(x,y),(z,t)} € F: (z,y) < (2,t) <= d(z,y) < d(z,1).

This preorder will be denoted,;. Two distances are equivalent on a given
setF iff the preordonnances associated with eachkbare identical. A total
preorder is equivalent to the definition of a partition (definan equivalence
relation onF’), and to a total order on the set of classes.

A preorderw is called ultrametric if:

Va,y,z € E: p(x,y) <randp(y,z) <r = p(x,z) <.

wherer is a given integer ang(z,y) denotes the rank of paie,y) for @,
defined by non-decreasing values of the distance used. Aswyeand suffi-
cient condition for a distance ofd to be ultrametric is that the associated pre-
order (onE x E, or alternatively preordonnance @ is ultrametric. Looking
again at the link between a preorder and classes definingidgrartx, v, z €
Est. (z,y) < (y,2) < (x,z) we must have(z, z) < (y,z2), i.e. (z,z) and
(y, z) are in the same class of a preorder

We move on now to define Lerman’s H-classifiability index (Lerman,
1981), which measures how ultrametric a given metric is. Mdte, y, z) be
the median pair amon{(z, v), (v, ), (z, z)} and letS(z,y, z) be the highest
ranked pair among this triplefl is the set of all such triplets df. We consider
the mapping- of all triplets J into the open interval of all pairg for the given
preorderw defined as:

T:J —]M(z,y,z2),S(z,y,2)[.
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The range is the number of ranks bounded by, and excludingp&agan
and maximum. A measure of the discrepancy between preoerded an ultra-
metric preorder will be defined from a measure on all paithat is dependent
onw.

Given a triplet{z, y, z} for which (z,y) < (y, z) < («, z), for preorder
w, the interval| M (z,y, z), S(x,y, z)| is empty ifw is ultrametric. Relative to
such a triplet, the preorderis “less ultrametric” to the extent that the cardinal
of |M(z,y, 2),S(x,y, z)[, defined onw, is large. In practice we ensure that
ties in the ranks, due to identically-valued distancestaken into account, by
counting ranks that are strictly betwe#handsS.

We takeJ into account in order to define discrepancy between the struc-
ture ofw and the structure of an ultrametric preordonnance whedenotes
cardinality:

J

The value 3 subtracted frof#’|(= n(n—1)/2 if |E| = n) takes account
of the presence of the least, median and maximum distanklese,(we differ
marginally from Lerman, 1981. The subtraction of 3 will noterathough for
tied values.) Ifw is ultrametric therf (w) = 0.

As shown in simple cases by Lerman (1981, p. 218), data sdtaitha
“more classifiable” in an intuitive way, i.e. they contain tspdic islands” of
more dense regions of points — a prime example is Fisher's6]1@i3 data
contrasted with 150 uniformly distributed valueslitt — such data sets have a
smaller value ofH (w). For Fisher’'s data we find/ (w) = 0.0899, whereas
for 150 uniformly distributed points in a 4-dimensional leypube, we find
H(w) = 0.1835.

Generating all unique triplets is computationally inteesifor n. points,
n(n — 1)(n — 2)/6 triplets have to be considered. Hence, in practice, we must
draw triangles randomly from the given point set. For intégdicesi, j, k, we
drawi ~ [1...n—=2],j ~[i+1...n— 1],k ~ [max(i,j) + 1...n] where
sampling is uniform.

2.2 Rammal's Measure Based on the Subdominant Ultrametric

The quantifying of how ultrametric a data set is by Rammal .et1#185,
1986) was influential for us in this work. The Rammal ultranodtyiindex is
given by,  (d(z,y) —dc(z,y))/ 3., d(z,y) whered is the metric distance
being assessed, amad is the subdominant ultrametric. The Rammal index is
bounded by 0 (= ultrametric) and 1. As pointed out in Rammaille1985,
1986), this index suffers from “the chaining effect and freemsitivity to fluc-
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tuations”. The single link hierarchical clustering methgiélding the subdomi-
nant ultrametric, is, as is well known, subject to such diffies. For this reason
we prefer the Lerman index. The latter is unbounded and, giveméfinition
used above, we have found maximum values (i.e. greatestivametricity)
in the region of 0.24. For assessirgative degree of ultrametricity it does its
job well.

Rammal et al. (1985, 1986) discuss a range of important detlysis
cases, all of which are characterized by potential spassasfgooint occupancy
in the ambient space: a set@binary words, randomly defined among tfe
possible words of: bits; andn words ofk letters extracted from an alphabet
of size K. For binary words, KX = 2; for nucleic acids, four nucleotids give
K = 4; for proteins, twenty amino acids giv€ = 20; and for spoken words,
typically around 40 phonemes giv€ = 40. Using the Rammal ultrametric-
ity index, experimental findings demonstrate that randora deg¢ increasingly
ultrametric as the spatial dimensionality and sparsemesease.

2.3 Ultrametricity as a Function of Sparseness and Dimensionality

In this article our use of the term “sparseness” has the ge@alkesense
(relating to spread of points, and not the sense of zero satua data array).

We use uniformly distributed data and also uniformly disited hyper-
cube vertex positions. The latter is used to simulate theivalied words
considered by Rammal et al., as described in the previousestibn. Random
values are converted to hypercube vertex locations by useroplete disjunc-
tive data coding (Berexri 1992). Say a variable has maximum and minimum
valuesrmax andzmiy. Say, further, thall = 3. We set thresholds at the val-
UESTmin, min + (*Tmax— Tmin) * 0.25, 0.5, and+0.75. A value ofz falling
in the first category receives a 4-valued geb, 0, 0; a value ofx falling in the
second category receives the 4-valued 8gt; 0, 0; and so on. Such complete
disjunctive coding is widely used in correspondence amalysis easily veri-
fied that the row marginals are constant. In this importarg dasrman (1981)
develops an analytic probability density function for theklssifiability index.

The results of Table 1 are summarized in Figure 1. We note thaioig
findings:

e Thereis no increase in H-classifiability, i.e. departure frdtrametricity,
for increasing numbers of points, at least for the range used here:=
1000, 2000, 3000, 4000, 5000.

e There isincrease in H-classifiability, for increasing dimenality. Again
this holds for the dimensionalities examined herex= 50, 100, 250, 500.

e Random hypercube vertex data are “more classifiable”, igh data has
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smaller H-classifiability and is more ultrametric, compatediniformly
distributed data.

In our experimentation we chose data sets with no a priosteting.
These data sets were random, being either

o uniformly distributed, or

e sparsely coded as hypercube vertices.

We have shown that the latter is consistently more ultramétan the former.

Our results point to the importance of the “type” of data usgdetter
expressed, how the data are coded. Binary data represeamtngategorical
(qualitative) variables are consistently more ultranegtnan uniformly distrib-
uted data.

3. A New Ultrametricity Measure
3.1 Motivation

There are two problems with Lerman’s index. Firstly, ultrancéir is
associated withH = 0 but non-ultrametricity is not bounded. In extensive
experimentation, we have found maximum valuesAbm the region of 0.24.
The second problem with Lerman’s index is that for floating pomardinate
values, especially in high dimensions, the strict equaliggessitated for an
equilateral triangle is nearly impossible to achieve. Haveour belief is that
approximate equilateral triangles are very likely to afisémportant cases of
high-dimensional spaces with data points at hypercubexédocations. We
would prefer therefore that the quantifying of ultrametyishould “gracefully”
take account of triplets which are “close to” equilateralot®&that for some
authors, the equilateral case is considered to be “trivdala “trivial limit”
(Treves, 1997). For us, however, it is an important casettey with the other
important case of ultrametricity (i.e., isosceles with Bipase).

3.2 Distance-Based Measures

Treves (1997) considers triplets of points giving rise toimial, median
and maximal distances. In the plot @f,j,/dmax againstdeg/dmax the
triangular inequality, the ultrametric inequality, ane thirivial limit” of equi-
lateral triangles, occupy definable regions.

Hartmann (1998) considerfmax — dmqeg Now, Lerman (1981) uses
ranks in order to give (translation, scale, etc.) invaréattcthe sensitivity (i.e.,
instability, lack of robustness) of distances. Hartmarstdad fixes the remain-
ing distancelyin.
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Table 1:Results using Lerman’s H-classifiability measure. The 100-dimenshypaircube ver-
tex point sets were produced by generating 20-dimensional uniforistiytaited points and then
transforming into complete disjunctive coding using 5 quantile thresholasila8y, the 250-
and 500-dimensional data used 50- and 100-dimensional uniforncdia¢gin with, followed by
transforming with 5 quantile thresholds.

n dim. space H-classif.
Uniform 1000 50 R 0.2121
2000 50 R 0.2131
3000 50 R 0.2271
4000 50 R 0.2169
5000 50 R 0.2205
Mean 50 R 0.2179
Hypercube vertex 1000 50 {0,1}°° 0.0622
2000 50  {0,1}°° 0.0653
3000 50 {0,1}°° 0.0580
4000 50  {0,1}°° 0.0592
5000 50  {0,1}°° 0.0737
Mean 50 {0,1}°° 0.0637
Uniform 1000 100 R'™  0.2326
2000 100 R'°  0.2173
3000 100 R'°  0.2241
4000 100 R'Y  0.2172
5000 100 R'°  0.2207
Mean 100 R 0.2224
Hypercube vertex 1000 100 {0,1}'°° 0.0954
2000 100 {0,1}'°° 0.1117
3000 100 {0,1}'°° 0.1112
4000 100 {0,1}'%% 0.1122
5000 100 {0,1}'° 0.1071
Mean 100 {0,1}'%° 0.1075
Uniform 1000 250 R*° 0.2264
2000 250 R*°  0.2340
3000 250 IR* 0.2231
4000 250 R*°  0.2245
5000 250 R*°  0.2289
Mean 250 R?° 0.2274
Hypercube vertex 1000 250 {0,1}*° 0.1547
2000 250 {0,1}*° 0.1618
3000 250 {0,1}%°° 0.1496
4000 250 {0,1}*° 0.1636
5000 250 {0,1}?%° 0.1577
Mean 250 {0,1}*° 0.1575
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Table 1. (continued)

n dim. space H-classif.
Uniform 1000 500 R  0.2225
2000 500 TR  0.2284
3000 500 R  0.2320
4000 500 RS 0.2175
5000 500 IR 0.2138
Mean 500 R°®  0.2228
Hypercube vertex 1000 500 {0,1}°"° 0.1771
2000 500 {0,1}°°° 0.1766
3000 500 {0,1}°°° 0.1798
4000 500 {0,1}°°° 0.1711
5000 500 {0,1}°°° 0.1814
Mean 500 {0,1}°°° 0.1772

3.3 A New Measure Based on Angles

We seek to avoid, as far as possible, lack of invariance dueseoof
distances. We seek to quantify both isosceles with smadl basfigurations, as
well as equilateral configurations. Finally, we seek a meastuérametricity
bounded by 0 and 1. We will therefore use a coefficient of ulg@iTity — we
will term it a — which is specified algorithmically as follows.

1. All triplets of points are considered, with a distance @efault, Euclid-
ean) defined on these points. Since for a large humber of points,
the number of tripletsp(n — 1)(n — 2)/6 would be computationally
prohibitive, we instead randomly (uniformly) sample cdoedes { ~

{l.n},j ~{l.n}, k~ {1l..n}).

2. We check for possible alignments (implying degeneréedtes) and ex-
clude such cases.

3. Next we select the smallest angle as less than or equaldedi@es. (We
use the well-known definition of the cosine of the angle faaidg of
lengthz as: (y? + 22 — 2%)/2y2.) This is our first necessary property
for being a strictly isosceles( 60 degrees) or equilaterak(60 degrees)
ultrametric triangle.

4. For the two other angles subtended at the triangle basse&kean angu-
lar difference of strictly less than 2 degrees (0.034906@&bans). This
condition is an approximation to the ultrametric configuratibased on
an arbitrary choice of small angle. This condition is tamygt configu-
ration that may not be exactly ultrametric but nonetheles®iy close to
ultrametric.
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Figure 1. Upper curve: uniformly distributed values. Lower curve: random emyp
cube vertex points. A low value of H-classifiability is related to near-ultragigtr Each
point shows an average of different experiments correspondingutabers of pointsn =
1000, 2000, 3000, 4000, 5000. From values given in Table 2, there is very little variation as a
function ofn.

5. Among all triplets (1) satisfying our exact properties§2and close ap-
proximation property (4), we define our ultrametricity coeéfid as the
relative proportion of these triplets. Approximately almetric data will
yield a value of 1. On the other hand, data that is non-ulttemi the
sense of not respecting conditions 3 and 4 will yield a lowgapoten-
tially reaching 0.

In summary, they index is defined in this way:

Consider a triplet of points, that defines a triangle. If thekast internal
angle,q, in this triangle is< 60 degrees, and, for the two other internal angles,
bandc, if |b — ¢| < 2 degrees, then this triangle is an ultrametric one. We look
for the overall proportion of such ultrametric trianglesour data.

The Fisher iris datalG0 x 4) givesa = 0.0162, indicating some, very
limited, ultrametricity by this measure. By recoding theifdris variables into
discrete (zero or one) categories, we find the following. Kirstith two dis-
crete categories (data now50 x 8), we finda = 0.0949. For four discrete
categories (data now50 x 16), we finda = 0.477327. For eight discrete cate-
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gories (data now150 x 32), we finda = 0.741361. This shows how increasing
dimensionality, and sparseness, lead to greater ultragitetsy this measure.

3.4 Ultrametricity Scaling with Data Size, Dimensionality, and Spase-

ness

We use uniformly distributed data and also uniformly disited hyper-

cube vertex positions, as in subsection 2.3. The latter id tssimulate the
multivalued words considered by Rammal et al. (see sulmse2t?). Again,
random values are converted to hypercube vertex locatipus® of complete
disjunctive data coding (Bebzri 1992).

e As for the Lerman H-classifiability index, we find surprising épen-
dence ofa relative ton, the number of points. Consider the follow-
ing: we generate uniformly distributed data pointsiki®. Forn =
1000, 5000, 10000, 15000, 20000, 25000, we find o = 0.096386,
0.078000, 0.077077, 0.075075, 0.079000, 0.071000. Theeaapto be
a small decrease in ultrametricity due to increasing dgmsipoints.

Ultrametricity increases with sparsity of coding. We wiliasv this by
comparing uniformly distributed points, and points at hygodbe vertex
locations. We will again take the number of points,= 1000, 5000,
10000, 15000, 20000, 25000. We will also use a 10-dimensional space
with, on this occassion, the points at the vertices of a hyydse. (We do
this by generating uniformly iflR®> and then quantizing each of the 5 vari-
ables to two discrete categories. See discussion at theftais section).
We find, respectively:a = 0.271630, 0.247495, 0.260563, 0.264056,
0.269076, 0.275275. Therefore, with sparsity we again fingd Ndle de-
pendence om. For varyingn, thesex results are quite similar. However
we see a very big relative difference in valuecobetween points ifR '
(discussed under the previous bullet point) and pointseatéhtices of a
10-dimensional hypercube (discussed under this bullettpoi

Ultrametricity increases with dimensionality. Using= 5000 real-valued
points, uniformly distributed in space of dimensionality = 50, 100,
500, 1000, 5000, we findr = 0.183183, 0.271000, 0.544000, 0.707708,
0.979000. (See Figure 2.)

Dimensionality and (spatial) sparsity, combined, force tbndency to-
wards ultrametricity, but the compounding of these two gaitgoerties is
not as pronounced as we might have expected. Again we takaithber
of points,n = 5000. Using uniform data in real spaces of dimensions
25, 50, 250, 500 and 2500, and then quantizing to two discesigonse
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Figure 2: Upper curve: uniformly distributed values. Lower curve: randomengpbe vertex
points. A value of alpha close to 1 is related to near-ultrametricity. For eéavbndionality (50,
100, 500, 1000, 5000) we used number of points 5000. In other experiments we found very
little variation as a function of.

categories, gives us dimensionalities= 50, 100, 500, 1000, 5000. Our
n points are now at the vertices of hypercubes in spaces ofrdiimeal-
ity m. We finda = 0.179179,0.172172,0.454910, 0.588000, 0.934000.
(Again see Figure 2.)

We have found thex measure of ultrametricity to most convincingly
demonstrate that sparse spaces become very ultramethiégneiease in space
dimensionality. We stress also that these experiments gareed out on data
which are as “un-clustered” as possible.

4. Computational Costs of Operations in an Ultrametric Space

Given that sparse forms of coding are considered for how ¢®agiim-
uli are represented in the cortex (see Young and Yamane) li&@ailtrametric-
ity of such spaces becomes important because of this sgasenh coding.
Among other implications, this points to the possibilityatlsemantic pattern
matching is best accomplished through ultrametric contjmrta
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A convenient data structure for points in an ultrametriccepis a den-
drogram. We define a dendrogram as a rooted, labeled, rankeaty liree
(Murtagh, 1984a). Therefore farpoints there are precisety— 1 levels. With
each level there is an associated rank, ..., n — 1; and also the ultrametric
distance which is a mapping into the positive reals.

Operations on binary trees are often based on tree travmsaéen root
and terminal. Hence computational cost of such operatisrdependent on
root-to-terminal(s) path length. The total path length obatito-terminal tra-
versal varies for each terminal (or point in the correspogdiltrametric space).
It will be simplest to consider path length in terms of levelree node rank (and
if it is necessary to avail of path length in terms of ultrarwetlistances, then
constant computational time, only, is needed for table lpdkA dendrogram’s
root-to-terminal path length can vary from closeldg, n (“close to” because
the path length has to be an integerite 1 (Murtagh, 1984b). Let us call this
computational cost of a tree traversa(t).

Most operations that we will now consider make use of a degrdira
data structure. Hence the cost of building a dendrogram fiitant. For the
problem in general, seeflkanek and Marvek (1984, 1986) and Day (1996).
For O(n?) implementations of most commonly used hierarchical chirsgeal-
gorithms, see Murtagh (1983, 1985).

To place a new point (from an ultrametric space) into a degyédm, we
need to find its nearest neighbor. We can do this, in order ttewhie new
terminal into the dendrogram, using a root-to-terminaldraal in the current
version of a dendrogram. This leads to our first proposition.

Proposition 1: The computational complexity of adding a new terminal
to a dendrogram i€ (t), wheret is one traversal from root to terminals in the
dendrogram.

Proposition 22 The computational complexity of finding the ultrametric
distance between two terminal nodes is twice the length @ietsal from root
to terminals in the dendrogram. Therefore distance is coatpbatO(¢) time.

Informally: we potentially have to traverse from each teratito the root
in order to find the common, “parent” hode.

Proposition 3. The traversal length from dendrogram root to dendro-
gram terminals is best case 1, and worst casel. When the dendrogram is
optimally balanced or structured, the traversal lengtimfroot to terminals is
|logyn|. Hencel > O(t) > n — 1, and for a balanced tre@(t) = log, n.

Depending on the agglomerative criterion used, we can appsate the
balanced or structured dendrogram — and hence favoralde-casite well in
practice (Murtagh, 1984b).

Proposition 4: Nearest neighbor search in ultrametric space can be car-
ried out inO(1) or constant time.
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This results from the following: the nearest neighbor paisthe in the
same tightest cluster that contains them both. There is amycandidate to
check for in a dendrogram. Hence nearest neighbor findindtseisufirstly
finding the lowest level cluster containing the given terrhif@lowed by find-
ing the other terminal in this cluster. Two operations asréfore required.

5. Approximating an Ultrametric for Similarity Metric Space Searchi ng

In data analysis we usually begin with the Euclidean distaircgome
other non-ultrametric distance (e.g. some other Minkowgikiance, or the
squared Euclidean distance, or the distance, or some normalized or stan-
dardized Euclidean distance, etc.). The previous sectiordisasssed some
of the advantages of nearest neighbor (also known as besh)rsgarching if
such an operation is carried out in an ultrametric space.v@ygo arrange for
this, of course, is simply to map our data into an ultrametpiace, using some
appropriate hierarchical clustering algorithm (Willet§88). But anyO(n?)
algorithm is wholely impractical for large and large dimensionality. In this
section we will look at another approach to mapping pointts &n ultrametric
space, followed by use of ultrametric distance for (exaud, @ot approximate,
as we will note below) metric proximity search.

In much work over the years, nearest neighbor searchingders tnade
more efficient through the use of more easily determined lidagibounds.
An early example is Fukunaga and Narendra (1975), a chaptewes in
Murtagh (1985), and a recent survey is&®bz, Navarro, Baeza-Yates and Mar-
rogun (2001). In this section we will show that rendering givastahces as
ultrametric is a powerful way to facilitate nearest neighsearching. Further-
more “stretching the triangular inequality” (@hez and Navarro, 2003) so that
it becomes the strong triangular inequality, or ultrantetniequality, gives a
unifying view of some algorithms of this type.

Bellman’s “curse of dimensionality” (Bellman, 1961) can defined in
various ways. Cavez and Navarro (2000, 2003) characterize search dimensio
ality as the ratio of mean to variance of given metric spastadces. A large
mean and/or small variance of distances imply exponemakase in nearest
neighbor searching, as typifies high dimensional spacesiglmdimensional
spaces, this statistic of distance mean divided by variamce ;ﬂ /20—2, ex-
presses the fact that the difference between random detassmall. Chvez
and Navarro (2003) “exploit the high dimension of the mespace, specifi-
cally the fact that the difference between random distarecemall compared
to a random distance”. Now, roughly equal distances is taotet to equi-
lateral triangles being formed between triplets of poiftsus the Chvez and
Navarro principle is to assert that high dimensional spheesme naturally and
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trivially ultrametric, in that triplets of points form edateral triangles. Two in-
tuitive properties of increasing values of @tez and Navarro (2003)are that
as the variance decreases, less information is conveyetaydes (i.e., trian-
gles tend towards being equilateral) independently of pla¢ial dimensionality;
and as: increases a larger search radius is necessitated.

As against these characteristics of metric spaces, ultramspaces offer
their own potential for fast nearest neighbor finding. Théz and Navarro
(2003) solution to alleviating the computational difficalliresulting from in-
creasing is through preprocessing which is approximate and proissibil We
will show that it also amounts to defining ultrametric distasmérom the given
metric space distances.

Fast nearest neighbor finding often makes use of pivots tblestdoounds
on points to be searched, and points to be bypassed as bieéBustos,
Navarro and Cavez, 2003; Chvez et al., 2001). Consider poiniswhich
we seek to discard, when searching for nearest neighborseoy g. Pivots,p;,
are used. By the triangle inequality,

d(u,p;) < d(u,q) +d(g,p;) andd(q, p;) < d(q,u) +d(u,p;). (1)

These two relations lead to the following rejection rule: wavto dis-
card allu such thatd(u, p;) —d(q, p;)| > r for a threshold- and for some pivot
p;. Then nearest neighbor searching takes place throughwaiich cannotbe
rejected in this way.

Let us look at this rejection ruléd(u, p;) — d(q,p;)| > r, a little closer.
We are enforcing approximate equality by rejectingvhenever we have de-
parture from equality. What difficulty can departure from ality of these dis-
tances cause for us? We have eitt@r, p;) > d(q, p;) or vice versai(q, p;) >
d(u,p;).

Hence the rejection rule results in the following not beiigveed in
relations 1:d(u, p;) > d(q,p;) (left relation in 1) andi(q, p;) > d(u, p;) (right
relation in 1).

Take the left relation in 1. We hav&u, p;) < d(u,q) + d(q,p;), and
d(u,p;) < d(q,p;) consistent with and respecting the rejection rule. Look at
the right hand side of the first of these: we have eitfet p;) > d(u,q) or
d(q,pi) < d(u,q). If d(q, p;) is the larger here, then relation 1 (left) is satisfied.
If d(q,p;) is the smaller of the pair here, then from our rejection ruéeagain
find that relation 1 (left) is satisfied. Relation 1 (right) canghown in the same
way. We conclude: from the relations in 1, given the rejectiade, we have as
a consequence:

d(uvpz) < maX{d(U, Q)v d(Q7p2)} and

d(q,p;) < max{d(q,u),d(u,p;)}. 2
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For further discussion of this consequence of the rejectitaapplied,
and for its use in practice, the references cited here camrfeered to. The
rejection rule is seen to be a requirementdtu, p;) andd(q, p;) to be similar,
in that they are being rejected precisely if they are notlaimin other words,
the rejection rule is forcing retained triangles to be isbss.

The heuristic pursued by @kez and Navarro (2003) has been shown by
these authors to be computationally beneficial: as the sefmunsionalityp
grows, the heuristic entails a small and more reliable $eedius. It results
from our discussion that this property of their algorithrauks from transform-
ing a metric space to be ultrametric. In practice, this tiemsing need only be
partial, i.e. subset-wise.

Fast nearest neighbor searching in metric spaces oftembsgpeheuris-
tics. As shown in the foregoing discussion, the link withrambetric spaces
gives rise instead to a unifying view. Hjaltason and Same082Qliscuss
heuristic nearest neighbor searching in terms of embedti@gjiven metric
space points in lower dimensional spaces. From our disqugsithis section,
we see that there is evidently another alternative diredio facilitating fast
nearest neighbor searching: viz., taking the metric spa@mailtrametric one,
and if it does not quite fit this perspective then “stretchaisform) it so that it
does so.

In conclusion, we note that the pivot-based approach destrin this
section allows us to limit the parts of our original data spélet's assume,
Euclidean) to be searched. The ultrametric distance rekdtipa are used for
this purpose, and it is not necessary nor useful to define ttnemetric space
in detail.

6. Conclusions

We have shown that high dimensional and sparse codings ¢eloel dl-
trametric. This is an interesting result in its own right. Hawer a far more
important result is that certain computational operatiarsbe carried out very
efficiently indeed in space endowed with an ultrametric.

Chief among these computational operations, we have shisahat
nearest neighbor finding can be carried out in (worst casejtanhcompu-
tational time. Depending on the structure of the ultrarmedpiace (i.e. if we can
build a balanced dendrogram data structure), pairwisarist calculation can
be carried out in logarithmic computational time.

We have also reviewed approaches to using ultrametricatietain order
to expedite best match, or nearest neighbor, or more génprakimity search.
The usual constructive approach, viz. build a hierarchisteltng, is simply
not computationally feasible in very high dimensional ssaas are typically
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found in such fields as speech processing, information vetrier genomics
and proteomics.

We have noted how forms of sparse coding are considered tedzkin
the human or animal cortex. We raise the interesting questsoto whether
human or animal thinking can be computationally efficientcely because
such computation is carried out in an ultrametric space.
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