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Abstract:The triangular inequality is a defining property of a metric space, while the
stronger ultrametric inequality is a defining property of an ultrametric space. Ultramet-
ric distance is defined from p-adic valuation. It is known that ultrametricity is a natural
property of spaces in the sparse limit. The implications of this are discussed in this article.
Experimental results are presented which quantify how ultrametric a given metric space
is. We explore the practical meaningfulness of this property of a space being ultrametric.
In particular, we examine the computational implications of widely prevalent and perhaps
ubiquitous ultrametricity.
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1. Introduction

The triangular inequality holds for a metric space:
���������
	������������	��

���������
	
for any triplet of points
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. In addition the properties of symme-

try and positive definiteness are respected. The “strong triangular inequality”
or ultrametric inequality is:
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. An ultrametric space implies respect for a range of stringent properties.
For example, the triangle formed by any triplet is necessarily isosceles, with the
two large sides equal; or is equilateral.
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Ultrametricity is a natural property of high-dimensional spaces (Rammal,
Toulouse and Virasoro, 1986, p. 786); and ultrametricity emerges as a conse-
quence of randomness and of the law of large numbers (Rammal et al., 1986;
Ogielski and Stein, 1985).

An ultrametric topology is associated with the p-adic numbers (Mahler,
1981; Gouv̂ea, 2003). Furthermore, the ultrametric inequality impliesnon-
respect of a relation between a triplet of positive valuations termed the Archi-
medean inequality. Consequently, ultrametric spaces, p-adic numbers, non-
Archimedean numbers, and isosceles spaces all express the same thing.

P-adic numbers were introduced by Kurt Hensel in 1898. The ultramet-
ric topology was introduced by Marc Krasner (Krasner, 1944), the ultrametric
inequality having been formulated by Hausdorff in 1934. As is well known,
in clustering a bijection is defined between a rooted, binary,ranked, indexed
tree, called a dendrogram, and a set of ultrametric distances (Benźecri, 1979,
representing work going back to the early 1960s; Johnson, 1967).

Watson (2003) attributes to Ḿezard, Parisi, Sourlas, Toulouse and Vira-
soro (1984) the basis for take-off in interest in ultrametrics in statistical mechan-
ics and optimization theory. Ḿezard et al. (1984) developed a mean-field theory
of spin glasses (magnetic materials), showing that the distribution of pure states
in a configuration space is ultrametric. “Frustrated optimization problems” are
ultrametric, and have been shown as such for spin glass and related special
cases. Parisi and Ricci-Tersenghi (2000), considering thespin glass model that
has become a basic model for complex systems, state that “ultrametricity im-
plies that the distance between the different states is suchthat they can be put
in a taxonomic or genealogical tree such that the distance among two states is
consistent with their position on the tree”. An optimization process can be mod-
eled using random walks so if local ultrametricity exists then random walks in
ultrametric spaces are important (Ogielski and Stein, 1985). Further historical
insight into the recent use of ultrametric spaces is provided by Rammal, Angles
d’Auriac and Doucot (1985) and for linguistic research by Roberts (2001).

Essential motivation for the study of this area is provided bySchikhof
(1984) as follows. Real and complex fields gave rise to the ideaof studying any
field K with a complete valuation|.| comparable to the absolute value function.
Such fields satisfy the “strong triangle inequality”|x + y| ≤ max(|x|, |y|).
Given a valued field, defining a totally ordered Abelian group, an ultrametric
space is induced through|x − y| = d(x, y). The natural geometric ordering of
metric valuations is on the real line, whereas in the ultrametric case the natural
ordering is a hierarchical tree.

P-adic numbers, which provide an analytic version of ultrametric topolo-
gies, have a crucially important property resulting from Ostrowski’s theorem:
Each non-trivial valuation on the field of the rational numbersis equivalent ei-
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ther to the absolute value function or to some p-adic valuation (Schikhof, 1984;
Gouv̂ea, 2003). Essentially this theorem states that the rationals can be ex-
pressed in terms of reals, or p-adic numbers, and no other alternative system.

Our objectives in this work are the following:

1. We will demonstrate the pervasiveness of ultrametricity, by focusing on
the fact that sparse high-dimensional data tend to be ultrametric. For this
objective we need to quantify ultrametricity. Note that an algorithmically
induced ultrametric determined from a non-ultrametric or near-ultrametric
set of points is not necessarily unique, which implies our need to have a
measure of ultrametricity that is independent of any hierarchical cluster-
ing algorithm.

2. Insofar as ultrametricity is pervasive, we look at two implications which
have the goal of bypassing Bellman’s (1961) “curse of dimensionality”
when carrying out data analysis in very high dimensional spaces. Firstly
we look at the computational advantages of carrying out operations like
nearest neighbor searching in an ultrametric space. Secondly we present
a short review of how and where Euclidean data can be (perhaps subset-
wise) effectively ultrametrically embedded, and how this facilitates oper-
ations like nearest neighbor or best match searching.

2. Lerman’s H-classifiability

2.1 Lerman’s H Measure

The principle adopted in any constructive assessment of ultrametricity is
to construct an ultrametric on data and see what discrepancythere is between
input data and induced ultrametric data structure. Quantifying ultrametricity us-
ing a constructive approach is less than perfect as a solution, given the potential
complications arising from known problems, e.g. chaining in single link, and
non-uniqueness, or even inversions, with other methods. Theconclusion here is
that the “measurement tool” used for quantifying ultrametricity itself occupies
an overly prominent role relative to that which we seek to measure. For such
reasons, we need an independent way to quantify ultrametricity. We begin with
Lerman’s (1981) H-classifiability index.

From the isosceles triangle principle, whered(x, y) 6= d(y, z) we have
d(x, z) = max{d(x, y), d(y, z)}, it follows that the largest and second largest of
the numbersd(x, y), d(y, z), d(x, z) are equal. Lerman’s H-classifiability mea-
sure essentially looks at how close these two numbers (largest, second largest)
are. So as to avoid influence of distribution of the distance values, Lerman’s
measure is based on ranks (of these distances) only.
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A unifying framework for pairs of objects, and the distance valuation on
them, is that of abinary relation. On a setE, a binary relation is apreorderif
it is reflexive and transitive; it is anequivalence relationif the binary relation
is reflexive, transitive and symmetric; and it is anorder if the binary relation is
reflexive, transitive, and anti-symmetric. Furthermore, in each case, the binary
relation can betotal, i.e. the binary relation is defined for all(i, j) ∈ E ×E, or
partial, if the binary relation is not defined for all pairs(i, j).

An order has defined maximum, minimum, sup and inf. An equivalence
relation is used to model the classes of a partition. A preorder is used to model
a set of partitions, using a lattice. An example of a preorderis the relation “Is
created before or at the same time as” defined onH, a hierarchy of classes of
E, i.e.H ⊂ 2E , where2E is the power set ofE.

With a preorder, we can associate apreordonnanceas follows. A pre-
ordonnance onE is associated with a preorder onE × E satisfying(i, j) =
(j, i) ∀(i, j) ∈ E × E. An extensive review of these topics can be found in
Cailliez and Pag̀es (1976).

Let F denote the set of pairs of distinct units inE. A distance defines a
total preorder on F:

∀{(x, y), (z, t)} ∈ F : (x, y) ≤ (z, t) ⇐⇒ d(x, y) ≤ d(z, t).

This preorder will be denotedωd. Two distances are equivalent on a given
setE iff the preordonnances associated with each onE are identical. A total
preorder is equivalent to the definition of a partition (defining an equivalence
relation onF ), and to a total order on the set of classes.

A preorderω̄ is called ultrametric if:

∀x, y, z ∈ E : ρ(x, y) ≤ r andρ(y, z) ≤ r =⇒ ρ(x, z) ≤ r.

wherer is a given integer andρ(x, y) denotes the rank of pair(x, y) for ω̄,
defined by non-decreasing values of the distance used. A necessary and suffi-
cient condition for a distance onE to be ultrametric is that the associated pre-
order (onE ×E, or alternatively preordonnance onE) is ultrametric. Looking
again at the link between a preorder and classes defining a partition, ∀x, y, z ∈
E s.t. (x, y) ≤ (y, z) ≤ (x, z) we must have:(x, z) ≤ (y, z), i.e. (x, z) and
(y, z) are in the same class of a preorderω̄.

We move on now to define Lerman’s H-classifiability index (Lerman,
1981), which measures how ultrametric a given metric is. LetM(x, y, z) be
the median pair among{(x, y), (y, z), (x, z)} and letS(x, y, z) be the highest
ranked pair among this triplet.J is the set of all such triplets ofE. We consider
the mappingτ of all tripletsJ into the open interval of all pairsF for the given
preorderω defined as:

τ : J −→]M(x, y, z), S(x, y, z)[.
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The range is the number of ranks bounded by, and excluding, themedian
and maximum. A measure of the discrepancy between preorderω and an ultra-
metric preorder will be defined from a measure on all pairsF that is dependent
onω.

Given a triplet{x, y, z} for which (x, y) ≤ (y, z) ≤ (x, z), for preorder
ω, the interval]M(x, y, z), S(x, y, z)[ is empty ifω is ultrametric. Relative to
such a triplet, the preorderω is “less ultrametric” to the extent that the cardinal
of ]M(x, y, z), S(x, y, z)[, defined onω, is large. In practice we ensure that
ties in the ranks, due to identically-valued distances, aretaken into account, by
counting ranks that are strictly betweenM andS.

We takeJ into account in order to define discrepancy between the struc-
ture of ω and the structure of an ultrametric preordonnance where|.| denotes
cardinality:

H(ω) =
∑

J

|]M(x, y, z), S(x, y, z)[|/(|F | − 3)|J |.

The value 3 subtracted from|F |(= n(n−1)/2 if |E| = n) takes account
of the presence of the least, median and maximum distances. (Here, we differ
marginally from Lerman, 1981. The subtraction of 3 will not cater though for
tied values.) Ifω is ultrametric thenH(ω) = 0.

As shown in simple cases by Lerman (1981, p. 218), data sets that are
“more classifiable” in an intuitive way, i.e. they contain “sporadic islands” of
more dense regions of points – a prime example is Fisher’s (1936) iris data
contrasted with 150 uniformly distributed values inIR4 – such data sets have a
smaller value ofH(ω). For Fisher’s data we findH(ω) = 0.0899, whereas
for 150 uniformly distributed points in a 4-dimensional hypercube, we find
H(ω) = 0.1835.

Generating all unique triplets is computationally intensive: for n points,
n(n − 1)(n − 2)/6 triplets have to be considered. Hence, in practice, we must
draw triangles randomly from the given point set. For integer indicesi, j, k, we
draw i ∼ [1 . . . n − 2], j ∼ [i + 1 . . . n − 1], k ∼ [max(i, j) + 1 . . . n] where
sampling is uniform.

2.2 Rammal’s Measure Based on the Subdominant Ultrametric

The quantifying of how ultrametric a data set is by Rammal et al. (1985,
1986) was influential for us in this work. The Rammal ultrametricity index is
given by

∑
x,y(d(x, y)− dc(x, y))/

∑
x,y d(x, y) whered is the metric distance

being assessed, anddc is the subdominant ultrametric. The Rammal index is
bounded by 0 (= ultrametric) and 1. As pointed out in Rammal etal. (1985,
1986), this index suffers from “the chaining effect and fromsensitivity to fluc-
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tuations”. The single link hierarchical clustering method,yielding the subdomi-
nant ultrametric, is, as is well known, subject to such difficulties. For this reason
we prefer the Lerman index. The latter is unbounded and, given the definition
used above, we have found maximum values (i.e. greatest non-ultrametricity)
in the region of 0.24. For assessingrelativedegree of ultrametricity it does its
job well.

Rammal et al. (1985, 1986) discuss a range of important data analysis
cases, all of which are characterized by potential sparseness of point occupancy
in the ambient space: a set ofn binary words, randomly defined among the2k

possible words ofk bits; andn words ofk letters extracted from an alphabet
of sizeK. For binary words,K = 2; for nucleic acids, four nucleotids give
K = 4; for proteins, twenty amino acids giveK = 20; and for spoken words,
typically around 40 phonemes giveK = 40. Using the Rammal ultrametric-
ity index, experimental findings demonstrate that random data are increasingly
ultrametric as the spatial dimensionality and sparseness increase.

2.3 Ultrametricity as a Function of Sparseness and Dimensionality

In this article our use of the term “sparseness” has the geometrical sense
(relating to spread of points, and not the sense of zero values in a data array).

We use uniformly distributed data and also uniformly distributed hyper-
cube vertex positions. The latter is used to simulate the multivalued words
considered by Rammal et al., as described in the previous subsection. Random
values are converted to hypercube vertex locations by use ofcomplete disjunc-
tive data coding (Benźecri 1992). Say a variable has maximum and minimum
valuesxmax andxmin. Say, further, thatK = 3. We set thresholds at the val-
uesxmin, xmin + (xmax− xmin) ∗ 0.25, ∗0.5, and∗0.75. A value ofx falling
in the first category receives a 4-valued set:1, 0, 0, 0; a value ofx falling in the
second category receives the 4-valued set:0, 1, 0, 0; and so on. Such complete
disjunctive coding is widely used in correspondence analysis. It is easily veri-
fied that the row marginals are constant. In this important case, Lerman (1981)
develops an analytic probability density function for the H-classifiability index.

The results of Table 1 are summarized in Figure 1. We note the following
findings:

• There is no increase in H-classifiability, i.e. departure fromultrametricity,
for increasing numbers of points,n, at least for the range used here:n =
1000, 2000, 3000, 4000, 5000.

• There is increase in H-classifiability, for increasing dimensionality. Again
this holds for the dimensionalities examined here:m = 50, 100, 250, 500.

• Random hypercube vertex data are “more classifiable”, i.e. such data has
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smaller H-classifiability and is more ultrametric, comparedto uniformly
distributed data.

In our experimentation we chose data sets with no a priori clustering.
These data sets were random, being either

• uniformly distributed, or

• sparsely coded as hypercube vertices.

We have shown that the latter is consistently more ultrametric than the former.
Our results point to the importance of the “type” of data usedor, better

expressed, how the data are coded. Binary data representingany categorical
(qualitative) variables are consistently more ultrametric than uniformly distrib-
uted data.

3. A New Ultrametricity Measure

3.1 Motivation

There are two problems with Lerman’s index. Firstly, ultrametricity is
associated withH = 0 but non-ultrametricity is not bounded. In extensive
experimentation, we have found maximum values forH in the region of 0.24.
The second problem with Lerman’s index is that for floating pointcoordinate
values, especially in high dimensions, the strict equalitynecessitated for an
equilateral triangle is nearly impossible to achieve. However our belief is that
approximate equilateral triangles are very likely to arisein important cases of
high-dimensional spaces with data points at hypercube vertex locations. We
would prefer therefore that the quantifying of ultrametricity should “gracefully”
take account of triplets which are “close to” equilateral. Note that for some
authors, the equilateral case is considered to be “trivial”or a “trivial limit”
(Treves, 1997). For us, however, it is an important case, together with the other
important case of ultrametricity (i.e., isosceles with small base).

3.2 Distance-Based Measures

Treves (1997) considers triplets of points giving rise to minimal, median
and maximal distances. In the plot ofdmin/dmax againstdmed/dmax, the
triangular inequality, the ultrametric inequality, and the “trivial limit” of equi-
lateral triangles, occupy definable regions.

Hartmann (1998) considersdmax− dmed. Now, Lerman (1981) uses
ranks in order to give (translation, scale, etc.) invariance to the sensitivity (i.e.,
instability, lack of robustness) of distances. Hartmann instead fixes the remain-
ing distancedmin.
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Table 1:Results using Lerman’s H-classifiability measure. The 100-dimensionalhypercube ver-
tex point sets were produced by generating 20-dimensional uniformly distributed points and then
transforming into complete disjunctive coding using 5 quantile thresholds. Similarly, the 250-
and 500-dimensional data used 50- and 100-dimensional uniform datato begin with, followed by
transforming with 5 quantile thresholds.

n dim. space H-classif.
Uniform 1000 50 IR50 0.2121

2000 50 IR50 0.2131
3000 50 IR50 0.2271
4000 50 IR50 0.2169
5000 50 IR50 0.2205

Mean 50 IR50 0.2179
Hypercube vertex 1000 50 {0, 1}50 0.0622

2000 50 {0, 1}50 0.0653
3000 50 {0, 1}50 0.0580
4000 50 {0, 1}50 0.0592
5000 50 {0, 1}50 0.0737

Mean 50 {0, 1}50 0.0637
Uniform 1000 100 IR100 0.2326

2000 100 IR100 0.2173
3000 100 IR100 0.2241
4000 100 IR100 0.2172
5000 100 IR100 0.2207

Mean 100 IR100 0.2224
Hypercube vertex 1000 100 {0, 1}100 0.0954

2000 100 {0, 1}100 0.1117
3000 100 {0, 1}100 0.1112
4000 100 {0, 1}100 0.1122
5000 100 {0, 1}100 0.1071

Mean 100 {0, 1}100 0.1075
Uniform 1000 250 IR250 0.2264

2000 250 IR250 0.2340
3000 250 IR250 0.2231
4000 250 IR250 0.2245
5000 250 IR250 0.2289

Mean 250 IR250 0.2274
Hypercube vertex 1000 250 {0, 1}250 0.1547

2000 250 {0, 1}250 0.1618
3000 250 {0, 1}250 0.1496
4000 250 {0, 1}250 0.1636
5000 250 {0, 1}250 0.1577

Mean 250 {0, 1}250 0.1575
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Table 1. (continued)

n dim. space H-classif.
Uniform 1000 500 IR

500 0.2225
2000 500 IR

500 0.2284
3000 500 IR

500 0.2320
4000 500 IR

500 0.2175
5000 500 IR

500 0.2138
Mean 500 IR

500 0.2228
Hypercube vertex 1000 500 {0, 1}500 0.1771

2000 500 {0, 1}500 0.1766
3000 500 {0, 1}500 0.1798
4000 500 {0, 1}500 0.1711
5000 500 {0, 1}500 0.1814

Mean 500 {0, 1}500 0.1772

3.3 A New Measure Based on Angles

We seek to avoid, as far as possible, lack of invariance due touse of
distances. We seek to quantify both isosceles with small base configurations, as
well as equilateral configurations. Finally, we seek a measureof ultrametricity
bounded by 0 and 1. We will therefore use a coefficient of ultrametricity – we
will term it α – which is specified algorithmically as follows.

1. All triplets of points are considered, with a distance (bydefault, Euclid-
ean) defined on these points. Since for a large number of points,n,
the number of triplets,n(n − 1)(n − 2)/6 would be computationally
prohibitive, we instead randomly (uniformly) sample coordinates (i ∼
{1..n}, j ∼ {1..n}, k ∼ {1..n}).

2. We check for possible alignments (implying degenerate triangles) and ex-
clude such cases.

3. Next we select the smallest angle as less than or equal to 60degrees. (We
use the well-known definition of the cosine of the angle facingside of
lengthx as: (y2 + z2 − x2)/2yz.) This is our first necessary property
for being a strictly isosceles (< 60 degrees) or equilateral (= 60 degrees)
ultrametric triangle.

4. For the two other angles subtended at the triangle base, weseek an angu-
lar difference of strictly less than 2 degrees (0.03490656 radians). This
condition is an approximation to the ultrametric configuration, based on
an arbitrary choice of small angle. This condition is targeting a configu-
ration that may not be exactly ultrametric but nonetheless is very close to
ultrametric.
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Figure 1: Upper curve: uniformly distributed values. Lower curve: random hyper-
cube vertex points. A low value of H-classifiability is related to near-ultrametricity. Each
point shows an average of different experiments corresponding to numbers of pointsn =

1000, 2000, 3000, 4000, 5000. From values given in Table 2, there is very little variation as a
function ofn.

5. Among all triplets (1) satisfying our exact properties (2, 3) and close ap-
proximation property (4), we define our ultrametricity coefficient as the
relative proportion of these triplets. Approximately ultrametric data will
yield a value of 1. On the other hand, data that is non-ultrametric in the
sense of not respecting conditions 3 and 4 will yield a low value, poten-
tially reaching 0.

In summary, theα index is defined in this way:
Consider a triplet of points, that defines a triangle. If the smallest internal

angle,a, in this triangle is≤ 60 degrees, and, for the two other internal angles,
b andc, if |b − c| < 2 degrees, then this triangle is an ultrametric one. We look
for the overall proportion of such ultrametric triangles inour data.

The Fisher iris data (150 × 4) givesα = 0.0162, indicating some, very
limited, ultrametricity by this measure. By recoding the four iris variables into
discrete (zero or one) categories, we find the following. Firstly, with two dis-
crete categories (data now:150 × 8), we findα = 0.0949. For four discrete
categories (data now:150×16), we findα = 0.477327. For eight discrete cate-
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gories (data now:150×32), we findα = 0.741361. This shows how increasing
dimensionality, and sparseness, lead to greater ultrametricity by this measure.

3.4 Ultrametricity Scaling with Data Size, Dimensionality, and Sparse-
ness

We use uniformly distributed data and also uniformly distributed hyper-
cube vertex positions, as in subsection 2.3. The latter is used to simulate the
multivalued words considered by Rammal et al. (see subsection 2.2). Again,
random values are converted to hypercube vertex locations by use of complete
disjunctive data coding (Benzécri 1992).

• As for the Lerman H-classifiability index, we find surprising indepen-
dence ofα relative ton, the number of points. Consider the follow-
ing: we generate uniformly distributed data points inIR10. For n =
1000, 5000, 10000, 15000, 20000, 25000, we find α = 0.096386,
0.078000, 0.077077, 0.075075, 0.079000, 0.071000. There appears to be
a small decrease in ultrametricity due to increasing density of points.

• Ultrametricity increases with sparsity of coding. We will show this by
comparing uniformly distributed points, and points at hypercube vertex
locations. We will again take the number of points,n = 1000, 5000,
10000, 15000, 20000, 25000. We will also use a 10-dimensional space
with, on this occassion, the points at the vertices of a hypercube. (We do
this by generating uniformly inIR5 and then quantizing each of the 5 vari-
ables to two discrete categories. See discussion at the startof this section).
We find, respectively:α = 0.271630, 0.247495, 0.260563, 0.264056,
0.269076, 0.275275. Therefore, with sparsity we again find very little de-
pendence onn. For varyingn, theseα results are quite similar. However
we see a very big relative difference in value ofα between points inIR10

(discussed under the previous bullet point) and points at the vertices of a
10-dimensional hypercube (discussed under this bullet point).

• Ultrametricity increases with dimensionality. Usingn = 5000 real-valued
points, uniformly distributed in space of dimensionalitym = 50, 100,
500, 1000, 5000, we find:α = 0.183183, 0.271000, 0.544000, 0.707708,
0.979000. (See Figure 2.)

• Dimensionality and (spatial) sparsity, combined, force the tendency to-
wards ultrametricity, but the compounding of these two dataproperties is
not as pronounced as we might have expected. Again we take thenumber
of points,n = 5000. Using uniform data in real spaces of dimensions
25, 50, 250, 500 and 2500, and then quantizing to two discreteresponse
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Figure 2: Upper curve: uniformly distributed values. Lower curve: random hypercube vertex
points. A value of alpha close to 1 is related to near-ultrametricity. For each dimensionality (50,
100, 500, 1000, 5000) we used number of pointsn = 5000. In other experiments we found very
little variation as a function ofn.

categories, gives us dimensionalitiesm = 50, 100, 500, 1000, 5000. Our
n points are now at the vertices of hypercubes in spaces of dimensional-
ity m. We findα = 0.179179, 0.172172, 0.454910, 0.588000, 0.934000.
(Again see Figure 2.)

We have found theα measure of ultrametricity to most convincingly
demonstrate that sparse spaces become very ultrametric with increase in space
dimensionality. We stress also that these experiments werecarried out on data
which are as “un-clustered” as possible.

4. Computational Costs of Operations in an Ultrametric Space

Given that sparse forms of coding are considered for how complex stim-
uli are represented in the cortex (see Young and Yamane, 1992), the ultrametric-
ity of such spaces becomes important because of this sparseness of coding.
Among other implications, this points to the possibility that semantic pattern
matching is best accomplished through ultrametric computation.
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A convenient data structure for points in an ultrametric space is a den-
drogram. We define a dendrogram as a rooted, labeled, ranked, binary tree
(Murtagh, 1984a). Therefore forn points there are preciselyn− 1 levels. With
each level there is an associated rank1, 2, . . . , n − 1; and also the ultrametric
distance which is a mapping into the positive reals.

Operations on binary trees are often based on tree traversalbetween root
and terminal. Hence computational cost of such operations is dependent on
root-to-terminal(s) path length. The total path length of a root-to-terminal tra-
versal varies for each terminal (or point in the corresponding ultrametric space).
It will be simplest to consider path length in terms of level or tree node rank (and
if it is necessary to avail of path length in terms of ultrametric distances, then
constant computational time, only, is needed for table lookup). A dendrogram’s
root-to-terminal path length can vary from close tolog2 n (“close to” because
the path length has to be an integer) ton− 1 (Murtagh, 1984b). Let us call this
computational cost of a tree traversalO(t).

Most operations that we will now consider make use of a dendrogram
data structure. Hence the cost of building a dendrogram is important. For the
problem in general, see Křivánek and Moŕavek (1984, 1986) and Day (1996).
ForO(n2) implementations of most commonly used hierarchical clustering al-
gorithms, see Murtagh (1983, 1985).

To place a new point (from an ultrametric space) into a dendrogram, we
need to find its nearest neighbor. We can do this, in order to write the new
terminal into the dendrogram, using a root-to-terminal traversal in the current
version of a dendrogram. This leads to our first proposition.

Proposition 1: The computational complexity of adding a new terminal
to a dendrogram isO(t), wheret is one traversal from root to terminals in the
dendrogram.

Proposition 2: The computational complexity of finding the ultrametric
distance between two terminal nodes is twice the length of a traversal from root
to terminals in the dendrogram. Therefore distance is computed inO(t) time.

Informally: we potentially have to traverse from each terminal to the root
in order to find the common, “parent” node.

Proposition 3: The traversal length from dendrogram root to dendro-
gram terminals is best case 1, and worst casen − 1. When the dendrogram is
optimally balanced or structured, the traversal length from root to terminals is
⌊log2 n⌋. Hence1 ≥ O(t) ≥ n − 1, and for a balanced treeO(t) = log2 n.

Depending on the agglomerative criterion used, we can approximate the
balanced or structured dendrogram – and hence favorable case – quite well in
practice (Murtagh, 1984b).

Proposition 4: Nearest neighbor search in ultrametric space can be car-
ried out inO(1) or constant time.
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This results from the following: the nearest neighbor pair must be in the
same tightest cluster that contains them both. There is only one candidate to
check for in a dendrogram. Hence nearest neighbor finding results in firstly
finding the lowest level cluster containing the given terminal; followed by find-
ing the other terminal in this cluster. Two operations are therefore required.

5. Approximating an Ultrametric for Similarity Metric Space Searchi ng

In data analysis we usually begin with the Euclidean distanceor some
other non-ultrametric distance (e.g. some other Minkowskidistance, or the
squared Euclidean distance, or theχ2 distance, or some normalized or stan-
dardized Euclidean distance, etc.). The previous section hasdiscussed some
of the advantages of nearest neighbor (also known as best match) searching if
such an operation is carried out in an ultrametric space. Oneway to arrange for
this, of course, is simply to map our data into an ultrametricspace, using some
appropriate hierarchical clustering algorithm (Willett,1988). But anyO(n2)
algorithm is wholely impractical for largen and large dimensionality. In this
section we will look at another approach to mapping points into an ultrametric
space, followed by use of ultrametric distance for (exact, and not approximate,
as we will note below) metric proximity search.

In much work over the years, nearest neighbor searching has been made
more efficient through the use of more easily determined feasibility bounds.
An early example is Fukunaga and Narendra (1975), a chapter review is in
Murtagh (1985), and a recent survey is Chávez, Navarro, Baeza-Yates and Mar-
roqúın (2001). In this section we will show that rendering given distances as
ultrametric is a powerful way to facilitate nearest neighbor searching. Further-
more “stretching the triangular inequality” (Chávez and Navarro, 2003) so that
it becomes the strong triangular inequality, or ultrametric inequality, gives a
unifying view of some algorithms of this type.

Bellman’s “curse of dimensionality” (Bellman, 1961) can bedefined in
various ways. Ch́avez and Navarro (2000, 2003) characterize search dimension-
ality as the ratio of mean to variance of given metric space distances. A large
mean and/or small variance of distances imply exponential increase in nearest
neighbor searching, as typifies high dimensional spaces. In high dimensional
spaces, this statistic of distance mean divided by variance, ρ = µ2/2σ2, ex-
presses the fact that the difference between random distances is small. Ch́avez
and Navarro (2003) “exploit the high dimension of the metricspace, specifi-
cally the fact that the difference between random distancesis small compared
to a random distance”. Now, roughly equal distances is tantamount to equi-
lateral triangles being formed between triplets of points.Thus the Ch́avez and
Navarro principle is to assert that high dimensional spacesbecome naturally and
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trivially ultrametric, in that triplets of points form equilateral triangles. Two in-
tuitive properties of increasing values of Chávez and Navarro (2003)ρ are that
as the variance decreases, less information is conveyed by distances (i.e., trian-
gles tend towards being equilateral) independently of the spatial dimensionality;
and asµ increases a larger search radius is necessitated.

As against these characteristics of metric spaces, ultrametric spaces offer
their own potential for fast nearest neighbor finding. The Chávez and Navarro
(2003) solution to alleviating the computational difficulties resulting from in-
creasingρ is through preprocessing which is approximate and probabilistic. We
will show that it also amounts to defining ultrametric distances from the given
metric space distances.

Fast nearest neighbor finding often makes use of pivots to establish bounds
on points to be searched, and points to be bypassed as infeasible (Bustos,
Navarro and Ch́avez, 2003; Ch́avez et al., 2001). Consider pointsu which
we seek to discard, when searching for nearest neighbors of queryq. Pivots,pi,
are used. By the triangle inequality,

d(u, pi) ≤ d(u, q) + d(q, pi) andd(q, pi) ≤ d(q, u) + d(u, pi). (1)

These two relations lead to the following rejection rule: we want to dis-
card allu such that|d(u, pi)−d(q, pi)| > r for a thresholdr and for some pivot
pi. Then nearest neighbor searching takes place through allu which cannotbe
rejected in this way.

Let us look at this rejection rule,|d(u, pi) − d(q, pi)| > r, a little closer.
We are enforcing approximate equality by rejectingu whenever we have de-
parture from equality. What difficulty can departure from equality of these dis-
tances cause for us? We have eitherd(u, pi) > d(q, pi) or vice versad(q, pi) >
d(u, pi).

Hence the rejection rule results in the following not being allowed in
relations 1:d(u, pi) > d(q, pi) (left relation in 1) andd(q, pi) > d(u, pi) (right
relation in 1).

Take the left relation in 1. We haved(u, pi) ≤ d(u, q) + d(q, pi), and
d(u, pi) < d(q, pi) consistent with and respecting the rejection rule. Look at
the right hand side of the first of these: we have eitherd(q, pi) > d(u, q) or
d(q, pi) < d(u, q). If d(q, pi) is the larger here, then relation 1 (left) is satisfied.
If d(q, pi) is the smaller of the pair here, then from our rejection rule we again
find that relation 1 (left) is satisfied. Relation 1 (right) can be shown in the same
way. We conclude: from the relations in 1, given the rejection rule, we have as
a consequence:

d(u, pi) ≤ max{d(u, q), d(q, pi)} and

d(q, pi) ≤ max{d(q, u), d(u, pi)}. (2)
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For further discussion of this consequence of the rejectionrule applied,
and for its use in practice, the references cited here can be referred to. The
rejection rule is seen to be a requirement ford(u, pi) andd(q, pi) to be similar,
in that they are being rejected precisely if they are not similar. In other words,
the rejection rule is forcing retained triangles to be isosceles.

The heuristic pursued by Chávez and Navarro (2003) has been shown by
these authors to be computationally beneficial: as the searchdimensionalityρ
grows, the heuristic entails a small and more reliable search radius. It results
from our discussion that this property of their algorithm results from transform-
ing a metric space to be ultrametric. In practice, this transforming need only be
partial, i.e. subset-wise.

Fast nearest neighbor searching in metric spaces often appeals to heuris-
tics. As shown in the foregoing discussion, the link with ultrametric spaces
gives rise instead to a unifying view. Hjaltason and Samet (2003) discuss
heuristic nearest neighbor searching in terms of embeddingthe given metric
space points in lower dimensional spaces. From our discussion in this section,
we see that there is evidently another alternative direction for facilitating fast
nearest neighbor searching: viz., taking the metric space as an ultrametric one,
and if it does not quite fit this perspective then “stretch” (transform) it so that it
does so.

In conclusion, we note that the pivot-based approach described in this
section allows us to limit the parts of our original data space (let’s assume,
Euclidean) to be searched. The ultrametric distance relationships are used for
this purpose, and it is not necessary nor useful to define this ultrametric space
in detail.

6. Conclusions

We have shown that high dimensional and sparse codings tend to be ul-
trametric. This is an interesting result in its own right. However a far more
important result is that certain computational operationscan be carried out very
efficiently indeed in space endowed with an ultrametric.

Chief among these computational operations, we have shown,is that
nearest neighbor finding can be carried out in (worst case) constant compu-
tational time. Depending on the structure of the ultrametric space (i.e. if we can
build a balanced dendrogram data structure), pairwise distance calculation can
be carried out in logarithmic computational time.

We have also reviewed approaches to using ultrametric distances in order
to expedite best match, or nearest neighbor, or more generally proximity search.
The usual constructive approach, viz. build a hierarchic clustering, is simply
not computationally feasible in very high dimensional spaces as are typically



On Ultrametricity, Data Coding, and Computation 183

found in such fields as speech processing, information retrieval, or genomics
and proteomics.

We have noted how forms of sparse coding are considered to be used in
the human or animal cortex. We raise the interesting question as to whether
human or animal thinking can be computationally efficient precisely because
such computation is carried out in an ultrametric space.
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GOUVÊA, F.Q. 2003,P-Adic Numbers, New York: Springer-Verlag, 2nd edn., 3rd printing.
HARTMANN, A.K. (1998). “Are Ground States of 3D±J Spin Glasses Ultrametric?”,Euro-

physics Letters, 44, 249–254.
HJALTASON, G.R., and SAMET, H. (2003). “Properties of Embedding Methods for Simi-

larity Searching in Metric Spaces”,IEEE Transactions on Pattern Analysis and Machine
Intelligence, 25, 530–549.

JOHNSON, S.C. (1967). “Hierarchical Clustering Schemes”,Psychometrika, 32, 241-254.
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MÉZARD, M., PARISI, G., SOURLAS, N., TOULOUSE, G., and VIRASORO, M.A. (1984).
“Nature of the Spin-Glass Phase”,Physical Review Letters, 52, 1156–1159.

MURTAGH, F. (1983). “A Survey of Recent Advances in Hierarchical Clustering Algorithms”,
The Computer Journal, 26, 354–359.

MURTAGH, F. (1984a). “Counting Dendrograms: a Survey”,Discrete Applied Mathematics,
7, 191–199.

MURTAGH, F. (1984b). “Structures of Hierarchic Clusterings: Implications for Information
Retrieval and for Multivariate Data Analysis”,Information Processing and Management,
20, 611–617.

MURTAGH, F. (1985).Multidimensional Clustering Algorithms, Würzburg: Physica-Verlag.
OGIELSKI, A.T., and STEUB, D.L. (1985). “Dynamics of UltrametricSpaces”,Physical Re-

view Letters, 55, 1634–1637.
PARISI, G., and RICCI-TERSENGHI, F. (2000). “On the Origin of Ultrametricity”,Journal of

Physics A: Mathematical and General, 33, 113–129.
RAMMAL, R., ANGLES D’AURIAC, J.C., and DOUCOT, B. (1985). “On the Degree of

Ultrametricity”, Le Journal de Physique – Lettres, 46, L-945 – L-952.
RAMMAL, R., TOULOUSE, G., and VIRASORO, M.A. (1986). “Ultrametricity for Physi-

cists”,Reviews of Modern Physics, 58, 765-788.
ROBERTS, M.D. (2001). “Ultrametric Distance in Syntax”,

http://arXiv.org/abs/cs.CL/9810012
SCHIKHOF, W.H. (1984).Ultrametric Calculus, Cambridge: Cambridge University Press.
TREVES, A. (1997). “On the Perceptual Structure of Face Space”,BioSystems, 40, 189–196.
WATSON, S. (2003). “The Classification of Metrics and Multivariate Statistical Analysis”,

preprint, York University, 27 pp.
WILLETT, P. (1988). “Recent Trends in Hierarchic Document Clustering: A Critical Review”,

Information Processing and Management, 24, 577–597.
YOUNG, M.P., and YAMANE, S. (1992). “Sparse Population Coding ofFaces in the Infer-

otemporal Cortex”,Science, 256, 1327–1331.


