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Abstract. The semivalues (as well as the least square values) propose di¤erent
linear solutions for cooperative games with transferable utility. As a byprod-
uct, they also induce a ranking of the players. So far, no systematic analysis
has studied to which extent these rankings could vary for di¤erent semivalues.
The aim of this paper is to compare the rankings given by di¤erent semivalues
or least square values for several classes of games. Our main result states that
there exist games, possibly superadditive or convex, such that the rankings of
the players given by several semivalues are completely di¤erent. These results
are similar to the ones D. Saari discovered in voting theory: There exist profiles
of preferences such that there is no relationship among the rankings of the
candidates given by di¤erent voting rules.

1 Introduction

The literature on cooperative games with transferable utility focuses on how
the worth of the grand coalition should be split among the players. It rarely
addresses the issue of ranking the players on the basis of the worth that they
are able to attain in each coalition. Nevertheless, there exist contexts where
this is a relevant problem. Think for example of a car seller who employs three
salesmen, Andrew, Robert and John, and wants to give a promotion to the
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best one. When Andrew, Robert and John are alone in the showroom, each
one manages to sell respectively 2.8, 1.6 and 2.6 cars on average per day. This
would suggest that Andrew is the best seller and should be rewarded. Never-
theless, when John and Robert are both present, they sell 8.8 car per day, while
the team John-Andrew gets 7.0, and the team Robert-Andrew 7.2. Knowing
that 10 cars are sold when everybody is in the showroom, the best ‘‘marginal
seller’’ is clearly Robert. But if the manager knows about the existence of the
Shapley value, he can attribute a worth of 3.7 to John, 3.3 to Robert and 3 to
Andrew! Thus, in this simple example, where the ranking of the sellers is more
important than the exact worth they create, we can see that di¤erent criteria
will lead to di¤erent results.
For another example, one could think of an European research network

of universities financed by the European Union. This institution may like to
know which university had more cooperation with the other partners in order
to favor it in the applications for new programs. The same issue may arise in
all the contexts where agents cooperate to create some worth, and one has to
rank them according to their merit. In all these situations, the exact imputa-
tion of the worth is not necessary; The problem is to pick out the good (or bad)
players.
Of course, the solutions of cooperative game with transferable utility may

be used to rank players. For example, di¤erent linear solutions have been pro-
posed in the literature to solve these games. Although the Shapley value is cer-
tainly the most well-known solution, there are contexts where it can be argued
that other solution concepts can make sense. For instance if e‰ciency is not a
natural requirement for the solution, the whole class of semivalues are potential
candidates. Similarly the least square values can be used if the solutions need
not to be individually rational (recall that the least square value can be nega-
tive). In particular, the assumptions of e‰ciency and individual rationality can
be left apart when the issue is to rank the players rather than splitting a cake.
In the domain of simple superadditive games as models of collective

decision-making procedures, Allingham [1] addresses the question of the pos-
sible ordinary equivalence of the two main power indices, the Shapley-Shubik
index and the Banzhaf index. He shows that for weighted games (games that
can be represented by a weight vector and a quota), the players’ ranking is
identical for both indices. Stra‰n [26] gives an example where the rankings
given by the two indices di¤er. Since then, no systematic comparison has been
done concerning the players’ ranking obtained by di¤erent linear solutions.
On the contrary, in voting theory, where voters have to select one alter-

native or to rank the candidates in a collective ordering, there has been a con-
siderable stream of work on these problems. For the class of scoring rules, that
is, the rules associated to a scoring vector, Saari [16] [17] systematically ana-
lyzes the discrepancies of rankings. He shows that two scoring rules can pro-
pose, for the same profile of preferences, reversed rankings of the alternatives.
Similarly, ðn� 2Þ scoring rules can give the same ranking, while the last one
leads to any other conclusion. Saari and Merlin [19] [20] extend these results to
voting rules which do not belong to the class of scoring rules. Moreover, many
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papers add to these qualitative results estimations on the probability that two
or more voting rules lead to di¤erent rankings. See, among others, Gehrlein
and Fishburn [6], Gehrlein [7], Saari and Tataru [22], Merlin et al. [10].
The aim of this paper is to compare the rankings given by the main linear

solutions for cooperative games with transferable utility, that is the family of
semivalues and the family of least square values. In fact, we propose results
similar to the ones of voting theory. We show that we can obtain any ranking
for di¤erent semivalues or least square values. For example, there exist games
such that the ranking given by a semivalue can be opposite to the ranking
given by another semivalue. Our results concern the games of the alternatives,
recently introduced in the literature by Calvo et al. [3], and the general class of
transferable utility games.
Our results should be compared with the ones that were independently

and simultaneously developped by Saari and Sieberg [21]. While many of our
results from Sect. 5 coincide with theirs, they emphasize in their presentation
the possible applications to political science. In our view, the question of the
coincidence of the ranking given by di¤erent power indices is still open. Indeed
decision-making procedures are modelled as simple games, which are (0-1)-
games, a subclass where the results do not hold. Moreover the approach leaves
out the non linear power indices such as the Deegan-Packel index [4] and the
Holler-Packel index [8].
The rest of the paper is organized as follows. In Sect. 2 the basic game the-

oretical background is briefly reviewed, and semivalues and least square values
are introduced. A base for the space of least square values is proposed. Section
3 presents useful notations and definitions of voting theory. In Sect. 4 we pre-
sent the game of the alternatives. By using a theorem of Calvo et al. [3] about
the relationships between the scoring rules and the least square values for this
class of games, we directly import from voting theory the results of Saari [16]
[17]. In Sect. 5, we consider a larger class of games, which contains some mon-
otonic, superadditive and convex games. Using the base for the space of least
square values, the main theorem on the relationships between the rankings in-
duced simultaneously by several least square values is proven. Several corol-
laries are immediately derived from this main result. Section 6 closes the paper
with some remarks.

2 Game theoretical background

A cooperative transferable utility (TU) game is a pair ðN; vÞ, where N ¼
f1; . . . ; ng denotes the set of players and v a function which assigns a real
number to each subset or coalition of N, and vðqÞ ¼ 0. The number of players
in a coalition S is denoted s. When N is clear from the context we refer to
game ðN; vÞ as game v. The monotonicity condition requires that vðSÞa vðTÞ
whenever SJT . A game is super additive if vðSÞ þ vðTÞa vðSWTÞ for all
coalitions S and T such that SXT ¼ q. A game is additive if vðSWTÞ ¼
vðSÞ þ vðTÞ for all coalitions S and T such that SXT ¼ q. A game is convex
if, for all i and all S and T such that SJTJNnfig, vðSW iÞ � vðSÞa
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vðT W iÞ � vðTÞ. A (0-1)-game is a game in which the function v only takes the
values 0 and 1. A simple game is a (0-1)-game which is not identically 0, and
monotonic. A weighted game is a simple game defined by a vector of weights,
ðw1; . . . ;wnÞ and a threshold ga

P
i AN wi, such that vðSÞ ¼ 1 i¤

P
i AS wi b g.

Let Gn denote the 2
n � 1 dimension vector space of all n-person games.

In this context any x A Rn will be called a payo¤ vector. Let xðSÞ ¼
P

i AS xi
denote the aggregated payo¤ of the coalition S for the payo¤ vector x. For
any payo¤ vector x and any coalition S, the excess of S on x is the gain or loss
that the members of the coalition S will have if they depart from the payo¤ x
and form a coalition. Denoting eðS; xÞ the excess of x on S, we have eðS; xÞ ¼
vðSÞ � xðSÞ. A payo¤ x is e‰cient if the excess of N on x is null. A payo¤ x
is individually rational if the excess of x on every player is negative. An impu-
tation is an e‰cient and individually rational payo¤. A solution is a function
c : Gn ! Rn which associates to each game a payo¤ vector.

2.1 Semivalues

Definition 1. A semivalue F is a solution which verifies:

1. Linearity: Ev;w A Gn, Fðvþ wÞ ¼ FðvÞ þFðwÞ.
2. Anonymity: For any game ðN; vÞ A Gn and any bijective mapping p :N ! N,

FpðiÞðpvÞ ¼ FiðvÞ, where ðpvÞðpðSÞÞ :¼ vðSÞ.
3. Inessential game: For any additive game v, FiðvÞ ¼ vðiÞ for all i A N.
4. Positivity: For any monotonic game v, FiðvÞb 0 for all i A N.

As shown in Dubey et al. [5] F is a semivalue if and only if F is given by

FiðvÞ ¼
X

SJN;S C i

ps½vðSÞ � vðSnfigÞ�; i ¼ 1; . . . ; n; ð1Þ

where
Pn
s¼1

n� 1
s� 1

� �
ps ¼ 1 and psb0. Vector p¼ ðp1; . . . ; pnÞ can be interpreted

as the generator of a probability distribution over the coalitions containing a
given player, which assigns the same probability to all coalitions of a given size.

Example 1. The dictatorial index (Owen [13]):

DiðvÞ ¼ vðfigÞ; i ¼ 1; . . . ; n; ð2Þ

is a semivalue with

ps ¼
1 if s ¼ 1
0 otherwise.

�
Example 2. The marginal index (Owen [13]):

MiðvÞ ¼ vðNÞ � vðNnfigÞ; i ¼ 1; . . . ; n; ð3Þ

is a semivalue with

ps ¼
1 if s ¼ n

0 otherwise.

�
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Example 3. The Shapley value (Shapley [24]):

ShiðvÞ ¼
X

SJN;S C i

ðs� 1Þ!ðn� sÞ!
n!

½vðSÞ � vðSnfigÞ�; i ¼ 1; . . . ; n; ð4Þ

is a semivalue with

ps ¼
ðs� 1Þ!ðn� sÞ!

n!
:

Example 4. The Banzhaf semivalue (Banzhaf [2]; Owen [12]):

BziðvÞ ¼
X

SJN;S C i

1

2n�1
½vðSÞ � vðSnfigÞ�; i ¼ 1; . . . ; n; ð5Þ

is a semivalue with

ps ¼
1

2n�1
:

The only e‰cient semivalue is the Shapley value. Note that dividing each
component of the semivalue by their sum leads to a non linear e‰cient solu-
tion, which nevertheless keeps the ranking of the players unchanged.

2.2 Least square values

There exists another class of linear solutions, the least square values (Ruiz et al.
[15] which are e‰cient.

Definition 2. A least square value C is a solution which verifies:

1. Linearity: Cðvþ wÞ ¼ CðvÞ þCðwÞ.
2. Anonymity: For any game ðN; vÞ A Gn and any bijective mapping p :N ! N,

CpðiÞðpvÞ ¼ CiðvÞ, where ðpvÞðpðSÞÞ :¼ vðSÞ.
3. Inessential game: For any additive game v, CiðvÞ ¼ vðiÞ for all i A N.
4. E‰ciency: For any game v,

P
i AN

CiðvÞ ¼ vðNÞ.

5. Coalitional Monotonicity: for all v, w such that vðSÞ > wðSÞ for some S and
vðTÞ ¼ wðTÞ for any T0S, CiðvÞbCiðwÞ for all i A S.

As shown in Ruiz et al. [15] a least square value C is defined by a vector
m ¼ ðmð1Þ; . . . ;mðn� 1ÞÞ A Rn�1

þ . Each least square value is the e‰cient solu-
tion, for a weight vectorm, of the problem of minimizing the weighted variance
of the coalitional excesses. That is, the solution of the following problem:

Minimize
X
SJN

mðsÞðeðS; xÞ � eðvÞÞ2 such that
X
i AN

xi ¼ vðNÞ;

where eðvÞ ¼ 1

2n � 1
P

SJN eðS; xÞ is the average (constant) excess for the game

v. The least square values can be computed as follows. Let bi be the weighted
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average of the worth of the coalitions (whose size is smaller than n) which
contain player i,

bi ¼
1

a

X
SHN;S C i

mðsÞvðSÞ; where a ¼
Xn�1
s¼1

mðsÞ n� 2
s� 1

� �
;

and b be the average of the coe‰cients bi:

b ¼ 1
n

X
i AN

bi:

Then a least square value first splits the worth of the grand coalition among
the players, and then gives to each player i the di¤erence between bi and b:

CiðvÞ ¼
vðNÞ
n

þ bi � b:

In the sequel, without loss of generality, we will consider the least square values
such that a ¼ 1.

Example 5. The center of the imputation set which can be defined as follows.
Each player receives first her or his individual worth. Second the di¤erence
between the worth of the grand coalition and the sum of the individual worths
is equally split between the players. The center of imputations, given by:

CISiðvÞ ¼ vðfigÞ þ 1
n
vðNÞ �

Xn
j¼1

vðf jgÞ
" #

; i ¼ 1; . . . ; n; ð6Þ

is thus a least square value with weight:

mðsÞ ¼ 1 if s ¼ 1
0 otherwise.

�
The center of imputations is the orthogonal projection of the dictatorial index
on the e‰cient hyperplane defined by

P
i AN ciðvÞ ¼ vðNÞ.

The next example is taken from the cost sharing literature.

Example 6. A cost sharing game ðc;NÞ is a pair where N ¼ f1; . . . ; ng denotes
a set of projects, products or services that can be provided by some organiza-
tion and c is a function which assign to each subset SJN the cost cðSÞ of pro-
viding the items in S jointly. We can associate to any cost game a game of the
surplus ðv;NÞ, defined by vðSÞ ¼

P
i AS cðfigÞ � cðSÞ. Thus, if xi is the impu-

tation of the costs, the associated imputation of the surplus is yi ¼ cðiÞ � xi.
In the cost games, the equal allocation of nonseparable cost proposes to divide
the whole cost by n, and then to add to each player’s contribution its marginal
cost cðNÞ � cðNnfigÞ minus the mean of the marginal costs (see for example
Moulin [11]). The associated allocation in the game of the surplus is called
the equal allocation of nonseparable surplus. Each player receives first her or
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his marginal contribution to the grand coalition and secondly the di¤erence
between the worth of the grand coalition and the sum of the marginal con-
tributions is equally split between the players:

EANSiðvÞ ¼ vðNÞ � vðNnfigÞ þ 1
n
vðNÞ �

Xn
j¼1

ðvðNÞ � vðNnf jgÞÞ
" #

ð7Þ

The equal allocation of nonseparable value is thus a least square value with
weights:

mðsÞ ¼ 1 if s ¼ n� 1
0 otherwise.

�
Note that it is the orthogonal projection of the marginal index on the e‰cient
hyperplane.

Example 7. The Shapley value is a least square value with the weight function

mðsÞ ¼ 1

n� 1
n� 2
s� 1

� ��1
:

It is the only solution that belongs to the family of semivalues and to the family
of least square values.

Example 8. The least square prenucleolus (Ruiz et al. [14]), given by

LSPiðvÞ ¼
vðNÞ
n

þ 1

n2n�2
n
X

S0N;S C i

vðSÞ �
Xn
j¼1

X
S0N;S C j

vðSÞ
" #

ð8Þ

is a least square value with weights:

mðsÞ ¼ 1

2n�2
:

It is the additive normalization of the Banzhaf semivalue. Note that it coin-
cides with the Shapley value for 3 players.

2.3 Relationship between semivalues and least square values

It is shown in Ruiz et al. [15] that the orthogonal projection of a semivalue
on the e‰cient hyperplane is a least square value. More precisely, if FðvÞ is a
semivalue, the orthogonal projection of it on the e‰cient hyperplane is a least
square value F, which is given by

FðvÞ ¼ FðvÞ þ 1
n

vðNÞ �
X
i AN

FiðvÞ
 !

: ð9Þ

Furthermore, if p is the vector associated to the semivalue F, then the weight
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function associated to the least square value F is given (up to a positive pro-
portionality factor) by

mðsÞ ¼ ps þ psþ1 for all 1a sa n� 1: ð10Þ

Some least square values are not the additive normalization of any semivalue.
For example, on can check that no vector p corresponds to the vector m ¼
0; 12 ; 0

 �

.
From Eq. (9), it follows that:

FiðvÞ �FjðvÞ ¼ FiðvÞ �FjðvÞ: ð11Þ

Thus, the ranking given by the semivalue is the same that the ranking of its
orthogonal projection on the e‰cient hyperplane. In the same way, any mul-
tiplication of the semivalue by a positive scalar keeps the same ranking as the
associated least square value. This is in particular true when we divide the Fi’s
by their sum in order to normalize them on the e‰cient hyperplane.
To give an example of such a normalization, consider another solution of

cost-sharing games, the alternate cost avoiding method. For the associated sur-
plus game, Young [28] gives the following formula for the imputation:

yiðvÞ ¼
vðNÞ � vðNnfigÞP

j ANðvðNÞ � vðNnf jgÞÞ vðNÞ: ð12Þ

In fact, this equation gives another normalization of the marginal index de-
fined by Eq. (3). When one compares Eq. (7) and (12), it should be noticed that
both formulas use in a di¤erent way the marginal surpluses vðNÞ � vðNnfigÞ
to share the total saving vðNÞ. The first normalization is an orthogonal pro-
jection on the plane

P
i AN yi ¼ vðNÞ, while the second is proportional to the

values vðNÞ � vðN nfigÞ. Nevertheless, both normalizations keep the ranking
of the players given by the marginal index.

2.4 A base for least square values

With the normalization a ¼ 1, all the vectors mðsÞ which define the class of the
least square values lie in a simplex uniquely characterized by its vertices.

Definition 3. Let ek be a vector in Rn�1
þ such that:

ekðsÞ ¼
n� 2
s� 1

� ��1
if s ¼ k

0 otherwise.

8<
:

A least square value is called elementary if it is defined by one of the n� 1
vector ek. It is denoted by C ek ðvÞ.

Note that the center of imputations is the elementary least square value
C e1 , while the equal allocation of nonseparable value corresponds to C en�1 .

Proposition 1. The family fC ek ðvÞgk¼1;...;n�1 of elementary least square values
form a base of the class of least square values.
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Proof. It su‰ce to check that any least square value can be uniquely expressed
as

CðvÞ ¼
Xn�1
k¼1

lkC
ek ðvÞ;

Xn�1
k¼1

lk ¼ 1; lk b 0 Ek ¼ 1; . . . ; n� 1; ð13Þ

with lk ¼
n� 2
k � 1

� �
mðkÞ. r

3 Theory of voting: background

A social choice model typically asks m voters to rank collectively n alter-
natives with the help of some voting mechanism. Let N ¼ f1; . . . ; ng be the set
of alternatives. Each voter is supposed to rank without tie the alternatives ac-
cording to her preference, i.e., her preference is represented by a linear ordering
over N. The set of linear orders over N is denoted LðNÞ, and the set of weak
orderings (indi¤erence is allowed) is RðNÞ. There are n! possible preference
types in LðNÞ. As we will only consider anonymous (any permutation of the
names of the voters does not a¤ect the final outcome) and homogeneous (a
replication of the preferences of each voter k times, k A N, to create a popula-
tion of km voters, does not a¤ect the result of the voting process) voting rules,
we will directly consider the vectors q ¼ ðq1; . . . ; qn!Þ A Rn!, where qt is the frac-
tion of voters which preference is of type t. The set of all the profiles is the set
of rational points in the unit simplex of Rn!, and it is denoted by Siðn!Þ.
A social welfare preordering is then a map R : Siðn!Þ ! RðNÞ, which asso-

ciate to each profile of preferences a social preordering (transitive and com-
plete) of the n alternatives. Thus, iRðqÞ j means that alternative i is not worse
than j at the collective level for preference profile q.
A scoring rule is a social welfare preordering which ranks the candi-

dates according to their positions in the individual orderings. A scoring rule
RW is characterized by a scoring vectorW ¼ ðW1; . . . ;Wr; . . . ;WnÞ A Rn, with
wr bwr�1 and w1 > wn; It assigns a score of wr to the r

th most preferred alter-
native of each voter and gives to each candidate the total score it obtains over
the whole population. Formally, if we denote by rði; tÞ the rank of the alterna-
tive i in the ordering t, the score of i for a profile q is SðW ; q; iÞ ¼

Pn!
t¼1 qtWri; t .

The social welfare preordering is then defined by iRW ðqÞ j i¤ SðW ; q; iÞb

SðW ; q; jÞ. Notice that two scoring vectorsW andW 0 such thatW 0 ¼ aW þ b,
with a > 0 and b a m-dimensional constant vector lead to the same preorder-
ing for any profile. Thus, di¤erent normalizations of the scoring vectors can be
used to describe the family of scoring rules. With the convention

Pn
r¼1 wr ¼ 1

and wn ¼ 0, all the scoring rules lie in the convex hull of the scoring vectorsWk,
k ¼ 1; . . . ; n� 1 with:

Wk ¼ 1
k
ð1; . . . ; 1|fflfflfflffl{zfflfflfflffl}

k times

; 0; . . . ; 0Þ:
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The scoring rules defined by theWk’s are called elementary scoring rules. This
normalization implies that the scores SðW ; q; iÞ add up to one for every profile
in Siðn!Þ. Thus, the vectors of the scores lie in the unit simplex SiðnÞ.

Theorem 1 (Saari [17]). In the unit simplex SiðnÞ, there exists a ball Bðin; rÞ with

radius r > 0 centered on the barycentric point in ¼
1

n
; . . . ;

1

n

� �
with the follow-

ing property:

Choose n� 1 points Ek in Bðin; rÞ, k ¼ 1; . . . n� 1. There exists a profile
q A Siðn!Þ such that the scores obtained with the elementary scoring rule W k are

respectively the ones given by the point Ek, for all k ¼ 1; . . . n� 1.

This result is a consequence of another theorem by Saari [16], which asserts
that the results of n� 1 scoring rules could be completely di¤erent as long as
the n� 1 scoring vectors are linearly independent.

4 Ranking in the game of the alternatives

Calvo et al. [3] show that a voting problem could be represented by a specific
game, the game of the alternatives, where the players are the possible alter-
natives, the characteristic function associating to each coalition the fraction of
voters who rank these alternatives before the remaining alternatives in their
preferences.

Definition 4. Let q be a profile in Siðn!Þ. The game of the alternatives for the
profile q is the game ðN; vqÞ such that: vqðSÞ ¼

P
t AQ qt, with Q the set of pref-

erence types for which all the elements of S are ranked before the candidates in

ðNnSÞ. The class of games derived from profiles of preferences will be denoted

by Gq
n .

Example 9. Consider a group of n voters who have to choose among 3 alter-
natives, N ¼ f1; 2; 3g.

preference type number of voters
1 
 2 
 3 n1
1 
 3 
 2 n2
2 
 3 
 1 n3
2 
 1 
 3 n4
3 
 1 
 2 n5
3 
 2 
 1 n6

The first line means that n1 voters prefer alternative 1 to alternative 2, and
candidate 2 to candidate 3. The corresponding representation in Siðn!Þ is the

vector q ¼
�
n1

n
;
n2

n
;
n3

n
;
n4

n
;
n5

n
;
n6

n

�
. The associated characteristic function is

vq, with:
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vqð1Þ ¼ q1 þ q2 vqð1; 2Þ ¼ q1 þ q4

vqð2Þ ¼ q3 þ q4 vqð2; 3Þ ¼ q3 þ q6 vqðNÞ ¼ 1

vqð3Þ ¼ q5 þ q6 vqð1; 3Þ ¼ q2 þ q5

The game is monotonic if q1 ¼ q3 ¼ q5 and q2 ¼ q4 ¼ q6. The game is not
superadditive.

Notice that the games of the alternatives are such that
P

S : s¼k vqðSÞ ¼ 1
for all coalition sizes, k ¼ 1; . . . ; n. Therefore for a random profile q, the game
is neither monotonic nor superadditive. The main theorem of Calvo, Garcia
and Gutierrez asserts that the ranking of the alternatives given by a least square
values in the game of the alternatives is equivalent to the ranking of the alter-
natives given by a scoring rule for the initial profile of preferences.

Theorem 2 (Calvo et al. [3]). There exists a 1-1 mapping between the scoring
rules and the least square values for the games of the alternatives. More pre-

cisely, given a scoring vector W and a least square value m (with the normal-

ization a ¼ 1), the ranking of the players by the least square value in the game
of the alternatives is exactly the ranking of the candidates for the initial profile if

and only if there exist a scalar a > 0 and a n-dimensional constant vector b such
that Cm ¼ aW þ b, where C is the matrix:

C ¼

n� 1 n� 2 � � � 2 1

�1 n� 2 � � � 2 1

�1 �2 � � � 2 1
..
. ..

. . .
. ..

. ..
.

�1 �2 � � � �ðn� 2Þ 1

�1 �2 � � � �ðn� 2Þ �ðn� 1Þ

2
666666664

3
777777775

Combining this result with Theorem 1 we can easily prove that for this
class of games any ranking can be given for di¤erent least square values. More
precisely:

Theorem 3. Choose n� 1 rankings of the players, R1; . . . ;Rn�1 A RðNÞ. There
exist games in Gq

n such that the ranking given by the elementary least square

values C ek is exactly Rk

Proof. It is easy to see from the structure of matrix C that the image of ek is
a scalar of the kth column. And it is equally easy to realize that the kth first
entries in the kth column are all equal and superior the ðn� kÞ other entries,
which are also equal. Thus, we can normalize this vector into a elementary
scoring vector Wk ¼ ð1; . . . ; 1; 0; . . . ; 0Þ=k without changing the ordering of
the players. Thus, by Saari’s theorem, we can choose the profile q in a ball

around the point In ¼
1

n
; . . . ;

1

n

� �
such as the elementary scoring ruleWk gives

the ranking Rk. By applying Theorem 2, the elementary least square valueC
ek

will also lead to the ranking Rk for the cooperative game vq. r
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5 Ranking for other games

The games in Gq
n are specific: The sum of the worth of the coalitions of same

size is always equal to 1. Moreover these games are generally not monotonic,
nor superadditive; the core always exists and coincide with the center of impu-
tations (see Calvo et al. [3]). Thus, the question is now whether we can obtain
similar results for the general class of games.

Theorem 4. Consider the family fC e1ðvÞ; . . . ;C en�1ðvÞg of elementary least

square values. For each elementary least square value C ek , choose randomly a
ranking Rk A RðNÞ. Then, the two following statements are true:
i) There exist cooperative games such that the ranking of the players by the

least square value C ek ðvÞ is exactly Rk for each k.

ii) Examples can be found in the classes of monotone, superadditive or con-
vex games.

Proof. i) The proof is done by exhibiting such games. Let wðSÞ be a symmetric
game, where the worth of a coalition only depends on its cardinality; There
exists a vector ða1; a2; . . . anÞ such that wðSÞ ¼ as whenever jSj ¼ s.
Consider now

vðSÞ ¼ as þ eðSÞ

with vðqÞ ¼ 0. The ranking given by the elementary least square value
C ek ðwÞ only depends upon the worths of coalitions of size k. Thus:

C ek

i ðvÞ �C ek

j ðvÞ ¼ 1

n� 2
s� 1

� � X
jSj¼k;S C i

eðSÞ �
X

jSj¼k;S C j

eðSÞ

2
4

3
5

There are
n� 1
k

� �
coalitions of size k, with their associated eðSÞ as free pa-

rameters, that are used to computes the n values C ek

i ðvÞ. It is obvious that the
ranking of the players by the kth elementary least square value can be chosen
as desired. Thus, there exists a game in a ball in R2 n�1, centered on the sym-
metric game wðSÞ with radius r, such that the ranking of the players by C ek is
exactly Rk. The radius r can be arbitrary small.
ii) To prove the second point, it su‰ces to choose

eðSÞf r ¼ Min
k;k 0¼1;...;n�1;k0k 0

fak � ak 0 g: ð14Þ

and a symmetrical game w that is monotone, superadditive or convex. If the
e’s are small enough, v will keep the same properties as w.

Note that the case as ¼
1

n
,
P

s¼k eðSÞ ¼ 0 Ek ¼ 1; . . . ; n� 1 gives back The-

orem 3 for games in Gq
n . r

All the conclusions Saari drew from Theorem 1 in Social Choice are now
applicable to the class of least square values. The following corollaries apply.
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Corollary 1. All the least square values (and all the semivalues) give the same
ranking of the players if and only if all the elementary least square values give

the same ranking.

Corollary 2. Consider n� 1 semivalues, F1; . . . ;Fn�1, which are linearly inde-
pendent. Then, there are no restrictions on the possible rankings of the players

by these n� 1 semivalues. Examples can be found in the class of monotonic,
superadditive, or convex games. The same results apply for least square values.

Corollary 3. Take any two semivalues (or least square values) characterized by
p1 and p2. Then there exist monotone, superadditive or convex games such that
the weights p1 gives one ranking of the players according to their power, and the
weight p2, the reversed ordering. In particular, this is true if the two semivalues
are the Shapley value and the Banzhaf semivalue.

The proofs of these results are obvious. Corollaries 2 and 3 are illustrated
by the following example.

Example 10. Consider the following 4-person game:

vð1Þ ¼ 250 vð1; 2Þ ¼ 707 vð1; 2; 3Þ ¼ 1705 vðNÞ ¼ 3500

vð2Þ ¼ 240 vð1; 3Þ ¼ 714 vð1; 2; 4Þ ¼ 1745

vð3Þ ¼ 110 vð1; 4Þ ¼ 658 vð1; 3; 4Þ ¼ 1755

vð4Þ ¼ 100 vð2; 3Þ ¼ 658 vð2; 3; 4Þ ¼ 1795

vð2; 4Þ ¼ 693

vð3; 4Þ ¼ 770

In this game, we successively get

C e1

1 ðvÞ ¼ 950 C e2

1 ðvÞ ¼ 854 C e3

1 ðvÞ ¼ 830 Bz1ðvÞ ¼ 872 Sh1ðvÞ ¼ 878

C e1

2 ðvÞ ¼ 940 C e2

2 ðvÞ ¼ 833 C e3

2 ðvÞ ¼ 870 Bz2ðvÞ ¼ 869 Sh2ðvÞ ¼ 881

C e1

3 ðvÞ ¼ 810 C e2

3 ðvÞ ¼ 917 C e3

3 ðvÞ ¼ 880 Bz3ðvÞ ¼ 881 Sh3ðvÞ ¼ 869

C e1

4 ðvÞ ¼ 800 C e2

4 ðvÞ ¼ 896 C e3

4 ðvÞ ¼ 920 Bz4ðvÞ ¼ 878 Sh4ðvÞ ¼ 872

and thus

LSV mðsÞ Ranking

C e1 ð1; 0; 0Þ 1 
 2 
 3 
 4
C e2 0; 12 ; 0


 �
4 
 3 
 2 
 1

C e3 ð0; 0; 1Þ 3 
 4 
 1 
 2
Sh 1

3 ;
1
6 ;
1
3


 �
2 
 1 
 4 
 3

Bz 1
4 ;
1
4 ;
1
4


 �
3 
 4 
 1 
 2
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In this game, which is monotone, superadditive and convex, for each couple of
players, the ranking depends on the least square value, each player is ranked
first with at least one least square value, and last with another least square
value. In particular, the Shapley ranking is the opposite of the Banzhaf ranking.
More precisely, with four candidates, we can state, according to Eq. (13)

that:

CðvÞ ¼ l1C
e1ðvÞ þ l2C

e2ðvÞ þ l3C
e3ðvÞ; l1 þ l2 þ l3 ¼ 1: ð15Þ

Figure 1 describes the possible rankings as l1 and l2 vary. The lines i@ j in-
dicate the least square values which lead to a tied ranking between the two
players i and j. The other least square values lead to strict orderings of the
players. For this game, we can obtain 8 di¤erent strict orderings of the players
and 9 weak orderings (with ties) as l1 and l2 vary. The dots represent the im-

putations for the elementary least square values (C e1 , C e2 , C e3 ), the Shapley
value (Sh), and the least square prenucleolus (Bz).
Corollary 2 says that we can have up to n� 1 completely di¤erent rankings

for independent least square values but we already get 17 di¤erent outcomes
with Example 10. In fact, we don’t know what is the maximal number of dif-
ferent rankings that can be created as l describes the set of all the possible
LSV’s. Let SupnðvÞ, the maximal number of orderings created as l varies for a
fixed n-player game v. To estimate the number of orderings in SupnðvÞ, we can
directly import a theorem from Saari [17, Theorem 3].

Theorem 5. a) Assume that there are nb 3 players. Let t be an integer satisfying

1a ta n!� ðn� 1Þ ð16Þ

Fig. 1 The di¤erent possible rankings of the players
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There exist games v (possibly monotone, superadditive or convex) where SupnðvÞ
contains precisely t di¤erent strict rankings. Conversely, if there are t strict rank-

ings in SupnðvÞ, Eq. (16) is satisfied.
b) Let CðnÞ be the number of preorderings in RðnÞ, that is the number of

rankings of the n players with or without ties. For any t satisfying:

1a taCðnÞ � 1þ Cðn� 1Þ þ
Xn�1
i¼1

n� 1
i

� �
Cðn� i � 1Þ

" #
ð17Þ

there exist games, possibly monotone, superadditive or convex, so that

SupnðvÞ ¼ t. Conversely, if SupnðvÞ ¼ t, t must satisfy Eq. (17).

All these results come from the following property: due to the linearity
of the LSV and the fact that they are a convex combination of the ðn� 1Þ
elementary least square values, the vectors ðC1ðvÞ . . .CnðvÞÞ lie in the ðn� 1Þ
dimensional simplex generated by the vectors fðC ek

1 ðvÞ . . .C ek

n ðvÞÞgk¼1;...;n�1.
This is the simplex that is presented in Fig. 1 for the case n ¼ 4. Thus, this
convex hull has one less dimension than SiðnÞ, and cannot intersect simulta-
neously all the ranking regions. In Example 10, the simplex intersects 8 regions
with a strict ranking, that is only a third of the possible 4! rankings. Figures
of the maximal number of elements in SupnðvÞ, displayed on Table 1, are also
directly taken from Saari [17]. They clearly prove that there exist worse situ-
ations than the one we presented! With 4 players, we can imagine games for
which 18 of the 24 strict rankings (that is 75%) are a possible outcome with
one least square value. The second part of Table 1 gives the same informa-
tion when we also consider orderings with ties. Still with 4 players, 45 di¤erent
rankings among 71 can be obtained (that is 63.38%), which is far more than
the 17 we get with Example 10.
In Example 10, another point worth noticing is the fact that all the least

square values belong to the core. It is well known that Shapley value always
belongs to the core of convex games (see Shapley [25]; Maschler et al. [9]).
Thus, as the core is a convex set as well as the convex hull of the imputations
obtained from the elementary LSV, this forces several other least square values
to be in the core. This opens the question of knowing whether other LSV will

Table 1 Maximal number of possible rankings

n Strict rankings Percentage Weak orderings Percentage

3 4 66.66 7 53.85
4 18 75.00 45 63.38
5 96 80.00 371 71.76
6 600 83.33 3645 77.83
7 4320 85.71 38,131 80.63
8 35,280 87.50 451,893 82.79
9 322,560 88.88 5,977,341 84.62
10 3,625,920 90.00 84,830,767 85.69

Di¤erent least square values, di¤erent rankings 547



always be in the core of convex games. We answer this question with the fol-
lowing example, which is adapted from Moulin [11, p. 114].

Example 11. Consider the following 3-person game, with e > 0:

vð1Þ ¼ 0 vð1; 2Þ ¼ 1� 3e

vð2Þ ¼ 0 vð1; 3Þ ¼ e

vð3Þ ¼ 0 vð2; 3Þ ¼ e

vðNÞ ¼ 1

This game is convex, and the core is the convex hull of the following points:

ð0; 1� 3e; 3eÞ ð0; 1� e; eÞ ðe; 1� e; 0Þ

ð1� 3e; 0; 3eÞ ð1� e; 0; eÞ ð1� e; e; 0Þ

The center of imputations is the vector 1
3 ;
1
3 ;
1
3


 �
, while 2�4e

4 ; 2�4e4 ; �1þ8e3


 �
is the EANS surplus vector. All the other LSV vectors lie on this line, the
Shapley value 1

2� 2
3 e;

1
2� 2

3 e;
4
3 e


 �
being the mid point. With e su‰ciently small,

any LSV di¤erent from the Shapley value can be thrown out of the core.

So far, the obtained results are quite negative, in the sense that they
show that any kind of ranking can be expected for di¤erent semivalues or least
squares values in TU-games. Note however that these results do not directly
apply to simple games. Indeed the construction strongly depends on the pos-
sibility of slightly modifying the characteristic function around a symmetric
game. As this possibility does not exist for simple games, no general conclu-
sion can be derived for this specific class of games. In particular this means
that those results cannot be used to compare power indices in simple super-
additive games as model of decision-making. For this class, the only results
that we have are first that the Shapley-Shubik index and the Banzhaf index
coincide for three players (because the Shapley value and the least square pre-
nucleolus coincide for three players, see the remark in Example 8) and second
that the rankings given respectively by the Shapley-Shubik and Banzhaf in-
dices are not always the same (see the above mentionned example proposed
by Stra‰n). Another result in the class of simple games concern the weighted
games.

Proposition 2. For all weighted games, the family of least squares values give the

same ranking.

Proof. Let us consider two players i and j with weights wi and wj in the
weighted game v. If wi ¼ wj then CiðvÞ ¼ CjðvÞ by anonymity of the least
squares values. If wi > wj then for any S such that i; j B S we have vðSW iÞb

vðSW jÞ. Therefore by (6) and (7), we can derive the following equation:

CiðvÞ �CjðvÞ ¼
X

S0N; i; j BS

mðsÞðvðSW iÞ � vðSW jÞÞ

This implies CiðvÞbCjðvÞ for all the least square values. r
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6 Concluding remarks

The paper has shown that the rankings induced by di¤erent least square
values could di¤er widely. In consequence, one could argue that the choice of
the solution concepts does matter. The limits of this conclusion must however
be stressed as follows. First, we have not provided any quantitative results
concerning the discrepancies between the least square values. The results only
deal with the di¤erences in ranking, not with values at the solution. Moreover
the games for which we exhibit strong discrepancies are nearly symmetric
games. It might be the case that, to obtain strong discrepancies in ranking, the

values must be very close to the point In ¼
vðNÞ
n

; . . . ;
vðNÞ
n

� �
. Another limi-

tation of our conclusion is that our results only involve linear solutions, which
means that non linear solutions could not be compared. One could think of
comparing the results given by the nucleolus (see Schmeidler [23]) or the
modified nucleolus (see Sudhölter [27]) with the rankings given by the least
square values. Finally, the above mentioned results do not hold in the class of
0-1 games because of its specific structure. Therefore the results cannot be
applied to decision-making procedures modelled as simple superadditive
games. In particular this paper does not help for chosing a power index. The
only results that can be drawn in this case are that all least square values co-
incide in the ranking for weighted games and that the Shapley-Shubik index
and the Banzhaf index give the same ranking for 3-persons games.
Concerning the proofs, it should be noted that the proofs by Saari [16]

in Social Choice Theory are clearly more complicated that the ones proposed
here. The main di¤erence is that, until recently (see Saari [18]) it was impos-
sible to create easily profiles where n� 1 scoring rules could lead to di¤erent
outcomes. So, Saari used the following trick: instead of exhibiting examples,

he created a linear mapping Gð�;W 1; . . . ;Wn�1Þ, from Siðn!Þ into SiðnÞ�
SiðnÞ � � � � � SiðnÞ (n� 1 times), which associates to each profile of prefer-
ences the results of the n� 1 scoring methods. Then, he shows that if the W ’s
are linearly independent, the image of the set of profiles is an open set of di-

mension ðn� 1Þ2, containing the barycentric point ð1; . . . ; 1Þ=ðnÞ A Rnðn�1Þ as
an interior point. This means that there is no restriction on the possible results
of ðn� 1Þ scoring rules. We avoid here this construction, as we can easily, by
the use of the elementary least square values, provide a huge range of voting
games leading to paradoxes (see Example 10).
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