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Abstract. We characterize sets of alternatives which are Condorcet winners
according to preferences over sets of alternatives, in terms of properties
defined on preferences over alternatives. We state our results under certain
preference extension axioms which, at any preference profile over alternatives,
give the list of admissible preference profiles over sets of alternatives. It turns
out to be that requiring from a set to be a Condorcet winner at every admis-
sible preference profile is too demanding, even when the set of admissible
preference profiles is fairly narrow. However, weakening this requirement to
being a Condorcet winner at some admissible preference profile opens the
door to more permissive results and we characterize these sets by using vari-
ous versions of an undomination condition. Although our main results are
given for a world where any two sets – whether they are of the same cardi-
nality or not – can be compared, the case for sets of equal cardinality is also
considered.
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Boğaziçi University. We thank Çağatay Kayı and İpek Özkal-Sanver who kindly
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1 Introduction

Even when we have to choose more than one alternative from an existing set
of alternatives, we use social choice rules defined on the domain of preference
profiles where individual preferences are over alternatives. Hence, the final
outcome, which is a set of alternatives, is determined without referring to
individual preferences over sets of alternatives.

This fact is the source of a major problem: If we cannot deduce the pref-
erence of an individual over sets of alternatives from his preference over alter-
natives, then we cannot check if a chosen set of alternatives satisfies socially
desirable properties defined over preferences on sets of alternatives.

Consider, for example, the idea introduced by Condorcet (1785): If an
alternative which beats all other alternatives in pairwise majority comparisons
exists, then choose it. Such an alternative is called a Condorcet winner and
this principle can easily be translated to the world where outcomes are sets
of alternatives. Why not to choose, as proposed by Fishburn (1981), a set of
alternatives which beats every other set of alternatives in pairwise majority
comparisons, i.e., a set which is a Condorcet winner, when it exists?

Whether or not a set is a Condorcet winner depends on the individual
preferences over sets of alternatives, which is generally unavailable informa-
tion. Hence, it may be tempting to define a Condorcet criterion for sets of
alternatives, defined over preferences on alternatives, as Gehrlein (1985) does:
He calls a Condorcet committee a set of alternatives such that each element of
this set defeats in pairwise majority comparisons every alternative which is not
an element of this set. It is clear that to check whether a set is a Condorcet
committee or not, it is su‰cient to know individual preferences over alter-
natives (and not necessarily preferences over sets of alternatives).

We build a bridge between these two approaches and ask whether it is
possible to determine if a set is a Condorcet winner as defined by Fishburn
(1981) or not, referring only to individual preferences over alternatives. The
answer to this question is positive and it turns out to be that, under certain
‘‘extension axioms’’1, the Condorcet criterion of Fishburn (1981) can be
expressed in terms of a Condorcet criterion à la Gehrlein (1985).

In Sect. 2 we introduce the basic notation and preliminary notions. Sec-
tions 3 and 4 contain the results in a general context where any two sets,
whether they are of the same cardinality or not, can be compared. In Sect. 3
we ask for the characterization of sets which are Condorcet winners at every
admissible preference profile and we obtain impossibility results. So we weaken
our Condorcet condition and ask in Sect. 4 for the characterization of sets

1 What we mean by an extension axiom is a rule which, given any preference over
alternatives, determines a set of ‘‘admissible’’ preferences over sets. There is an exten-
sive literature on extending preferences over a set to its power sets. Among these, one
can see Fishburn (1972), Gärdenfors (1976), Barberà (1977), Kelly (1977), Kim and
Roush (1980), Kannai and Peleg (1984), Barberà and Pattanaik (1984) and Fishburn
(1984).
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which are Condorcet winners at some admissible preference profile, which
leads to positive results. Section 5 carries the characterization results of the
previous two sections to a framework where only sets of equal cardinality are
compared. Section 6 concludes.

2 Preliminaries

Let a society N ¼ f1; . . . ; ng with n b 2 confront a finite set of alternatives
A with #A ¼ m b 2. We assume that each agent i A N of this society has a
complete, transitive and antisymmetric preference over A where Y stands for
the set of all such possible preference profiles on A. For any y A Y, RiðyÞ is the
binary relation representing the preference of an agent i over A.2 We denote
by RðyÞ ¼ ðR1ðyÞ; . . . RnðyÞÞ an n-tuple of these binary relations reflecting a
preference profile of the society. Writing A ¼ 2Anfqg for the set of all non-
empty subsets of A, we assume that each i A N has complete and transitive
preferences over A where S stands for the set of all such possible preference
profiles. We similarly define RiðsÞ and RðsÞ for any s A S. We denote respec-
tively PiðsÞ and IiðsÞ for the strict and indi¤erence counterparts of RiðsÞ.3

We accept that if the preference profile over A is some y A Y, then the pref-
erence profile over A can be some s A S which is ‘‘consistent’’ with y. Thus we
define a consistency map k : Y! 2Snfqg where kðyÞJS is the set of all
preference profiles on A consistent with y ðy A YÞ.

We define two extension axioms on which our consistency idea will be
based.4

A1: For any i A N, and two distinct X ;Y A A we have XPiðsÞY whenever

Ex A X Ey A Y xRiðyÞy and bx A X by A Y with xPiðyÞy

A2: For any i A N, X A 2A; x; y A AnX we have

X W fxgRiðsÞX W fyg if and only if xRiðyÞy

We say that a consistency map k is determined by A1 and A2 whenever we
have s A kðyÞ if and only if A1 and A2 hold ðy A Y; s A SÞ. If k is determined
by A1 and A2, then kðyÞ0q at every y A Y. To check this, we introduce a
lexicographic extension of preferences over alternatives to subsets. Take any
y A Y and any i A N. We write liðyÞ for the lexicographic extension of RiðyÞ
over A and define it as follows: Take any two distinct X ;Y A A. First consider

2 For any a; b A A, we will write aRiðyÞb whenever the alternative a is at least as good
as the alternative b for agent i. Note that when a and b are distinct, aRiðyÞb holds if
and only if bRiðyÞa does not hold.
3 For any X ;Y A A , we write XPiðsÞY if and only if XRiðsÞY holds but YRiðsÞX
does not. In the case which XRiðsÞY and YRiðsÞX both hold, we write XIiðsÞY .
4 Among these, A1 is introduced by Kelly (1977) in his treatment of strategy-proof set-
valued social choice mechanisms. A2 is a modified version of the monotonicity axiom
of Kannai and Peleg (1984), used by Roth and Sotomayor (1990).
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the case where #X ¼ #Y ¼ k for some k A f1; . . . ;m� 1g. Let, without loss
of generality, X ¼ fx1; . . . ; xkg and Y ¼ fy1; . . . ; ykg such that xjRiðyÞxjþ1

and yjRiðyÞyjþ1 for all j A f1; . . . ; k � 1g. We have XliðyÞY if and only if
xhRiðyÞyh for the smallest h A f1; . . . ; kg such that xh 0 yh. Now consider the
case where #X 0#Y . Let, without loss of generality, X ¼ fx1; . . . ; x#Xg
and Y ¼ fy1; . . . ; y#Yg such that xjRiðyÞxjþ1 for all j A f1; . . . ;#X � 1g and
yjRiðyÞyjþ1 for all j A f1; . . . ;#Y � 1g. We have either xh ¼ yh for all
h A f1; . . . ;minf#X ;#Ygg or there exists some h A f1; . . . ;minf#X ;#Ygg
for which xh 0 yh. For the first case XliðyÞY if and only if #X < #Y .
For the second case, XliðyÞY if and only if xhRiðyÞyh for the smallest
h A f1; . . . ;minf#X ;#Ygg such that xh 0 yh.

Hence at each y A Y, the lexicographic extension determines a unique pref-
erence profile lðyÞ ¼ ðl1ðyÞ; . . . ; lnðyÞÞ where individual preferences over A

are complete, transitive and antisymmetric. Moreover lðyÞ satisfies A1 and
A2, showing the non-emptiness of the consistency map k determined by A1
and A2.

Given any y A Y, we define a binary relation mðyÞ over A in the following
manner: For any x; y A A, we have

xmðyÞy if and only if #fi A N j xRiðyÞygb #fi A N j yRiðyÞxg:

We call mðyÞ as the majority relation. We denote m�ðyÞ for the strict counter-
part of mðyÞ5. Any x A A, with xmðyÞy for every y A A, is called a Condorcet

winner. We write CWðyÞ for the set of alternatives which are Condorcet win-
ners at y A Y.

We now adapt the concept of a Condorcet winner to sets of alternatives.6
Given any s A S, we define the majority relation mðsÞ over A as follows: For
any X ;Y A A, we have,

XmðsÞY if and only if #fi A N jXRiðsÞYgb #fi A N jYRiðsÞXg:

Again m�ðsÞ stands for the strict counterpart of mðsÞ. A set X A A, with
XmðsÞY for every Y A A, is called a Condorcet winner. We write CWðsÞ for
the set of sets of alternatives which are Condorcet winners at s A S.

3 Strong respect of the Condorcet principle

Given some y A Y, we are interested to see when we can guarantee a set X A A

to be a Condorcet winner at every s A kðyÞ. This property that we call ‘‘strong
respect of the Condorcet principle’’ is defined as follows:

Definition 3.1. A set X A A is said to strongly respect the Condorcet principle
at y A Y, under a consistency map k if and only if X A CWðsÞ Es A kðyÞ.

5 So we have xm�ðyÞy whenever xmðyÞy holds but ymðyÞx does not.
6 This is Fishburn’s (1981) Condorcet criterion.
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Observe that given any two consistency maps k, k 0 with kðyÞJ k 0ðyÞ at every
y A Y, if some X A A strongly respects the Condorcet principle at some y A Y,
under k 0 then X strongly respects the Condorcet principle at y under k. In
other words, shrinking the set of consistent preference profiles kðyÞ, leads to
an easier fulfilment of the strong respect of the Condorcet principle.

The following two propositions state a negative result for sets which con-
tain more than one element.

Proposition 3.1. Let #A b 3 and let k be the consistency map determined by A1

and A2. There exists no X A A with #X > 1 such that X A CWðsÞ Es A kðyÞ
ðy A YÞ.

Proof. Let #A b 3. Take any y A Y and any X A A with #X > 1. Con-
sider first the case where X ¼ A. Take any Y A A with #Y ¼ 2. For
every i A N, writing xðiÞ ¼ arg minA RiðyÞ and yðiÞ ¼ arg maxY RiðyÞ, we have
yðiÞRiðyÞxðiÞ. Hence, one can define some s A kðyÞ with YPiðsÞX Ei A N,
showing that X does not strongly respect the Condorcet principle at y.
Consider now the case where X 0A. For every i A N, writing xðiÞ ¼
arg minX RiðyÞ and yðiÞ ¼ arg maxA RiðyÞ, we have yðiÞRiðyÞxðiÞ. Again, one
can define some s A kðyÞ with APiðsÞX Ei A N, completing the proof. 9

Proposition 3.2. Let A ¼ fx; yg and let k be the consistency map determined by

A1 and A2. We have A A CWðsÞ Es A kðyÞ if and only if #fi A N j xRiðyÞyg ¼
#fi A N j yRiðyÞxg ðy A YÞ.

Proof. Take A and k as in the statement of the proposition, and any y A Y.
We first prove the ‘‘only if ’’ part. Write Nx ¼ fi A N j xRiðyÞyg and Ny ¼
fi A N j yRiðyÞxg. Suppose #Nx 0#Ny, and without loss of generality,
#Nx > #Ny. Note that Nx is a strict majority. Moreover, by Axiom 1, we have
kðyÞ ¼ fsg such that fxgPiðsÞfx; yg for every i A Nx, contradicting that
A A CWðsÞ Es A kðyÞ.

To show the ‘‘if ’’ part take #Nx ¼ #Ny. Axiom 1 implies that kðyÞ ¼ fsg
such that fxgPiðsÞfx; ygPiðsÞfyg for every i A Nx and fygPiðsÞfx; ygPiðsÞfxg
for every i A Ny, showing that A A CWðsÞ Es A kðyÞ. 9

Propositions 3.1 and 3.2 tell us that when A contains at least three ele-
ments, given any y A Y, there is no set with cardinality greater than one, which
strongly respects the Condorcet principle. If A contains two elements then the
set A ¼ fx; yg will strongly respect the Condorcet principle at some y A Y

(and only at these y A Y) where the number of agents who prefer x to y is
equal to those who are at the opposite idea. Thus a set containing at least two
elements can never strongly respect the Condorcet principle, unless A itself
contains only two elements. The results are slightly more positive for singleton
sets: a singleton set strongly respects the Condorcet principle if and only if the
alternative it contains is considered as the best by a majority. We state this in
the following theorem:

Theorem 3.1. Let k be the consistency map determined by A1 and A2. At every

y A Y, we have
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fxg A CWðsÞ Es A kðyÞ if and only if

#fi A N j x ¼ arg maxA RiðyÞgb n=2 ðx A AÞ:

Proof. Take k as in the statement of the proposition, any y A Y, and any x A A.
We first prove the ‘‘if ’’ part. Assume #fi A N j x ¼ arg maxA RiðyÞgb n=2. By
A1, for any i A fi A N j x ¼ arg maxA RiðyÞg, we have fxgRiðsÞX EX A A, at
every s A kðyÞ, showing that fxg A CWðsÞ Es A kðyÞ.

To show the ‘‘only if ’’ part, suppose #fi A N j x ¼ arg maxA RiðyÞg < n=2,
i.e., the coalition K ¼ fi A N j x0 arg maxA RiðyÞg is a strict majority.
Consider some s A S such that APiðsÞfxg for all i A K . Noting that
arg maxA RiðyÞ0 x and arg maxA RiðyÞPiðyÞfxg for all i A K , we have
s A kðyÞ, showing that there exists s A kðyÞ at which fxg B CWðsÞ. 9

Hence, under a consistency map determined by A1 and A2, it is not possible
to ensure that at every y A Y, there is some X A A strongly respecting the Con-
dorcet principle. In fact, there is almost no y A Y where one can find a non-
singleton set strongly respecting the Condorcet principle, while singleton sets
strongly respect the Condorcet principle when and only when the alternative
they contain is considered as the best by a majority.

Expanding kðyÞ, can only worsen the situation. At this point, one may be
tempted to ask if this can be ensured by making kðyÞ shrink.7 The result is still
negative. You can make the consistency map shrink as much as you wish, you
will still not be able to ensure to strong respect of the Condorcet principle at
every y A Y, as long as the consistency map is neutral and citizen sovereign.

Citizen sovereignty is a very weak condition which requires the following:
Suppose we add to a set X another set Y such that, in view of an agent i, even
the worse element in X is better than each element in Y. In this case, the con-
sistency map should permit i to be unhappy from this addition. Formally
speaking, we say that a consistency map k is citizen sovereign if and only if
given any two distinct X ;Y A A with xRiðyÞy for all x A X and for all y A Y

we have XPiðsÞX WY for some s A kðyÞ ðy A Y; i A NÞ.
Our definition of neutrality is a standard one, which requires that the

consistency map must be independent of the names of the alternatives. Let
P : A! A be any permutation over A. Take any i A N and any y; y 0 A Y such
that we have xRiðyÞy, PðxÞRiðy 0ÞPðyÞ for all x; y A A. We say that k is
neutral if and only if for all s A kðyÞ and for all s 0 A kðy 0Þ we have XRiðsÞY ,
PðXÞRiðs 0ÞPðYÞ for all X ;Y A A.8

The following theorem heralds the non-existence of a neutral and citizen
sovereign consistency map k 0 narrower9 than the one determined by A1 and
A2, ensuring the existence of a set Condorcet winner at every y A Y.

7 We thank an anonymous referee who invited us to elaborate this point.
8 We slightly abuse notation by writing PðXÞ instead of 6

x AX
fPðxÞg ðX A AÞ.

9 Given any two consistency maps k and k 0, we say that k 0 is narrower than k if and
only if k 0ðyÞJ kðyÞ at every y A Y.
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Theorem 3.2. Let k be the consistency map determined by A1 and A2. There

exists no neutral and citizen sovereign k 0 narrower than k such that at every

y A Y and every s A k 0ðyÞ, there is some X A A with X A CWðsÞ.

Proof. Let k 0 be a neutral and citizen sovereign consistency map narrower
than k. Suppose for a contradiction that at every y A Y and every s A k 0ðyÞ,
there is some X A A with X A CWðsÞ.

Letting N ¼ f1; 2; 3g and A ¼ fa; b; cg, consider the following y A Y:

R1ðyÞ R2ðyÞ R3ðyÞ
a b c

b c a

c a b

Observe that am�ðyÞb, bm�ðyÞc and cm�ðyÞa. By A1, this implies fagm�ðsÞfbg,
fbgm�ðsÞfcg and fcgm�ðsÞfag at every s A kðyÞ, which by A2 implies
fa; bgm�ðsÞfa; cg, fa; cgm�ðsÞfb; cg and fb; cgm�ðsÞfa; bg at every s A kðyÞ.
As k 0ðyÞJ kðyÞ, we can directly infer that there exists no X A AnfAg such
that X A CWðsÞ at every s A k 0ðyÞ. Hence A A CWðsÞ at every s A k 0ðyÞ.
Note that, by A1, we have fagP1ðsÞA at every s A k 0ðyÞ. As A A CWðsÞ at
every s A k 0ðyÞ, we must have AR3ðsÞfag at every s A k 0ðyÞ. We also have
AR2ðsÞfcg at every s A k 0ðyÞ, as, by A1, we have fcgP3ðsÞA at every s A k 0ðyÞ.

Now consider the following y 0 A Y:

R1ðy 0Þ R2ðy 0Þ R3ðy 0Þ
a b c

b a a

c c b

Observe that am�ðy 0Þb and bm�ðy 0Þc, which by A1 implies fagm�ðsÞfbg and
fbgm�ðsÞfcg at every s A k 0ðy 0Þ. Recall that we had AR3ðsÞfag and AR2ðsÞfcg
at every s A k 0ðyÞ which, by neutrality of k 0, respectively implies AR3ðsÞfag
and AR2ðsÞfag at every s A k 0ðy 0Þ, leading to Am�ðsÞfag at every s A k 0ðy 0Þ.

Observe also that by A1 we have fagm�ðsÞfa; bg at every s A k 0ðy 0Þ.
Similarly, by A2 we have fa; bgm�ðsÞfa; cg and fa; cgm�ðsÞfb; cg at every
s A k 0ðy 0Þ. Hence, there exists no X A AnfAg such that X A CWðsÞ at every
s A k 0ðy 0Þ, i.e. A A CWðsÞ at every s A k 0ðy 0Þ, which can be possible only if we
have AR1ðsÞfa; bg or AR2ðsÞfa; bg at every s A k 0ðy 0Þ, contradicting that k 0 is
citizen sovereign. 9

Theorem 3.2 tells the following: Take the consistency map k as narrow as you
wish, you cannot guarantee the existence of a set Condorcet winner at every
admissible preference profile over sets, as far as k satisfies certain ‘‘reason-
able’’ properties. The fact that the strong respect of the Condorcet principle
cannot be ensured is a corollary to this. In brief, asking from a set to be a
Condorcet winner at every preference profile over sets is too demanding. Thus,
we explore a weaker version of this, in the following section.
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4 Weak respect of the Condorcet principle

Given some y A Y, we are now interested to see when we can guarantee a set
X A A to be a Condorcet winner at some s A kðyÞ. This property that we call
‘‘weak respect of the Condorcet principle’’ is defined as follows:

Definition 4.1. A set X A A is said to weakly respect the Condorcet principle at

y A Y, under a consistency map k if and only if bs A kðyÞ such that X A CWðsÞ.
Observe that given any two consistency maps k, k 0 with kðyÞJ k 0ðyÞ at every
y A Y, if some X A A weakly respects the Condorcet principle at some y A Y

under k, then X weakly respects the Condorcet principle at y under k 0. In
other words, enlarging the set of consistent preference profiles kðyÞ, leads to
an easier fulfilment of the weak respect of the Condorcet principle.

We now define a binary relation called ‘‘social k-ordered dominance’’, in
terms of which we characterize sets of alternatives weakly respecting the Con-
dorcet principle. Fix any k A f1; . . . ;mg and write Ak ¼ fX A A j#X ¼ kg.
Given any i A N and any y A Y, we first define the ‘‘k-ordered dominance’’
relation Dkðy; iÞ as follows: Take any X ;Y A Ak. Let, without loss of gen-
erality, X ¼ fx1; . . . ; xkg and Y ¼ fy1; . . . ; ykg such that xjRiðyÞxjþ1 and
yjRiðyÞyjþ1 for all j A f1; . . . ; k � 1g. We have XDkðy; iÞY if and only if
xjRiðyÞyj for all j A f1; . . . ; kg.

So XDkðy; iÞY holds if and only if agent i finds the j’th best element of X

at least as good as the j’th best element of Y, for every j inbetween 1 and k.
The social k-ordered dominance relation DkðyÞ is defined for any y A Y and
any X ;Y A Ak as XDkðyÞY if and only if #fi A N jXDkðy; iÞYg > n=2. Thus
XDkðyÞY holds if and only if there is a strict majority of agents for whom X

k-ordered dominates Y.

Definition 4.2. Given any y A Y, a set X A A with #X ¼ k is said to be weakly
undominated if and only if YDkðyÞX holds for no Y A A knfXg.
We write dðyÞ for the set of weakly undominated sets at y A Y. Note that
dðyÞ is always non-empty as we trivially have A A dðyÞ at each y A Y. Note
also that although Dkðy; iÞ is transitive, DkðyÞ is not. Hence, for certain values
of k A f1; . . . ;m� 1g, there may be no set of cardinality k which is weakly
undominated. Finally, remark that a singleton set is weakly undominated if
and only if it contains an alternative which is a Condorcet winner.

We now introduce a concept that we call ‘‘best lexicographic extension’’
and the related notation, which we use in most of the proofs.

Consider any X A A. Take any y A Y and any (non-empty) consistency
map k. For any i A N, write bkðX ; i; yÞ ¼ fY A A jYPiðsÞX Es A kðyÞg for the
set of sets which must be strictly preferred to X by i under every consistent
extension s of y. What we mean by the best lexicographic extension for X is
the extension s� where every agent ranks above X only the sets which, by the
consistency map, are required to be ranked above X. Anything else is ranked
below X. Finally the sets ranked above X are ordered among themselves by
the lexicographic extension defined in Sect. 2. The same applies for the sets
ranked below X. Formally speaking, if s� is the best lexicographic extension
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of y for X then for every i A N, we have

(i) YPiðs�ÞX for all Y A bkðX ; i; yÞ
(ii) XPiðs�ÞY for all Y A AnðbkðX ; i; yÞ W fXgÞ

(iii) YRiðs�ÞZ if and only if YliðyÞZ ðY ;Z A bkðX ; i; yÞÞ
(iv) YRiðs�ÞZ if and only if YliðyÞZ ðY ;Z A AnðbkðX ; i; yÞ W fXgÞÞ
Remark that for every i A N, Riðs�Þ is a well-defined complete, transitive and
antisymmetric order on A. Whether s� A kðyÞ or not depends on how k is
defined. However, we check that s� A kðyÞ whenever k is determined by A1
and/or A2 ðy A Y; s A SÞ.10

Before stating our first theorem, we present a lemma and the related defi-
nitions. Given any y A Y, any i A N and any X ;Y A A, we say that Y is an
elementary improvement of X for i at y if and only if Y ¼ ðXnfxgÞW fyg for
some x A X and some y A AnX with yRiðyÞx. We say that Y is an improve-
ment of X for i at y if and only if there exists a family of sets fXsgs A f1;...; tg such
that Xsþ1 is an elementary improvement of Xs for every s A f1; . . . ; t� 1g
while X1 ¼ X and Xt ¼ Y .

Lemma 4.1. Let k be determined by A2. For every i A N, we have Y A bkðX ; i; yÞ
if and only if

ðiÞ #X ¼ #Y and ðiiÞ YD#X ðy; iÞX ðX ;Y A A; y A YÞ:
Proof. Let k be determined by A2. Take any y A Y, any i A N, and any
X ;Y A A. To show the ‘‘if ’’ part, assume #X ¼ #Y and YD#X ðy; iÞX . So Y

is an improvement of X for i at y. If Y is an elementary improvement of X

for i at y, then Y A bkðX ; i; yÞ holds by definition of A2. If the improvement
is not elementary, then again A2, combined with the transitivity of indi-
vidual preferences over sets, implies Y A bkðX ; i; yÞ. To show the ‘‘only if ’’
part, first observe that Y A bkðX ; i; yÞ ) #X ¼ #Y as A2, by definition, com-
pares only sets of equal cardinality. Now, let, without loss of generality, X ¼
fx1; . . . ; x#Xg and Y ¼ fy1; . . . ; y#Xg such that xjRiðyÞxjþ1 and yjRiðyÞyjþ1

for all j A f1; . . . ;#X � 1g. Suppose for a contradiction that YD#X ðy; iÞX
does not hold. So xjPiðyÞyj for some j A f1; . . . ;#Xg. Hence, Y is not an
improvement of X for i at y, which, by the definition of A2, implies that
Y B bkðX ; i; yÞ. 9

10 To check this, take any X A A and any y A Y. Let s� be the best lexicographic ex-
tension of y for X. Remark that, if k is the consistency map determined by A1 and A2
then s� A kðyÞ. To see this, take any i A N. The ordering of any set Z relative to X obeys
A1 and A2 by definition. The relative ordering of any two sets Y, Z placed above X
also obeys A1 and A2, as they are ordered according to the lexicographic extension.
The same is true for any Y, Z below X. Finally, we have to see that the ordering of any
Y above X relative to any Z below X also obeys A1 and A2. This is equivalent to the
following implication: For any X ;Y ;Z A A , we have Y A bkðX ; i; yÞ and
Z B bkðX ; i; yÞ ) Z B bkðY ; i; yÞ. One can see this by its contrapositive. Suppose
Z A bkðY ; i; yÞ. If furthermore Y A bkðX ; i; yÞ, then Z A bkðX ; i; yÞ, which directly con-
tradicts Z B bkðX ; i; yÞ. Hence s� A kðyÞ when k is determined by A1 and A2. Of
course, s� A kðyÞ will hold when k is determined by either A1 or A2 as dropping one of
these axioms will enlarge k.
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Our first theorem claims that under the consistency map determined by A2,
being weakly undominated is necessary and su‰cient for a set to weakly
respect the Condorcet principle.

Theorem 4.1. Let k be the consistency map determined by A2. We have

X A CWðsÞ for some s A kðyÞ if and only if X is weakly undominated at y.
ðX A A; y A YÞ.

Proof.11 We first show the ‘‘only if ’’ part by proving its contrapositive.
Take any y A Y and any X A A with X B dðyÞ. Hence, there exists some Y A
A#XnfXg and some strict majority12 K JN with YD#X ðy; iÞX for all i A K .
By Lemma 4.1 we have Y A bkðX ; i; yÞ for all i A K . As K is a strict majority,
X B CWðsÞ for every s A kðyÞ.

The proof of the ‘‘if ’’ part will be constructive. Take any X A dðyÞ. Let
s� A S be the best lexicographic extension of y for X. We know that s� A kðyÞ.
Hence, showing that X A CWðs�Þ will complete the proof. Suppose the con-
trary, i.e., there exists some Z A A for which Xmðs�ÞZ does not hold. As s� is
the best lexicographic extension, we have Z A 7

i AK
bkðX ; i; yÞ for some K JN

which is a strict majority. By definition of A2, we must have #X ¼ #Z. By
Lemma 4.1, for every i A K , we have ZD#X ðy; iÞX , implying ZD#X ðyÞX , as K

is a strict majority, which contradicts that X A dðyÞ, completing the proof. 9

Theorem 4.1 characterizes set Condorcet winners in terms of preferences over
alternatives. In fact, what we call a weakly undominated set is a stronger
version of the Condorcet criterion of Gehrlein (1985).13 To speak formally, if
X A dðyÞ then xmðyÞy for all x A X and for all y A AnX ðX A A; y A YÞ. Hence,
Theorem 4.1 expresses the (set) Condorcet criterion of Fishburn (1981) in
terms of a Condorcet criterion à la Gehrlein (1985).

We now wish to discuss the e¤ect of the extension axioms to our result.
First note that, if we relax A2 and thus let kðyÞ expand, being weakly undo-
minated will remain to be su‰cient for a set to weakly respect the Condorcet
principle, while it may no more be necessary.14 On the other hand, if we let

11 We thank two anonymous referees who corrected an error in this proof, in an ear-
lier version of the paper.
12 We say that a coalition K HN is a strict majority if and only if jK j > n=2.
13 Remark that a set which satisfies the Condorcet criterion of Gehrlein (1985) and
which is minimal in the sense of set inclusion is equivalent to the top-cycle of Schwartz
(1972). Miller (1977) shows that when the majority relation is antisymmetric, i.e., n is
odd, the top-cycle is a singleton consisting of the unique Condorcet winner, when it
exists; otherwise it is a set with at least three elements, over which there is a majority
cycle. More general results on the maximal elements of not necessarily acyclic binary
relations can be found in Peris and Subiza (1994).
14 For example, suppose kðyÞ is merely determined by a consistency axiom imposed
on singletons, i.e., kðyÞ is the set of preference profiles s which for all i A N and for all
x; y A A satisfy xRiðyÞy, fxgRiðsÞfyg. Under this consistency map, any X A A with
#X > 1 will weakly respect the Condorcet principle, independent of whether X con-
tains an alternative which is an Condorcet winner or not. In fact, at an extreme case
where no consistency axioms are imposed, i.e., kðyÞ ¼ S at each y A Y, every X A A
will weakly respect the Condorcet principle at every y A Y.
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kðyÞ shrink by additional axioms, being weakly undominated will remain to be
necessary, while it may no more be su‰cient. In particular, consider the con-
sistency map determined by A1 and A2. The necessity of weak undomination
prevails while its su‰ciency vanishes, as the following example illustrates.

Let N ¼ f1; 2g, A ¼ fx; yg and y A Y be as below:

R1ðyÞ R2ðyÞ
x x

y y

The set fx; yg is weakly undominated but does not weakly respect the Con-
dorcet principle, as by A1 we have fxgm�ðsÞfx; yg at every s A kðyÞ.

The next lemma paves a way to characterize sets weakly respecting the
Condorcet principle under a consistency map determined by A1 and A2.

Lemma 4.2. Let k be determined by A1 and A2. Take any X A dðyÞ with

#X > 1. We have Y A 7
i AK

bkðX ; i; yÞ for some K JN which is a strict major-

ity if and only if Y ¼ fyg for some y A X such that yRiðyÞx for all x A X and

for all i A K . ðY A A; y A YÞ.

Proof. Take any y A Y. Let k and X be as in the statement of the lemma. The
‘‘if ’’ part is a direct consequence of the definition of A1. To show the ‘‘only
if ’’ part take any Y A A such that Y A 7

i AK
bkðX ; i; yÞ for some K JN which

is a strict majority. Take any i A K . So, Y A bkðX ; i; yÞ. Suppose YD#X ðy; iÞX
does not hold. Lemma 4.1, combined with the fact that k is determined by
A1 and A2 implies yRiðyÞx for all x A X and for all y A Y while yPiðyÞx for
some x A X and for some y A Y . Thus, #X 0#Y , as otherwise we would
have YD#X ðy; iÞX . But if #X 0#Y , then YD#X ðy; jÞX holds for no j A K .
Thus, we have either YD#X ðy; jÞX which holds for all j A K or YD#X ðy; jÞX
holds for no j A K . The former contradicting X A dðyÞ, YD#X ðy; jÞX holds for
no j A K . Hence, for all j A K, we have yRjðyÞx for all x A X and for all y A Y

while yPjðyÞx for some x A X and for some y A Y .
We will now show that Y JX must hold. Suppose the contrary, in which

case there exists some i A K , some y A YnX and some x A X with yPiðyÞx.
Hence, ðXnfxgÞW fygD#X ðy; iÞX . However, as yRjðyÞx for all j A K , we have
ðXnfxgÞW fygD#X ðy; jÞX for each j A K , contradicting that X A dðyÞ.

Hence, Y JX while we have for each j A K , yRjðyÞx for all x A X and for
all y A Y while yPjðyÞx for some x A X and for some y A Y , which, by A1,
is only possible when Y is as in the statement of the lemma, completing the
proof. 9

Lemma 4.2 tells that under k determined by A1 and A2, a weakly undomi-
nated set X (with #X > 1) will not weakly respect the Condorcet principle
at some y A Y because and only because of some set Y such that Y ¼ fyg
for some y A X with yRiðyÞx for all x A X and for all i A K which is a strict
majority. Hence, the non-existence of such a Y is necessary and su‰cient for
a weakly undominated set to weakly respect the Condorcet principle under A1
and A2. We call this property undomination and define it as follows:
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Definition 4.3. Given any y A Y, a set X A dðyÞ is said to be undominated if

and only if #X > 1) there exists no x� A X with #fi A N j x�RiðyÞx for all

x A Xg > n=2.

Thus, a weakly undominated set is undominated whenever it is a singleton or
it does not contain an element which, by a strict majority, is considered as the
best among all other elements of the set. Denoting d�ðyÞ for the set of undo-
minated sets at y A Y, we have d�ðyÞJ dðyÞ at any y A Y.15

The following theorem gives a full characterization of sets of alternatives
weakly respecting the Condorcet principle under A1 and A2 in terms of undo-
mination.

Theorem 4.2. Let k be the consistency map determined by A1 and A2. We

have X A CWðsÞ for some s A kðyÞ if and only if X is undominated at y.
ðX A A; y A YÞ.
Proof. We first prove the ‘‘only if ’’ part. Take any y A Y and any X A CWðsÞ
for some s A kðyÞ. We already know by Theorem 4.1 that X A dðyÞ. Suppose
for a contradiction that X is not undominated, i.e., #X > 1 and there exists
x� A X and some K ¼ fi A N j x�RiðyÞx for all x A Xg with #K > n=2. By A1,
fx�gPiðsÞX for all i A K at every s A kðyÞ, contradicting that X weakly respects
the Condorcet principle at y.

To prove the ‘‘if ’’ part, take any y A Y and any X A d�ðyÞ. Let s� A S be
the best lexicographic extension of y for X. We know that s� A kðyÞ. Hence,
showing that X A CWðs�Þ will complete the proof. Suppose the contrary,
i.e., there exists some Z A A for which Xmðs�ÞZ does not hold. So we have
Z A 7

i AK
bkðX ; i; yÞ for some K JN which is a strict majority. Consider first

the case where #X > 1. By Lemma 4.2, we have Z ¼ fzg for some z A X such
that zRiðyÞx for all x A X and for all i A K , which contradicts that X A d�ðyÞ.
Consider now the case where #X ¼ 1, i.e., X ¼ fxg for some x A A. If #Z ¼ 1
as well, i.e., Z ¼ fzg for some z A Anfxg, then by A1, zRiðyÞx for all i A K ,
implying ZD1ðy; iÞX for all i A K , which in turn implies ZD1ðyÞX as K is a
strict majority, contradicting that X A d�ðyÞ. If #Z > 1, then by A1, there
exists z A Z with zPiðyÞx for all i A K , which again contradicts that X A dðyÞ,
completing the proof. 9

Clearly, dropping A1 and/or A2 will enlarge k and undomination will remain
to be su‰cient. Similarly, adding more extension axioms on top of A1 and A2
will make k shrink and the necessity of undomination will be preserved. Nev-
ertheless, we may not ensure the su‰ciency of undomination under a nar-
rower consistency map. To see this, consider, for example, a consistency map
k determined by A1, A2 and some other additional axiom A3, defined as

A3: For any i A N, X A A; y A AnX we have

XPiðsÞX W fyg whenever x�RiðyÞy where x� ¼ arg minX RiðyÞ16

15 One can check that d�ðyÞ is also always non-empty at each y A Y as either A A d�ðyÞ
or there exists a AA with #fi AN j aRiðyÞx for all x AAg>n=2 in which case fag A d�ðyÞ.
16 Recall that our A3 is a weaker version of the Gärdenfors (1976) principle.
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Now take a society N ¼ f1; 2g confronting some A ¼ fa; b; cg with the
following y A Y:

R1ðyÞ R2ðyÞ
a b

b a

c c

Although A is undominated, it does not respect the Condorcet principle, as we
have, by A3, fa; bgPiðsÞfa; b; cg for all i A N, at each s A kðyÞ.

Thus, we need a condition stronger than undomination to characterize sets
weakly respecting the Condorcet principle under the consistency map deter-
mined by A1, A2 and A3, which is narrower than the one determined by only
A1 and A2.17 This stronger condition, what we call strong undomination, is
defined as follows:

Definition 4.4. Given any y A Y, a set X A dðyÞ is said to be strongly undomi-
nated if and only if there exists no Y HX with #fi A N j yRiðyÞx for all y A Y

and for all x A XnYg > n=2.

Strong undomination implies undomination, as it requires from any weakly
undominated set X not to have a subset Y such that the set of agents for whom
the set of first #Y best elements in X coincides with Y is a strict majority.18
Denoting d��ðyÞ for the set of strongly undominated sets at y A Y, we have
d��ðyÞJ d�ðyÞJ dðyÞ at any y A Y.19

Theorem 4.3. Let k be the consistency map determined by A1, A2 and A3. Given

any X A A and any y A Y, we have X A CWðsÞ for some s A kðyÞ if and only if

X is strongly undominated at y.

Proof. Let k be the consistency map determined by A1, A2 and A3. Take any
X A A and any y A Y. To show the ‘‘only if ’’ part, assume X A CWðsÞ for
some s A kðyÞ. We already know by Theorem 4.2 that X A d�ðyÞ. Suppose for
a contradiction that X B d��ðyÞ, i.e., there exists Y HX and a strict majority
K JN such that for every i A K , yRiðyÞx for all y A Y and for all x A XnY .
By A3, YPiðsÞX for all i A K at every s A kðyÞ, contradicting that X weakly
respects the Condorcet principle at y.

To show the ‘‘if ’’ part, assume X A d��ðyÞ. Let s� A S be the best lexico-
graphic extension of y for X. First note that s� A kðyÞ.20 Hence, showing
that X A CWðs�Þ will complete the proof. Suppose the contrary, i.e., there
exists some Z A A for which Xmðs�ÞZ does not hold. So we have Z A
7

i AK
bkðX ; i; yÞ for some K JN which is a strict majority. Consider first the

case where Z HX . Take any i A K . Given the structure of k, we have either

17 Note that the consistency map determined by A1, A2 and A3 is always non-empty,
as the lexicographic extension introduced in Section 2 satisfies A3 as well.
18 Recall that undomination imposes the same requirement for singleton subsets only.
19 Note that we have d��ðyÞ which is non-empty at each y A Y, as either A A d��ðyÞ or
there exists X HA with #fi A N j xRiðyÞa for all x A X and for all a A AnXg > n=2, in
which case X A d��ðyÞ.
20 One can check this as in Footnote 10.
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(i) Z ¼ fzg for some z A X such that zRiðyÞx for all x A X

or

(ii) zRiðyÞx for all z A Z and for all x A XnZ
However, if (i) holds for some i A K then it holds for all j A K . Similarly, if (ii)
holds for some i A K then it holds for all j A K . Both cases contradict that
X A d��ðyÞ, the former by A1 and the latter by A3.

Consider now the case where Z QX . Again take any i A K . Suppose
ZD#X ðy; iÞX does not hold. Lemma 4.1, combined with the structure of k
implies zRiðyÞx for all x A X and for all z A Z while zPiðyÞx for some x A X and
for some z A Z. Thus, #X 0#Z, as otherwise we would have ZD#X ðy; iÞX .
But if #X 0#Z, then ZD#X ðy; jÞX holds for no j A K . Thus, we have either
ZD#X ðy; jÞX which holds for all j A K or ZD#X ðy; jÞX holds for no j A K .
The former contradicting X A dðyÞ, ZD#X ðy; jÞX holds for no j A K . Hence,
for all j A K , we have zRjðyÞx for all x A X and for all z A Z while zPjðyÞx for
some x A X and for some z A Z. Thus, there exists some j A K, some z A ZnX
and some x A X with zPjðyÞx. Hence, ðXnfxgÞW fzgD#X ðy; jÞX . However,
as zRkðyÞx for all k A K , we have ðXnfxgÞW fzgD#X ðy; kÞX for each k A K ,
contradicting that X A dðyÞ, completing the proof. 9

5 Choosing precisely k alternatives

The previous section was devoted to general characterization results where
agents were making comparisons between any two sets of alternatives, whether
they are of the same cardinality or not. In this section, we will analyze the case
where only sets of equal cardinality are compared.

Preserving the notation used throughout the paper, we take some k with
1 < k < m and say that a set X A A k is as Condorcet winner at some s A S
if and only if we have XmðsÞY EY A Ak. We write CWkðsÞ for the set of k-
element sets of alternatives which are Condorcet winners at s A S.

Note that this definition of a Condorcet winner is weaker than the one
introduced in the previous section, as now we require a set to be a majority
winner only against sets having the same cardinality. As a result, the necessary
and su‰cient conditions characterizing sets respecting the Condorcet principle
turn out to be weaker as well.

Let us first explore the strong respect of the Condorcet principle. It turns
out to be that at any y A Y, being dominant with respect to the binary relation
DkðyÞ is both a necessary and su‰cient condition for a set to strongly respect
the Condorcet principle, as stated in the following theorem:

Theorem 5.1. Let k be the consistency map determined by A2.21 We have

X A CWkðsÞ for all s A kðyÞ if and only if XDkðyÞY for all Y A Ak ðX A Ak;
y A Y; 1 < k < mÞ.

21 In this world where only sets of equal cardinality are compared, A2, combined with
the transitivity of preferences over sets of alternatives, implies A1.
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Proof. Take any k with 1 < k < m, any y A Y and any X A Ak. We first
show the ‘‘if ’’ part. Let XDkðyÞY for all Y A Ak. Now take any s A kðyÞ and
suppose for a contradiction that Zm�ðsÞX for some Z A Ak. Write K ¼
fi A N jXDkðy; iÞZg. As XDkðyÞZ, we have #K b n=2. But by A2 and the
transitivity of s, we must have XRjðsÞZ for every j A K , contradicting that
Zm�ðsÞX .

To prove the ‘‘only if ’’ part, suppose that XDkðyÞZ does not hold for some
Z A Ak. So, writing again K ¼ fi A N jXDkðy; iÞZg, we have #K < n=2. Note
that for every j A NnK , bz A Z and bx A X with zPjðyÞx. As k is determined
by A2, we have X B bkðZ; j; yÞ for all j A NnK . Thus, one can define a profile
s A S where ZPjðsÞX for every j A NnK , with s A kðyÞ and as NnK is a strict
majority, Zm�ðsÞX , contradicting that X strongly respects the Condorcet prin-
ciple, completing the proof. 9

The binary relation DkðyÞ is neither transitive nor complete. Hence, although
our result is more positive22 than the one announced by Propositions 3.1 and
3.2 and Theorem 3.1, we can still not guarantee to find at each y A Y, a set of
alternatives strongly respecting the Condorcet principle. Remark that Theo-
rem 3.1 would be a direct corollary to Theorem 5.1, if we had allowed k ¼ 1.

Concerning the weak respect of the Condorcet principle, the weak undo-
mination condition introduced by Definition 4.2 of the previous section, gives
a full characterization, as stated in the following theorem:

Theorem 5.2. Let k be the consistency map determined by A2. We have

X A CWkðsÞ for some s A kðyÞ if and only if X is weakly undominated at y.
ðX A Ak; y A Y; 1 < k < mÞ.

Proof. Let k be the consistency map determined by A2. Take any k with
1 < k < m, any y A Y and any X A Ak. We first show the ‘‘only if ’’ part, by
proving its contrapositive. Suppose X B dðyÞ. So there exists some Y A AknfXg
and some strict majority K JN with YDkðy; iÞX for all i A K . By Lemma 4.1,
Y A bkðX ; i; yÞ for all i A K . As K is a strict majority, X A CWkðsÞ fails to hold
at every s A kðyÞ.

To prove the ‘‘if ’’ part, assume X A dðyÞ. Let s� A S be the best lexico-
graphic extension of y for X. We know that s� A kðyÞ. Hence, showing that
X A CWðs�Þ will complete the proof. Suppose the contrary, i.e., there exists
some Z A A for which Xmðs�ÞZ does not hold, i.e., Z A 7

i AK
bkðX ; i; yÞ for

some K JN which is a strict majority. By Lemma 4.1, for every i A K , we
have ZDkðy; iÞX , implying ZDkðyÞX , which contradicts that X A dðyÞ, com-
pleting the proof. 9

The main di¤erence of this result from Theorems 4.1, 4.2 and 4.3 is that
the characterization result of Theorem 5.2 may be the equivalence of the
empty set to the empty set, as, although dðyÞ is always non-empty, we cannot

22 In the sense of having more y A Y where one can find a set of alternatives strongly
respecting the Condorcet principle.
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guarantee the existence of a weakly undominated set of cardinality k, at each
k A f1; . . . ;m� 1g.

6 Conclusion

Our main result can be seen as the characterization of sets of alternatives
which are always/sometimes Condorcet winners according to individual pref-
erences over sets of alternatives, in terms of properties defined on individual
preferences over alternatives. Our results are first stated for the general case
where individuals may compare any two sets, whether they are of the same
cardinality or not. Later, the case where a committee of fixed cardinality is to
be elected, hence only sets of equal cardinality are compared, is considered.

Whichever approach one may prefer, under certain ‘‘reasonable’’ extension
axioms used to extend individual preferences over alternatives to sets of alter-
natives, the main results can be summarized as follows: Given any preference
profile y over alternatives, it is too demanding to require from a set to be a
Condorcet winner according to every preference profile over sets of alter-
natives consistent with y. For a set to strongly respect the Condorcet principle
at y, its elements need to be ranked ‘‘quite high’’ by a majority, and if the size
of the set is ‘‘too big’’, even this may not be su‰cient. So for many preference
profiles over alternatives, there will not exist a set of alternatives guaranteeing
to be a Condorcet winner at every consistent preference profile over sets of
alternatives. This impossibility result prevails when the set of consistent pref-
erence profiles over sets is very narrow, even a singleton.

Hence we demand less and given some preference profile y over alter-
natives, require from a set of alternatives to be a Condorcet winner according
to at least one preference profile over sets of alternatives consistent with y.
Some version of an undomination property is necessary and su‰cient for this.
Moreover, given any preference profile over alternatives, there will always be
a set of alternatives satisfying this undomination property.

This can be considered as a positive result in solving the problem of making
a social choice when the majority relation is a (weak) tournament.23 Although
there are a large number of solutions brought to this problem when the major-
ity relation is a tournament,24 the literature is much more modest vis-à-vis
solutions directly defined over weak tournaments.25 So given any weak tour-
nament, it will be plausible to choose an undominated set (which will always

23 Recall that a weak tournament is a complete binary relation and a tournament is an
antisymmetric weak tournament.
24 We can give the Copeland (1951) rule, the top-cycle of Schwartz (1972), the uncovered
set of Fishburn (1977), the minimal covering set of Dutta (1988), the equilibrium set of
Schwartz (1990), the bipartisan set of La¤ond et al. (1993) as examples. See also Moon
(1968), Moulin (1986) and Laslier (1997) for an analysis of tournament solutions.
25 Nevertheless, we know the extensions of certain solutions brought to tournaments
over weak tournaments, thanks to Peris and Subiza (1999). Dutta and Laslier (1999)
introduce the idea of a ‘‘comparison function’’ which allows to handle situations where
the majority relation is not necessarily asymmetric, i.e., is a weak tournament.
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exist), as it guarantees to be a Condorcet winner at some preference profile
over sets, consistent with the underlying preference profile over alternatives.
The version of the undomination condition depends on the preference exten-
sion axioms one would find appropriate for the given context.

Summing up, given a preference profile over alternatives, as narrow the set
of consistent (neutral and citizen sovereign) profiles may be, it is not possible
to ensure the existence of a Condorcet winner at each consistent profile. As a
result, one cannot expect from a set to be a Condorcet winner at each prefer-
ence profile. Nevertheless, there always exists consistent profiles over subsets
of alternatives with set Condorcet winners, which are sets satisfying some
version of the undomination condition.
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Schwartz T (1990) Cyclic tournaments and cooperative majority voting: A solution.

Soc Choice Welfare 7: 19–29

494 B. Kaymak, M. R. Sanver


