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Abstract: We present a nonparametric approach to deriving clusters from categorical
(nominal scale) data using a new clustering procedure called K-modes, which is
analogous to the traditional K-Means procedure (MacQueen 1967) for clustering
interval scale data. Unlike most existing methods for clustering nominal scale data, the
K-modes procedure explicitly optimizes a loss function based on the L, norm (defined
as the limit of an L, norm as p approaches zero).

In Monte Carlo simulations, both K-modes and latent class procedures (e.g.,
Goodman 1974) performed with equal efficiency in recovering a known underlying
cluster structure. However, K-modes is an order of magnitude faster than the latent class
procedure in speed and suffers from fewer problems of local optima than do latent class
procedures. For data sets involving a large number of categorical variables, latent class
procedures become computationally extremely slow and hence infeasible.

We conjecture that, although in some cases latent class procedures might perform
better than K-modes, it could out-perform latent class procedures in other cases. Hence,
we recommend that these two approaches be used as "complementary" procedures in
performing cluster analysis. We also present an empirical comparison of K-modes and
latent class, where the former method prevails.

Keywords: Categorical data; Cluster analysis; Groups; Modes; Latent class analysis

1. Introduction

This paper presents a simple procedure for clustering of nominal scale
data. The procedure, which we call K-modes clustering, is analogous to
MacQueen’s (1967) K-means clustering procedure. Input data for K-means
clustering procedures must generally have either interval or ratio scale
properties. In contrast, researchers frequently need clusters based on
nominal scale data. K-means procedures are generally inappropriate for such
categorical data.

Five techniques commonly used for finding clusters from categorical
data entail the following: (a) dummy code the categorical variables, compute
intersubject distances from the dummy coded data, and use such hierarchical
clustering procedures as single, complete, or average linkage on the derived
intersubject distances; (b) dummy code the categorical variables, and use K-
means on these dummy variables; (c) use correspondence analysis to derive
spatial coordinates (e.g., see Carroll, Green, and Schaffer 1986) for each
subject, and then use K-means on the derived spatial coordinates; (d) use
latent class procedures (e.g., Goodman 1974) available for contingency table
analysis; and (e) use Hartigan’s Ditto Algorithm (1975, pp. 143-154) for
categorical data.

The first three procedures have some drawbacks. In (a), one needs to
select a distance measure from among many candidate choices. In addition,
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most hierarchical clustering procedures are heuristic algorithms that do not
explicitly optimize an overall measure of fit. Also, for large data sets (e.g.,
more than 4000 observations), most available computer programs for
implementing these algorithms either abort unsuccessfully because of
insufficient memory, or take an inordinately long time, even when
mainframe computers are used.

The use of K-means clustering in (b) is not appropriate, because K-
means minimizes an ordinary least-squares (OLS) fitting function, which is
not valid for categorical data. Moreover, means are not appropriate measures
of central tendency for categorical data. While the use of K-means on spatial
coordinates derived from correspondence analysis, as in (c), does not violate
any fundamental rules, defining clusters on spatial representations derived
from such continuous models as correspondence analysis may be
inappropriate. Arabie and Hubert (1994) argue that if cluster analysis is to be
given the chance to reveal structure in the data, that structure should not first
be "filtered" through an incompatible spatial model.

Although latent class techniques in (d) are theoretically sound and
have been used extensively (Goodman 1974; Dillon and Mulani 1989;
Ramaswamy, Chatterjee, and Cohen 1996), these techniques become
computationally intense when the number of variables and/or the number of
categories of these variables becomes large. Moreover, latent class
procedures generally make assumptions of local independence and certain
parametric assumptions about the nature of the data.

The Ditto Algorithm of Hartigan (1975, pp. 143-154) can also be used
for clustering categorical data. Although this algorithm is designed
especially for categorical data, the overall fit measure that it optimizes can
deteriorate during some stages of the algorithm. Thus, the algorithm cannot
even guarantee locally optimal solutions.

In this paper, we present a clustering procedure called K-modes,
which (a) is nonparametric because it does not make any distributional
assumptions about the data, (b) circumvents the need to define ad hoc
distance measures on the categorical data to be clustered, (c) explicitly
optimizes a "matching" metric (corresponding to the Lo-loss function that
will be defined later), (d) is as fast as K-means clustering (an
implementation of MacQueen’s algorithm developed by the first author), (e)
can handle the sizes of large data sets typically found in survey research
applications, and (f) does not become computationally intense even when the
number of categories or the number of variables to be clustered becomes
very large.

In the following section, we describe the proposed general bilinear
clustering model, and show that when estimated using an L;-norm loss
function, the model results in the K-modes clustering procedure.
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2. The Bilinear Clustering Model

Assume that we have data on N categorical variables from M
consumers. Let K be the number of clusters being sought. Then, the K-
modes clustering model can be written as:

Cuxn =Suxx Wkxn *+ error, (D
where

C is a consumers x variables data matrix,

S is a binary indicator matrix for membership of the M consumers in K
mutually exclusive, non-overlapping clusters (so that each row of S has
exactly one element equal to one and the remaining elements are equal to
zero), and

W is a matrix of "generalized centroids", defined in this case as modes of
certain observations.

It should be noted that only C, the data matrix, is known in (1),
whereas both S and W are unknown and must be estimated. This general
bilinear model has been used in the past for clustering interval scale data
(where C is continuous) by Mirkin (1990) and by Chaturvedi, Carroll,
Green, and Rotondo (1997). For interval scale data, the matrix S can be a
completely general binary matrix, not necessarily defining a partition. In this
paper, we assume that the data matrix C is categorical. The matrix W will
also have categorical or nominal scale valued elements, while S will be
constrained to define a partition.

3. Parameter Estimation via an L, norm

As in Chaturvedi, Carroll, Green, and Rotondo (1997), we define the
parameter estimation problem via minimizing an Lynorm based loss
function'

! The definition of the Lp-norm based loss functions presented in this paper does not use the
power 1/p associated with general L, metrics. Because the loss function is being minimized,
this omission makes no difference in the resulting parameter estimate, since L‘; , with p > 0,
is an increasing monotonic function of L,. Forp > 1, L’; is a metric, as demonstrated by
Carroll and Wish (1974, pp. 412-416). L,, as defined here, is itself a metric for 0< p< 1. L,
is the limiting case corresponding to the "counting metric", discussed in this paper.
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where ¢, is the (m, n)th element of C = SW, to estimate S and W, for
positive values of p — 0.

In the limiting case as p — 0, the L, norm-based loss function
(hereafter referred to, for the sake of brevity, as the L, loss function), simply
counts the number of mismatches in the matrices C and C. To be precise,
mathematically, the L, norm approaches a counting metric as p — 0; the Lo
metric, is then defined as this limiting case. The L, loss function can be
appropriate when the data are categorical, because counting is a permissible
operation on categorical data. In this paper, we concentrate on estimating the
model in (1) using the L, loss function, while S is constrained to be a
partitioning matrix.

4, Estimation Procedure

The matrices S and W are estimated iteratively (estimating S given
estimates of W, then revising the estimates of W given the new estimates of
S) until the value of the L, loss function does not improve. The procedures
for estimating S and W are given below:

To estimate S, the cluster membership, given estimates of W, consider
the following illustrative case by first defining

1 503 S11 512

2 6 13 s 2 6 1 3
C- , 5= andw= :

36 03 S31 S3, 1 50 4

270 4 S41 54

The (i, j)™ entry of matrix W corresponds to the category or nominal
scale value defining the centroid for the i i" cluster and the " categorical
variable. We wish to find the Ly-norm based estimates of S, where C = SW
+ error and S is either 0 or 1.

If we let

f) 2(1“2511 “1512)0 "’(5_6511 _5512)0 +(O_1511 _Oslz)o +(3_3Sx1 _4512)0

H

(2 28, — 1522) +(6 6sy; — 5522) +(1—1521'0522)0+(3“3521—4522)0,

(3 2531“1532) *(6 6s;, — 5532) (0‘1531_0532)0+(3—3531_4532)0’

f,

f,

and
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f,=(2-2s, -1s,, )’ +7—6s,, - 5s,, )’ +(0-1s,, - 0s, )’ +(4-35, —4s,, )
then the total mismatch L, loss function) is given by
F=f1+f2+f3+f4 .

Note that f; is a function only of s;; and sy; f; is a function only of s,
and sy; f3 is a function only of s;; and s;,; and f; is a function only of s,; and
Ss2. Thus, F is separable with respect to parameters for each row of S
(Chaturvedi and Carroll, 1994, used this row-wise separability property in
their SINDCLUS procedure for fitting the INDCLUS model). To minimize
F, one can separately minimize f; with respect to parameters for the first
row, f, with respect to parameters for the second row, etc.

To minimize, say, f; with respect to parameters for the first row, [s;
s12], one can evaluate f; explicitly at its two permissible values of row 1, [1
0] and [0 1], given the constraint of a partitioning solution. For the pattern[1
0], f = 3, and for the pattern [0 1], f; = 1 (i.e., mismatch). Thus, s;; = 0 and
s; = 1 are the optimal estimates. The other rows of S can be determined
using a similar procedure.

To estimate W (the cluster "generalized centroids"), given estimates
of S, we first define

r - r i

, andW=[

Wi Wi Wy W14}

Wa Wa Wi Wy

N = N W =
“h L 0 N N W
_— O O o O
N R R W W W
S O O = e
_ = OO O

L o (. -

To determine the L, estimates of W, where C = SW + error, and W is
categorical, we can see that the mode of (1,1,3) = 1 optimizes the L, loss
function, and hence, Ww,;= 1. Similarly W, will be the mode of (5,6,6) =
6,..., and W,, will be the mode of (4,4,2) = 4.Thus, W is a matrix of modes
of the variables for each cluster, and hence, we call this procedure K-modes
clustering. We break ties arbitrarily in the current version of the software.
We repeat the estimation of S given W, and W given S until the L, (or
"counting") loss function does not improve. It should be noted that upon
convergence, this procedure can yield locally optimal solutions (as can K-
means, K-medians, and other related methods).
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5. Certain Difficulties with K-modes

Two difficulties can arise when using K-modes for cluster analysis.
First, the K-modes procedure can only guarantee a locally optimal solution.
The best strategy when using K modes with real data is to use multiple
random starting seeds, and choose the solution with the lowest Lo-norm
value. Second, there are no statistically valid or reliable indices that can be
used with K-modes to determine the "true" number of clusters in the data.
This problem can possibly be circumvented by using K-modes in
conjunction with latent class procedures, which have a variety of
information-theoretic indices such as the Akaike Information Criterion
(AIC) of Akaike (1973), Schwartz Information Criterion (Schwartz 1978), or
Consistent AIC (Bozdogan 1987) for determining the "true" number of
classes in the data. (For counterarguments, see McDonald 1989.)

6. A Monte Carlo Comparison of K-modes and Latent Class Analysis

We first conducted a Monte Carlo simulation to compare the
performance of K-modes and latent class analysis procedures. Our primary
interest was in comparing the degree of recovery of a known underlying
cluster structure, the speed of execution of the program, and the severity of
the local optimum problem. Consistent with these objectives, we
systematically varied six critical factors that could potentially affect the
performance of these clustering procedures in generating the artificial data:
number of observations (600, 1200, 2400), number of clusters (2, 4, 6),
number of categorical variables (7, 10, 15), number of levels for the
categorical variables (3, 5, 7), amount of error (10%, 30%, 50%), and the
ratio of large-to-small cluster sizes (50:50, 70:30, 90:10). This plan resulted
in a 3% design. A 27-cell orthogonal design (1/27 fraction) that would enable
unbiased estimation of the main effects was chosen. Three sets of data
(replications) were generated within each cell, yielding a total of 81 data
sets.

6.1 Data generation and analysis

Each observation (row) of the S matrix in (1) was assigned to a
cluster at random. The number of observations (M) was divided among the
number of clusters (K) so that exactly K/2 clusters each had large or small
sizes. The modal level for each variable in each cluster, matrix W in (1), was
generated at random from among the levels (3, 5, or 7) tested in this study.
Error-free data were formed by multiplying S and W. A fixed percentage
(10%, 30%, or 50%) of observations for each variable in each cluster was
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then perturbed and assigned a non-modal level at random. Thus, after the
error was added to the data via this perturbation, each variable in each
cluster had approximately the same number of levels.

Two procedures were used to extract the underlying cluster structure
from the artificially generated data sets: the K-modes procedure and an
implementation of Goodman's (1974) latent class procedure’, which we will
refer to hereafter as LCA for the sake of brevity. Both K-modes and LCA
were run from ten different random starts’. In the case of K-modes, the
solution yielding the highest matches-accounted-for (MAF) criterion (which
is analogous to the R’ criterion for interval scale data), was chosen as the
final solution. In the case of LCA, the solution yielding the highest
likelihood was chosen as the final solution. For present purposes, the LCA
solutions were converted to a discrete cluster solution by assigning each
observation to the class for which the associated posterior probability was
the highest. We used the corrected Rand index (Hubert and Arabie 1985,
Equation 5) to assess the recovery of the underlying cluster structure (S
matrix). The better the recovery of the true underlying cluster structure, the
closer the corrected Rand index would be to 1.0.

6.2 Solution Recovery

A paired difference, one-tailed t-test indicates that the mean corrected
Rand index is significantly higher (though only slightly) for K-modes than
for LCA (¢ = 2.35, p = 0.011). This finding indicates that K-modes is only
slightly superior to LCA in recovering a known underlying cluster structure.
It can be safely assumed that the two procedures yielded almost identical
results in recovering known cluster structure,

We also conducted several ANOVA’s (regression via effects-coded
dummy variables) to test the effect of the underlying factors on cluster
structure recovery (i.e., corrected Rand index) of the K-modes and LCA
procedures. Separate ANOVA’s were performed using the corrected Rand
indices derived from the K-modes and LCA procedures. A separate ANOVA
was also performed on the difference of the corrected Rand indices derived
using K-modes and LCA. The results of the analyses are given in Table
1. The independent factors have a significant impact on the corrected Rand
index for both the K-modes and LCA procedures, as indicated by the
significant F-values. Two factors, cluster-size ratio and replications, have no

> We thank Professor Abba Krieger for providing a FORTRAN implementation of
Goodman's (1974) maximum likelihood procedure for fitting the latent class model.

3 We would have used more than ten random starts for determining the best-fitting solutions,
had doing so not required prohibitive computer time.
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significant impact on the underlying cluster structure recovery across the
two procedures.

The solution recovery using both K-modes and LCA has a strong
negative relationship with the number of clusters and amount of error in the
data, and a strong positive relationship with the number of levels and
number of variables, as seen in Table 1. The mean corrected Rand index is
0.79 for K-modes, whereas the LCA procedure yields a slightly (though
significantly) lower mean corrected Rand index (0.78). Table 1 suggests
both K-modes and LCA perform similarly in recovery of solutions, but K-
modes results in a slightly higher mean corrected Rand index; the ANOVA
results using the difference in corrected Rand indices indicates a grand mean
coefficient of 0.1, which is statistically significant.

6.3 Run Time

A paired difference, one-tailed #-test indicates that the run-time (for
each run of K-modes and LCA, respectively) is significantly lower for K-
modes than for the LCA procedure for the 81 data sets (1 =5.61, p = 0.0001).
This result suggests that K-modes is significantly faster than LCA in speed
of execution. »

Three different ANOVA’s were performed using (a) the run-time of
K-modes, (b) the run-time of LCA, and (c) the ratio of the run-time for LCA
to the run-time of K-modes. The results are given in Table 2. The first five
factors have an important impact on the corrected Rand index for both the
K-modes and LCA procedures, as indicated by the significant F-values. The
last two factors, cluster-size ratio and replications, have no significant
impact on run-time of the two procedures.

The run-times for both K-modes and LCA have a strong positive
relationship with the number of observations and number of clusters and a
strong negative relationship to the number of levels, as seen in Table 1. The
mean run-time is 0.18 minutes for K-modes while the LCA procedure yields
a much higher (by an order of magnitude) mean run-time of 2.02 minutes.
The error level has a very strong positive relationship with run-time in the
case of LCA, whereas in the case of K-modes, error level does not have any
significant impact on run-time. Table 2 suggests that K-modes is superior to
LCA in speed of execution.
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Table 1
Corrected Rand Index: ANOVA Coefficients ( T implies significance at o=.05)

Variable Factor level | K-modes LCA Difference
(K-modes-LCA)

Grand Mean 0.79t 0.78 % 01+¢t
# 600 0.00 -0.01 0.01¢t
Observations

1200 -0.01 0.00 0.00

2400 0.01 0.01 -0.011
# Clusters 2 0.03¢+ 0.03+ 0.00

4 0.02 0.02 0.00

6 -0.051 -0.05t 0.00
# Variables 7 -0.071 -0.071 0.00

10 -0.02 -0.01 -0.01t

15 0.09t 0.08 t 0.01¢t
# Levels 3 -0.171 -0.171 0.00

5 0.05¢t 0.05% 0.00

7 0.121t 0.12+ 0.00
Random 10% 0201 02171 -0.01¢t
error level

30% 0.101 0.10t 0.00

50% -0.301 -0.311 0.01¢t
Cluster size 50:50 -0.03 -0.02 0.00
ratio

70:30 0.02 0.03 0.00

90:10 0.01 -0.01 0.00
Replication 1 0.00 -0.01 0.00

0.01 0.00 0.00

3 -0.01 0.01 0.00

R’ 0.81 0.82 0.30

F-value 18.47 1 19.74 t 1.861
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Table 2.

Runtime (Minutes): ANOVA Coefficients (T implies significance at a= 0.05)
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Variable Level K-modes LCA Ratio of time for
LCA over time for
K-modes

Grand Mean 0.18% 2.02¢t 11.24¢
# 600 -0.09t -1.22¢ 0.61
Observations

1200 -0.03 ¢ -0.02 0.45

2400 0.121 1.24%+ -1.05
# Clusters 2 -0.07t -1.631 -4.08 t

4 -0.021 -0.24 -0.28

6 0.091 1.87+ 436t
# Variables 7 -0.051 -0.661 1.71

10 0.03 1 0.99tg 1.37

15 0.021t -0.331 -3.08t
# Levels 3 0.05+% 1.861 6.53 1

5 -0.03 ¢t -0.73 -0.54

7 -0.02 t -1.13% -5.99¢t
Random 10% 0.00 -1.07t -6.89 1
error level

30% 0.01 -0.34¢ -2.88¢t

50% -0.01 1.41% 9771
Cluster size 50:50 0.00 -0.29 -2.401
ratio

70:30 -0.01 0.31 -1.58

90:10 0.01 -0.02 3981t
Replication 1 0.00 -0.04 -0.31

2 0.00 0.03 0.41

3 0.00 0.01 -0.10
R’ 0.84 0.73 0.69
F-value 22,75t 11.72t 9.651
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6.4 Local Optima

For each of the 81 data sets, we computed the proportion of times (out
of the ten solutions obtained from random starting seeds) that the "best" K-
modes and LCA solutions were found. By "best" solutions for LCA and K-
modes, we mean solutions with the maximum likelihood and the maximum
Matches-Accounted-For (MAF), respectively. Thus, we kept a count of the
number of times that the two procedures yielded their respective "best"
solution for each of the 10 random starts.

This mean proportion for K-modes was 55.7%; i.e., on average, K-
modes found its "best" solution for 5.57 of the ten different solutions. The
mean proportion for LCA was 22.7%. A paired difference, one-tailed #-test
indicates that the proportion of times that the "best" solution was found is
significantly higher for K-modes than for LCA for the 81 data sets (¢ = 7.18,
p = 0.000). This result suggests that K-modes may have fewer problems
with locally optimal solutions than does LCA.

We also conducted a nonparametric sign test to assess the
performance of K-modes and LCA. We converted the proportion of times
that the two procedures found their respective "best" solutions for the 81
data sets to a sequence of 81 numbers that were either -1, 0, or +1 depending
on whether the proportion for that data set was higher for LCA, equal for
LCA and K-modes, or higher for K-modes, respectively. LCA yielded higher
proportions for five data sets, LCA and K-modes were tied for 31 data sets,
and K-modes yielded higher proportions for 45 data sets.

We conducted a sign test of the null hypothesis that K-modes did not
yield higher proportions of “best” solutions than LCA, against the
alternative hypothesis that K-modes yielded higher proportions than LCA.
The sign test resulted in a p-value of 0.0001, indicating that K-modes did
yield a significantly higher proportion of "best" solutions than LCA.

6.5 Summary of Monte Carlo Results

The simulation results indicate that (a) K-modes and LCA are equally
good in recovering a known underlying cluster structure, (b) K-modes is an
order of magnitude faster than LCA, and (c) K-modes has significantly less
vulnerability to local optima than LCA does, when both procedures are
started from random seeds.
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7. Application of K-modes to Market Segmentation

We now demonstrate, using a sample data set, that K-modes can result
in "better" clustering or market segmentation (in certain cases) than latent
class procedures. We recognize that the comparative performance of K-
modes and LCA could turn out differently depending on (a) the
characteristics of data sets and (b) different criteria of performance
evaluation used (e.g., interpretability of the segments, segment sizes,
segment addressability, profitability of the segments, etc.). In this paper, we
demonstrate the superior performance of K-modes to LCA using the
criterion of segment addressability (segment addressability refers to the
degree to which a clustering or segmentation solution can be related to
variables that are (i) controllable by marketing managers, and (ii) that help
marketing managers in finding or “targeting” the consumers accurately in
the relevant clusters/segments). This criterion has been suggested for use as
a cluster evaluation procedure by Helsen and Green (1991) and by
Chaturvedi, Carroll, Green, and Rotondo (1997).

7.1 The Study

The XYZ corporation is a small computer software provider located in
the Southwest US. To understand the personal computer (PC) market, XYZ
acquired data from a large market research company in the US. The market
research company had conducted a study to understand the usage and
accessibility of PC’s to the 98 million households in the US. A random
sample of 2000 households in the US was surveyed for this purpose.

The survey gathered responses on such topics as: computer usage and
ownership (e.g., PC ownership, use of PC from home and office, etc.),
demographics, and the kinds of TV programs watched from home. Our task
was to uncover market segments based on these data to help XYZ
management (a) to understand the differential patterns of PC ownership/use
and demographics across segments, and (b) to address these segments via
various communication/advertising programs for marketing new PC based
products and services.

A total of eight variables constituted the input data and are listed in
Table 3. Five of the eight variables were demographic, while the rest
concerned ownership and usage of PC's. We selected demographics and PC
ownership/usage related variables to satisfy objective (a), and TV
viewership variables to satisfy objective (b) regarding addressability of the
segments.
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7.2 Results Obtained via K-modes Clustering

We first used the K-modes procedure to obtain 2- through 5-cluster K-
modes solutions. The criteria of interpretability and segment sizes were used
to determine the number of clusters. We found the 3-cluster K-modes
solution to be interpretable. To assess the fit of the 3-cluster K-modes
solution, we computed the MAF statistic (which, again, is analogous to the
R? statistic associated with OLS estimation). The MAF for the 3-cluster K-
modes solution was 63.9% (Table 4), indicating a good fit to the data. A
profile of the three clusters using the eight input variables is given in Table
5. The three clusters are interpreted very readily.

Cluster 1 (size 53.5%) corresponds to the "PC-novices" group. This
segment has a very low penetration of PC’s (only 14.2%) and a very low
incidence of use of PC’s either at work (14.4%) or at home (9.7%). Cluster
1 is composed of mostly older (44.3% are aged 50+) and less educated
(60.2% have not graduated high school) people who are either retired
(26.5%) or have blue-collar jobs (16.3%) with low incomes (48% have
annual incomes $19K or less), and the head of household is a female
(65.3%).

Cluster 2 (size 24.8%) corresponds to the "Use and like PC"
households. Of these households, 96.2% own a PC, 89.7% use PC's at home,
and 77% at work. This cluster comprises households whose heads usually
are middle-aged (64.3% are aged 30-50), educated (64.5% have at least
some college education), have white-collar jobs (70.1%), high-incomes
(34.1% have annual incomes 50K$ or more), and male (66.7%).

Cluster 3 (size 21.7%) is the "Use PC only at work" segment. While a
large majority of this cluster uses PC's at work (75.8%), a very low
proportion actually owns PC's (5.1%), or uses one at home (4.6%). This
cluster consists of households whose heads are usually middle-aged (61.7%
between ages 30-50), have medium levels of education (77.4% have
completed high school or have some college experience), white-collar
professionals (77%), with moderate incomes (56.5% have incomes annual
incomes between 20K-50K$), and male (74.7%).

For comparison, we also dummy-coded the 2000 x & data matrix,
resulting in a 2000 x 30 data matrix of dummy variables. We used K-means
clustering (PROC FASTCLUS in SAS) to extract a 3-cluster solution. The
solution thus derived differed in segment membership when compared to the
3-cluster K-modes solution, resulting in a corrected Rand index (Hubert and
Arabie 1985) of only 0.18. This inferior solution did not evince a clear
interpretation; hence we discarded it.
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Table 3. Variables Used for Determining Market Segments
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Variable

Categories

Age of head of household

Missing:0-25 :25-30 :30-40 :40-50 :50+

Education of head of household

Not HS Grad:HS or Vocational:
Some college:College graduate:
Graduate school:Missing

Occupational class

White collar :Blue collar:
Other employed: Student

Retiree: Unemployed: Missing

Annual HH Income

< 10K:10-19K: 20-29K: 30-39K: 40-49K:

50-74K: 75-99K: 100K+

Gender of Head of household Male:Female
Own a PC No:Yes
Use computer at work No:Yes
Use computer at home No:Yes

Table 4. Percent Matches-Accounted-For (MAF)

Clustering procedure MAF

3-cluster, single linkage 48.78
3-cluster, K-means 48.99
3-cluster, average linkage 58.45
3-cluster, complete linkage 59.60
3-class, LCA solution 60.73
2-cluster, K-modes 58.54
3-cluster, K-modes 63.90
4-cluster, K-modes 66.72
S-cluster, K-modes 68.08
6-cluster, K-modes 69.01
7-cluster, K-modes 70.39
8-cluster, K-modes 70.78
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Table 5. The 3-cluster K-modes Solution
Variables Levels Segment 1 Segment 2 Segment 3
Age of Head of HH | Missing 1.8 2.2 1.6
0-24.9 9.2 9.9 15.9
25-29.9 10.7 10.1 12.9
30-39.9 17.3 37.2 40.3
40-49.9 16.7 27.1 21.4
50+ 443 13.5 7.8
Education of HH Not H.S. Graduate 60.2 11.1 12.2
head
H.S. or Vocational 19.5 23.8 55.5
Some College 12.0 354 21.9
College Graduate 2.6 7.9 44
Graduate School 4.9 21.2 5.5
Missing 0.7 0.6 0.5
Occupation of head | White Collar 44.4 70.1 77.0
of HH
Blue Collar 16.3 17.6 12.7
Other Employed 2.8 4.6 4.1
Retiree 26.5 3.6 2.8
Student 8.9 2.8 2.1
Missing 1.1 1.2 1.4
Annual Household | Under 10K 29.4 5.1 53
Income
10K-19K 18.7 83 15.7
20K-29K 14.3 12.9 18.0
30K-39K 8.6 12.7 12.0
40K -49K 4.9 26.9 26.5
50K-74K 3.0 11.3 5.8
75K-99K 2.9 8.7 2.5
100K or more 18.2 14.1 14.3
Gender of Head of | Male 347 66.7 74.7
household
Female 65.3 333 25.3
Own a PC No 85.8 3.8 94.9
Yes 14.2 96.2 5.1
Use PC at Home No 90.3 10.3 95.4
Yes 9.7 89.7 4.6
Use PC at work No 85.6 23 24.2
Yes 14.4 77 75.8
Relative segment 53.5% 24.8% 21.7%

sizes
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We also tried to analyze the data using such hierarchical clustering
procedures as average linkage, single linkage, and complete linkage on
Euclidean distances derived from the dummy coded 2000 x 30 data. The
average, complete, and single linkage procedures respectively yielded an
MAF of only 58.45%, 59.6%, and 48.78%). None of these solutions was as
easily interpretable as the 3-cluster K-modes solution. In fact, the sizes of
the three clusters derived via the single-linkage procedure were (1998,1,1).
This solution was not used for further analysis.

7.3 Results of Latent Class Analysis

For comparison, we also applied the LCA procedure to obtain market
segments for the same categorical data set. We first obtained a 3-class LCA
solution to compare with the 3-cluster K-modes solution. The former
solution resulted in a MAF of 60.7% compared to 63.9% for the 3-cluster K-
modes solution. Moreover, the 3-class LCA solution was quite different
from the 3-cluster K-modes solution. Of the 2000 observations, 507 were in
the off-diagonal portion of the 3 x 3 table formed using the two solutions,
resulting in a corrected Rand index of only 0.32.

Because the LCA procedure employs a maximum likelihood approach
to estimating the latent class model, we can choose the number of latent
classes using the AIC, BIC, or CAIC information-theoretic criteria. We used
the CAIC criterion for selecting the number of "true" classes in the data. In
the present case, the CAIC statistic indicated a 7-class solution as the best
fitting LCA solution. However, it resulted in relative class sizes of 3.4% for
two of the classes, which are quite small and can be considered unstable.
Assuming arguably that the CAIC is a pointer to picking out the “correct”
number of clusters in the data, we also extracted a 7-cluster K-modes
solution. The 7-cluster K-modes solution was also very different from the 7-
class LCA solution (with a corrected Rand index of 0.29). The smallest
cluster size for the 7-cluster K-modes solution was 7.8% (i.e., 145 of the
2000 observations).

At this stage, we had four candidate solutions for comparison: the 3-
and 7-cluster K-modes solutions, and the 3- and 7-class LCA solutions. We
decided to use the criterion of segment addressability to choose among these
solutions.

7.4 Segment Addressability: Relationship to TV Viewership Variables

We also had data on twelve variables related to the kinds of
programs/content watched on TV by the same 2000 households. We used the
segment memberships derived from K-modes (3- and 7-cluster) and LCA (3-
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and 7-class) to see how closely related each was to the set of these
exogenous variables. We employed the p-value associated with the two-way
cross-tabulation of each clustering with each exogenous variable to test the
association. (Unlike y°, the p-value is not affected by the dimensions of the
contingency table.) The smaller the p-value, of course, the more significant
1s the association. For each clustering solution, the average p-value across all
the two-way tables involving that clustering versus each background variable
provides a comparative descriptive measure across the different clustering
solutions

Table 6 presents the distribution of the p-values for the various K-
modes and LCA solutions with the twelve background variables. Both K-
modes solutions (the 3- and 7-cluster K-mode solutions) have lower mean p-
values across the twelve shopping variables, compared to the respective
LCA solutions. For both the 3- and 7-cluster solutions, K-modes
outperforms LCA. The best solution (with the lowest mean p-value) among
the four solutions is the 7-cluster, K-modes solution.

We chose the 3-cluster K-modes solution as the superior solution
because (a) it is more parsimonious than a 7-cluster K-modes solution, (b) it
out-performs its counterpart, the 3-class LCA solution, (c) it performs
almost as well as the 7-class LCA procedure according to mean p-value, and
(d) it results in more equal segment sizes. These results suggest that the K-
modes solutions have a greater degree of cluster validity than the counterpart
LCA solutions for the data set under consideration.

8. Conclusions

We have presented a new approach to market segmentation using
categorical data that is similar in spirit to the K-means (for interval or ratio
scale data) and K-medians (for ordinal scale data) clustering procedures. The
proposed approach is as good as latent class analysis in recovering a
known underlying cluster structure, is considerably faster, and suffers fewer
problems of local optima than does latent class analysis. Our approach can
handle large data sets (involving many categorical variables) quite easily,
unlike latent class procedures which become computationally cumbersome.
Moreover, K-modes, unlike latent class procedures, can provide solutions
even when the data have sparse marginal distributions. The current
implemen-
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Table 6. Cluster Validation: Distribution of p-values

Association of clustering solutions with TV-viewership variables

Variable 3-cluster, K- | 3-class, LCA | 7-cluster, 7-class, LCA
modes K-modes

Watch Sports 0.14 0.99 0.02 0.00
Comedy 0.08 0.00 0.00 0.00
programs
Talk Shows 0.01 0.01 0.08 0.09
Music Channels 0.01 0.00 0.00 0.00
Community 0.01 0.04 0.13 0.04
Cable
Games 0.00 0.00 0.00 0.00
Documentaries 0.00 0.00 0.00 0.00
C-SPAN 0.00 0.01 0.00 0.00
Home/Hobby 0.45 0.78 0.17 0.21
Show
Finance shows 0.00 0.00 0.00 0.00
Health / 0.57 0.64 0.39 0.81
Exercise /
Medicine Shows
Home Shopping 0.00 0.03 0.00 0.01
Channel
Mean 0.11 0.21 0.07 0.10
association

tation of the K-modes program can handle up to 10,000 respondents and 100
variables with up to 50 categories each. *

A drawback of K-modes (as is true for most clustering procedures) is
the lack of statistically valid/reliable indices for choosing the "correct"
number of clusters. Latent class procedures, on the other hand, can arguably
employ a variety of such information-theoretic approaches as AIC, BIC,
CAIC, etc., because they use maximum likelihood estimation procedures.

We recommend that K-modes be used in conjunction with latent class
procedures to uncover market segments based on categorical data. Although
Monte Carlo simulations indicate that the two procedures are quite similar in

4 Interested readers can obtain a copy of the FORTRAN program for the K-modes procedure
from the first author.
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recovering a known underlying structure, we find that these procedures yield
very different solutions for empirical data. Until we have a theory
determining the conditions in which K-modes would perform better (or
worse) than latent class procedures, we recommend that both these
techniques be used in parallel in real-life market segmentation applications,
whenever possible. Of course, K-modes can also be viewed as an
exploratory data analytic procedure for clustering, independent of LCA, or
of other statistical methodologies.
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