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Abstract. We develop a procedure for implementing an e‰cient and envy-free
allocation of m objects among n individuals with the possibility of monetary
side-payments, assuming that players have quasi–linear utility functions. The
procedure eliminates envy by compensating envious players. It is fully descrip-
tive and says explicitly which compensations should be made, and in what
order. Moreover, it is simple enough to be carried out without computer sup-
port. We formally characterize the properties of the procedure, show how it
establishes envy-freeness with minimal resources, and demonstrate its appli-
cation to a wide class of fair-division problems.

1 Introduction

In this paper we consider problems of fair division, in which a group of
individuals must decide how to allocate several objects (goods or burdens)
‘‘fairly’’ among the group’s members, given the possibility of (monetary) side-
payments. A variety of situations fit into this setting: heirs inheriting an estate,
employees splitting a list of duties, developers staking claims in a new frontier,
or students renting a house together. In many cases, such problems can also
involve additional costs or compensations for the group as a whole.

As a basic notion of fairness, we focus on envy-freeness, which means that
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no individual will wish to trade shares with anyone else.1 In proving existence
of envy-free solutions, particular attention has been given to the development
of constructive proofs that yield implementable algorithms to find the desired
allocation. This aspect is emphasized by Alkan et al. (1991) and Su (1999).2
Because both these approaches assume non-linear utility in money, the algo-
rithms are not finite; instead they converge on an envy-free solution. Exact
solutions can be obtained using the algorithms of Aragones (1995) and Klijn
(2000) who assume that players’ preferences for money are characterized by
linear utility functions. This is a strong restriction, but one that seems appro-
priate for the present context, nevertheless.

Our approach in this paper is not only constructive, but we consider it to
be procedural as well. In the context of fair division, we view a procedure as
featuring the following characteristics: it is intuitive, meaning that each step
must be easy to understand; it is plausible, meaning that each step must be
simple to argue; and it is manageable, meaning that each step must be straight-
forward to compute. We see these subjective criteria as relevant for the prac-
tical implementation of a fair-division outcome, in particular when parties in
real life prefer to establish fairness by themselves, rather than trust the ‘‘magic’’
of a computer algorithm.

Knaster and Steinhaus (1948) proposed a fair-division method that is pro-
cedural in this sense, as it is simple to apply and largely intuitive. However, as
Brams and Taylor argue as they revisit this approach, the procedure does not
ensure envy-freeness for more than two players. In a more recent approach,
Brams and Kilgour (2001) characterize a procedure that assigns a given num-
ber of objects to the same number of players e‰ciently, establishing fairness
through internal ‘‘market prices’’. The procedure is intuitive, plausible, and
simple to manage. But for more than three players it also does not guarantee
envy-freeness.

In the following sections we develop a compensation procedure that estab-
lishes envy-freeness for any number of players and a possibly di¤erent number
of objects. We thus extend the Knaster-Steinhaus procedure, while preserving
envy-freeness for any number of players. The procedure eliminates envy in
rounds by compensating envious players. It is fully descriptive and says explic-
itly which compensations should be made, and in what order. The procedure
mimics and thus supports a natural mediation process with the objective of
implementing an envy-free outcome. We formally characterize the properties
of the procedure and illustrate how it works in practice.

We assume that players can articulate their preferences over bundles of
objects through monetary bids and that their utility of money is linear. In
addition we impose a qualification condition for each person taking part in
the fair division, requiring that her valuations of all bundles sum to at least

1 The concept of envy-freeness was first used in an economic context by Foley (1967),
although under a di¤erent label.
2 The algorithm of Su (1999) is even interactive in the sense that it sequentially gives
each player the opportunity to choose her favorite alternative at evolving prices.
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the total cost for the group as a whole. This is not needed for an envy-free
solution, but it guarantees that a player will never have to pay more than her
bid.3

We consider two alternative methods for financing the necessary monetary
side-payments. In the method of ex-ante payments, players first pay the amount
they bid for the objects they receive. Everyone thus begins with the same ad-
vantage, viz. none, and there is an aggregate amount of money left to divide
among the players. Under the method of ex-post payments, players submit
payments only after the monetary compensations needed to establish envy-
freeness are determined via the procedure. A distinctive feature of both meth-
ods is that the resources for compensation are generated by the group itself.
Because we find ex-ante payments more intuitive for players, we focus mainly
on this method, but we do provide a comparison of the outcomes.

In Sect. 2, we formulate the first step of our procedure: an assignment of
objects to players that maximizes the sum of players’ utilities. We call this the
utilitarian assignment.4 When the bundling of objects is restricted, the utili-
tarian assignment will generally cause envy among the players.

In Sect. 3, we describe non-technically the individual steps of the compen-
sation procedure which will eliminate envy by using the surplus from players’
initial payments. We demonstrate its application with a numerical example
that we use throughout the paper.

The formal characterization of our compensation procedure and thus a
constructive existence proof for an envy-free allocation is given in Sect. 4.
Here we prove that there is always at least one player who is non-envious at
the start and then show how our procedure successively eliminates the envy
of players who are envious of non-envious players. In contrast to the algo-
rithms of Aragones (1995) and Klijn (2000), our procedure does not need to
keep track of all envy relations, since it uses only maximum envy.5 A further
feature distinguishing our compensation procedure from Klijn’s algorithm
is that it requires only minimal financial resources to establish envy-freeness.
The necessary amount is automatically determined through the compensa-
tions.

In Sect. 5, we study alternative methods of dividing the surplus that gen-
erally remains after envy-freeness is established.6 The simplest way to obtain

3 Brams and Kilgour (2001) use a similar, but stricter constraint, basically for the same
purpose.
4 The same starting point is chosen by Steinhaus (1948), Aragones (1995), or Brams
and Kilgour (2001). A notable exception is Klijn (2000).
5 Of course all envy relations are assessed by players within the procedure in order to
determine maximal envy; but the non-maximal assessments are not retained for the
procedure.
6 There will generally be an infinite number of envy-free outcomes to choose from.
And, as Tadenuma and Thomson (1991) verify, there exists no proper sub-solution
satisfying the notion of consistency. A sub-solution is consistent in their sense if it
allocates the objects and money received by a subset of players in the same way as the
solution assigns total resources to all players.
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a unique outcome is to divide the surplus equally. However, this always leads
to an outcome on the boundary of the set of envy-free prices that favors a
particular player. We therefore propose an alternative method that implements
a unique outcome, generally in the interior of the envy-free set, thus treating
players more symmetrically.

In Sect. 6, we allow the initial assignment of exogenously given bundles
to be ine‰cient (i.e., non-utilitarian with respect to those bundles). We find
this aspect crucial, because an e‰cient assignment may be di‰cult to find
in practice if the fair-division problem involves many players and objects.
We show how our compensation procedure is easily adapted to non-
utilitarian initial assignments. We use the fact that envy-freeness requires an
e‰cient assignment of bundles (cf. Svensson 1983). If the assignment is in-
e‰cient, our envy-reducing procedure will create an envy cycle indicating a
cyclical trade of bundles that increases the sum of players’ utilities; this is
analogous to the permutation procedure of Klijn (2000). Strict application
of the compensation procedure thus produces cyclical trades of bundles lead-
ing to an e‰cient assignment, and then establishes envy-freeness as described
above.

Section 7 concludes with some practical considerations. The Appendix
contains numerical examples that illustrate the analysis.

2 Characterization of a utilitarian assignment

We consider a group of players I ¼ f1; . . . ; ng who wish to assign a set of
objects K ¼ f1; . . . ;mg among themselves in an envy-free fashion.

Assumption 1. Players value bundles of objects in a common divisible unit of

account, e.g., money.

Each player i A I can express her valuations of bundles Bi JK of objects
through (monetary) bids, which we characterize by functions bi : 2K ! R.
Note that Assumption 1 does not say anything specific about the relationship
between a player’s valuation of a bundle and her valuations of the individual
objects contained within. In specific cases, however, players may have addi-
tively separable preferences over the objects in K, such that the value of a
bundle simply equals the sum of values of the individual objects, i.e., biðBjÞ ¼P

k ABj

~bbiðkÞ ði; j A IÞ, where ~bbi : K ! R denotes a player’s bid for specific
objects. Moreover, as we will see below, when players have linear preferences
over sub-divisions of objects that are divisible, the outcome of our fair-division
procedure is the same whether or not K contains divisible objects.

We assume no specific relationship between the number of objects and the
number of players – this can be included through additional restrictions
(addl. restr.) on the objects. The group’s assignment determines the bundle

Bi JK of objects that each player i receives. Possible assignments are char-
acterized by
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B ¼
�
ðB1; . . . ;BnÞ jBi JK ;Bi XBj ¼ q;

6
i A I

Bi ¼ K ; ðþaddl: restr: on BiÞ
�
:

An assignment B A B thus groups the m objects of K into n separate bundles
Bi without dividing them; if there are fewer objects than players, B will nec-
essarily also include empty bundles.

The set of assignments B may be further restricted by specific requirements
for the individual bundles. In the simplest case, the additional restriction may
just be an exogenously given bundling of objects. For an endogenous bundl-
ing of objects, one could specify that all players receive the same number of
objects ðjBij ¼ m=nÞ, or that each player receives a minimum number of
objects (jBijbm , where mam=n). Or, in a di¤erent context, assume that
the objects are distinct territories in a geographical region. One may then
wish to have the territories in each bundle be connected in some specific form,
e.g., lying within a single sub-region. Generally, the set of assignments B can
include any restriction on the objects of K that is player-anonymous; in par-
ticular, there are no restrictions of the form ‘‘Player i must (or must not) receive
object k.’’ Indeed, with an exogenously imposed restriction of this type, no
procedure can guarantee envy-freeness. However, if the players themselves
wish to give a particular player special attention, they can express this directly
via their preferences over the objects.

We view the assignment of the m objects to the n players as a joint venture,
for which there is a total cost C (measured in the common unit of account)
that must also be divided among the players. Denoting by ci the contribution

that is to be paid by the player receiving bundle Bi, this implies
P

i A I ci ¼ C.

Assumption 2. Players have linear preferences over values measured in the com-

mon unit of account.

Under Assumptions 1 and 2, we can characterize players’ preferences
through quasi-linear utility functions ui : 2K 	 R ! R, with

uiðBj ; cjÞ ¼ biðBjÞ 
 cj; i; j A I :

In order to implement an e‰cient outcome, our fair-division procedure is
based on an assignment that maximizes the (unweighted) sum of players’ util-
ities. We characterize such a utilitarian assignment B A B by

B A arg max
B AB

X
i A I

uiðBi; ciÞ

¼ arg max
B AB

X
i A I

biðBiÞ 
 C

¼ arg max
B AB

X
i A I

biðBiÞ:

The utilitarian assignment B yields the maximum sum of players’ bids,
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which we denote by M. Let Bi denote the bundle assigned to player i; thenP
i A I biðBiÞ ¼ M.
Regardless of the total cost C of the joint venture, the utilitarian assign-

ment B endogenously bundles the objects of K, while acknowledging the ad-
ditional restrictions, and assigns these bundles to the individual players.7 If
there are no additional restrictions on the bundles, the utilitarian assignment
is easy to implement when preferences are additively separable: simply assign
each object to the player who values it most (if there are several, choose one
player arbitrarily). However, in general assignments will be complicated by the
additional restrictions specifying how bundles are to be created. When bundles
are given exogenously, we call an assignment e‰cient if no re-assignment of
the bundles yields a larger sum of bids. The utilitarian assignment thus allo-
cates given bundles e‰ciently among players.

We characterize a utilitarian allocation as envy-free if no player values the
bundle of any other player (net of its cost) higher than her own bundle (net
of its cost):

uiðBi; ciÞb uiðBj; cjÞ; i; j A I :

We wish to determine an envy-free pricing of utilitarian bundles, with prices
that sum to the total cost C of the joint venture, such that no player pays more
than she thinks her bundle is worth. The procedure described in the next sec-
tion will accomplish this, if we impose the following additional requirement.

Assumption 3. The sum of each player’s bids for all the bundles of a utilitarian

assignment is at least equal to the total cost, i.e.,
Pn

j¼1 biðBjÞbC, Ei A I .

Assumption 3 can be seen as an individual qualification constraint for each
group member. If the objects to be distributed are assigned across several
players, then player i is qualified if, by teaming with other players of identical
preferences, this group of players would be able to a¤ord the joint venture. As
the procedure will show, the qualification constraint is not required to produce
envy-freeness, but it guarantees that no player will pay more than her bid.

3 The compensation procedure

Our procedure with ex-ante payments begins by having each player contribute
the amount that they bid for their assigned bundle, yielding M dollars from
which the cost is paid. The remaining surplus M 
 C will be returned to the
players in the form of discounts in a way which will guarantee envy-freeness.
In each round of the compensation procedure, discounts are determined on
the basis of players’ assessments, and then assessments are revised taking dis-
count changes into account.

7 Note that, when players have linear preferences over divisible objects, the utilitarian
assignment would only divide an object if the value added by its inclusion in a player’s
bundle is the same for two or more players. In this case we may just as well assume that
the object is fully assigned to just one player.
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Let aij denote Player i ’s assessment of the value of Player j’s bundle minus
its cost:

aij ¼ biðBjÞ 
 cj ¼ biðBjÞ 
 bjðBjÞ þ dj; i; j A I ; ð1Þ

where dj is the discount that Player j has received during the procedure (at the
start dj ¼ 0). We call A ¼ ðaijÞ the assessment matrix. Note that if aii < aij
then Player i will experience envy for Player j. Without additional restrictions
on bundles, the utilitarian assignment simply assigns each object to the player
who values it most. The assessment matrix will thus be envy-free from the
start, since aii b aij . With additional restrictions, however, this will generally
not be the case, and envious players will need to be compensated. The com-
plete compensation procedure is described as follows.

The compensation procedure for a utilitarian assignment

1. Assign bundles to players using the utilitarian assignment. Each player ini-
tially contributes her bid on her assigned bundle, yielding a pool of size M

from which the cost C is paid.
2. Calculate the assessment matrix. Note that there will always be at least

one player who experiences no envy (see Theorem 1). If all players are non-
envious, skip to Step 5.

3. Now perform a round of compensations: use the assessment matrix to iden-
tify all players whose maximum envy is directed towards a non-envious
player, and compensate these individuals from the surplus by their maxi-
mum envy di¤erence.8 Then recalculate the assessment matrix (but only
after all the compensations have been made in this round).

4. Perform additional compensation rounds until all envy is eliminated. (Theo-
rem 2 shows that at most ðn
 1Þ compensation rounds will be needed.)

5. The sum of the compensations made in Steps 3 and 4 is minimal (see The-
orem 3), and it will never exceed the surplus M 
 C (see Theorem 4).
Therefore distribute any remaining surplus in a way that maintains envy-
freeness; e.g., one could simply divide it equally among all players. (Sect. 5
discusses an alternative method for post-envy allocation of the remaining
surplus.)

To illustrate we give an example. Suppose there are four players (denoted
Pi) who submit bids for a joint venture that has a total cost of C ¼ 100. The
utilitarian assignment determines four bundles (denoted Bi) for which players
have the valuations given in Table 1.

The bids in the utilitarian assignment (the framed entries along the diago-
nal of Table 1) are collected as initial payments. Since they sum to 145, after
paying the cost of 100, there is a surplus of 45 left to return to the players in
the form of discounts. The assessment matrix can be computed by subtracting

8 Alternatively, one could compensate all envious players. However, this would require
more compensations in each round, but not fewer rounds.
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the diagonal entry from each column. In Table 2, row i then shows Player
i ’s assessment of Player j’s bundle. We keep track of discounts in a separate
row.

The assessment matrix in Table 2 shows (by comparing entries in each
row) that Player 2 envies Player 1 (a22 < a21) and Player 3 envies Player 4
(a33 < a34). Therefore we must compensate Player 2 by giving her a discount
of 10, and Player 3 a discount of 5. To recalculate the assessment matrix, we
may add 10 to column 2 and add 5 to column 3. The new assessment matrix
is given in Table 3.

Now both Player 3 and Player 4 envy Player 2, and Player 2 feels tied with
Player 1 (who remains non-envious). We must compensate Player 3 and Player
4 by giving them both additional discounts of 5. Adding 5 to both columns 3
and 4, we obtain Table 4.

Table 1. Players’ bids for bundles

B1 B2 B3 B4

P1 50 20 10 20

P2 60 40 15 10

P3 0 40 25 35

P4 50 35 10 30

Initial payment 50 40 25 30

Table 2. The initial assessment matrix

P1 P2 P3 P4

P1 0 
20 
15 
10
P2 10 0 
10 
20
P3 
50 0 0 5
P4 0 
5 
15 0

Discounts 0 0 0 0

Table 3. The modified assessment matrix

P1 P2 P3 P4

P1 0 
10 
10 
10
P2 10 10 
5 
20
P3 
50 10 5 5
P4 0 5 
10 0

Discounts 0 10 5 0
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Now all envy has been eliminated, since each diagonal element is the largest
entry in its row. The discounts used 25 units of the surplus, and the remain-
ing surplus of 20 can be equally divided among the four players, yielding
total discounts given by d ¼ ð5; 15; 15; 10Þ. This gives final envy-free costs of
c ¼ ð45; 25; 10; 20Þ.

It is important to note that, in formulating the compensation procedure,
we do not make any assumptions concerning the signs of players’ bids bi or
their contributions ci. Therefore, our procedure can also be applied to sit-
uations where the objects are burdens for which the group as a whole receives
a compensation (C < 0). Players’ negative bids are then requested payments
that express their disutility of accepting these burdens, and Assumption 3 states
that a player is qualified if her demands for bearing all burdens do not exceed
the total compensation, i.e., 
biðKÞa
C. We provide an example for the
division of burdens in the Appendix.

More generally, our procedure can be applied to fair-division problems that
involve both goods and burdens. For example, a group of individuals that
decides to share a house cannot only derive a fair allocation of rooms and
rents, but they can also include all the (group’s) chores that come with the
house (e.g., lawn mowing, cleaning, cooking, etc.). Of course, if there is no
extra compensation, the qualification constraint (Assumption 3) becomes more
binding as chores are added. But this is only plausible – in order to qualify, a
housemate must not only be willing to pay the necessary rent, she must also
be willing to perform the necessary chores.

4 Properties of the compensation procedure

We now show that our procedure works as indicated. One property of the as-
sessment matrix A is crucial in all that follows. We define a permutation sum

of an n	 n matrix A to be any sum of the form
P

i aipðiÞ, where p : I ! I is a
permutation of n elements. Thus a permutation sum picks one element of each
column and row and forms their sum.

Lemma 1. At any step of the procedure, the largest permutation sum of A occurs

along the diagonal.

Table 4. The envy-free assessment matrix

P1 P2 P3 P4

P1 0 
10 
5 
5
P2 10 10 0 
15
P3 
50 10 10 10
P4 0 5 
5 5

Discounts 0 10 10 5
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Proof. We check:X
i

aipðiÞ ¼
X
i

ðbiðBpðiÞÞ 
 bpðiÞðBpðiÞÞ þ dpðiÞÞ

¼
X
i

biðBpðiÞÞ 
M þ
X
i

di a
X
i

di;

which follows from the definition of M, the maximum sum of bids. The in-
equality is clearly an equality when p is the diagonal assignment. r

We keep track of ‘‘chains’’ of envy with the following notation. We write
i ! j if j is the player that i envies the most (if there are several, pick one ar-
bitrarily). In this case aii < aij and aij is the largest entry in row i. The single
arrows thus only indicate maximum envy relations. We use a double arrow
i ) j if i envies no one but feels tied with j and this tie was the result of an
earlier compensation. Thus aii ¼ aij, and these are the largest entries in row i.
Note that double arrows only keep track of created ties, and are not used for
ties occurring ‘‘by coincidence’’ (e.g., where aii ¼ aij but this was not the result
of a previous compensation). In the sequel when we refer to ‘‘arrow’’ we shall
mean either a single or double arrow unless explicitly specified.

We form a directed graph G in which the vertices represent players and the
edges are given by the arrow relations between players.9 (We shall speak of
‘‘players’’ and ‘‘vertices’’ interchangeably in all that follows.) Throughout the
procedure, the directed graph G will change. Keeping track of how G evolves
is the key to showing that the procedure terminates.

Lemma 2. At any step in the procedure, the directed graph G contains no cycles.

Proof. If there were a cycle of single arrows, say i1 ! i2 ! � � � ! ik ! i1, then

ai1i1 < ai1i2

ai2i2 < ai2i3

..

.

aikik < aiki1 ;

ð2Þ

and by adding these relations one would find that

ai1i1 þ ai2i2 þ � � � þ aikik < ai1i2 þ ai2i3 þ � � � þ aiki1 ; ð3Þ
which augmented by the other diagonal terms would contradict Lemma 1.

A nearly identical argument can be used for cycles in which some (but
not all) of the arrows are double; some of the envy inequalities in (2) would
become equalities, but the inequality (3) would remain strict as long as there
were a single arrow in the cycle.

The only other possibility is a cycle consisting entirely of double arrows.
But this cannot arise, because double arrows only originate from single arrows

9 It is important to note that our directed graph G is simpler than the graphs con-
structed by Aragones (1995) and Klijn (2000), since our procedure only keeps track of
maximum envy.
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(as compensations are made to envious players). Thus if there were a cycle of
double arrows, by stepping backwards through the procedure one would find
a prior round in which that cycle contained a single arrow – a possibility that
was ruled out above. r

The outdegree of a vertex represents the number of arrows that originate
at a vertex. Because of the way we defined arrows, every vertex in G has an
outdegree of at most 1. Hence there is a uniquely defined path that ‘‘flows’’
from any given vertex. Since G cannot have any cycles at any step in the
procedure, we deduce that G must always be a disjoint set of directed trees,
each of which has a unique root, a vertex of outdegree 0 to which all other
vertices flow. Roots of trees correspond to non-envious players who have not
yet experienced envy.

Theorem 1. At the start there is at least one player who will remain non-envious

throughout the entire procedure.

Proof. A vertex with no arrow is a root, and a vertex with a single or double
arrow corresponds to a player who experiences or has experienced envy. It
follows that the outdegree of a vertex can never decrease – once a root earns
an arrow it can never become a root again.

If by the end of the procedure there were no roots, then any path following
the arrows in G would eventually cycle, contradicting Lemma 2. Thus there is
a root which must have been a root throughout the entire procedure, corre-
sponding to a person who remains non-envious. r

Because every vertex in a tree has a unique path to its root, we may classify
vertices in G by ‘‘levels’’ – a level 0 vertex is a root, and a level k vertex is one
that is k arrows away from the root of its tree. A vertex i is said to be an an-

cestor of vertex j in the tree if there is a chain of arrows flowing from j to i.
Thus the root of a tree is an ancestor of every other vertex in the tree. The
ancestral path of vertex i is the set of all vertices on the path from i to its root
– including the root, but not including i. (Note that the ancestral path does
not depend on the type of arrows along the path.) Vertices may change levels
as G evolves throughout the procedure.

Lemma 3. During a compensation round, if a player P changes her ancestral

path, the new path must contain a newly compensated player Q between P and

the root. Thus in the new graph, P will have a higher level number than Q.

Proof. During a compensation round, the only new envy that can be intro-
duced is directed at players receiving compensations during that round. Thus
if player P or any of her ancestors changes her maximum envy (hence the direc-
tion of her arrow) to a newly compensated player Q, then after the compen-
sation round, the path flowing from P must pass through Q. From the defini-
tion of level this means that P will have a higher level number than Q. r

Lemma 4. After k compensation rounds, there are no envious players on levels

0 through k.
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Proof. We prove this by induction on k. For k ¼ 0 (before any compensa-
tions) the statement trivially holds, since there are by definition no envious
roots.

Now assume that the lemma holds for k. We show that it also holds for
k þ 1. By the inductive hypothesis, after k compensation rounds all envious
players must be on levels ðk þ 1Þ or higher. A subset of these will be com-
pensated during the ðk þ 1Þ-st round; in particular this must include all the
envious players on level ðk þ 1Þ, since their maximum envy is for non-envious
players on level k.

So consider a player P anywhere in G. If P’s ancestral path did not change
as a result of the ðk þ 1Þ-st compensation round, then she remains on the same
level. Moreover, if she is on level ðk þ 1Þ, then she must also now not be en-
vious (because she was either compensated or was not envious to begin with).

If P’s ancestral path did change as a result of the ðk þ 1Þ-st compensation
round, then we show her new level number must be ðk þ 2Þ or greater. Con-
sider the new path that flows from P; by Lemma 3, it contains some newly
compensated player. Thus it makes sense to speak of the newly compensated
player on P’s path who is closest to the root; call this player Q. Q’s ancestral
path cannot have been changed by the last compensation round (otherwise
Lemma 3 would have produced some other newly compensated player closer
to the root than Q). So Q’s level was unchanged, and being a newly compen-
sated player, Q must have had level number ðk þ 1Þ or greater. Since P has a
higher level number than Q, P must have a level number of ðk þ 2Þ or greater
in the new graph.

Thus if any player changed levels as a result of the ðk þ 1Þ-st compensation
round, they must now be at level number ðk þ 2Þ or greater. The players who
remain on levels 0 through k were non-envious before the round and must still
be non-envious, while the ones remaining on level ðk þ 1Þ have been compen-
sated and are also non-envious. r

Theorem 2. The procedure requires no more than n
 1 compensation rounds to

eliminate envy.

Proof. Because G has only n vertices, and every tree in G must have a root, no
vertex can be on level n or greater. Hence, by Lemma 4, all players will be
non-envious after at most ðn
 1Þ compensation rounds. r

It is not yet clear what e¤ect the initial assignment has on the resulting
envy-free discounts. Moreover, when the utilitarian assignment for n given
bundles is not unique, players have multiple choices for the starting point
of the compensation procedure. Remarkably, the outcome is not a¤ected by
the choice of assignment. We first prove two lemmas needed to establish this
result.

Lemma 5. If there are two utilitarian assignments involving the same bundles,

then a vector of discounts which yields envy-free assessments under one assign-

ment will also be envy-free under the other assignment.
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Proof. We have

aij :¼ biðBjÞ 
 bjðBjÞ þ dj; i; j A I :

Let p : I ! I be the permutation that transforms the original utilitarian
assignment into the other one; i.e., in the second assignment Player i receives
the bundle that Player pðiÞ would receive in the original assignment. Envy-
freeness of the discounts di in particular yields aii b aipðiÞ.

Taking the sum over di¤erences yieldsX
i

ðaii 
 aipðiÞÞ ¼
X
i

ðdi 
 dpðiÞÞ þ
X
i

ðbpðiÞðBpðiÞÞ 
 biðBpðiÞÞÞ

¼ 0 þM 
M ¼ 0:

Since each addend on the left-hand side is non-negative, and their sum is zero,

aii ¼ aipðiÞ; Ei A I : r

Said another way, Lemma 5 shows that the compact convex set of all pos-
sible envy-free discount vectors is independent of the utilitarian assignment.10
Note, however, that Lemma 5 says nothing specific about the discount vector
induced by the compensation procedure.

Lemma 6. The compensation procedure yields a unique minimal vector of non-

negative discounts that make a given utilitarian assignment envy-free.

Proof. Given a utilitarian assignment, the compensation procedure yields a
vector of player discounts ðdiÞ which makes every player envy-free. If there
were some other vector of (non-negative) envy-free player discounts ðmiÞ which
was smaller for some player, then we obtain a contradiction.

Suppose mk0
< dk0

, for player k0. Thus dk0
is strictly positive (because

mk0
b 0), i.e., player k0 was compensated sometime during the compensa-

tion procedure. This implies that in the final envy graph at the conclusion of
the compensation procedure, Player k0 is not at the root of her tree. Let
k0; k1; k2; . . . ; kl ¼ r be the path from k0 to the root r of her tree. Since each
of the arrows in the final envy-graph are double arrows, akiki ¼ akikiþ1

for all
0 a ia l 
 1. Using (1) to express this in terms of the bids and discounts, we
have

dki ¼ bkiðBkiþ1
Þ 
 bkiþ1

ðBkiþ1
Þ þ dkiþ1

;

for all 0 a ia l 
 1. But the ðmiÞ, being an envy-free vector of discounts, must
satisfy

mki b bkiðBkiþ1
Þ 
 bkiþ1

ðBkiþ1
Þ þmkiþ1

;

since the left side is what Player ki would receive under these discounts and the
right side is what Player ki believes Player kiþ1 would receive. Subtracting
these two equations we obtain

10 Lemma 5 corresponds to Aragones’ (1995) Lemma 4.
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dki 
 dkiþ1
amki 
mkiþ1

:

By summing this over all 0 a ia l 
 1, we have

dk0

 dkl amk0


mkl :

But dkl ¼ 0 because kl was the root, i.e., a player not compensated throughout
the entire procedure. And since the discount mkl is non-negative, we have

dk0
¼ dk0


 dkl amk0

mkl amk0

:

This contradicts the fact that mk0
< dk0

. r

Together Lemmas 5 and 6 allow us to establish the following practical re-
sult.

Theorem 3. For given bundles, the outcome of the compensation procedure yields
a unique minimal vector of player discounts which does not depend on the utili-

tarian assignment chosen.

Proof. Suppose there were two utilitarian assignments – the non-prime and
the prime assignment. The compensation procedure applied to each assign-
ment yields corresponding vectors of player discounts ðdiÞ and ðd 0

i Þ.
Note that the discounts ðd 0

i Þ are also envy-free discounts for the non-prime
assignment (Lemma 5), and because the ðdiÞ are minimal for the non-prime
assignment (Lemma 6), we must have di a d 0

i for all i. Similarly, the ðdiÞ are
also envy-free discounts for the prime assignment, and minimality of the ðd 0

i Þ
for the prime assignment implies that d 0

i a di for all i. Therefore di ¼ d 0
i for

all i. r

The sum of discounts thus yields the minimal amount of money required
for envy-freeness. With n bundles to allocate among the individual players,
multiple utilitarian assignments do not cause a coordination problem, because
they all lead to the same discounts. Hence there is no problem of choosing an
appropriate starting point for the compensation procedure as long as the as-
signment maximizes the sum of players’ bids.

We have shown that this procedure will terminate with envy-free costs
without having used the individual qualification condition (Assumption 3).
The only need for this condition is to ensure that the surplus is never exceeded
at the end of the compensation rounds. (If the surplus were exceeded at the
end, one could still obtain envy-free prices by charging all players equally for
the overdraft, but then some players might end up paying more than what
they bid on their bundle.)

Theorem 4. If each person meets the qualification condition (Assumption 3),

then by the end of the procedure, the compensations will not have exceeded the

surplus.

Proof. Since the prices obtained at the end of the procedure are envy-free,
aii b aij for all i; j. Using (1) this implies

dj 
 di a bjðBjÞ 
 biðBjÞ; ð4Þ
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for all i; j. Summing the above equation over all j, one obtains that for all i,X
j

ðdj 
 diÞaM 

X
j

biðBjÞ: ð5Þ

Choose any player i who was not compensated throughout the entire proce-
dure (there must be at least one, by Theorem 1). Since di ¼ 0, and since the
sum of the bids of any player is C or greater, we must have thatX

j

dj aM 
 C;

which shows that the sum of the compensations does not exceed the sur-
plus. r

5 Dividing the remaining surplus

According to Theorem 4, after the compensation procedure has established
envy-freeness, the remaining surplus S is given by

S ¼ M 
 C 

X
j A I

dj b 0:

With S > 0, there is surplus left to distribute among the players. The distri-
bution schemes that are of interest here are those that maintain envy-freeness.
There is a convex and compact set of envy-free discounts to choose from.11
We consider two alternative methods for implementing a unique solution.

Equal distribution of the surplus or ‘‘ex-post equal payments’’

With an envy-free assessment matrix at the end of the compensation proce-
dure, no envy will be created if all entries in the matrix are increased by the
same amount. This is easily achieved through an equal distribution of the
remaining surplus among all players. Denoting players’ final discounts under
this equal distribution scheme by d e

i , this gives

d e
i ¼ di þ

1

n
S: ð6Þ

The equal distribution of the remaining surplus was demonstrated in our exam-
ple in Sect. 3. Despite the simplicity of this distribution scheme, some parties
may dislike the procedural asymmetry because they pay di¤erent amounts for
their bundles but receive identical shares of the remaining surplus.

Therefore, consider the following modification of the compensation pro-
cedure: parties are assigned bundles, but they do not pay in advance. Instead,
a (hypothetical) mediator finances the compensation procedure and charges
the group afterwards for total compensations and the cost C. The mediator

11 The set of envy-free prices is given by a convex polyhedron characterized by n2

inequalities that can be derived from the envy-free assessment matrix.
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lets each party pay an equal share of the total costs. We call this the com-
pensation procedure with ex-post equal payments.

With this modification, Player i ’s assessment of Player j’s bundle becomes
aij ¼ biðBjÞ þ ~ddj, where ~ddj denotes the compensation under the modified pro-
cedure. Thus, in this case the initial assessment matrix is the bid matrix, so it
follows that Theorems 1–3 also hold for the method of ex-post equal pay-
ments. And, similar to the proof of Theorem 4, it can be shown using the quali-
fication condition that 1

n
ð
P

j
~ddj þ CÞa biðBiÞ þ ~ddi, Ei A I . Hence no player pays

more than what she thinks her share is worth.
Generally, the directed graphs for ex-ante and ex-post payments will fea-

ture di¤erent envy relations. Nevertheless, the seemingly di¤erent procedures
exhibit an interesting equivalence: if the final directed graphs turn out to be
the same and exactly one and the same player remains non-envious in both
procedures, then the ex-post equal payments procedure and the ex-ante pay-
ments procedure with an equal distribution of the remaining surplus will yield
the same outcome.12

Theorem 5. Consider the two procedures: (1) ex-post equal payments and (2)

ex-ante payments with equal distribution of the remaining surplus. Suppose that

the final envy graphs of both procedures coincide and have exactly one root.

Then the outcome of both procedures will be the same.

Proof. With ex-post payments, each player i A I begins with an initial value
biðBiÞ. Player i envies Player j if Player i thinks that Player j receives more

than Player i. In the (final) directed graph, which we denote by ~GG, i ) j then
implies

~ddi ¼ biðBjÞ 
 biðBiÞ þ ~ddj; ð7Þ

where ~ddi denotes the compensation under the modified procedure.
In contrast, the compensation procedure with ex-ante payments begins by

having each player i A I pay biðBiÞ for her assigned bundle. Player i envies
Player j if Player j pays less for her bundle than what Player i thinks it is
worth. In the (final) directed graph G, i ) j implies

di ¼ biðBjÞ 
 bjðBjÞ þ dj: ð8Þ

Coincidence of the final graphs enables us to subtract (8) from (7) and to ob-
tain:

biðBiÞ þ ~ddi 
 di ¼ bjðBjÞ þ ~ddj 
 dj:

Assume that Player r is a root of the directed graphs G and ~GG. Since Player
r does not receive a compensation under either procedure, dr ¼ ~ddr ¼ 0, hence

biðBiÞ þ ~ddi 
 di ¼ brðBrÞ ð9Þ

12 This is the case for our example given in Table 1. The ex-post payments procedure
yields final discounts ~dd ¼ ð0; 20; 35; 25Þ. With C ¼ 100, there is a total of 180 units to
be shared equally by all four players. The final cost for each player is thus the same as
under the ex-ante method.
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for every player i in the directed graph leading (with double arrows) to Player
r. Summing up both sides in (9) we obtain in particular

1

n

X
j

½bjðBjÞ þ ~ddj 
 dj � ¼ brðBrÞ: ð10Þ

Note that the final value that Player i receives under the compensation
procedure with ex-ante payments and an equal distribution of the remaining sur-
plus is

biðBiÞ 
 biðBiÞ þ di þ
1

n

X
j

bjðBjÞ 
 C 

X
j

dj

" #

¼ biðBiÞ 
 ½biðBiÞ 
 di� þ
1

n

X
j

½bjðBjÞ 
 dj� 

1

n
C:

This is the value of Player i ’s bundle, minus its (discounted) cost, plus an equal
share of the total payments, minus an equal share of the total costs.

Consider now the final value that Player i receives under the compensation
procedure with ex-post payments and an equal distribution of total compensa-

tions and total costs C:

biðBiÞ þ ~ddi 

1

n

X
j

~ddj 

1

n
C:

The final value is the value of the bundle, plus additional compensation, minus
an equal share of all costs.

By comparing their final values, one can see that both procedures lead to
the same outcome if and only if

biðBiÞ þ ~ddi 
 di ¼
1

n

X
j

½bjðBjÞ þ ~ddj 
 dj�:

Equations (9) and (10) show that this condition is satisfied if the final envy-
graphs of both procedures are the same and possess a single root. r

But even when there is a di¤erence in the outcomes (due to di¤erent envy
relations), the compensation procedure with ex-post equal payments estab-
lishes envy-freeness with minimal resources and thus minimal side-payments
between players. Afterwards each player is charged an equal amount, just
enough to cover the cost of envy-freeness plus the cost of the joint venture, so
that there is no remaining surplus to be distributed. Hence, if the sole objec-
tive is to implement a unique envy-free outcome, the method with ex-post
payments has a practical advantage. We demonstrate the application of this
procedure in Sect. 6.

The average discount method or ‘‘The average biased mediator’’

An equal distribution of the remaining surplus may not be the most plau-
sible approach if the set of envy-free discounts is asymmetric in the sense that
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players’ maximum possible discounts under envy-freeness di¤er. The asym-
metry becomes apparent if the remaining surplus is used to maximize the dis-
count of a specific player i, while raising the discounts of the other players just
enough to maintain envy-freeness. If this is done with each of the n players,
one obtains n extreme discount distributions, each favoring a specific player.
The average discount method takes the average of these n extreme surplus
distributions, yielding a unique outcome, generally in the interior of the envy-
free set.13

Focusing on a specific player i A I , we denote by diji Player i ’s own maxi-
mum discount and the minimum corresponding discounts of all other players
j A I by djji. At the start, all players’ discounts are as given by the compensa-
tion procedure, i.e., djji :¼ dj, j A I .14 The extreme discounts djji are then
updated according to the following four-step algorithm.

The average discount method

(i) Begin by placing Player i in the set D of players whose discounts are to
be increased. Formally: D :¼ fig.

(ii) Add to the set D all the players who are not in D but feel tied with some
player in D. Note that these are the players who would become envious if
the discounts of the players in D were increased. Continue looking for
additional players to be included in D until only those players are left
(outside of D) who value the discounted bundle of every player in D

less than their own. Formally: Dþ :¼ DW fh A InD j ahj ¼ ahh; j A Dg. If
Dþ 0D, then D :¼ Dþ, and repeat Step (ii).

(iii) If the set D contains all the players of I, then distribute the remaining
surplus equally among the players. Otherwise, determine how far the dis-
counts of the players in D can be raised without creating envy for any
player who is not in D. The discounts of the players in D can then be
increased up to this maximum amount as long as there is enough sur-
plus left. Update the discounts of the players in D, recalculate the corre-
sponding columns of the assessment matrix, and recalculate the remain-
ing surplus. Formally: if D ¼ I , then increase the discounts of all players

by dþ :¼ S

jDj; else determine dþ :¼ min minh A InDfahh 
 ahj ; j A Dg; S

jDj

� �
.

Update: djji :¼ djji þ dþ; aij :¼ aij þ dþ, Ej A D; S :¼ M 
 C 

P

j A I djji.

(iv) If there is no surplus left (which happens if dþ ¼ S=jDj), quit. Otherwise,
if some surplus remains, we need to update D by returning to Step (ii).
(The updated discounts from the last step will have created players, not
in D, who feel tied with players belonging to D.) Formally: if S ¼ 0, quit.
If S > 0, return to Step (ii).

13 More generally, one could also maximize the discounts of every subset of players,
thus tracing out all the corners of the polyhedron of envy-free prices, and then take the
midpoint of all outcomes.
14 We use ‘‘:¼’’ as an assignment operator to update variables in the following way:
the value of the term on the right-hand side is assigned to the variable on the left-hand
side.
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After the algorithm has been applied for each player i A I , determine the
average extreme discount of Player i:

d a
i ¼ 1

n

X
j A I

dij j: ð11Þ

We demonstrate the calculation of average discounts by using our example
of Sect. 3. The final outcome of the compensation procedure with ex-ante
payments is shown in Table 4, with a remaining surplus of S ¼ 20 to be dis-
tributed among the four players. Beginning with Player 1, the final discounts
are ð5; 15; 15; 10Þ; beginning with Player 2, the final discounts are ð1:25; 16:25;
16:25; 11:25Þ; beginning with Player 3, the final discounts are ð3:75; 13:75;
18:75; 8:75Þ; and beginning with Player 4, the final discounts are ð2:5; 12:5;
17:5; 12:5Þ. A detailed derivation of these discounts is given in the Appendix.
Taking all four extreme discount distributions into account, the average dis-
counts, given by Eq. (11), are d a ¼ ð3:125; 14:375; 16:875; 10:625Þ, yielding
final costs of c ¼ ð46:875; 25:625; 8:125; 19:375Þ.

In all four cases of individual discount maximization, as soon as Player 1 is
added to D, all other players are included as well, and the remaining surplus is
divided equally among the whole group. This is because Player 1 is the root of
a unique tree of double arrows at the end of the compensation procedure. So
if her discount is increased, all other players must benefit equally in order to
avoid new envy.

More generally, when there are several roots, as soon as the last uncom-
pensated player i with di ¼ 0 joins D, the whole group must belong to D,
i.e., D ¼ I . At this point, however, the aggregate discounts cannot yet have
exceeded the surplus if all players met the qualification constraint (Assump-
tion 3) – this follows from the proof of Theorem 4.

The maximization of a specific player i ’s discount according to the method
above could also be interpreted as the outcome of a modified compensa-
tion procedure implemented by a biased mediator who favors Player i. This
only requires modifying Step 3 of the compensation procedure: whenever the
favored player is compensated for her maximum envy and then, if noone
envies her, increase her discount as much as possible without raising the envy
of any other player.15 Compensate each other player the same as before.
Distribute the remaining surplus according to the average discount method,
favoring the same player. This biased procedure can be applied for each player.
The average over all biased compensations thus yields the outcome of the av-

erage biased mediator.
Recall that under an equal distribution of the remaining surplus, given by

Eq. (6), each player received an increment of 5 to her discount. In the pre-

15 In the directed graphs used in the proofs of Lemmas 2–4, a double arrow i ) j
then means that i envies no one, but feels a (weak) advantage over j, and this lead was
the result of an earlier compensation. Thus aii b aij , and these are the largest entries in
row i. As before, double arrows only keep track of created leads. Note that the biased
compensations during the compensation procedure do not change the envy graph.
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ceding analysis of extreme envy-free prices, we found that 5 is the maximum
discount that Player 1 (the root player) can receive. In contrast, for Player 3,
an increase of 5 is the minimum increment that preserves envy-freeness. The
equal distribution of the remaining surplus thus implements the most favor-
able outcome for the initially non-envious (and therefore uncompensated)
player on the boundary of the set of envy-free prices. This may be di‰cult to
justify in practice.

By contrast, the average discount method acknowledges an additional no-
tion of fairness: Player 1, who did not experience envy throughout the entire
compensation procedure and who is always at the verge of being envied by
Player 2, receives only a small share of the remaining surplus. Player 3, on the
other hand, who quickly becomes envious when other players are compen-
sated, but who is relatively far from being envied by anyone else, receives
a larger share. From a practical viewpoint, the average discounts enhance
the stability of the outcome: by choosing discounts in the interior of the set
of envy-free prices, each player strictly prefers her own bundle to any other
(unless, of course, some players have identical preferences).

6 Cycling to e‰ciency

In problems of fair division that involve only a few parties and a few objects, a
utilitarian assignment will usually be easy to identify in practice. When many
players are involved, the complexity of this initial step quickly rises. Clearly, if
players must rely on computational assistance to perform the necessary cal-
culations before compensations can be made, this will diminish the attractive-
ness of a procedure that is supposed to work without computer support.

In our previous analysis, we used a utilitarian assignment as the starting
point for our procedure, thus ensuring that the envy-free allocation is also ef-
ficient. However, e‰ciency is not just a further desirable property of the out-
come. Indeed, envy-freeness can only be achieved if the assignment of n given
bundles is e‰cient.

Lemma 7. Let d be a vector of envy-free discounts for a given assignment B A B.
Then B must be an e‰cient assignment of the n associated bundles.

Proof. Consider some assignment B A B and an assignment Bp A B, which is
obtained through a permutation p of the n bundles of B. Let d be the vector
of envy-free discounts associated with the assignment B. Envy-freeness then
implies aii b aipðiÞ, or, using definition (1),

di b biðBpðiÞÞ 
 bpðiÞðBpðiÞÞ þ dpðiÞ: ð12Þ

Since
P

i di ¼
P

i dpðiÞ and
P

i bpðiÞðBpðiÞÞ ¼
P

i biðBiÞ, we can sum over both
sides of (12) to obtainX

i

biðBiÞb
X
i

biðBpðiÞÞ;
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for any permutation p. Hence B is an e‰cient assignment of the n bun-
dles. r

So, what if the initial assignment B A B is not e‰cient? With exogenously
given bundles, the utilitarian assignment B can be obtained from B through
a permutation of bundles. This is equivalent to the setting studied by Klijn
(2000) who assumes that the number of objects equals the number of players,
with the additional restriction that each player must receive one object. If this
is the case, Lemma 7 implies that envy-freeness can only be established for a
utilitarian assignment.16

Consider an arbitrary assignment B A B. If B results in an e‰cient alloca-
tion of bundles, the compensation procedure will lead to envy-free discounts.
If the assignment is not e‰cient, then Lemma 7 implies that the compensation
procedure cannot establish envy-freeness, so it must lead to an envy cycle, i.e.,
during the compensation procedure the envy graph exhibits a cycle with at
least one single arrow.

Theorem 6. Let B A B be an ine‰cient assignment of n given bundles. Applying

the compensation procedure will then create an envy cycle (in the directed graph

G) after at most n
 1 compensation rounds. Cycling bundles in the opposite

direction of the arrows (re-assigning to each player in the cycle the bundle of the

player she envies or previously envied) will increase the sum of players’ utilities.

Proof. We begin by proving the first claim. If the directed graph G of the inef-
ficient assignment B contains cycles in single arrows (i.e., before compensa-
tions are made), the claim trivially holds. Assume therefore that G contains
no envy cycles in single arrows. In that case there is at least one player who is
non-envious.

The compensation procedure eliminates envy by compensating envious
players. Throughout the procedure the directed graph G evolves, with single
arrows being converted into double arrows and new single arrows emerging
through the creation of new envy. In Lemmas 3 and 4 the notion of a level

only applies to a non-cyclical graph, but otherwise both lemmas are valid re-
gardless of whether or not the assignment is e‰cient. Assume by way of con-
tradiction that an envy cycle is never created. Then the procedure must ter-
minate in at most n
 1 rounds in an envy-free solution. This contradicts
Lemma 7. Thus after at most n
 1 rounds the procedure must create a cycle
(consisting of at least one single arrow and the rest double arrows) in the
directed graph G.

In order to establish the second claim, consider the situation where a cycle
is created, in which a non-envious player k0 becomes envious of a newly com-
pensated player kl . (Note that k0 does not have to be a root in G.) The cycle in
G has the following structure:

kl ) � � � ) k1 ) k0 ! kl ; 1 a l a n
 1;

16 This is equivalent to a result established by Svensson (1983).
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where the cycle may contain more than one single arrow. Due to the com-
pensations of (not necessarily all) ancestors of kl in the graph G,

dkl ¼ bkl ðBkl Þ 
 bkl
1
ðBkl
1

Þ þ dkl
1

a
Xl

h¼1

½bkhðBkh
1
Þ 
 bkh
1

ðBkh
1
Þ� þ dk0

:

However, since k0 is now envious of kl ,

dk0
< bk0

ðBkl Þ 
 bkl ðBkl Þ þ dkl ;

and therefore,

Xl

h¼0

bkhðBkhÞ < bk0
ðBkl Þ þ

Xl

h¼1

bkhðBkh
1
Þ;

which shows that a reassignment of bundles in the opposite direction of the
arrows strictly increases the sum of players’ utilities. r

Applying the compensation procedure to any assignment B A B, for which
the directed graph G contains no envy cycles, will either lead to envy-freeness
or to a cycle in G that allows a utility-increasing reassignment of bundles.
Repeated application of the compensation procedure (restarting with zero dis-
counts after each permutation of bundles), leads to an envy-free e‰cient out-
come with respect to the given bundles, since the number of assignments is
finite. Note that, unlike the permutation procedure of Klijn (2000), our pro-
cedure does not need to keep track of all envy relations. This is because the
single arrows in the directed graph identify only maximum envy, i.e., possible
cycles in non-maximum envy are simply ignored.

Since the computation of assessment matrices requires additional calcu-
lations when the assignment changes during the procedure, we use the com-
pensation procedure with ex-post equal payments, where initial assessments
are made directly on the basis of players’ bids. From the previous section, we
know that this procedure also satisfies Theorems 1–3. The modified compen-
sation procedure consists of the following steps.

The compensation procedure for an arbitrary assignment

1. Consider all players to be non-envious at the start. For n exogenously given
bundles, assign to each player an initial bundle. (For practical reasons, one
could let each player state her ‘‘best guess’’ of a utilitarian assignment and
then choose the assignment with the highest sum of bids as the initial start-
ing point.) Use the bid matrix as the initial assessment matrix.

2. Use the assessment matrix to identify each player’s maximum envy. If no
player is envious, skip to Step 5.

3. If a previously non-envious player has become envious, check for an envy
cycle. If a cycle exists, re-assign bundles by giving each player in the cycle
the bundle of the player she envies (single arrow) or previously envied
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(double arrow). Have all players return any compensations they have re-
ceived, and repeat Step 2 to restart the compensation procedure.

4. If there are envious players, perform a round of compensations: identify
those players whose maximum envy is directed towards a non-envious
player. Compensate them by their maximum envy di¤erence, thus making
them non-envious. Then recalculate the assessment matrix (but only after
all the compensations have been made in this round), and repeat Step 2.

5. Have each player pay an equal share of the total compensations and the
total cost C.

We provide an example of the modified compensation procedure in the Ap-
pendix.

It is important to note that the procedure as formulated above cycles to a
utilitarian assignment and establishes envy-freeness only for n exogenously
given bundles. In particular, when each bundle contains only a single object,
the final assignment will be utilitarian. In our more general framework,
though, an assignment does not require the same number of objects as players.
Consequently, an assignment is non-utilitarian not only when the n bundles of
the assignment are allocated ine‰ciently, but also if the m objects are bundled

ine‰ciently. Since cyclical trades under the compensation procedure involve
complete bundles of objects, players may thus still wish to trade individual
objects when the procedure is finished, even though they will not want to trade
complete bundles. However, this type of envy will be di‰cult to identify under
the compensation procedure, because the discounts that players receive apply
only to their complete bundles; they cannot be broken down into partial dis-
counts and associated with individual objects. The compensation procedure
thus establishes envy-freeness for the highest aggregate utility that any player
can identify. In order to obtain an e‰cient bundling of objects, players may
still have to resort to computational support in order to improve their best
initial guess.

7 Conclusions

Our objective in this paper was to formally develop a practical procedure for
multilateral problems of fair-division. Our procedural approach eliminates
envy in a ‘‘natural’’ way: it first identifies the players who are non-envious (we
showed that there will always be at least one if the assignment of bundles
is e‰cient), and then it compensates those players whose maximum envy is
directed towards non-envious players. By first beginning with an e‰cient as-
signment, we formulated the procedure for establishing envy-freeness using
intuitive, plausible, and manageably simple steps. We then showed that the
procedure is also capable of guiding parties to an e‰cient assignment when
the bundles are fixed. Moreover, the outcome of the compensation procedure
is the same no matter which e‰cient assignment is eventually reached.

In our analysis, we placed no bound on the level of individual compensa-
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tions. Consequently, we do not preclude the possibility that an individual may
end up being paid by the others to take a bundle of goods. In the context of fair
division we do not find this problematic at all. Indeed, if a group does not wish
to exclude any of its members, then there is no reason why the group should
not subsidize a member for receiving an undesired bundle. Moreover, the qual-
ification constraint guarantees that subsidization is never a consequence of a
player’s insu‰cient valuation of the complete set of objects to be distributed.

As with all cooperative procedures, our compensation scheme is theoreti-
cally vulnerable to strategic manipulation. However, practically speaking, this
requires detailed information on the other players’ preferences. If players’ bids
are disclosed simultaneously, strategic bids under incomplete information can
easily backfire: an untruthful player may have to pay more than what she
thinks her bundle is worth or may envy some other players for their bundles.
By contrast, since a player’s compensation is based on her own subjective
assessments, truthful behavior will always guarantee her envy-freeness, regard-
less of the others’ behavior. In practice, this insurance creates a disincentive
for attempting to distort one’s preferences.

Implemented as a computer algorithm, our compensation procedure is
polynomially bounded, thus making it comparable to alternative algorithms.
But this is not our point: as a procedure, it is not meant to be run on a machine;
instead it is designed to be used live in a mediation process.

Appendix

Envy-free division of burdens

Consider the following example of four players that have to divide a number of
chores among each other. The total compensation for all chores is: 
C ¼ 300.
The utilitarian assignment bundles the chores and thereby determines the min-
imum total requested payment 
M > 0. Table 5 shows players (negative) bids
for the four bundles of burdens.17

17 The entries in Table 5 are equal to the entries in Table 1 minus 100.

Table 5. Players’ requested payments

B1 B2 B3 B4

P1 
50 
80 
90 
80

P2 
40 
60 
85 
90

P3 
100 
60 
75 
65

P4 
50 
65 
90 
70

Initial reward 50 60 75 70
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Players’ demands under the utilitarian assignment (along the diagonal) are
satisfied through initial payments, which sum to 255. The total compensation
of 300 thus leaves an extra 45 to be granted to the players in the form of
bonuses. The assessment matrix can be computed by subtracting the diagonal
entry from each column.

The resulting initial assessment matrix is identical to the one in Table 2
where row i now shows Player i ’s assessment of Player j’s bundle of chores.
Consequently, the remaining surplus is also the same as in the example of
Sect. 3. Hence, the compensation procedure together with the distribution
of the remaining surplus yields the same outcome, whether for the distribution
of goods with a total contribution, or for the distribution of chores with a
total compensation, or for a combination of goods and chores with a total
cost or compensation.

Numerical calculations for the average discount method

In what follows, (i)–(iv) denote the steps of the average discount method
algorithm.

Beginning with Player 1, the procedure places this player in set D (i). Since
Player 2 sees her bundle tied with that of Player 1 (see Row 2 of Table 4),
Player 2 is added to set D (ii). In further comparisons, one now finds that
Players 3 and 4 see their bundles tied with that of Player 2, so they must be
added to D as well (ii). With all players included in D, the remaining surplus is
divided equally among them (iii). The updated discounts are ð5; 15; 15; 10Þ,
and the procedure for Player 1 ends because the surplus is used up (iv).

Beginning with Player 2 (i), Players 3 and 4 must be added to set D (ii).
With only these players included in D, each one’s discount can be raised by 5
before Player 1 experiences envy (see Row 1 of Table 4). This leaves a remain-
ing surplus of 20 
 15 ¼ 5 (iii), so the procedure continues (iv). Player 1 now
sees her bundle tied with those of Players 3 and 4, so she must be added to D

(ii). The remaining surplus is divided equally among all players giving each an
additional 1.25 (iii). The discounts are ð1:25; 16:25; 16:25; 11:25Þ, and the pro-
cedure for Player 2 ends (iv).

Beginning with Player 3 in set D (i), there is no player who feels tied with
this player (ii). Player 3’s discount can thus be raised by 5 without making any
other player envious (iii). With a remaining surplus of 20 
 5 ¼ 15, the pro-
cedure continues (iv). Now Player 1 is tied with Player 3, Player 2 is tied with
Player 1 and Player 4 is tied with Player 2, so they all must be added to D (ii).
The remaining surplus is divided equally, giving each player an additional 3.75
(iii). The discounts are now ð3:75; 13:75; 18:75; 8:75Þ, and the procedure for
Player 3 ends (iv).

Beginning with Player 4 in set D (i), Player 3 must be added because of
the tie with Player 4 (ii). The discounts of these two players can be raised
by 5 before Player 1 becomes envious (iii). With a remaining surplus of
20 
 10 ¼ 10, the procedure continues (iv). Now Player 1 is added to D and,
therefore, also Player 2, because of the tie with Player 1 (ii). The remaining
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surplus is divided equally among all players, giving each an additional 2.5 (iii).
The discounts are ð2:5; 12:5; 17:5; 12:5Þ, and the procedure for Player 4 ends
(iv).

Eliminating envy-cycles with the compensation procedure

The following example shows how our modified compensation procedure
with ex-post equal payments works for a non-utilitarian assignment. Consider
the bid matrix shown in Table 6, which reproduces Table 1 with columns
exchanged. The framed bids indicate the non-utilitarian assignment. The cor-
responding envy graph, constructed on the basis of bids, is denoted by ~GG.

Strictly following the compensation procedure, Players 1 and 4 are now
compensated by 30 and 15. (Player 3 is not yet compensated, because she
envies an envious player.) Accordingly, the bid matrix changes to Table 7.

Now Players 3 and 4 envy Player 1. In order to eliminate their envy, they
receive compensations of 40 and 10, respectively. The result is shown in Table
8. However, this second round of compensations involving the last envious
players (3 and 4) creates new envy: Player 4 feels tied with 1 and Player 1 feels
tied with 2, but Player 2 now envies 4, thus creating a cycle in the directed
graph ~GG.

The modified procedure now calls for a trade in the opposite direction of
the arrows in ~GG. Hence, Player 4 gives her bundle to Player 2, Player 2 gives
her bundle to Player 1, and Player 1 gives her bundle to Player 2. In addi-

Table 6. Players’ bids before compensations are made

B4 B1 B3 B2

P1 20 50 10 20

P2 10 60 15 40
Graph ~GG

P3 35 0 25 40
1 !

P4 30 50 10 35
3 ! 4 !

2

0 0 0 0

Table 7. Players’ valuations of bundles after the first round of compensations

B4 B1 B3 B2

P1 50 50 10 35

P2 40 60 15 55
Graph ~GG

P3 65 0 25 55
3 !

P4 60 50 10 50
4 !

1 ) 2

30 0 0 15
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tion all compensations must be returned, and the compensation procedure is
restarted. Note that the bid matrix after the required permutation of columns
is now given by Table 1. As we know this new assignment is utilitarian and the
compensation procedure with ex-post payments will lead to an envy-free out-
come.
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