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1. Introduction

In general, mixture models arise in many contexts and have been found
to be useful for modeling heterogeneity (Pettit & Smith, 1985), and density
estimation (Roeder & Wasserman, 1997). As analysis of mixture models is
non-trivial, it has received a lot of attention in statistics (see, McLachlan &
Barford, 1998; Titterington et al., 1985; among others). Structural equation
models (SEMs) are well-recognized to be very useful in behavioral, psycholog-
ical and social sciences. As the data often come from a heterogeneous group of
populations, developments of rigorous methods for analyzing a finite mixture of
SEMs have received a great deal of attention. Arminger and Stein (1997) used a
two-stage method to analyze mixtures of conditional distributions with covari-
ance structures. Jedidi, Jagpal and DeSarbo (1997a) analyzed a finite mixture of
multivariate regression and simultaneous equation models; while Jedidi, Jagpal
and DeSarbo (1997b) considered the estimation of a general finite mixture of
structural equation models. Yung (1997) investigated a mixture of confirmatory
factor analysis models and proposed an approximated scoring algorithm and an
EM algorithm to solve the likelihood equation. Dolan and van der Maas (1998)
used a quasi-Newton algorithm and inferred the estimation by changing the de-
gree of separation and the sample sizes. Arminger, Stein and Wittenberg (1999)
discussed ML analysis for mixtures of conditional mean- and covariance- struc-
ture models. Three estimation strategies on the basis of the EM algorithm were
proposed. Zhu and Lee (2001) developed a Bayesian analysis to a finite mixture
of LISREL models, using the idea of augmenting the observed data with latent
variables and allocation variables. However, very limited work has been done
to handle mixture of SEMs with missing data.

In practice, missing data are very common in behavioral, psychological
and social researches. In general, it is well-recognized that the information of
the missing data should be taken into account for achieving correct results. The
approach of replacing the missing entries by estimates obtained from the sample
means or the predicted values by regression on the basis of the fully observed
data creates dependent observations which are very difficult to handle. More-
over, for mixture models, as the component memberships of the observations
are not identified, one does not know which part of the data should be used to
compute the mean estimates or the predicted values from regression. Existing
specific methods in common SEMs with missing data proposed by Lee (1986),
Allison (1987), Jamshidiam and Bentler (1999), and Song and Lee (2002) are
not for analyzing mixture SEMs.

In this paper, a maximum likelihood (ML) approach is developed for
analyzing mixtures of SEMs with missing data which are missing at random
(MAR) with an ignorable mechanism (see, Little & Rubin, 1987). We will
study the impact of ignoring incomplete data on estimation. We consider the
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ML approach because it is well-recognized as an important statistical method
and has optimal properties such as consistency, efficiency and asymptotic nor-
mality. Moreover, it is the foundation of many important statistical methods,
for example, the Bayesian Information Criterion (BIC) for model comparison
(see, Schwarz, 1978; Kass & Raftery , 1995), and global and local influence
analyses for model diagnostics (see, Cook, 1977, 1986). We do not pursue a
Bayesian approach (Diebolt & Robert, 1994) because it involves a great deal
of effort in programming the full conditional distributions in the posterior anal-
ysis corresponding to the large number of unknown parameters in the model,
see Zhu and Lee (2001). However, it is not our intention to claim that the ML
approach is better or to compare it with the Bayesian approach. In the litera-
ture, there are many papers to compare these two important approaches, and it
seems that a definite conclusion is not yet arrived. Like other areas in statistics,
our purpose is to develop the ML approach as a complementary method to the
Bayesian approach.

It is well-known that the EM algorithm (Dempster et al. 1977) is a pow-
erful tool for ML estimation with missing data. Due to the complexities of
the mixture SEMs, it is difficult and inefficient to directly compute the con-
ditional expectations in the E-step of the algorithm. The Gibbs sampler will
be implemented to generate observations from the conditional distributions for
approximating these expectations and the E-step. Hence, it can be regarded as
a Monte Carlo EM (MCEM) algorithm (Wei & Tanner, 1990). The M-step is
completed by a sequence of conditional maximization steps (see, Meng & Ru-
bin, 1993), and convergence of the algorithm is monitored by the recent method
given in Shi and Copas (2002). Standard errors estimates are evaluated by the
Louis (1982) formula. In situations where there are a large number of distinct
missing patterns associated with the missing data, direct computation of the fi-
nal observed-data log-likelihood function, which is essential in obtaining the
BIC, is very tedious and inefficient. A procedure on the basis of path sampling
(Gelman & Meng, 1998) is introduced to compute this value.

The paper is organized as follows. Section 2 presents a finite mixture
of SEMs with missing data. The ML estimation is developed in Section 3.
Components in the implementation of the MCEM algorithm are discussed. A
procedure for computing the final observed-data likelihood via path sampling,
and model comparison on the basis of BIC are discussed in Section 4. Results
obtained from simulation studies are reported in Section 5. Section 6 presents
an illustrative example with a real data set, and Section 7 gives a summary.

2. Model Description

A mixture SEMs for a ����� random vector ��� is defined as follows:
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�
	 � ���� ��������� � � � 	 � ��� � ����� � � ���  � �� � � !�#"
� (1)

where $ is the number of components, � � ’s are component probabilities which
are nonnegative and sum to 1.0,

� � 	 � � � � ��� � � is a multivariate normal den-
sity function with an unknown mean vector � � and a covariance matrix � � � � 	&% � � that is a matrix function of an unknown parameter vector

% � .
Suppose that the random vector � conditional on the k-th component

satisfies the following measurement model:� '� �)(+* �-,.� (+/ � � (2)

where � � is an �0�1� intercept vector, * � is a �0�.2 factor loading matrix, ,0� is a23�4� random vector of latent variables, and / � is a �5�4� random vector of error
measurements with distribution 6 	&7 ��8 � � , which is independent of ,9� , and 8 �
is a diagonal matrix. To handle more complex situations, the latent vector ,:� is
partitioned into

	<;>=� �#? = � � = , where
; � is a 2 � ��� vector, ?@� is a 2!AB�C� vector, and2 � ( 2DA  2 . The structural equation of this E -th component model is defined

as (see, Jöreskog & Sörbom, 1996):; � 'F � ; �G(IH � ?J�G(+K � � (3)

where F � and H � are 2 � �52 � and 2 � �52 A matrices of unknown parameters such
that F:L �  	<M�NPOGQ F � � is nonsingular and � MDNPORQ F � � is a constant that does
not depend on elements of F � . Random vectors ?@� and K � are independently
distributed as 6 	&7 ��S � � and 6 	<T ��8VU � � , respectively; and 8VU � is a diagonal
matrix. The structural equation defined in (3) describes the casuals effects of

; �
and ?J� on

; � . Let W �  	 F � �XH � � , and
% � be the parameter vector that contains

the free unknown parameters in * � , 8 � , W � , 8YU � and S � . The covariance
structure of ,9� is given by

�9Z � \[ FY] �L � 	 H � S � H = � (^8YU � � 	 FY] �L � � = FY] �L � H � S �S � H = � 	 FY] �L � � = S � _ � (4)

and � � 	&% � �9 * � �9Z � * = � (`8 � . Any of these unknown parameter matrices
can be set invariant across components.

As the mixture model defined in (1) is invariant with respect to permuta-
tion of labels E  � �� � � !� $ , adoption of an unique labeling for identifiability
is important. On the basis of the suggestions by Crawford (1994), Roeder and
Wasserman (1997), and Zhu and Lee (2001), the ordering a �#�.b  � � b a � � is
imposed to eliminate label switching, where a �!� is the first element of the mean
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vector � � . For each E  � �� � � -� $ , structural parameters in the covariance ma-
trix � � corresponding to the model defined by (2) and (3) are not identified. A
common method in structural equation modeling for identifying the covariance
matrix is to fix appropriate elements in * � , F � , and/or H � at preassigned val-
ues that are chosen on problem-by-problem basis. See the following sections
for more concrete examples. For clear discussion of the proposed method, we
let c be the vector which contains all unknown parameters in � � , � � , * � , 8 � ,F � , H � , S � and 8YU � , E  � �� � � !� $ , that define an identified model.

3. ML Estimation of Mixture SEMs with Missing Data

To deal with the missing data problem, let � � ed � �gf h#i�j � � �gf k
lmj#n , where� �gf h#i�j represents the observed components of � � , whilst � �gf k
lmj represents the
missing entries. We assume that missing data are MAR with an ignorable mech-
anism (Little & Rubin, 1987). For a fully observed data point � � , � �gf k
lmj does
not exist. Let o h#i�j pd � �gf h#i�j �#�  � �� � � -�#" n , o k
lmj pd � �gf k
lmj �#�  � �� � � !�#" n ,
and o  	 o h#i�j � o k
lmj � . Since for each �  � �� � � -�#" , the number of missing
entries and their positions in � � can be varied, there may be a lot of missing
patterns in o h#iqj ; moreover, the sample sizes in the patterns can be very small
and very different. As very limited work has been done to analyze mixtures of
SEM with missing data, the main objective of this paper is to develop a proce-
dure for obtaining the ML estimates of c and standard errors on the basis of the
observed-data o h#iqj .
3.1 Standard Method of Treating Missing Data to Mixture SEMs

In the standard method of dealing missing data in covariance structure
modeling (Finkbeiner, 1979; Lee, 1986), for each �  � �� � � !�#" , � �gf h#i�j is related
with � � by � �gf h#i�j 'r � � � , where r � is an appropriate matrix of zeros and ones.
If � � contains no missing data, r � is the identity matrix. The observed data are
equal to o h#i�j \d!r9� � � �#�  � �� � � -�#" n . Applying this standard method to a$ -component mixture SEM as defined in (1),�
	 � �sf h#i�j �
 ������� � � � � 	 r � � � � r � � �t� r � � � r =� � �
and the observed-data log-likelihood function becomesuwv 	 o h#iqj � c �
 x� � ���Jy{z}| ������� � � � � 	 r � � � � r � a � � r � � � r =� ��~
As ‘log’ cannot be interchanged with the summation sign, this function can
only be expressed as a sum of " density functions of non-identically distributed
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observations with different dimensions. To apply gradient methods such as the
approximate-scoring algorithm (Yung, 1997) or the quasi-Newton algorithm
(Dolan & van der Maas, 1998) in maximizing

u)v 	 o h#i�j � c � , we have to com-
pute the gradient vector of

uRv 	 o h#i�j � c � , which involves " first derivatives cor-
responding to y�z}| �
	 � �sf h#i�j � �#�  � �� � � !�#" , in each iteration. The computational
burden is rather heavy if " is large. Moreover, corresponding to different data
sets, r9� �#�  � �� � � !�#" can be different. From an implementation point of view,
it is rather difficult to write a program that can handle general missing data sets
with arbitrary missing patterns.

To reduce the computational burden, the standard EM algorithm (Demp-
ster et al., 1977) has been applied to mixture SEMs with fully observed data
(Yung, 1997; Jedidi et al., 1997). In the application, a grouping variable (in-
dicator variable, component membership) � � for � � is introduced as a latent
allocation variable. Naturally, it assumed that � � is independently drawn from
the following distribution� 	 � �  E �� � � � E  � �� � � !� $ � (5)

and given � � , observations are drawn independently from the respective
subpopulations. In the EM algorithm of Jedidi et al. (1997), only � 	 � � �� � � D� � x � are treated as missing data. Let

u ��� 	 o � ����c � be the complete-
data likelihood. At the � -th iteration of the EM algorithm, the E-step eval-
uates � � 	 c � o � c����X� ����5d u ��� 	 � � o���c ��� o � c����X� n , where the expectation is
taken with respect to the conditional distribution of � given o and c ���#� . The
M-step maximizes � � 	 c � o � c����X� � with respect to c . The objective function,� � 	 c � o � c ���#� � , to be maximized in the M-step can be expressed as� � 	 c � o � c����X� �� ������� � ��� 	 � � � � �t��� � � o � � � ���X�� ��� ���X�� � �
where � ��� is the conditional expectation with respect to the E -th component
likelihood and o � is the collection of observations from component E . The
maximization is done via a common multiple-group approach with a quasi-
Newton algorithm. The presence of missing data gives no trouble in evaluating� � 	 c � o h#i�j � c ���X� � in the E-step. However, to deal with the missing patterns,
the multiple-group problem in the M-step will be more complicated. Let ���� ��" 	&��� �#" � be the number of distinct missing patterns, and r1� be the matrix as
defined above to relate � �gf h#iqj with � � in the pattern � , for �  � �� � � !� � . The
objective function to be maximized at the M-step is given by� � 	 c � o h#i�j � c����X� ������ ��� � ������ � ��� 	 � � � r9�D� � � r�� � � r = � � o � � � r9�D� ���X�� � r9� � ���#�� r = � � �
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where o � � contains the observed data points in the pattern � under componentE . When � is large and/or the numbers of data points for some o � � are small,
maximizing � � 	 c � o h#i�j � c ���#� � is not practical.

In applying the EM algorithm to a mixture of confirmatory factor anal-
ysis model (see equations (1) and (2)) with latent factors �  	 , � �� � � D� , x � ,Yung (1997) treated � and � as missing data. Let

u A � 	 o � � � �V��c � be the
complete-data likelihood. At the E-step of � -th EM iteration, it requires to eval-
uate the conditional expectation, �5d u A � 	 o � � � �V��c ��� o � c ���X� n , with respect to� and � given o and c����#� . Yung (1997) derived expression for this condi-
tional expectation in the context of the simple factor analysis model with fully
observed data; and obtained closed form solution in the M-step under certain
situations. For more general SEMs (see equations (2) and (3)) with missing
data,

u A � 	 o h#i�j � � � �4��c � is a summation of � more complicated functions,
and the conditional distribution of � and � given o h#i�j (not o ) and c����#� is
much more complicated. Hence, if � is large or the form of o h#i�j is com-
plicated, evaluating � A 	 c � o h#i�j � c����X� �� �5d u A � 	 o h#i�j � � � �¡��c ��� o h#iqj � c����X� n is
difficult. Moreover, the form of � A 	 c � o h#i�j � c ���X� � can be complex, it is not clear
whether or not the M-step can be completed via closed-form solution. Moti-
vated by the above difficulties of the standard methods in treating the MAR
missing data for mixture of NSEMs, we develop a MCEM algorithm for ML
estimation of the model that is more efficient and reliable.

3.2 ML Estimation via a MCEM Algorithm

As the likelihood function � 	 o h#i�j � c � based on the observed data is rather
complicated due to presence of missing data and latent variables, obtaining the
ML solution by directly working with � 	 o h#iqj � c � or by applying the above men-
tioned standard methods is difficult. Inspired by the key idea of data augmenta-
tion (see, Tanner & Wong, 1987), we augment o h#iqj with

	 o k
lmj � � � in the ML
estimation. Let ¢  	 o h#i�j � o k
lmj � � � , the complete-data likelihood function
is: u � 	 ¢£��c �¤ � 	 ¢ � c � ��������� � 	&� � ��] x � �!¥ N �§¦ A 	 � 8 � �{� 84U � �{� S � �m��] x ¦ A � F:L � � xx¨� ����©�ª¬«1 	 � � Q � � Q * �-, � � = 8 ] �� 	 � � Q � � Q * �-, � ��® �

©�ª¬«  ? =� S ] �� ? � ( 	<; � Q W �-, � � = 8 ] �U � 	<; � Q W �!, � � ® ~ (6)

Note that a key difference between Yung’s (1997) approach and our approach
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in using the EM algorithm is that we additionally augment o k
lmj in the analysis,
so that our complete-data likelihood

u � 	 ¢���c � does not involve any r9� . Conse-
quently, the ML estimation based on the complete-data set ¢ is comparatively
easier with the following EM algorithm: At the � th iteration with a current valuec ���X� :
E-step: Evaluate� 	 c � c����X� �¯ �°d u � 	 ¢ � c ��� o h#i�j � c����#� n �°d u � 	 o h#i�j � o k
lmj � � � c ��� o h#i�j � c ���X� n �
where the expectation is taken with respect to the joint conditional distribution
of
	 o k
lmj � � � given o h#iqj and c����#� .

M-step: Maximize � 	 c � c����X� � to update c����X� to c���� ¥ � � .
Due to the existence of the missing data, it is still difficult to directly

evaluate the conditional expectations involved in the E-step. Inspired by the
idea given in Wei and Tanner (1990), the E-step is approximated by a suffi-
ciently large number of observations simulated from the conditional distribu-
tion of

	 o k
lmj � � � given o h#iqj and c ���X� . A common tool in statistical comput-
ing for simulating observations from � 	 o k
lmj � � � o h#i�j � c ���X� � is the Gibbs sam-
pler (Geman & Geman, 1984), which iteratively generates observations from� 	 o k
lmj�� o h#iqj � � � c����X� � and � 	 � � o h#i�j � o k
lmj � c � . However, owing to the com-
plexity of the current mixture model, the above marginal conditional distri-
butions are complicated. Hence, utilizing the common idea in handling mix-
ture models (see, for example Zhu & Lee, 2001; among others), we further
augment the grouping variable � � for � � (see equation (5)) in the analysis.
Now, the data set

	 o h#i�j � o k
lmj � � � will be further augmented with the vector�  	 � � �� � � -� � x � in the ML analysis. In the following, we will briefly de-
scribe the Gibbs sampler to simulate observations from � 	 o k
lmj � � � � � o h#i�j � c �
for approximating the conditional expectations in the E-step. Thus the proposed
EM algorithm can be regarded as a Monte Carlo EM (MCEM) algorithm (Wei
& Tanner, 1990).

Let ± 	 o k
lmj � � � be a generic function of o k
lmj and � . In the evaluation
of � 	 c � c����X� � , its conditional expectation given o h#i�j and c is approximated by²�5d ± 	 o k
lmj � � ��� o h#iqj � c n  �³ ´�µ ��� ± 	 o � µ �k
lmj � � � µ � � � (7)

where d 	 o � µ �k
lmj � � � µ � � �X¶  � �� � � -� ³ n is the corresponding subset of a suffi-

ciently large sample d 	 o � µ �k
lmj � � � µ � � � � µ � � �X¶  � �� � � !� ³ n simulated from the
joint conditional distribution � 	 o k
lmj � � � � � o h#i�j � c � . The following Gibbs
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sampler (Geman & Geman, 1984) is used to sample these observations. At
the ¶ th iteration within the Gibbs sampler with current values o � µ �k
lmj , � � µ � and� � µ � : (i) generate � � µ ¥ � � from � 	 � � o h#i�j � o � µ �k
lmj � � � µ � � c � , (ii) generateo � µ ¥ � �k
lmj from � 	 o k
lmj � o h#i�j � � � µ � � � � µ ¥ � � � c � , and (iii) generate � � µ ¥ � � from� 	 � � o h#i�j � o � µ ¥ � �k
lmj � � � µ ¥ � � � c � . Marginal conditional distributions for every it-
eration in the Gibbs sampler are briefly discussed as follows.

Consider the conditional distribution � 	 � � o � � � c � . As o 	 o h#i�j � o k
lmj � is given, the model becomes one without missing data. Hence, it
follows from the results in the literature (see, for example, Zhu & Lee, 2001)
that � 	 � � o � � � c �
 x¨� ��� � 	 � � � � � � , � � c � � and� 	 � �  E � � � � , � � c �w � � � � 	 � � � � � ��� � �������� � � � � 	 � ��� � ����� � � � (8)

where
� � 	 � � � � �t��� � � is the probability density function of 6¸· � ����� � 	&% � ��¹ .
As , � and / � are mutually independent, � � are also mutually independent.

We have� 	 � � o � � � c ��º � 	 o � � � � � c � � 	 � � � � c �� x¨� ��� � 	 � � � , � � � � � c � � 	 , � � � � � c ��~
Hence, the conditional distribution of � can be obtained from� 	 , � � � � � � �  E � c �
» 6¸·½¼ ] �� * = � 8 ] �� 	 � � Q � � � � ¼ ] �� ¹ �
where ¼ �  � ] �Z � (+* =� 8 ] �� * � , and ��Z � is given by (4).

For �  � �� � � !�#" , since � � are mutually independent, � �sf k
lmj are also mu-
tually independent. Since 8 � is diagonal, � �gf k
lmj is conditionally independent
with � �gf h#i�j given , � . Let � � be the dimension of � �gf k
lmj , it follows from (1) that� 	 o k
lmj � o h#i�j � � � � � c �
 x¨� ��� � 	 � �gf k
lmj � , � � � � � c � � and· � �gf k
lmjq� , � � � �� E � c ¹ � 6¸· � �gf k
lmj&f �G(I* �sf k
lmj�f �D, � ��8 �sf k
lmj�f � ¹ � (9)

where � �gf k
lmj<f � is a � � �¸� subvector of � � with elements corresponding to ob-
served components deleted, * �gf k
lmj&f � is the corresponding � � �¾2 submatrix of* � , and 8 �gf k
lmj&f � is the corresponding � � �:� � submatrix of 8 � with the appro-
priate rows and columns deleted. Hence, even the form of o k
lmj is complicated
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with many distinct missing patterns, its conditional distribution only involves a
product of very simple univariate normal distributions. The computational bur-
den for simulating o k
lmj is light. If 8 �gf k
lmj&f � is not diagonal, � �gf k
lmj is simulated
from the multivariate normal distribution as given in (9), the computational bur-
den is again light.

At the M-step, we need to maximize � 	 c � c ���X� � with respect to c . This is
equivalent to solve the following system of equations:¿ � 	 c � c ���X� �¿ c '�`À ¿¿ c u � 	 ¢ � c �GÁÁÁÁ o h#i�j � c ���X��Â  T ~ (10)

Let o � and � � be the submatrices of o and � respectively such that all the� -th columns with � �ÄÃ E are deleted, " � be the number of observations in theE th subpopulation, and Å � � ��ÆR� be the � th entry of � � � , Ç � � � Èq� be the É th entry
of
; � � , a � Æ is the � th element of � � , and * � Æ and W � È be the � th and theÉ th rows of * � and W � , respectively. For E  � �� � � !� $ , �  � �� � � !� � , andÉ  � �� � � !� 2 , it can be shown that¿ u � 	 ¢ � c �¿ � �  8 ] � xËÊ�� ��� 	 � � � Q � � Q * �!,Ì� � � �¿ u � 	 ¢ � c �¿ S �  �� S ] �� x Ê� � ��� 	 ? � � ? = � � Q S � � S ] �� �¿ u � 	 ¢ � c �¿ * � Æ 'Í ] �� Æ x}Ê�� ��� 	 Å � � 	 � � Q a � Æ Q * � Æ ,Ì� � � , = � � �¿ u � 	 ¢ � c �¿ W � È 'Í ] �� U È x}Ê�� ��� · Ç � � � Èq� Q W � È ,Ì� � ¹ , = � � � (11)¿ u � 	 ¢ � c �¿ÏÎ@Ð�Ñ | 	 8 � � �� ÎÒÐ�Ñ |9Ó 8 ] �� xËÊ�� ��� · 	 � � � Q � � Q * �!,Ì� � � 	 � � � Q � � Q * �-,.� � � = Q 8 � ¹ 8 ] ��ÕÔ �¿ u � 	 ¢ � c �¿ÏÎ@Ð�Ñ | 	 8 � U � �� ÎÒÐ�Ñ |9Ó 8 ] �� U xËÊ�� ��� · 	<; � � Q W �-,.� � � 	<; � � Q W �-,0� � � = Q 8 � U ¹ 8 ] �� U Ô ~

These simultaneous equations cannot be solved in closed form. Based on the
idea given in Meng and Rubin (1993), the solution required in the M-step can be
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obtained by several computationally simpler conditional maximizations. Con-
ditional on the other parameters, the solution of the individual equation given
in (11) can be obtained as follows:²� �  �" � xËÊ�� ��� � · 	 � � � Q * �-,0� � ��� o h#i�j � c ¹ � ²S �  �" � xËÊ�� ��� � · ? � � ? = � � � o h#i�j � c ¹ �²* = � Æ  	 xËÊ� � ��� � · ,0� � , = � � � o h#i�j � c ¹g� ] � x}Ê�� ��� � · ,Ì� � 	 Å � � ��ÆR� Q ²a � Æ ��� o h#iqj � c ¹ �²W = � È  	 x Ê� � ��� � · ,Ì� � , = � � � o h#iqj � c ¹g��] � x Ê�� ��� � · ,0� � Ç � � �mÈ�� � o h#i�j � c ¹ � (12)²Í � Æ  �" � x}Ê�� ��� � · 	 Å � � ��ÆR� Q ²a � Æ Q ²* � Æ ,0� � � A � o h#i�j � c ¹ �²Í � U È  �" � x}Ê�� ��� � · 	 Ç � � � Èq� Q W � È ,0� � � A � o h#iqj � c ¹�~
The conditional expectations involved in (12) are approximated by the corre-
sponding generated observations at E-step, see equation (7). Hence, the M-step
can be completed via closed form solution via (12).

3.3 Stopping Rules and Standard Errors

Selection of the sample size
³

in the Monte Carlo E-step is an important
issue in the implementation of the MCEM algorithm. To decrease the Monte
Carlo error at the E-step, we need to generate a sufficiently large number of

observations, see (7). However, it is inefficient to start with a large
³

when
²c ���X�

is far from the ML estimate. Hence, it has been suggested that
³

should be
increased from one iteration to the next (see, Wei & Tanner, 1990; McCulloch,
1994; Booth & Hobert, 1999). According to Shi and Copas (2002), we use a
new scheme that uses average values of c ���#� but without iteratively increasing³

. Specifically, we calculate the following average ‘batch mean’ at the � th
iteration of the MCEM algorithm:Öc ���X�  �× 	 c ��� ]ÙØ ¥ � � (' � � Ë( c ���X� � � (13)

after the
×

th iteration. For a sufficiently large
×

, the average of the Monte
Carlo errors in equation (13) becomes negligible, and Shi and Copas (2002)
argued that the MCEM algorithm is converging when the batch means

Öc ���X� are
stabilized. They recommended the following standard stopping rule in terms of
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the batch means for monitoring convergence: The procedure is stopped when
the absolute difference �{� Öc ���#� Q Öc ��� ]JÚ�Û � �{� or the relative difference�{� Öc ���X� Q Öc ��� ]JÚ Û � �{��{� Öc ��� ]JÚ Û � �{� (+Ü L (14)

is smaller than some predetermined small value Ü (e.g. 0.001). In expression
(14), Ü L is selected to ensure that the denominator is not too close to zero. To
avoid the danger of stopping too early because of the correlation between suc-
cessive elements of the Markov chain, a large value of Ý L , such as 5, is sug-
gested. Also, convergence is claimed after the stopping rule is satisfied for sev-
eral consecutive iterations. At convergence, say at iteration � , the ML estimate
is taken to be

Öc ���X� . According to Shi and Copas (2002), the overall procedure
is roughly equivalent to using the MCEM algorithm with Monte Carlo sample
size

× ³
, although in fact the actual sample size is just

³
for all the iterations.

As a by-product, the standard error of
²c can also be calculated quite

easily for the MCEM algorithm. Louis (1982) showed that the observed infor-
mation matrix of

²c isÞ  Q �°d�ßà 	 ¢ � c ��� o h#i�j n Q �5dGáà 	 ¢ � c ��áà = 	 ¢ � c ��� o h#i�j n �
where áà and ßà are the first two derivatives of complete-data log-likelihood
function

u � 	 ¢ � c � with respect to c , which can be obtained by straightforward
matrix calculus. For the MCEM algorithm,

Þ
can be estimated from the ran-

dom samples generated. In the � th iteration, an estimate of
Þ

is equal to²Þ ���X�  �³ ´�µ ��� Þ ���#� 	 o h#iqj � o µ f ���X�k
lmj � � µ f ���X� �
 �³ ´�µ ��� Þ ���X� 	 o h#i�j ��â µ f ���X� �
where â µ f ���#�  	 o µ f ���X�k
lmj � � µ f ���X� � , andÞ ���X� 	 o h#i�j ��â µ f ���X� ��Q ßà 	 o h#iqj ��â µ f ���#� � c ���X� � Q áà 	 o h#i�j ��â µ f ���X� � c ���#� � áà 	 o h#i�j ��â µ f ���X� � c ���#� � = ~
When the algorithm is stopped, say at the � th iteration, the final estimate of the
information matrix can be estimated by the following averageÖÞ ���X�  �× 	 ²Þ ��� ]ÙØ ¥ � � (^ � � ½( ²Þ ���X� ��~ (15)

4. Model Comparison for Mixture of SEMs

Suppose the observed data o h#iqj have arisen under two competing mix-
ture SEMs ã¸ä and ã � with different number of components. For å  ± � E ,
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let cÏæ be the underlying parameter vector and � 	 o h#i�j � cÏæ � be the likelihood
function of o h#i�j given ã æ . The following BIC is used for comparing two
competitive models ã � and ã A :
BIC ä �  Qç� · y{z}| � 	 o h#iqj � ²cÙä � ãèä � Q y{z}| � 	 o h#i�j � ²c � � ã � ��¹ ( 	 ��ä Q � � � y{z}| "
�

(16)
where

²cÏæ is the ML estimate of cÙæ under model ã¸æ , and ��æ is the dimension
of cÏæ . The interpretation of the BIC for model comparison is given in Kass and
Raftery (1995) as an approximation of the Bayes factor. In the application of the
BIC to model comparison of the mixture of SEMs with missing data, we need
to evaluate the observed-data log-likelihood y{z}| � 	 o h#iqj � ²cÏæ � at ML estimates²cÏæ under some specific model ã¸æ . Owing to the presence of missing data
and latent variables, the computation of this final observed-data log-likelihood
value is non-trivial. The main objective in this section is to establish a method
for computing these final values associated with specific models of interest, or
their ratios so that the BIC can be evaluated for model comparison.

The development is based on the key idea in path sampling (Gelmen
& Meng, 1998) for computing (ratios) of normalizing constants of proba-
bility models. Recall that â  	 o k
lmj � � � . As � 	 â � o h#i�j � c �� � 	 âG� o h#i�j � c �é � 	 o h#i�j � c � , the observed-data likelihood can be treated as the normalizing con-
stant of � 	 â � o h#i�j � c � with the complete-data likelihood as the unnormalized
density. Consider the following class of densities with a continuous parameterê

in [0,1]: ë 	 ê �w�ì � 	 o h#iqj ��â � ê � c � � â)� (17)

where � 	 o h#i�j ��â � ê � c � is a density function for each
ê
, � 	 o h#i�j ��â � í � c �w� 	 o h#i�j ��â � ã¸î , c � with � 	 o h#iqj ��â � ãèî � c � denotes the complete-data likelihood

under any model ã¸î , í0 T � � . Hence, the observed-data likelihood under ãïî
is given byë 	 í����ì � 	 o h#i�j ��â � ã¸î � c � � â  � 	 o h#i�j � ã¸î � c � � íÄ T � � ~
Taking logarithm and then differentiating both sides of (17) with respect to

ê
, it

can be shown that (see, Gelman & Meng, 1998)� y{z}| ë 	 ê �� ê  E ð � y�z}| � 	 o v î�ñ ��â � ê � c �� ê ò � (18)

where E denotes the expectation with respect to the sampling distribution� 	 â � o h#i�j � ê � c � . Integrating (18) from 0 to 1, we haveó  y{z}| ð ë 	 � �ë 	<T � ò  ì �L E ·�ô 	 o h#i�j ��âG� ê � c ��¹ � ê � (19)
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where ô 	 o h#iqj ��âG� ê � c �: � y{z}| � 	 o h#i�j ��â)� ê � c � é � ê . An estimate of
ó

can be
obtained by numerical evaluation of the above integral over

ê
, via the method

given in Ogata (1989). Specifically, we select fixed grids d ê � ñ � ��õ  T �� � � !��ö n
such that

ê � L �  T b ê � � � b  � � b ê �ø÷ ¥ � �  � , and compute
ó

byó  �� ÷�ñ ��� 	 ê � ñ ¥ � � Q ê � ñ � � 	 Öô � ñ ¥ � � ( Öô � ñ � � � (20)

where
Öô � ñ �  × ] �� �¸Ø OÈ ��� ô 	 o h#i�j ��â �mÈ�� � ê � ñ � � c � , in which d â � Èq� � É  � �� � � -� × � n

are simulated observations from � 	 â � o h#iqj � ê � ñ � � c � . It follows from (19) thaty{z}| ë 	 � �B ó ( y{z}| ë 	<T ��~ (21)

Hence, if we can link ã � with a ã L whose observed-data likelihood

ë 	<T � can
be computed easily, we can obtain the observed-data likelihood under ã � via
(21).

To give a more specific illustration, we apply the method to compute the
observed-data likelihood of a mixture of SEMs. Let ã � be the model defined
in (1)-(3), and

ã LÌù �
	 � � �
 ������� � �3ú� � 	 � � � � � ��� � � � where� � � ûÒü �ý� ^� � (+/ � ���  � �� � � !�#" ~
Hence, in the E th component, ú� � is the probability density function of the simple
distribution 6I· � ����8 � ¹ . The linked model ã¸þ is defined by equation (1), � � �t( ê * �!, (1/ � and equation (3). It corresponds to

ë 	 ê ��`ÿ � 	 o h#i�j ��â � c � ê � � â ,
and

ê�� · T � � ¹ is defined to specify the linked model ãIþ for accounting the
change of * � to

ê * � , for E  � �� � � -� $ . As a result,ë 	 � �w`ì � 	 o h#i�j ��â � c � � � � â  � 	 o h#i�j � c � ã � � �
which is the observed-data likelihood corresponding to ã � ; and

ë 	<T �Bÿ � 	 o h#i�j ��â � c � T � � â  � 	 o h#i�j � c � ã L � is the observed-data likelihood corre-
sponding to the simple model ã L .

The complete-data log-likelihood function for ã+þ can be written asu � 	 ¢ � c � ê �� y{z}| � 	 o h#i�j � o k
lmj � � � c � ê �� x�� ���Jy�z}|9Ó ������� � � � � 	 � � � , � � c � � ê � Ô ~
(22)
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By differentiation with respect to
ê
, we haveô 	 o h#i�j � o k
lmj � � � c � ê ��x�� ��� � ������ � � � � 	 � � � , �#� c � � ê � 	 � � Q � � Q ê * �!, �&� = 8 ] �� * �D, �� ������ � � � � 	 � � � , �#� c � � ê � (23)

where� � 	 � � � , � � c � � ê ��	&� � � ] � ¦ A � 8 � � ] � ¦ A ©�ª « d Q �A 	 � � Q � � Q ê * �D, ��� = 8 ] �� 	 � � Q � � Q ê * �-, �&� n� 	&� � � ] NPO ¦ A � M�N O Q F � �{� 8¡U � � ] � ¦ A ©�ª « d Q �A 	<; � Q W �!, � � = 8 ] �U � 	<; � Q W �-, � � n� 	&� � � ] N�� ¦ A � S � � ] � ¦ A ©�ª¬« d Q �A ? =� S ] �� ? � n ~
Thus, the observed-data log-likelihood ratio

ó  y{z}| · ë 	 � � é ë 	<T ��¹ can be
estimated via (20) and (23). Also, the observed-data log-likelihood, y�z}| �	 o h#i�j � c � ã � �
 y{z}| ë 	 � � , can be obtained via (21). Note thatë 	<T ���ì � 	 o h#i�j ��â � c � T � � â �ì � 	 o h#i�j � o k
lmjq� c � � 	 o k
lmjq� c � ��o k
lmjX~ (24)

It is still not in close form. The following Monte Carlo approximation is used
for obtaining an estimate:ë 	<T �w �× A Ø ��È ��� � 	 o h#i�j � o � Èq�k
lmj � c � � (25)

where d o �mÈ��k
lmj � É  � �� � � !� × A n is simulated from � 	 o k
lmj � c � by a similar Gibbs
sampler as discussed in section 3.1. As the underlying distribution correspond-
ing to ã L is a finite mixture of the simple 6¸· � �t��8 � ¹ , simulating o � Èq�k
lmj is
straightforward and fast.

For the competitive model ã A which is a finite mixture of SEMs with± components, where ± b $ , we can use the above procedure to computey{z}| � 	 o � c � ã A � . The BIC for comparing ã � and ã A can be obtained via (16)
with the observed-data log-likelihoods evaluated at their ML estimates.

5. Simulation Studies

In this section, results of some simulation studies are presented to illus-
trate the proposed procedure in ML estimation for a mixture SEMs with miss-
ing data. The objective is to reveal the accuracy of the ML estimates obtained
by our approach using the complete data (COM Data) that contain the fully ob-
served data and the data with missing entries; and those obtained by the listwise
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deletion approach that only use the fully observed data (FO Data). The bad ef-
fect of ignoring the data with missing entries to the accuracy of estimation is
noted.

5.1 Simulation Study 1

The data set in this simulation study is generated from a mixture of SEMs
with two components defined by (1), (2) and (3). For each E  � � � , the model
involves six manifest variables which are indicators for three latent variables Ç ,� � and

� A . The structure of the loading matrix in each component is* =  �� � ~ T ó � f A � T T T TT T � ~ T ó � f � A T TT T T T � ~ T ó � f �
	 �� �
where the one’s and zero’s are fixed parameters for achieving an identified co-
variance structure, whilst

ó � f A � , ó � f � A and
ó � f �
	 will be treated as unknown

parameters which can have different values in different components. In the E -th
component, the structural equation that relates Ç ,

� � , and
� A is of the following

form Ç  Ý � f � � � ( Ý � f A � A (+Ü!�
where Ý � f � and Ý � f A will be treated as unknown parameters. The true popu-
lation values of the unknown parameters are given by � �  � A  T ~� , � � 	<T �� � � !� T � = , � A  	&� ~ T �� � � -� � ~ T � = ; ó � f A �  ó � f � A  ó � f �
	  T ~�� , ó A f A �  ó A f � A ó A f �
	  T ~�� , Ý � f �  Ý � f A  T ~�� , Ý A f �  T ~�� , Ý A f A  Q3T ~�� , � � f �#�  � � f A#A � A f �#�  � A f A#A  � ~ T , � � f � A  � A f � A  T ~�� , Í � f �#�   � � �Í � f �
�.�Í � f U  T ~���� ,Í A f �#�   � �  Í A f �
�  Í A f U  T ~���� . In this 2-component mixture SEMs, the
total number of unknown parameters is 44.

Based on the true population values of the parameters and the model de-
fined by (2) and (3), we simulate 400 observations from each of the first and the
second component, hence the total sample size is 800. The MAR missing data
are created via the following steps: (i) � fully observed data points are ran-
domly selected among the 800 observations, and sample means

ÖÅ � � � , ÖÅ � A � , ÖÅ � 	 � ,ÖÅ � � � , ÖÅ ���X� , and
ÖÅ � � � are computed on the basis of these data points. (ii) In each

and every of the remaining ( � T}T�Q � ) observations, we decide whether its ele-
ments Å � � � , Å � A � , Å � 	 � , Å � � � , Å ���X� and/or Å � � � are missing or not by randomly gen-
erating an observation å from 6¸· T � � ¹ . More specifically, we randomly generate
independent observations å � � � , å � A � , å � 	 � , å � � � , å ���X� and å � � � from 6I· T � � ¹ , thenÅ � � � is deleted only if å � � ��� ÖÅ � � � ( ÖÅ � A � , Å � A � is deleted only if å � A � b ÖÅ � � � Q ÖÅ � A � ,Å � 	 � is deleted only if å � 	 ��� ÖÅ � 	 � ( ÖÅ � � � , Å � � � is deleted only if å � � � b ÖÅ � 	 � Q ÖÅ � � � ,Å ���X� is deleted only if å ���X��� ÖÅ ���X� , and Å � � � is deleted only if å � � ��� ÖÅ � � � . Hence,
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the probability of response depends on the fully observed data points and the
missing data are MAR. In this missing data set, a number of Å � � � , Å � A � , Å � 	 � ,Å � � � , Å ���X� and/or Å � � � are missing at random. To account for different missing
proportions, �  � T}T , and 200 are considered.

For each � , ML estimates are obtained using: (A) all the data before the
creation of missing data (ALL Data), (B) fully observed data and the incom-
plete data with missing entries (COM Data), and (C) only the fully observed
data (FO Data). In this and all other simulation studies, we set

³ � T , × � T ,
and take the stopping rule with Ý L � , Ü L  T ~ T}T � and Ü  T ~ T}T � (see Sec-
tion 3.2). The algorithm is terminated after the stopping rule is satisfied for
five successive iterations. For example, for the first replication of case (B), the

iterations stopped at the 163rd iteration. So,
Öc � � �
	 � is taken as ML estimate in

that case. ML estimates in 100 replications in each of the cases (A), (B) and
(C) are obtained. Based on 100 replications, the mean of ML estimates (Mean),
and root mean squares (Rms) between estimates and true values are computed.
Results obtained under (A), (B) and (C) are reported in Tables 1, 2 and 3.

5.2 Simulation Study 2

In this study, a 3-component mixture SEM is considered. The structure
of the SEM is the same as in simulation study 1, with the same population
values of parameters in the first and second components be given as before, and� �  T ~�� , � A  T ~�� , and � 	  T ~�� . The true values of the parameters in the
third component are: a 	  	PQç� ~ T �� � � ½� Qç� ~ T � , ó 	qf A �  ó 	qf � A  ó 	qf �
	  T ~�� ,Ý 	qf �  Q3T ~�� , Ý 	qf A  T ~�� , � 	qf �#�  � 	qf A#A  � ~ T , � 	qf A �  T ~�� , Í 	qf �#�  Í 	qf A#A Í�	qf 	
	  T ~���� , Í�	qf �
� ¤Í�	qf �
� ¯Í�	qf �
�  T ~���� , and Í 	qf U  T ~���� . In this
3-component model, the number of unknown parameters is 66. We simulate
400, 300 and 300 observations respectively from the first, second and third
component; hence the total sample size is 1000. To get two missing proportions,�  ��� T and 180; and the procedure for creating MAR data is the same as in
simulation study 1. ML estimates for cases (A), (B) and (C) are obtained by the
MCEM algorithm as before. Results obtained under (A) are presented in Table
4. To save space, only results obtained under (B) and (C) with � !��� T are
reported in Tables 5 and 6. The performances of the estimates obtained with�  � � T are slightly worse.

5.3 Simulation Study 3

In this study, a 2-component mixture SEM with two latent variables and a
different structure is considered. For each E  � � � , the structure of the loading
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matrix is * =  ð � ~ T ó � f A � ó � f 	 � T T ó � f � � TT T T � ~ T ó � f � A ó � f � A ó � f " A ò ~
The latent factors are denoted by Ç and

�
, which are related by the following

structural equation Ç  Ý � f � � (IÜ , where Ý � f � is an unknown parameter and the
unknown variances of

�
and Ü are denoted by � � f �#� and Í � f U , respectively. The

true population values of the unknown parameters are given by: � �  � A  T ~� ;� �  	PQ � ~ T �� � � -� Q � ~ T � , � A  	 � ~ T �� � � -� � ~ T � ; ó � f A �  ó � f 	 �  T ~� , ó � f � A T ~$# , ó � f � �  T ~�� , ó � f � A  ó � f " A  T ~$# , ó A f A �  ó A f 	 �  T ~$# , ó A f � A  T ~� ,ó A f � �  T ~�� , ó A f � A  ó A f " A  T ~� ; Ý � f �  T ~�� , Ý A f �  QçT ~�� ; � � f �#�  � A f �#� � ~ T ; Í � f �#�   � �  Í � f "
"  T ~ �  , Í A f �#�   � �  Í A f "
"  T ~���� ; Í � f U  T ~ �  ,
and Í A f U  T ~���� . The number of unknown parameters in this model is 48. The
total sample size is taken to be 600, with 300 observations are simulated from
each component; and �  �ËT}T

, and 100. ML estimates obtained under cases
(A), (B) and (C) are reported in Tables 7, 8 and 9 respectively.

5.4 Conclusion of the Simulation Results

Based on the results reported in Tables 1-9, we can draw the following
major conclusions: (i) The ML estimates obtained by the proposed method on
the basis of the ‘COM Data’ that utilize all the available fully observed and in-
complete data are quite accurate. Comparing Table 1 with 2, 4 with 5, as well
as 7 with 8, we see that the empirical performances are quite close to those ob-
tained from using ‘ALL Data’ in the ideal case. (ii) Comparing Table 2 with 3,
5 with 6, and 8 with 9, we observe that the empirical performances of the pro-
posed approach are better than those of the listwise deletion approach that only
uses the fully observed data. (iii) It seems that the above phenomena are not
changed with different missing proportions, different number of components,
and different structures of the SEMs. To save space, more detailed discussions
are not presented.

6. An Illustrative Example

To provide a real example for illustrating the proposed method, a small
portion of ICPSR data set collected in the project WORLD VALUES SURVEY
1981-1984 AND 1990-1993 (World Values Study Group, ICPSR Version) is
analyzed. The whole data set was collected in 45 societies around the world on
various topics relating to work, attitude towards competition, the meaning and
purpose of life, family life, religious belief, interest in politics, contemporary
social issues; and many others. As an illustration of our proposed method, only
the data obtained from the West Germany are used. Eight variables in the
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Table 1: Mean and root mean squares of ML estimates obtained with ‘ALL Data’:

Simulation Study 1

Component 1 Component 2

Par Mean Rms Par Mean Rms%'&)(+*-, . 0.50 0.02 %0/1(2*3, . 0.50 0.024 &65 & (2*-, * -0.01 0.08 4 /75 & (+8-, * 2.01 0.074 &65 /9(2*-, * -0.01 0.05 4 /75 /9(+8-, * 2.01 0.064 &65 : (2*-, * -0.01 0.07 4 /75 : (+8-, * 2.01 0.074 &65 ;<(2*-, * -0.00 0.04 4 /75 ;<(+8-, * 2.00 0.074 &65 = (2*-, * -0.01 0.07 4 /75 = (+8-, * 1.99 0.074 &65 > (2*-, * -0.01 0.04 4 /75 > (+8-, * 1.99 0.06? &65 /7& (+*-, @ 0.40 0.05
? /75 /7& (2*3, A 0.81 0.10? &65 ;B/ (+*-, @ 0.40 0.05
? /75 ;B/ (2*3, A 0.81 0.11? &65 >6:9(+*-, @ 0.41 0.06
? /75 >6:<(2*3, A 0.82 0.10C &65 & (+*-, D 0.60 0.07 C /75 & (2*3, D 0.60 0.11C &65 /1(+*-, D 0.62 0.09 C /75 /1(FE9*3, D -0.61 0.09G &65 &6& (FHI, * 0.99 0.12
G /75 &6& (FHJ, * 1.00 0.19G &65 &K/9(2*-, L 0.29 0.07
G /75 &K/9(2*3, L 0.29 0.08G &65 /6/ (FHI, * 0.98 0.14
G /75 /6/ (FHJ, * 0.99 0.16M &65 &6& (N*-, LID 0.35 0.10
M /75 &6& (2*3, DI@ 0.65 0.14M &65 /6/1(N*-, LID 0.36 0.03
M /75 /6/9(2*3, DI@ 0.63 0.08M &65 :6: (N*-, LID 0.36 0.09
M /75 :6: (2*3, DI@ 0.63 0.13M &65 ;6;9(N*-, LID 0.36 0.03
M /75 ;6;<(2*3, DI@ 0.63 0.09M &65 =6= (N*-, LID 0.38 0.10
M /75 =6= (2*3, DI@ 0.63 0.12M &65 >6>9(N*-, LID 0.36 0.03
M /75 >6><(2*3, DI@ 0.64 0.08M &65 O (+*-, LJD 0.36 0.10
M /75 O (2*3, DP@ 0.64 0.12
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Table 7: Mean and root mean squares of ML estimates obtained with ‘ALL Data’:

Simulation Study 3

Component 1 Component 2

Par Mean Rms Par Mean Rms%'&)(+*-, . 0.50 0.02 %0/1(2*3, . 0.50 0.024 &65 &Q(FE�HI, * -0.99 0.05 4 /75 &Q(FHJ, * 1.01 0.074 &65 / (FE�HI, * -1.00 0.04 4 /75 / (FHJ, * 1.01 0.064 &65 : (FE�HI, * -1.00 0.04 4 /75 : (FHJ, * 1.01 0.064 &65 ;<(FE�HI, * -0.99 0.08 4 /75 ;<(FHJ, * 1.00 0.074 &65 = (FE�HI, * -0.99 0.07 4 /75 = (FHJ, * 1.00 0.044 &65 > (FE�HI, * -0.99 0.07 4 /75 > (FHJ, * 1.00 0.044 &65 R9(FE�HI, * -0.99 0.06 4 /75 R9(FHJ, * 1.00 0.04? &65 /7&)(+*-, . 0.50 0.05
? /75 /7&Q(2*3, S 0.69 0.06? &65 :T& (+*-, . 0.50 0.05
? /75 :T& (2*3, S 0.69 0.06? &65 =6/ (+*-, S 0.70 0.04
? /75 =6/ (2*3, . 0.50 0.05? &65 >T&)(+*-, L 0.31 0.09
? /75 >T&Q(2*3, L 0.30 0.09? &65 >B/ (+*-, S 0.70 0.07
? /75 >B/ (2*3, . 0.51 0.08? &65 R6/ (+*-, S 0.71 0.04
? /75 R6/ (2*3, . 0.50 0.05C &65 &)(+*-, D 0.59 0.05 C /75 &)(FE9*3, D -0.60 0.06G &65 &6&Q(FHI, * 1.01 0.11
G /75 &6&Q(FHJ, * 1.01 0.11M &65 &6& (N*-, 8I. 0.25 0.04
M /75 &6& (2*3, LJD 0.36 0.05M &65 /6/ (N*-, 8I. 0.25 0.03
M /75 /6/ (2*3, LJD 0.37 0.04M &65 :6:9(N*-, 8I. 0.25 0.02
M /75 :6:<(2*3, LJD 0.36 0.04M &65 ;6; (N*-, 8I. 0.25 0.03
M /75 ;6; (2*3, LJD 0.35 0.07M &65 =6= (N*-, 8I. 0.26 0.02
M /75 =6= (2*3, LJD 0.36 0.04M &65 >6>9(N*-, 8I. 0.25 0.03
M /75 >6><(2*3, LJD 0.36 0.04M &65 R6R1(N*-, 8I. 0.25 0.03
M /75 R6R9(2*3, LJD 0.35 0.04M &65 O (+*-, 8J. 0.25 0.05
M /75 O (2*3, LID 0.36 0.07
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original data set (variables 116, 117, 180, 132, 96, 255, 254 and 252) that are
related with respondents’ job and homelife are taken as manifest variables in�  	 Å � �� � � !� Å0U � ´ . For completeness, questions corresponding to these vari-
ables are presented in the Appendix. These variables are measured via a 10-
point scale and hence are treated as continuous in this illustration. There are
2009 random observations, many of them are with missing entries and some of
the sample sizes within the missing patterns are very small. The complicated
missing patterns are presented in Table 10. We observe that there are 1054 fully
observed data, and forty-five missing patterns. From the questions associated
with the manifest variables, it is natural to consider a measurement model (2)
with three latent variables: Ç ,

� � and
� A , such that the first two manifest variables

are indicators for Ç , the 3rd, 4th and 5th manifest variables are indicators for� � and the remaining variables are indicators for
� A . Although other structures

for the loading matrix can be considered, we choose the structure that gives
nonoverlapping latent variables for clear interpretation and for identifying the
model. Hence, the following specifications on the parameter matrices of each
component are used: F  7 , H  	 Ý �#� � Ý � A � , 8YU ^Í U ,* ´  VW � ~ T0X ó A � T0X T0X T0X T0X T0X T0XT X T X � ~ T X ó � A ó � A T X T X T XT0X T0X T0X T0X T0X � ~ T0X ó "Y	 ó U 	

Z[ � (26)

S  \ � �#� � � A� A � � A#A2] �
and 8  Î@Ð§Ñ | 	 Í � �� � � !� Í U � . The number of parameters in the model is pretty
large, for example, for a three-component model, the total number of parame-
ters is 84. The latent variables can be roughly interpreted as ‘job satisfaction,Ç ’, ‘homelife,

� � ’, and ‘job attitude,
� A ’.

This data set is analyzed by our proposed approach on the basis of a
mixture LISREL models with $ ( $  � � � � � ) components. The formulation
of the model in every component is taken to be same as in (26). The proposed
MCEM procedure is used to obtain the ML estimates and their standard errors.
Here we set

³  � T}T to control the variance of the Monte Carlo error is less than
0.01, see Shi and Copas (2002). For our problem, as the average ‘batch mean’
based on 50 iterations seems acceptable, we take

× ^ T . Finally, following
the suggestion of Shi and Copas (2002), we take the stopping rule with Ý L � ,Ü L  T ~ T}T � and Ü  T ~ T}T � . Again, the algorithm is terminated after the stopping
rule is satisfied for five successive iterations. Using this stopping rule to the
‘COM Data’, the MCEM algorithm stopped at the 101st and 294th iteration
for one-component and two-component models, respectively , and

Öc � � L � � andÖc � A
_ � � are be taken as ML estimates in corresponding models. To give some
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idea on convergence, plots of sequences of some randomly selected parameters
are displayed in Figure 1.

We use the BIC to select a model with the most appropriate number of
components. In the path sampling, for each

ê � ñ � , a total of
× � ` T}T addi-

tional observations are simulated by the Gibbs sampler after a burn-in phase
of 200 iterations for computing

Öô � ñ � in (20), and then the observed-data log-
likelihood ratio is estimated via (20), using 20 fixed grids in [0,1]. To calculateë 	<T � , × A ^� T}T}T additional observations are simulated by the Gibbs sampler
after a burn-in phase of 200 iterations. Then the observed-data log-likelihood
for the model with $ components is estimated via (21). Let ã � denotes the
mixture model with $ 	 $  � � � � ��� components, the estimated log-likelihood
functions are equal to: -29685.62, -29341.78 and -29287.60, the BIC values
for comparing ã � to ã 	 are BIC A �  Q �a#b�J~���� and BIC 	 A  � T �J~��c� . Thus,
a one-component model is significantly worse than a two-component model
which is significantly better than a three-component model. Hence, it can
be concluded that a mixture model with two components should be chosen.
For completeness, the observed-data likelihood function for ã � to ã 	 based
on the fully observed data are also computed, they are equal to -17153.05, -
16802.91 and -16707.98, the corresponding BIC values are BIC A �  Q  T  ~���d
and BIC 	 A e ~ T � . Although the same conclusion can be obtained on the basis
of the fully observed data, the supporting evidence of a two-component model
based on BIC 	 A (=5.03) is not as strong as before. Indeed, the BIC values ob-
tained by using only the fully observed data are quite different from the BIC
value obtained by using all the data. ML estimates of the selected mixture
model with two components (C1, C2) based on ‘COM Data’ and ‘FO Data’
are presented in Table 11 together with the standard errors estimates. Note that
standard errors estimates obtained from ‘COM Data’ are smaller. Moreover,
the two sets of ML estimates are different. In particular, substantial differences
are found in estimates of d Ý � A � ó "Y	 � ó U 	 � Í " � � �#� � � � A � � A#A n in the first compo-
nent, and d � �#� � � � A � � A#A � Í U-� Í � n in the second component. Hence, the inferior
results obtained by just using the fully observed data may lead to misleading
conclusions.

Based on the better ML estimates obtained from ‘COM Data’, we ob-
serve that the estimates of a � � a " � a1U in the first component and the second
component are very different. As the mean difference has stronger influence
in distinguishing the components, the heterogeneity of the two components is
mainly due to the mean differences between the last three manifest variables,
which are the indicators of

� A . We also observe substantial differences between
the estimates of

ó U 	 � � �#� � � A#A � Í U½� Í � � Í 	 � Í � � Í � � Í " and Í U in components 1
and 2. Hence, the covariance matrices are quite different. However, the
behaviors of the latent variables in these components are similar; for example
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Figure 1: Estimates of %'& , %0/ , ? =6/ , C & , C / , G &6& and
M ; in a two-component SEM for ICPSR data

with f (FH
*I* .
the causal effects of

� � to Ç are both positive (see
²Ý �#� under C1 and C2 in Table

11), the causal effects
� A to Ç are both negative (see

²Ý � A ), and the correlations
of
� � and

� A in the first and second components are equal to -0.62 and -0.31,
respectively. The estimates of the variances of the error measurements indicate
that the model associated with the second component is more stable. From the
estimates of � , we know that most observations are from the first component.

7. Summary

In this paper, a ML approach is developed for analyzing a finite mix-
ture of SEMs with missing data that are missing at random with an ignorable
mechanism. Inspired by the idea of data augmentation and the power of the
EM algorithm, the observed data are augmented with the latent vectors in the
model, the real missing data, and allocation variables in the ML analysis. A
MCEM type algorithm is developed, in which the E-step is completed by ap-
proximating the conditional expectations with the observations generated from
the conditional distributions via the Gibbs sampler, the M-step is completed by
conditional maximization (Meng & Rubin, 1994), and convergence is moni-
tored by an average methods and a stopping rule proposed in Shi and Copas
(2002). According to our experience in the empirical studies, the algorithm
proposed is efficient.
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Table 11: ML estimates of parameters and their standard errors in the selected model with 2
components in analyzing the ICPSR data set.

‘COM Data’ ‘FO Data’
C1 C2 C1 C2

Par Est Std Est Std Est Std Est Std% 0.69 0.01 0.31 0.01 0.68 0.01 0.32 0.014 & 7.10 0.03 7.07 0.03 6.92 0.04 7.78 0.044 / 6.11 0.05 6.03 0.07 5.96 0.07 6.80 0.094 : 7.40 0.03 7.43 0.04 7.23 0.05 8.05 0.044 ; 6.55 0.05 6.97 0.04 6.42 0.07 7.60 0.054 = 7.24 0.03 7.06 0.04 7.21 0.04 7.75 0.044 > 5.13 0.06 2.44 0.04 5.08 0.09 2.89 0.054 R 3.80 0.05 2.05 0.02 3.69 0.06 2.30 0.044'g 5.08 0.07 2.24 0.03 4.88 0.10 2.64 0.06? /7& 1.03 0.03 1.17 0.05 1.07 0.05 1.14 0.08? ;B/ 0.81 0.03 1.11 0.03 0.82 0.05 1.15 0.06? =6/ 1.01 0.02 1.05 0.03 1.08 0.03 1.19 0.05? Rh: 0.93 0.05 1.03 0.03 1.55 0.06 0.91 0.04? g : 0.35 0.06 0.87 0.04 0.72 0.10 0.90 0.06C &6& 0.54 0.02 0.90 0.02 0.58 0.03 1.04 0.03C &K/ -0.30 0.03 -0.14 0.04 -0.19 0.05 -0.14 0.03G &6& 2.48 0.09 1.79 0.10 1.70 0.09 0.77 0.05G &K/ -0.62 0.05 -0.31 0.04 -0.20 0.05 -0.23 0.04G /6/ 1.25 0.05 0.59 0.03 0.97 0.05 1.00 0.07M O 1.28 0.05 0.57 0.03 1.40 0.07 0.23 0.02M & 1.36 0.05 0.61 0.03 1.40 0.07 0.44 0.03M / 3.52 0.13 2.66 0.13 3.53 0.19 2.52 0.19M : 1.73 0.06 0.83 0.05 2.10 0.11 0.58 0.04M ; 3.72 0.14 1.09 0.06 3.22 0.17 0.84 0.06M = 1.45 0.05 1.13 0.06 1.35 0.07 0.55 0.04M > 5.25 0.19 0.89 0.05 5.34 0.28 0.95 0.07M R 3.65 0.13 0.33 0.02 2.52 0.12 0.47 0.04M g 7.00 0.26 0.76 0.04 6.64 0.34 1.09 0.08
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As expected, ML estimates obtained by utilizing all the informations with
those given by data point with missing entries are better than estimates obtained
by just using the fully observed data. We expect that ignoring incomplete data
in the analysis may occasionally select the wrong model with an inappropriate
number of components. Because of the computational burden, our simulation is
admittedly limited. Extensive and detailed simulation studies are necessary in
order to get better understanding of the impact of ignoring the incomplete data
in various settings. Moreover, further research is necessary to develop meth-
ods for handling non-ignorable missing data, for achieving local and global
influence measures for identifying influential observations, and for more com-
plicated SEMs.

Appendix: Manifest variables in the ICPSR example

The number of the variable corresponding to the original data set is given
in parenthesis at the end of each statement.Å � : Overall, how satisfied or dissatisfied are you with your job? (V116)Å A : How free are you to make decisions in your job? (V117)Å 	 : Overall, how satisfied are you with your home life? (V180)Å � : How satisfied are you with the financial situation of your household?

(V132)Å � : All things considered, how satisfied are you with your life as a whole
in these day? (V96)Å � : In the long run, hard work usually bring a better life. (V255)Å " : Competition is good. It simulates people to work hard and develop
new ideas. (V254)Å0U : Individual should take more responsibility for providing for them-
selves. (V252)
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