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Abstract: In this paper we prove that the approximation of a dissimilarity by an indexed
pseudo-hierarchy (also called a pyramid) or an indexed quasi-hierarchy (also called an in-
dexed weak hierarchy) is an NP-hard problem for any L,-norm (p < co). These problems
also correspond to the approximation by a strongly Robinson dissimilarity or by a dissimi-
larity fulfilling the four-point inequality (Bandelt 1992; Diatta and Fichet 1994). The results
are extended to circular strongly Robinson dissimilarities, indexed k-hierarchies (Jardine
and Sibson 1971, pp. 65-71), and to proper dissimilarities satisfying the Bertrand and
Janowitz (k + 2)-point inequality (Bertrand and Janowitz 1999). Unidimensional scaling
(linear or circular) is reinterpreted as a clustering problem and its hardness is established,
but only for the L; norm.

Résumé: Nous montrons dans cet article que 1’approximation d’une dissimilarité par une
pseudo-hiérarchie indicée (également appelée pyramide) ou une quasi-hiérarchie indicée
(également appelée hiérarchie faible indicée), est NP-difficile pour toutes les normes Ly
(p < o0). Ces problémes correspondent également aux approximations par une dissim-
ilarité fortement robinsonienne ou par une dissimilarité vérifiant I’inégalité des quatre
points (Bandelt 1992, Diatta et Fichet 1994). Ces résultats sont généralisés aux dissimi-
larités circulaires fortement robinsoniennes, aux k-hiérarchies indicées (Jardine et Sibson
1971, pp. 65-71) ainsi qu’aux dissimilarité propres satisfaisant I’inégalité des k + 2 points
de Bertrand et Janowitz (1999). L’ approximation par une dissimilarité lin€aire (ou circu-
laire) est réinterprétée comme un probléme de classification et sa NP-difficulé est établie,
mais seulement pour la norme L.
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1. Introduction

This paper focuses on clustering methods that sort a set X of objects
described by a pairwise dissimilarity d into clusters, thus building a clustering
system. Many problems related to the search for cliques in graphs are known
to be NP-hard: a clique of maximum size, minimal covering, or partitioning
by cliques (i.e., complete subgraphs of a graph but necessarily maximal), exact
covering by triangles, and so on (for more detail, consult Garey and Johnson
1979, pp. 190-205). In many clustering models the clusters can be interpreted as
families of cliques in graphs. So the above problems may be viewed as the first
examples of NP-hard problems in clustering. They are followed by many others
that can be sorted into three clustering models: the search for a single cluster
(sequential clustering; Hansen, Jaumard, and Mladenovic 1995), partitioning,
and the search for indexed hierarchies.

Search for a single cluster C C X with a fixed size k (Hansen, Jaumard,
and Mladenovic 1995). The problem is NP-hard in the following cases:

C has a minimum diameter, diam(C'), with diam(C) = max; y cc d(z,y);
C minimizes 3, o d(Z,y);
C minimizes % > zyeC d%(z,y).
Search for a partition P of X with a fixed number q of classes minimizing
the objective function f(P) (P. Brucker 1978). The problem is NP-hard for:
f(P) = maxcep diam(C) and ¢ > 3; (this result was also obtained by
Hansen and Delattre 1978)
f(P) =3 cepdiam(C) and g > 3;
( ) ZC’E‘P Zx JYeC (.’17 y) andq > 2

f(P ) XDCe’P;uTQ]M and g > 2;
f( ) maxcep Zzyecd(may) and ¢ > 2.

It is worth noting that for ¢ = 2 the first two problems can be solved in
polynomial time (see Hansen, Jaumard, and Mladenovic 1995, and Hansen and
Delattre 1978 for bibliographical references and a description of some objective
functions whose minimization can be performed in polynomial time).

When the number of classes is not fixed, the dissimilarity d has to be
replaced by a cost function ¢ with possible negative values. In this framework
the so-called clique partitioning problem

minz Z d(z,y)
CeP z,yelC

has been shown to be NP-hard (Grotschel and Wakabayashi 1990). The clique
partitioning problem is a generalization of the Zahn (1964) problem which con-
cerns the equivalence relations FE closest to a symmetric relation S for the sym-
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metric difference distance A(E, S) (see Section 3.2 for the definition). The
Zahn problem is also NP-hard (Kfivdnek and Mordvek 1986; Grotschel and
Wakabayashi 1990).

Search for an indexed hierarchy. An indexed hierarchy on X is equiv-
alent to an ultrametric on X, and the approximation of a dissimilarity by an
ultrametric has been shown to be NP-hard by Kfivanek and Moravek (1986) for
the L1 metric. This result was extended by Day (1987) both to the Ly-norm ap-
proximation and to additive tree metrics. The NP-hardness of hierarchical tree
clustering, with hierarchical trees of a fixed height was established by Kf¥ivdnek
and Mor4vek (1986). These results extend straightforwardly to any L, metric
(with p < 00), and mainly concern (apart from the exceptions of additive trees)
nonoverlapping clustering (either two clusters are disjoint or one is a subset
of the other). During the last fifteen years, alternative clustering models allow-
ing overlap have appeared: pyramids, pseudo-hierarchies (Diday 1984; Fichet
1984); weak hierarchies, quasi-hierarchies (Bandelt and Dress 1989; Diatta and
Fichet 1994); the Bandelt and Dress ordinal model for overlapping clustering
(1993); k-weak hierarchies (Bertrand 1998).

In view of the complexity results in “classical” clustering, a question
arises: does the relaxation of the nonoverlapping property reduce the complex-
ity of approximation problems in classification?

This paper provides a negative answer to this question in the particular
cases of pyramidal clustering (indexed pseudo-hierarchies) and weak hierarchi-
cal clustering (indexed quasi-hierarchies). Our work is divided into three sec-
tions. The first describes some basic material on clustering models that will be
used throughout the paper. The second focuses on the two main results of the
paper: the NP-completeness of the Ly-approximation in pyramidal clustering
and weak clustering. The final section gives some extensions of these results
(linear clustering, k-weak hierarchies, circularities, among others).

In considering NP-completeness we shall use the terminology of Garey
and Johnson (1979, pp. 46-76). In particular, the problems are always stated as
decision problems, D < D’ means that problem D reduces to problem D', and
D ~ D' means that D and D' are polynomially equivalent.

2. Clustering Models

We shall discuss three kinds of clustering models: class models, distance
models, and relational models. Bijection theorems between indexed class mod-
els, distance models, and indexed nested relational models show that these var-
ious points of view are equivalent. Only the bijections between indexed class
models and distance models will be used in this paper.
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2.1 Class Models

A clustering system (C.S.) on a finite set X is the set X of subsets of X

such that:

Ci: XeKand ¢ ¢ K,

Cy: foreachz € X, {z} € K;

C3: AeK,BeKandANB#¢p=ANBeKk.

X is the ground set of K; the elements of K are called the clusters of K.
The singletons {z} and the ground set X are called trivial clusters. A cluster
A is minimal if it is nontrivial and does not contain any other nontrivial cluster.
Note that if A and B are minimal, then |A N B| < 1. Two clusters A and B are
compatible whenever A C B or B C A. A chain C of K is a set of pairwise
compatible clusters. The length of the chain C is the number of its nontrivial
clusters. The height of K is the maximum length of its chains.

We denote by ICg( the C.S. with ground set X whose clusters are all
trivial. The height of XY is 0.

A hierarchyis a C.S. in which two clusters are either disjoint or compat-
ible. Thus, in a hierarchy noncompatible clusters never overlap. A number of
combinatorial models allowing overlapping clusters have been designed in the
last fifteen years. There are essentially two ways of constructing them:

(i) Replacing the axiom of hierarchies (A N B € {4, B, ¢}) by weaker condi-
tions;

(ii) Considering clusters as distinguished subsets of a given structured set.

k-weak hierarchies fall into the first category and pseudo-hierarchies into the

second.

A k-weak hierarchy is a C.S. K such that the meet of any k£ + 1 clusters
is equal to the meet of k clusters among them. It then satisfies:

Hy: For each family A of k + 1 clusters of X, there exists a sub-family B of A
such that |B| = k and N{A|A € A} = N{B|B € B}. For instance, H, can be
written as foreach A,B,C e K, ANBNC € {ANB,AnC,BNC}.

2-weak hierarchies, are called quasi-hierarchies, following Diatta and
Fichet (1994). Hypergraphs fulfilling the “triangle condition” Hy were intro-
duced for clustering purposes by Bandelt and Dress (1989) under the name of
weak hierarchies and by Batbedat (1988, 1989) under the name of maximum
medinclus.

A pseudo-hierarchy on X is a C.S. K with ground set X for which there
exists a linear order L on X such that each cluster of X is an interval of L. The
order L is said to be compatible with K. Pseudo-hierarchies were introduced by
Diday (1984, 1987) and Fichet (1984, 1986). Diday (1984) introduced the term
pyramid that remains more popular, but could be reserved for its drawing, just
as a dendrogram is for ultrametric distances.
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Figure 1. A pyramidal representation of a graphically indexed pseudo-hierarchy (a) and its asso-
ciated graph (b)

The number of clusters in a quasi-hierarchy on X is O(|X|?) (Bandelt
and Dress 1989). It is easy to verify that the maximum number of clusters in a
pseudo-hierarchy is 2| X |(|X'| —1). It is well known that the number of clusters
in a hierarchy is O(|X|). More generally, we can check that the number of
clusters in a k-weak hierarchy is O(| X|*).

We denote by Px,Hx, and ’H’)“( the set of pseudo-hierarchies, hierar-

chies, and k-weak hierarchies on X, respectively. We have Hx C Px C H% C
ook cHET L

An index on a C.S. K is an integer-valued function f such that f({z}) =
0 for each z € X, and A C B implies f(A) < f(B). The pair (K, f) is called
an indexed C.S. An index f on K is said to be graphical if and only if f(X) = 2.
In this case we have f(A) = 1 for each minimal cluster, and X is of height 0
(if K = K%) or 1. When f is graphical, the pair (K, ) is called a graphically
indexed C.S.

2.2 Distance Models

A dissimilarity on X is a function d from X x X to the set of nonnegative
integers such that: d(z,y) = d(y, z) forz,y € X and d(z,z) = Oforz € X.
The dissimilarity d is said to be proper whenever d(z,y) =0 => = = y.

For a dissimilarity d on X we define:

the diameter of A C X as the value diamy(A) = max{d(z,y)|z,y € A};
the ball of center z and radius p € N as the set B(z, p) = {y|d(z,y) < p};
the 2-ball induced by z,y € X as the set B, = B(z, d(z,y))NB(y, d(z,y))
(Durand and Fichet 1988).

Each indexed C.S. (K, f) is associated with the proper dissimilarity 6[X, f]
defined by:

S[K, fl(z,y) = min{f(C)|C € K,z € C,y € C}.
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Distance models for clustering are types of dissimilarities. There are es-
sentially two issues concerning distance models:

(i) Bijection theorems make the search for an indexed C.S. of a given type
equivalent to the search for a dissimilarity of a given type (classical bi-
jection theorems between indexed hierarchies and ultrametrics have been
established by Jardine, Jardine, and Sibson (1967), Johnson (1967), and
Benzceri (1973, pp. 142-144)).

(i) Usually, relevant data are described by a pairwise dissimilarity measure
and - taking (i) into account — a clustering method becomes a transforma-
tion of a given dissimilarity into a dissimilarity of a given type.

Let d be a proper dissimilarity on X. We say that d is:

An ultrametric if and only if for each z,y, 2z € X,

d(z,y) < max{d(z,2),d(y,2)};

A strongly Robinson dissimilarity if and only if there exists a linear order L
on X such that:

(R1) =LyLzimplies max{d(z,y),d(y,2)} < d(z,z);

(R2) zLyLzLtand d(z,z) = d(y, z) implies d(z,t) = d(y, t);

(R3) xLyLzLtand d(y,t) = d(y, z) implies d(x, z) = d(z, t);

A quasi-ultrametric if and only if it satisfies:

(@1) z,t € By implies B,; C By, forall z,y, 2, t;

(Q2) diam(Bg,) = d(z,y) for all z, .

A proper dissimilarity fulfilling only (R;) is called a Robinson dissimi-
larity (Robinson 1951), and the order L is said to be compatible with d. In his
pioneering work, Robinson (1951) considered similarities instead of dissimilar-
ities, with linear order fulfilling the condition dual to (R;). In that respect the
term anti-Robinson is sometimes used (see, for instance, Hubert, Arabie, and
Meulman 1998).

Conditions (Q1) and (Q2) (Diatta and Fichet 1994) are called the inclu-
sion condition and the diameter condition respectively. They are equivalent to
the four-point inequality that was independently found by Bandelt (1992) and
Diatta and Fichet (1994):

max{d(z,z),d(z,y)} < d(z,y) = Vt,d(z,t) < max{d(t,z),d(t,y),d(z,y)}.

A Robinson dissimilarity is a quasi-ultrametric if and only if it is a strongly
Robinson dissimilarity.

We denote by Ux, Rx, and QU x the set of all ultrametrics, all strongly
Robinson dissimilarities, and all quasi-ultrametrics on X: Ux C Rx C QU X
respectively.
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The well-known bijection theorem between Ux and the set of all indexed
hierarchies on X has been generalized to other class models by Batbedat (1988,
1989, 1990), Bandelt and Dress (1989), Fichet (1986), Diday (1987), Durand
and Fichet (1988), Diatta and Fichet (1994), and Bertrand and Janowitz (1999).

We denote by By the set of all the 2-balls of the dissimilarity d.

Theorem 1 (Diatta and Fichet 1994). If the proper dissimilarity d on X sat-
isfies both the inclusion and the diameter conditions, then (Bg,diamg) is an
indexed quasi-hierarchy. Moreover, By is a pseudo-hierarchy (respectively a
hierarchy) if and only if d is a strong Robinson dissimilarity (resp. an ultramet-
ric).

Conversely if (K, f) is an indexed quasi-hierarchyon X, then § = (K, f]
is the unique quasi-ultrametric such that (K, f) = (Bs, diams).

We denote by ¢ x the bijection from the set of all indexed quasi-hierarchie:
to QUx (px[K, f] = §[K, f]). Clearly, for an indexed quasi-hierarchy (K, f)
on X (resp. a quasi-ultrametric on X), px[K, f] (resp. ¢ (d)) can be con-
structed in polynomial time.

2.3 Graph Models and Relational Models

As well as distance models and class models, graph models are useful in
classification. They correspond to the case where the nontrivial clusters can be
seen as cliques of some (simple, loopless, nonoriented) graphs. The rewriting
of a graph model as a relational model sometimes facilitates better formal state-
ments. Standard problems in classification like the Zahn problem (1964) or the
Régnier problem (1965) were initially formulated as relational problems.

A graphical dissimilarity is a proper dissimilarity d such that for z,y €
X, d(z,y) € {0,1,2}. With such a dissimilarity is associated the graph G4 =
(X, Ey) with {z,y} € Ey if and only if d(z,y) = 1. Conversely, with each
graph G = (X, E) is associated the graphical dissimilarity d@ defined for z #
y, d%(z,y) = 1 whenever {z,y} € E, d%(z,y) = 2 otherwise.

Lemma 1. For a graphical dissimilarity d the following assertions are equiva-
lent:

(i) dis a graphical quasi-ultrametric.

(i) The 2-balls of d are exactly the maximal cliques of G4 and X.

(ili) d satisfies the inclusion condition.

(iv) d satisfies the diameter condition.

(v) The configuration of Figure 2 is forbidden as a subgraph of G 4.
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Figure 2. The forbidden configuration

Proof: The four-point inequality is equivalent to (v) and (ii) if d is a graphical
dissimilarity. We then have (i) <> (ii) < (v). For a graphical dissimilarity, we
also have (iii) = (iv) because if d(z,y) = 2, then Byy = X and if d(z,y) = 1,
the inclusion condition ensures us that z,¢ € By, implies d(z,t) = 1. Since
(iv) obviously implies (v) because d is a graphical dissimilarity, we have: (i) <
(ii) & (v) and (iii) = (iv) = (v).

Noting that (i) implies both (iii) and (iv) concludes the proof O3

Lemma 2. A graphical dissimilarity d is strongly Robinson if and only if the
maximal cliques of G4 may be labeled as C1, . .., Cy in such a way that |C; N
Cit1|<1for1 <i<pandC;NCj=¢for1 <i<j—1<p.

Proof: A strongly Robinson dissimilarity d is a quasi-ultrametric with a com-
patible order L (Diatta 1996). Thus, to avoid the forbidden configuration of
Figure 2, the intersection between two maximal cliques of G is reduced to at
most one element, and the linear order L allows us to label the maximal cliques
as stated in Lemma 2.

Conversely, a dissimilarity d such that the maximal cliques of G4 can be
labeled as stated above induces a linear order that makes d a strongly Robinson
dissimilarity [

A graph fulfilling the condition of Lemma 2 is called a strong Robinson
Graph, and a family of maximal cliques fulfilling the conditions of Lemma 2 is
called a clique chaining.

The following condition generalizes the usual transitivity property. We
say that G satisfies to (C*) if and only if G allows no induced subgraphs with
(k + 2) vertices and (k—+2§k—+—u — 1 edges (i.e., a complete subgraph with k& + 2
vertices minus a single edge).

Let R be a symmetric and reflexive relation. Denote by G(R) the (nonori-
ented, loopless, and simple) graph associated with R. We say that R is a
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Table 1. Summary table

Class Model Distance Model Drawing Graph Model
hierarchy ultrametric dendrogram |partitioning into cliques
pseudo-hierarchy|{Strong Robinson dissimilarity] Pyramidal [Strong Robinson graphs
representation
quasi-hierarchy quasi-ultrametric graph satifying (C?)

k-equivalence (tesp. a strongly Robinson relation) if and only if G (R) satisfies
(C*) (resp. G(R) is strongly Robinson).

The 1-equivalences are the usual equivalence relations. Jardine and Sib-
son (1971, pp. 66-69) define the k-transitivity for a relation R such that if
SCX,|S=k,a,be X, then[{a} x SUSxSUSx{b}] C R = (a,b) € R.
The k-equivalence relations are then the symmetric and reflexive k-transitive
relation.

Table 1 summarizes the various types of models studied in this section.

3. The NP-hardness of the Approximation by a Strongly Robinson
Dissimilarity or a Quasi-ultrametric

3.1 Preliminary Remark

Let d and d’ be two dissimilarities, and set

(ld = dlp)" = ld(z,y) — d'(z, )

<y

(In this and subsequent expressions, the subscript p denotes the L, norm, and
the superscript p indicates a power.) Consider the problem (L,-approximation)
mingep (||d — d}|p)? where D is a given set of dissimilarities.

If we relax the integrality condition on the values of the dissimilarities,
the L, approximation problem by a strongly Robinson dissimilarity or a quasi-
ultrametric generally has no solution. The reason is that the cones of strongly
Robinson dissimilarities and of quasi-ultrametrics are not closed (Diatta 1998).

The following example illustrates this drawback: the dissimilarity d de-
picted in Table 2 (a) is not a quasi-ultrametric; however, the dissimilarity o, of
Table 2 (b) is a strong Robinson dissimilarity (with compatible order x Ly Lz Lt)
and 9

(ld = allp)? = = .
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3.2 Problems and Basic Reductions

The symmetric difference distance between two binary relations R and
S is defined by A(R,S) = |RU S| — |RN S|. If we code R and S by their
characteristic vectors, A becomes the so-called Hamming distance.

The decision problems associated with relational approximation prob-
lems can be stated as follows:

NAME : k-Zahn.

INSTANCE : A set X, a symmetric and reflexive relation R on X, an integer q.

QUESTION : Does there exist a k-equivalence relation S on X such that
A(R,S) < q?

NAME : Robbin (Strongly Robinson, binary case).

INSTANCE : A set X, a symmetric and reflexive relation R on X, an integer q.

QUESTION : Does there exist a strong Robinson relation S on X such that
A(R,S) < q?

1-Zahn is the standard (1964) Zahn problem. If we replace the instance of
k-Zahn (resp. Robbin) by: “an undirected, simple, loopless graph G, an integer
q”, the question becomes: Is it possible to transform G into a graph fulfilling
C* (resp. into a strongly Robinson graph) by adding or deleting fewer than ¢
edges?

The following four problems are called QH (quasi-hierarchies), PH
(pseudo-hierarchies), QU (quasi-ultrametrics) and Rob (strongly Robinson dis-
similarities). Let p be an integer.

INSTANCE: A set X, a dissimilarity d on X, an integer q.
QUESTIONS: [QH], Does there exist a quasi-hierarchy X on X and an index
f on K such that (||d — §[K, f]||)? < ¢?
[PH], Does there exist a pseudo-hierarchy K on X and an
index f on K such that (||d — §[K, f]||,)? < ¢?
[QU], Does there exist a proper quasi-ultrametric § on X such
that (|ld — 8]},)? < ¢?
[Rob], Does there exist a proper strong Robinson dissimilarity
d on X such that (||d — d||,)? < ¢?

Note that we have assumed (except in Section 3.1) that dissimilarities

and indices have only integer values.
The k-Zahn, Robbin, QH, PH, QU and Rob problems are clearly in NP.
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Table 2. V8, is a quasi-ultrametric but d is not.

dlz|y|z|t onlzlyl = t
z|0[1]1]2 z[O1]14+ 2] 2
yl T0[1f1 y 1 1+1
z 01 z 0 1
t 0 t 0

a) (b)

Lemma 3. 2 — Zahn < [QU), ~ [QHp, and Robbin < [Robl, ~ [PH],.

Proof: The polynomial equivalence are consequences of the polynomiality of
the constructions involved in the bijection theorem (Theorem 1).

Consider now an instance of both 2-Zahn and Robbin (set X, symmetric
and reflexive relation R on X, integer q). Let di be the graphical dissimilar-
ity induced by R: dg(z,y) = 1 if and only if 2Ry, and z # y. Consider
the instance X, dg, q of both [QU], and [Rob],. Note that if ¢ is a strongly
Robinson dissimilarity (resp. a quasi-ultrametric), then the graphical dissim-
ilarity 6* defined by, for z # y: §*(z,y) = 1 whenever 6(z,y) = 1 and
§(z,y) = 2 otherwise is strongly Robinson (resp. quasi-ultrametric). More-
over, (||dg — 6*||p)” < |ldr — 6|[5. Hence the instance (X,dg,q) of [Rob],
(resp. of [QU],) has a solution if and only if (X, R, q) does [}

3.3 Robinson Approximations

Theorem 2. Robbin, [Robl,, and [PH], are NP-complete.

Proof: The problems [Rob|, and [P H},, are clearly in NP.

From Lemma 3 it suffices to show that Robbin is NP-complete. This re-
sult is obtained with a reduction from the Hamiltonian path problem (Garey and
Johnson 1979, pp. 199-200).

NAME : HAMP (Hamiltonian path).
INSTANCE : A graph G
QUESTION : Does there exist a Hamiltonian path in G?

Let G = (X, E) be a connected graph. Set | X| = n and |E| = m. In the first
step we construct a graph Gy = (X1, E1) by replacing each vertex z by a clique
whose cardinality is of degree §(x) of z, and by replacing an edge between
and y by an edge between y and only one vertex of the clique associated with
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. This procedure can be implemented iteratively by the following algorithm:
Begin:
G1 «~ G
L+ X
While L # {¢}
/* Take the first vertex x in L. Replace it by a cliqgue C(z) =
{z!,... ,:v‘s(“’)}. If y1,...,Y5(z) are the neighbors of z, make z’
adjacent to y;. */
X1 — (X1 - {.’L‘}) U C(.’L‘),
U{{z",27},1 <i <j < 8()} U {{a?,95},1 < j < (o)}
L+ L—{z}.
End.

Figure 3 illustrates this construction.

The algorithm above performs in polynomial time (|X;| = 2m, and |E;| =
Mt ey WA = 3 R = o).

In a second step, from G; we get the graph G* = (X*, E*) by adding,
for each z € X, a clique C’(z) with 2n? + 2 vertices and making each vertex
of C'(x) adjacent to each vertex of C(z). We observe that | X*| = 2m + 2n3 +
2n = O(n3%). We consider now the instance of Robbin with the relation R
associated with the graph G* and ¢ = m—n+1 (¢ > 0 because G is connected).
Assume that Robbin allows a solution in this instance. Let G’ be the graph
associated with this solution. Then:

(i) For z € X the cliques K (z) = C(z) U C'(z) (labeled such that K (z) =
{21, s Tan242,...}) are in G, because suppressing an edge {x,zs} in
such a clique creates at least n? of the forbidden configurations depicted
in Figure 2 (Lemma 1 ): {1, 2, £2i41, Z2i42} for 1 < i < n?. We must
then delete at least n? (> m — n + 1) edges to avoid these forbidden con-
figurations.

(ii) Such a solution may be obtained without adding edges. The addition of
edges either merges two cliques K (z) or links another element of a clique
K (z) and one element of a clique K (y) (Lemma 2 ). But because for each
z € X, |C'(z)] > n? > m — n + 1, the added edges only link one el-
ement of a clique K(z) and one element of a clique K(y), and we have
|K(z) N K(y)| < 1 because G’ is a strongly Robinson graph (Lemma 2).
Deleting the added edges disconnects K (z) and K (y), and the graph re-
mains a strongly Robinson Graph.
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Figure 3. From G to G*
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Assume that GG allows a Hamiltonian path z1,z9,...,z,. Then we get
a sequence K (z1), {z},23}, K(22),{z5,2L},..., K(zy), which is a clique
chaining of G* obtained by deleting m — n + 1 edges (the z; are in X and

the =/ in C(x;)).

Conversely, assume that the Robbin problem with graph instance G*,
and ¢ = m —n + 1 admits a solution G'. It follows from the above Remarks
(i) and (ii) that only edges {m;a:;',} with j # 5’ have been removed. Hence, the
clique chaining corresponding to G’ can be written as K (1), {z%, 73}, K(2),
{«%,2%}, ..., K(zy), and the x1,z9, ..., T, constitute a Hamiltonian path of

GO
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3.4 Quasi-ultrametric Approximations

Theorem 3. 2-Zahn, [QU]p, and [QH], are NP-complete.

Proof: 2-Zahn, [QU]p, and [QH], are clearly in NP.

From Lemma 3 it suffices to show that 2-Zahn is NP-complete. This re-
sult follows from the result that /-Zahn is NP-complete (K¥ivanek and Moravek
1986), and the following Lemma J

Lemma 4. k-Zahn < (k + 1)-Zahn.

Proof: Let G = (X, E) and ¢ be the graph associated with the symmetric
relation R and the integer of a k-Zahn instance, respectively.
Then let G’ = (X', E') be a graph such that:

X' =XU{w}U{aiy 1 <i<|X[,1<y<q+1,1<2z<k+1}
E'ZEUChUClQU---UCl|X|,

Where C1; is the clique whose vertex set is {z;,w, a;y.]1 <y < g+
1,1 < z < k + 1}. Figure 4 shows an example of this transformation for k = 1
and ¢ = 2.

Because we can assume that ¢ < pﬁﬂ?"—ll (otherwise G° = (X, @) is
a solution for any instance G of k-Zahn), the transformation from G to G’ is
performed in polynomial time.

Now consider the instance R’ (the symmetric relation associated with
G"), q of (k + 1)-Zahn, and a solution S’ (associated with the graph G[S'] =
(X', E%,)) of this problem.

To solve this problem we can suppress at most g edges from G’, but
to satisfy the (C**!) condition we cannot delete any edge from a clique Cl;,
because Vz; € X, |Cl;| =2+ (¢ + 1) * (k+ 1) (even if by deleting ¢ edges of
such a clique, one can always find k + 3 vertices that violate (C**1)).

Thus for each z; € X, {z;,w} € E%,. Hence, each subset Y of X with
k + 2 elements satisfies (C*) because Y U {w} satisfies (C*¥*1). Therefore,
G[S] = (X, Es), where Eg is EY, restricted to X x X, is a graph associated
with a k-equivalence relation. Moreover, if S is the k-equivalence relation as-
sociated with G[S], we have |[RAS| < |[RAS’| < q. Hence, S is a solution of
our instance of k-Zahn.

Conversely, a solution S (associated with G[S] = (X, Eg)) of our k-
Zahn instance can be transformed using the method above to a solution S’ (as-
sociated with G[S"] = (X', E%,)) of our (k + 1)-Zahn instance.

Because all these transformations are performed in polynomial time, we
finally have: k-Zahn < (k + 1)-Zahn O
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Figure 4. From G to G’ with k =1 and g =2

4. Related Problems

4.1 Linear Distances, Circular Distances, Strongly Robinson Circular Dis-
similarities

A linear distance is a strongly Robinson dissimilarity 6 which is additive
along a compatible order L. Thus, § is such that zLyLz = 6(z, 2) = é(z,y) +
é(y, z). Despite the fact that the usual interest in linear distances resides in
so-called unidimensional scaling or seriation, they correspond — as a strongly
Robinson dissimilarity — to a specially indexed C.S.

Let L be a linear order on X ; we assume that 1 LzoL . .. Lzy; a pseudo-
hierarchy K is said to be L-saturated if and only if the clusters of K are exactly
the intervals of L. In this case, K allows only two compatible orders: L and its
reverse (for more detail about Robinson dissimilarities allowing only two
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compatible orders, consult Bertrand 1992). The following proposition specifies
the bijection theorem (Theorem 1) for linear distances.

Proposition 1. Let (K, f) be an indexed C.S. The following two assertions are

equivalent:

() I[K, f] is a linear distance;

(ii) X is an L-saturated pseudo-hierarchy for some linear order L (we label X
suchthat v1Lxo L ... Lxy), and f is such that for every cluster [z;, z1) with

1 < k we have:
-'L'z,-'L'k] E f [CU],fL'j-f-l
i<j<k

Proof: Assume that §[KC, f] is a linear distance, thus requiring a linear order
L on X. We have then for i < j < k: 0[K, f](zs, zx) = K, fl(zi,zj) +
8[K, fl(z;,zx). By induction we obtain that for i < k: §[K, f](z;,zx) =
> i<j<k OIK, fl(zj, Tj11). Because f is an index, §[K, f](zj, zj+1) > O for
all 1 < j < n, and then each interval [z;, z;] is a 2-ball of §[K, f]: [z;, zj]isa
cluster of K, and §[K, fl(z;, zj41) = F([z;, z;+1])-

Conversely, assume that X is L-saturated. We have, with i < 7,

Jj=

S[C, fl(wi, z5) = f([zi, 25]) Zf [k, Th+1));
hence for: < k < j (:ciLackL:ck)

S[K, fl(zi, z;) Zf 21, Z141]) +Zf 1, Ti41])

= 5[IC, fl(zs, ) + (5[IC, i@k, ;).

S[K, f] is then linear OJ
Consider the following problem.

NAME: LIN; (L;-approximation by a linear distance).
INSTANCE: A set X, a dissimilarity d with integer values on X, an integer

q.
QUESTION: Does there exist a linear distance § on X such that ||d — d]|;
<q?
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Proposition 2. LIN; is NP-complete.

Proof: LIN; is obviously in NP. Let ¢ be a linear distance compatible with the
order L and |X| > 3. Consider a graphical dissimilarity d on X. Set d; ; =
d(:L‘i,:L‘j), 5i,j = 5(a:i,a:j) and 8; = 6i,i+1- Then (Si,j - Zl_<_k<j Sk-

A linear dissimilarity that minimizes ||6 — d||; is such that s;« = 1,
where s;» = max{s;|1 < i < n}. To obtain this equality, suppose that s;» >
2; we may then define a linear distance §° with compatible order L such that
O joqy1 = 1,and 67,1 = d; 41 otherwise. We have

+ Y ldi— il

<G<I* i <i<j

+ Z |dij — 84 — Z Sk

i< <, (i,§) (i i +1) i<k#it<j—1

ld = dll1 = |di= 3+ 41 — 84

Using the fact that d is graphical and ¢ has integer values, we have
|6 —dlly = 16° = d|lr = &7 +1 = 2+ i1
+ > (s —1) >0

i<i® <5,(3,5)£ (" 40 +1)
hence: ||§° — d||; < ||d — d||1, and this inequality is strict for n > 3.

Thus, we can assume that a solution of ||d — d||; < ¢ issuchthats; =1
for 1 <¢ < n.In this case we get

n—1
ld=dlli =D (digs1 =1+ > ((G—1) —diy)
i=1 1<j—1
n—1
=23 (digr1— 1)+ D> (G —i) — di).
=1 1<j

It is worth noting that the second part of this sum does not depend on the order
L and is positive. Minimizing ||d — 6|, is then equivalent finding L such that
" Nd; i1 — 1) is minimum.
If Y0 (disy1— 1) = 0,dijp = Lforall 1 < i < n, and the set
{{z1,2z2},...,{Tn-1,2n}} is an Hamiltonian path of G. It is then equivalent
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to find an Hamiltonian Path in G and a linear distance & such that ||d — || <
> i<j((7 —1) —d ;). Hence, the result, by reduction of the instance G of HAMP
to the instance d = d%, g = 3, _.((j — 1) — dyj) of LIN; O

A circular distance § is the shortest path metric of some weighted cycle,
called a circular order. The approximation by a circular distance has been stud-
ied by Hubert, Arabie, and Meulman (1997). Consider the following problem:

NAME: CIR; (L approximation by a circular distance).

INSTANCE: A set X, a dissimilarity d with integer values on X, an inte-
ger q.

QUESTION: Does there exist a circular distance § such that [|d — d]|;
<q?

Considering the proof of Proposition 2 and changing the linear order
into a circular order and Hamiltonian paths into Hamiltonian cycles, by re-
duction from HAM (which is NP-complete, Garey and Johnson 1979, p. 199):

NAME: HAM.
INSTANCE: Graph G.
QUESTION: Is G Hamiltonian?

Hence:
Corollary 1. CIR; is NP-complete.

Circular Robinson dissimilarities allow a compatible circular order. The
approximation by circular Robinson dissimilarities has been studied by Hubert,
Arabie, and Meulman (1998) who also provided their own characterization,
repeated here.
Let 4 be a dissimilarity on X, and L a linear order on X and set §; ; =
0(z;, z;). Note that § is a circular Robinson dissimilarity with compatible order
Lifandonlyif, forl <i<mn—2andi+1<j<n-—1:
CRy If biy1,5 < 6ijj+1, then &; 415 < &5 and ;41 j < 651 5413
CRy If §i41,5 > 6 11, then &5 5 > 6; 541 and &1 j41 > 6i 541
CR3 If §iy1,n < 6i1, then 611, < 05 and §i41 0 < Gip115
CRy4 If di41n > 6;1, then &;, > ;1 and ;411 > &5 1.
Moreover, ¢ is a circular strongly Robinson dissimilarity if and only if it
fulfills the above four conditions, and for 1 <i<n-—-2,1+1<j<n—1:
CSR1 If 5i+1,j S (5i,j+1’ then 51;4_1’]' = 51',_1' irnplies 6i+1,j+1 = (5,',]'_‘.1 and
8i+1,j = 0it1,541 implies 6; ; = 6; j41;

CSR2 If (5¢+1,j > 51',]'.{_1, then 6i,j+1 = 5i+1,j+1 implies 5i,j = 0i+1,5 and
8;j = 04 j+1 implies 6;11 ; = Gi41,5+415

CSR3 If 5i+1,n < 61',1, then 6i+1,n = (51"” implies 6i+1,1 = (51',1 and 5i+1,n =

0iy1,1 implies &; , = 0; 1;
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CSRy If (52‘4_1’” > 61',1’ then (51',1 = 51'4_1,1 implies (51",” = 5i+1,n and 61"” = (5,',1

implies 6;41,n = 0i41,1-

Lemma 5. A graphical dissimilarity d is circular strongly Robinson if and only
if the maximal cliques of G4 can be labeled as C1, . ..,Cy in such a way that
|ICi N Civ1| <1for1 <i<m, |CpNCi| L1, and C;NCj = ¢ otherwise.

Proof: As for Lemma 2, this statement is just the reformulation of the definition
taking into account that we have a graphical dissimilarity[]

By applying both Lemma 5 and the proof of Theorem 2 with some changes:
linear orders become circular orders, strongly Robinson dissimilarities become
circular strongly dissimilarities, Hamilton paths become Hamilton cycles, and
we therefore get the following result:

Corollary 2. For any integer p, the following problem is NP-complete:

NAME: [CRob), (circular strongly Robinson dissimilarity).

INSTANCE: A set X, a dissimilarity d with integer values on X, an integer q.

QUESTION: Does there exist a circular strongly Robinson dissimilarity 6 with
integer values such that (||d — 6||p)? < ¢q?

4.2 The Case of k-weak Hierarchies

Theorem 3 does not extend a priori to k-weak hierarchies with k& > 3 (re-
member that 2-weak hierarchies are the so-called quasi-hierarchies). The reason
for this observation is that a set of two-element subsets of X complemented by
X, together with the singletons constitute a 3-weak hierarchy. Thus, if d is any
dissimilarity on X, we get an indexed 3-weak hierarchy whose nontrivial clus-
ters are all the pairs {z, y} indexed by d(z,y).

The main problem here is that the clusters cannot be interpreted as max-
imal cliques of graphs. To avoid this drawback, Bertrand (1998) proposed the
notion of a preindexed C.S. fulfilling the following condition (G). A preindexed
C.S. is a pair (K, f) of a C.S., together with a function f from K to the set of
integers such that V{z}, f({z}) = 0, and A C B implies f(A4) < f(B), and
condition (G) can be formulated as follows:

(G): forall Cy,Cs, Cs € K there exists B € K such that

f(B) £ max{f(C1), f(C2), f(C3)}, and
(CiNCy)u(C2NC3)U(C1NCs) C B.
Clearly, the index on the pairs of elements of X induced by a dissimilarity
d does not satisfy the condition (G). Another useful condition is called (Ix) by
Bertrand and Janowitz (1999): the preindexed C.S. (K, f) satisfies the condition
(I;) if and only if for all A, B € K with |A| > k and A C B implies f(A) <
f(B).
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An indexed C.S. just satisfies Condition (1) for k = 1.

We say that a dissimilarity d (proper or not) satisfies the k-point inequal-
ity (Bertrand and Janowitz 1999) if and only if for each u € X and each subset
Aof X, with |A| = k — 2, we have: max{d(u,z)|z € A} < diamg(A) implies
that for all v € X, d(u,v) < diamg(A4 U {v}).

It is easy to verify that the four-point inequality (Section 2.2) corresponds
to k = 4.

Let d be a dissimilarity on X and o an integer. The graph of d at the
threshold o has X as vertex set and {z,y} is an edge if and only if d(z,y) < o.
With each dissimilarity (proper or not) on X is associated a C.S. K[d] whose
clusters are defined inductively as follows:

the singleton {x}, with z € X is a cluster;

foreach 0: 0 < o < diamgy(X) the maximal cliques of the graph of d at the
threshold o are clusters;

the nonempty intersection of two clusters is a cluster.

The map ¢x : d — (K[d], diamg) extends the map w3 of Section 2.2
and the following result extends Theorem 1.

Theorem 4 (Bertrand and Janowitz 1999). The mapping 1x defines a bijec-
tion from the set of dissimilarities satisfying the (k + 2)-point inequality onto
the set of preindexed k-weak hierarchies fulfilling conditions (G) and (I3).

Note that ¢ x (d) and 1[1)_(1 (K, f) can be constructed in polynomial time.

We say that a preindex f on the k-weak hierarchy is proper if and only
if it satisfies (G), (Ix), and is such that §[K, f](z,y) > 0 for z # y. Thus, for
z,y € X and C € K such that {z,y} C C, we have f(C) > 0.

By restriction, 1x defines a bijection between the set of proper dissimi-
larities satisfying the (k + 2)-point inequality on the set of k-weak hierarchies
with proper preindexes.

Note that the proper preindexes on a quasi-hierarchy X (k = 2) are ex-
actly the indices on K.

Lemma 6 characterizes the graphical dissimilarities satisfying the (k+2)-
point inequality. Note that the symmetric relations induced by these dissimilar-
ities are exactly the k-equivalence relations.

Lemma 6. Let d be a graphical dissimilarity; then d is a k-weak hierarchy if
and only if G(d) satisfies the condition (C*) (Section 2.3 ).

Proof: As for Lemma 1, it is the reformulation of the (k + 2)-point inequality
for a graphical dissimilarity (]
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We can now consider the following problems:

NAME: [(k + 2) — PI], (k + 2 points inequality in norm Ly).

INSTANCE: A set X, a dissimilarity d on X, an integer q.

QUESTION: Does there exist a proper dissimilarity ¢ fulfilling the (k + 2)-
point condition such that (||d — §||,)P < ¢?

NAME: [k — H], (L, approximation by a k-weak hierarchy).

INSTANCE: A set X, a dissimilarity d on X, an integer g.

QUESTION: Does there exist a k-weak hierarchy K and a proper preindex f
on K such that (||d — é[K, fll|p)* < q?

Theorem 5. Problems [(k + 2) — PI|, and [k — H), are NP-complete.

Proof: First we note that [(k + 2) — PI], and [k — H], are polynomially equiv-
alent and in NP. We shall show that k-Zahn < [(k + 2) — PI],. This demonstra-
tion will conclude the proof because 2-Zahn is NP-complete (Theorem 3), and
(k — 1)-Zahn < k-Zahn (Lemma 4 ) makes k-Zahn NP-complete. Adapting the
arguments of Lemma 3 and Theorem 3 and using Lemma 4, the proof comes
from the fact that if & is a proper dissimilarity on X, with integer values, and
fulfilling the (k + 2)-point inequality, the dissimilarity 6o on X defined by:

do(x,y) = 6(z,y) if §(z,y) < 1,and
So(z,y) = 2if 6(z,y) > 1,

satisfies the (k + 2)-point inequality. Moreover, (||d — do||,)? < (|ld — d||»)”
if d is a proper graphical dissimilarity on X.

Hence, the result is obtained by reduction from k-Zahn, because G(do)
satisfies (G*) (Lemma 6 )O

4.3 The Jardine and Sibson k-ultrametrics

Jardine and Sibson (1971, pp. 65-71) proposed another generalization to
ultrametric distances, named k-ultrametrics:

A dissimilarity d on X is k-ultrametric if whenever S C X |S| = k;
a,b € X; then d(a,b) < max {d(z,y)|z € SU {a,b},y € S}.

This inequality means that in every k + 2 elements subset Y of X, the
two greatest dissimilarities between the elements of Y are always equal (k =1
corresponds to the usual ultrametrics).
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a ¢ d b

Figure 5. A quasi-ultrametric which is not a 2-ultrametric

Lemma 7 below shows that for graphical dissimilarities the k-ultrametrics
and the dissimilarities satisfying the (k + 2)-point inequality coincide. In gen-
eral, k-ultrametrics are only a subset of dissimilarities satisfying the (k + 2)-
point inequality. Figure 5 shows an example: a quasi-ultrametric (which is also a
strongly Robinson dissimilarity) which is not a 2-ultrametric because d(a, b) >
max {d(z,y)|r € {c,d} U{a,b},y € {c,d}}.

Lemma 7. Let d be a graphical dissimilarity; then d is a k-ultrametric if and
only if G(d) satisfies the condition (C*) defined at Section 2.3 .

Proof: As with Lemma 1, this is the reformulation of the definition for a graph-
ical dissimilarity [J

We can then consider the following problem which is a special case of
[(k+2) — PI],.

NAME: [(k — Ulp (k-ultrametrics in norm Ly).

INSTANCE: A set X, a dissimilarity d on X, an integer q.

QUESTION: Does there exista proper k-ultrametric 6 such that (||d — §||,)?
<q?

Theorem 6. Problem [k — U], is NP-complete.

Proof: [k — U], is clearly in NP. As with Theorem 5 we shall show that k-
Zahn < [k — U],. We adapt the arguments of Lemma 3 and Theorem 3 and
use Lemma 4. If d is a proper graphical dissimilarity on X, and if d is a proper
k-ultrametric on X, with integer values, then the dissimilarity & defined by
do(z,y) = O(x,y) if 6(x,y) < 1 and §o(x,y) = 2 otherwise, is a graphical
k-ultrametric.
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Moreover, (||d — do||p)? < (]|d — 8||p)?- Thus, the result is obtained by
reduction from k-Zahn, because G(dq) satisfies (G*) (Lemma 7 )0

4.4 Restriction on Height

Let h be an integer. Consider the problems h — [k — H], and h — [PH],,
whose common instance is a set X, a dissimilarity d on X, an integer ¢, and
whose questions are:

h — [k — H]p Does there exist a k-weak hierarchy X with height 5 and a proper
preindex f on K such that (||d — 6[K, fi|p)F < ¢?

h — [PH], Does there exist a pseudo-hierarchy K with height h and a proper
preindex f on K such that ({|d — §[K, f]||,)? < ¢?

Proposition 3. h — [k — H], and h — [PH], are NP-complete

Proof: h — [k — H], and h — [PH]j, are obviously in NP. Consider the prob-
lem [PH ]g of the approximation of d by an indexed hierarchy with height h.
Kfivinek and Mor4vek (1986) proved that [1 — H]* < [1 — H]"*!. This proof
works without any change in the case of k-weak hierarchies and in the case of
pseudo-hierarchies. Hence, the results from the case h = 1, which correspond
to k-Zahn and Robbin respectively(d

4.5 Some Open Questions

We have observed that the approximation of a dissimilarity by an indexed
k-weak hierarchy is, for k > 3, trivial: d itself is the solution which is no longer
related to the (k + 2)-point inequality. We have shown that for a proper prein-
dexed dissimilarity, the problem is NP-hard. But our proof, based on “‘graphi-
cal” features, does not extend to a possibly nonproper dissimilarity satisfying
the (k + 2)-point inequality. For the same reason, our proofs do not apply to
p = oo (graphical problems are trivial in the Lo, norm). It is worth noting that
the L, approximation of a dissimilarity by an ultrametric can be performed in
polynomial time, as has been proved by Farach, Kannan, and Warnow (1995),
and by Chepoi and Fichet (2000) who provide a clearer proof.
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