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Abstract. By using geometry, a fairly complete analysis of Kemeny's rule
(KR) is obtained. It is shown that the Borda Count (BC) always ranks the
KR winner above the KR loser, and, conversely, KR always ranks the
BC winner above the BC loser. Such KR relationships fail to hold for
other positional methods. The geometric reasons why KR enjoys remark-
ably consistent election rankings as candidates are added or dropped are
explained. The power of this KR consistency is demonstrated by compar-
ing KR and BC outcomes. But KR's consistency carries a heavy cost; it
requires KR to partially dismiss the crucial ``individual rationality of voters''
assumption.

1 Introduction

A probable reason why ``pairwise voting'' continues to enjoy wide acceptance
as a way to rank candidates is that ``head to head'' comparisons avoid those
complicating side issues introduced when considering other candidates. Lim-
iting the value of this approach, however, are the voting cycles which make it
di½cult, if not impossible, to select a ``best'' candidate. Some relief for this
di½culty was provided when Kemeny [7] described (Sect. 2) how to select a
societal linear ordering. (Each voter's preferences are represented by a linear
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ordering.) An attractive aspect of Kemeny's Rule (KR) is Kemeny's claim that
his societal ranking is the ``closest'' to the wishes of the voters. Adding his-
torical importance to KR (also called the median procedure and the Slater's

rule [23] in the literature on tournaments) is Young's assertion [25] that the
KR is the elusive method which Condorcet [3] attempted to describe in his
famous Essais.

While KR is well-known and extensively analyzed (e.g., a partial listing
includes Kemeny [7], Le Breton and Truchon [10], Young [25], and Young
and Levenglick [26]), much about this procedure is not understood. To remedy
this problem we obtain a fairly complete KR description by using the geo-
metric approach developed in (Saari, [17, 18]) along with recent results (Saari
[19, 20]) which characterize all pro®les that cause problems with pairwise and
positional elections. Some of our major results compare KR with the Cope-
land Method (CM) and the Borda Count (BC); to facilitate this analysis we
use a recently developed geometric representation. Beyond obtaining new
results, our main emphasis is to identify the geometric structures responsible
for certain deep KR results. An advantage of geometry is that we can ``see''
and explain (particularly for n � 3 candidates) all possible con¯ict.

Indeed, the KR geometry allows us to characterize all single pro®le KR
paradoxes and behavior. Some of our results support the growing sense (e.g.,
Le Breton and Truchon [10]) that KR enjoys remarkable properties; e.g., KR
has a consistency in societal rankings when candidates are dropped (e.g.,
Young and Levenglick [26]). To underscore this KR property, recall how
dropping candidates can cause the BC societal ranking to radically change.
Indeed, using the nested subsets of candidates fc1; c2; . . . ; cng, fc1; c2; . . . ;
cnÿ1g; . . . ; fc1; c2g obtained by dropping a candidate at each stage, we
now know (Saari [16]) we can choose any ranking for each subset of candi-
dates ± even to design particularly perverse outcomes ± and construct (Saari
[20]) a pro®le where the BC election ranking of each subset is the chosen
one. But, geometry forbids KR from exhibiting such pathological behavior
(Sect. 4).

These desirable KR consistency properties are su½ciently strong to won-
der (as suggested to us by an expert) whether KR is that elusive ``ideal social
choice mechanism.'' It is easy to support this viewpoint; e.g., it is easy to use
the KR geometry and behavior described here to craft several favorable axi-
omatic settings. (For earlier axiomatic arguments, see Young and Levenglick
[26].) We dash this enthusiasm in Sect. 3 by showing that the KR electoral
consistency carries a heavy price. The unexpected, troubling fact is that KR

achieves its consistency by weakening the crucial assumption about the individ-

ual rationality of the voters. Indeed, KR treats certain groups of preferences as
though they come from non-existent voters with cyclic preferences. Conse-
quently, arguments promoting KR must justify why we should accept an
erosion of the crucial ``rational voter'' assumption even to the extent that its
outcomes are signi®cantly in¯uenced by non-existent voters with irrational
beliefs. Until persuasive arguments are provided, we ®nd this to be an unac-
ceptable tradeo¨. (Most proofs are in Sect. 5.)

404 D. G. Saari, V. R. Merlin



2 Geometric representations

The principal di½culty with pairwise voting is that even though the voters
have transitive preferences, the election outcomes can be cyclic. This occurs
with the simple pro®le

Number of voters Preferences

6 a1 � a2 � a3

3 a2 � a1 � a3

5 a2 � a3 � a1

5 a3 � a1 � a2

Conclusion a1 � a2; a2 � a3; a3 � a1

(2.1)

where the cyclic pairwise outcomes have the respective tallies of 11 : 8, 14 : 5,
10 : 9. As cycles prevent identifying a maximal choice, it is understandable
why they motivate major research themes for choice theory. Some approaches
seek ways to avoid cycles; others replace cycles with a ``natural'' linear
ordering. KR belongs to the second category.

The assertion that KR accomplishes this goal by selecting the linear rank-
ing which is ``closest'' to the voters' preferences should cause concern. After
all, isn't this the objective of all reasonable voting procedures? This suggests
that di¨erences among procedures are manifested by variations in how these
methods de®ne the ``closest distance'' over pro®les and linear rankings. As
developed here, this perspective explains all BC, CM, and KR con¯icts.

Kemeny's choice of a ``distance'' is natural and intuitive, but its cumber-
some de®nition has caused KR to be viewed as a rather complicated proce-
dure. This is unnecessary; when re-described in geometric terms, KR becomes
easier to understand, analyze, and we can even ``see'' how it di¨ers from other
voting approaches. To introduce KR, notice how a1 � a2 � a3 is an intuitive
choice to replace the Eq. 2.1 cycle. This is because the cycle is transformed
into a linear order by reversing any ranking. The a3 � a1 ranking is a natural
choice as its tally is the closest to a tie; e.g., by reversing a3 � a1 the cycle is
replaced with a linear order in a way that a¨ects the fewest voters. As estab-
lished next, this is the KR outcome.

2.1 Kemeny distance and KR

Kemeny's choice of a distance makes precise the sense that, say, a1 � a2 � a3

is closer to a2 � a1 � a3 than to a2 � a3 � a1. He does this by decomposing
rankings into component pairs and counting the di¨erences.
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Ranking fa1; a2g fa1; a3g fa2; a3g
a1 � a2 � a3 a1 � a2 a1 � a3 a2 � a3

a2 � a1 � a3 a2 � a1� a1 � a3 a2 � a3

a2 � a3 � a1 a2 � a1� a3 � a1� a2 � a3

(2.2)

The sole di¨erence between the ®rst and second rows (denoted by a �) de®nes
the Kemeny measure of unity for the ®rst two rankings. Similarly, the two
di¨erences between the ®rst and third rows de®nes the Kemeny measure of
two for this comparison.

De®nition 1. Let Pt and Pu be two linear orderings. The Kemeny distance be-

tween these orderings, denoted by d�Pt;Pu�, is the number of pairs faj; akg
where their relative ranking in the Pt and Pu orderings di¨er.

The distance between orderings leads to a natural de®nition for a distance
between a speci®ed ranking and a pro®le. The idea is to sum the distances
between a speci®ed ranking and each voter's ranking in the pro®le.

De®nition 2. Let P be a linear ordering and p � �P1; . . . Pt; . . . ;Pv� be a pro®le

of v voters. The Kemeny's distance between P and p is:

K�p;P� �
Xv

t�1

d�P;Pt�: �2:3�

For a given pro®le p, P is a KR ranking if K�p;P� is a minimum distance over

all linear orders.

Kemeny's notion of the ``closest ranking to a pro®le'' is the ranking(s)
which minimizes the Kemeny distance. (There can be several KR rankings.)
But a formal application of this de®nition requires determining the Kemeny
distance between the given pro®le p and all n! possible rankings of the n

alternatives. This creates the frightening specter of computing n!� n

2

� �
� v

terms to determine the KR ranking; e.g., over one hundred thousand compu-
tations would be needed for just six candidates and 10 voters! Fortunately this
is not necessary; the following computation (which changes the order of
summation) simpli®es the analysis by emphasizing the tallies of each pair of
candidates.

The key observation is that the Kemeny distance between two rankings is
the sum of the Kemeny distances between their pairwise components.
Namely, if the n alternatives are fa1; . . . ; ang and if bi; j�P� is the relative
binary ranking of fai; ajg in P, then

d�Pt;Pu� �
X
i<j

d�bij�Pt�; bij�Pu�� �2:4�

If Ki; j�P; p� �
Pv

u�1 d�bij�P�; bij�Pu�� is the distance between a speci®ed
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fai; ajg binary ranking and the relative ranking of this pair in pro®le p, then

K�P; p� �
X
i<j

Kij�P; p� �2:5�

To illustrate Eq. 2.5 with the pro®le p from Eq. 2.1 and P � a1 � a3 � a2,
notice that K1;2�P; p� � K1;2�a1 � a2; b1;2�p�� is the number of voters who
disagree with the a1 � a2 ranking; it is 19ÿ 11 � 8. Indeed,

fa1; a2g K1;2�a1 � a2; p� � 8 K1;2�a2 � a1; p� � 11

fa1; a3g K1;3�a1 � a3; p� � 10 K1;3�a3 � a1; p� � 9

fa2; a3g K2;3�a2 � a3; p� � 5 K2;3�a3 � a2; p� � 14

(2.6)

It now is trivial to compute K�P; p� for any ranking P. For instance,
K�a1 � a2 � a3; p� � K1;2�a1 � a2; p� � K1;3�a1 � a3; p� � K2;3�a2 � a3; p� �
8� 10� 5 � 23 while K�a1 � a3 � a2; p� � 8� 10� 14 � 32. This represen-
tation makes it obvious (for n � 3) that the KR ranking P is the linear order
which a¨ects the smallest number of voters when the election outcomes are
reversed. So, if p creates a three-candidate pairwise cycle, the KR ranking for
p is obtained by reversing the binary outcome with the smallest opposition.
This supports our Eq. 2.1 analysis.

A pro®le generating several KR rankings, then, has several pairs with the
same smallest di¨erence. A ten voter example is

4 a1 � a2 � a3

4 a3 � a1 � a2

2 a2 � a3 � a1

Conclusion a1 � a2; a2 � a3; a3 � a1

(2.7)

with pairwise tallies of 8 : 2, 6 : 4, 6 : 4 and KR outcome fa1 � a2 � a3; a3 �
a1 � a2g. Notice how a3 is bottom ranked in one KR ranking but top ranked
in the other; this proves that KR can violate the natural continuity assump-
tion where small changes in a pro®le translate into small changes in the soci-
etal outcome. Indeed, by multiplying each number in Eq. 2.7 by a hundred we
generate a pro®le where if just one of the thousand voters changes to one of
the other two types, the resulting unique KR ranking ¯ips a3 into being either
bottom or top ranked. As explained in Sect. 3, this troubling but typical KR
instability is related to our assertion that KR vitiates the important assump-
tion of individual rationality.

2.2 Orthogonal and representation cubes

Complicating the analysis of KR and any procedure based on pairwise com-
parisons is the need to know all possible pairwise election outcomes. This
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problem is solved with the representation cube, RCn, introduced in (Saari [17,
18]). (See these references for motivation and details not provided here.) The
cube uses the di¨erences between election outcomes as represented in fractions
where if ti; j is ai's tally in a fai; ajg pairwise vote with v voters, then ai's nor-
malized di¨erence in tally over aj is

xi; j � ti; j ÿ tj; i

v
�2:8�

Because xi; j � ÿxj; i, the values xi; j > 0 and xi; j < 0 mean, respectively, that ai

and aj wins. The extremes of the xi; j restrictions, ÿ1U xi; j U 1 where xi; j �
ÿ1; 0; 1, represent, respectively, where ai does not receive a single vote, is tied,
and wins unanimously when compared with aj. The Eq. 2.1 pro®le yields

x1;2 � �11ÿ 8�
19

� 3

19
; x2;3 � �14ÿ 5�

19
� 9

19
; x3;1 � 10ÿ 9

19
� 1

19
.

To examine and compare pairwise outcomes, assign each pair of candi-
dates a R

n
2� � axis; the positive direction on the xi; j axis designates ai as the

winner for positive xi; j values. As each xi; j is in the �ÿ1; 1� segment of the

assigned axis, all possible outcomes are in a
n

2

� �
-dimensional cube called the

orthogonal cube. The indi¨erence planes, where xi; j � 0, require ai and aj to be
tied. This construction is illustrated with the three-candidate orthogonal cube
of Fig. 1a where the x; y; z positive axes represent, respectively, x1;2; x2;3; x3;1;

the cyclic outcome of the Eq. 2.1 pro®le is the point q3 �
3

19
;

9

19
;

1

19

� �
in the

positive orthant.
The unanimity vertices are the n! vertices de®ned by unanimity pro®les. But

the orthogonal cube has 2
n
2� � vertices, so 2

n
2� � ÿ n! vertices remain; they de®ne

non-transitive pairwise rankings. They cannot be identi®ed with a pro®le; if
they could, all voters would have the vertex's irrational preferences. To indi-

a b

Fig. 1a,b. Three candidate pairwise outcomes. a Representation cube; b Transitive
plane
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cate how fast these ``irrational ranking'' vertices propagate,1 for n � 3 there
are two of them, for n � 4 there are 40, and for n � 5 there are 904. As a
computation proves, once nV 4 the unanimity vertices are in the distinct
minority. To illustrate with n � 3 (see Fig. 1a), if everyone prefers a1 � a2 �
a3, the resulting unanimity pairwise outcomes x1;2 � x2;3 � ÿx3;1 � 1 de®ne
the cube vertex �1; 1;ÿ1�. Vertex �1; 1; 1� is not a unanimity vertex because
it would require all voters to have the cyclic preferences a1 � a2; a2 � a3,
a3 � a1.

By using the normalized pro®le p � �p1; . . . ; pn!�, where pj speci®es the
fraction of all voters with the jth ranking, j � 1; . . . ; n!, we obtain a geometric
representation of pairwise elections. Namely, multiply the vector representing
the unanimity vertex of the jth ranking by pj, j � 1; . . . ; n!. The election out-
come qn is the vector sum of these weighted vectors. Illustrating with the Eq.
2.1 pro®le, we have

q3 �
6

19
�1; 1;ÿ1� � 3

19
�ÿ1; 1;ÿ1� � 5

19
�ÿ1; 1; 1� � 5

19
�1;ÿ1; 1�

� 3

19
;

9

19
;

1

19

� �
:

Obviously, qn cannot be in certain regions of the orthogonal cube; e.g., for
n � 3, the outcome cannot be close to the cyclic vertex �1; 1; 1�. By removing
the regions of forbidden election outcomes, we obtain the representation cube
RCn ± the set of all possible pairwise election outcomes. This region is the
convex hull of the unanimity vertices of the orthogonal cube. The importance
of RCn is that all rational points (i.e., those points where all components are
fractions) represent a normalized pairwise election outcome. Conversely all
pairwise election outcomes de®ne a rational point. (See [17, 18].) This provides
a geometric characterization of all possible pairwise outcomes.

To illustrate what we learn from this geometry, because RCn intersects

the interior of each of the R
n
2� � orthants (a proof is in [18]), the pairwise vote

admits all possible rankings of the pairs. This includes all cycles with and
without ties, all conceivable non-transitive rankings, etc. Similarly, the geom-
etry suggests (and it is not di½cult to prove) that the ratio of volume of the
transitive regions to the volume of RCn rapidly approaches zero as n!y.
Namely, quickly it becomes unlikely for an arbitrarily chosen pairwise out-
come to be transitive. This explains the importance of procedures such as the
KR.

The RC3 cube is in Fig. 1a. The dashed outline is the orthogonal cube, the
shaded region is RC3, and the numbers labeling the six unanimity vertices
identify the ranking types in the following table.

1 This turns out to be the geometric source of pairwise voting problems.

A geometric examination of Kemeny's rule 409



Type Ranking Type Ranking

1 a1 � a2 � a3 4 a3 � a2 � a1

2 a1 � a3 � a2 5 a2 � a3 � a1

3 a3 � a1 � a2 6 a2 � a1 � a3

(2.9)

The missing vertices, �1; 1; 1� and �ÿ1;ÿ1;ÿ1�, correspond, respectively,
to the ``unanimity cyclic pro®les'' fa1 � a2; a2 � a3;� a3 � a1g and fa2 � a1;
a3 � a2; a1 � a3g. Incidentally, by associating each Eq. 2.9 type number with
its given value and with its sum with 6 (so, 7 is identi®ed with 1, etc.), the
Kemeny distance between two rankings is the minimum di¨erence between
voter types with either representation. For instance, d�a2 � a3 � a1; a3 � a1 �
a2� compares types 5 and 3 rankings, so the Kemeny distance is j5ÿ 3j � 2.
Similarly, d�a2 � a1 � a3; a1 � a2 � a3� compares a type 6 with a type 1 or 7
ranking, so the Kemeny distance is min(j1ÿ 6j; j7ÿ 6j� � 1.

2.3 KR geometry

Each of the 2
n
2� � orthants of the orthogonal cube is identi®ed by its vertex; the

ranking associated with this vertex de®nes the pairwise rankings of an election
outcome qn in this orthant. If qn de®nes a ranking with tie votes, its ``ranking
region'' is part of indi¨erence planes. For instance, the center of the orthogo-
nal cube is the point of complete indi¨erence a1 @ a2 @ � � � @ an while the
portion of the indi¨erence plane separating the a1 � a2 � a3 and the cyclic
a1 � a2; a2 � a3; a3 � a1 orthants is the a1 � a2; a2 � a3; a1 @ a3 region. By
using this geometry, the KR ranking admits a representation in terms of the l1
metric denoted by k ÿ k1. This is where distances are determined by summing
the magnitudes of the components; e.g., k�2;ÿ3; 4�k1 � 2� j ÿ 3j � 4 � 9.2

Theorem 1. The KR ranking assigned to a pro®le p is the ranking of the transi-

tive ranking region which has the closest l1 distance to the outcome qn.

Theorem 1 tells us that any qn equal l1 distance from several di¨erent
``closest'' transitive ranking regions de®nes several di¨erent KR rankings. If
qn has rational components, the RCn properties ensure a supporting pro®le.

For instance, because q3 �
1

3
;
1

3
;
1

3

� �
is equal distance from

3

2

� �
� 3 transi-

tive ranking regions, these three rankings form the KR outcome. The rational
components ensure that q3 is supported by a pro®le; one choice is the three-
voter Condorcet pro®le a1 � a2 � a3; a2 � a3 � a1; a3 � a1 � a2. (The three
KR rankings for q3 are the three rankings from the Condorcet pro®le.) An

2 For intuition, the l1 distance between two points in a plane can be thought of as the
shortest walking distance between them subject to the constraint that we can only walk
in East-West and/or North-South directions. The usual Euclidean, or l2 distance is the
distance between these points with no constraint.
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n-candidate example with n di¨erent KR rankings for a pro®le is designed in
the same way. The four-candidate example in Eq. 4.4 can be similarly modi-
®ed to require ®ve di¨erent KR rankings for one pro®le. The Eq. 2.7 pro®le
was designed so that q3 is equal distance from two indi¨erence surfaces. The
emerging peculiarity that the multiple KR outcomes involve portions of
Condorcet k-tuples is no coincidence. As explained in Sects. 3 and 4.1, this
phenomenon causes many of the fundamental KR properties.

An important consequence of Thm. 1 is the implicit assertion that the KR
rankings and properties are uniquely determined by the geometry of RCn as
determined by the l1 distance. This connection leads to the following conve-
nient way to envision the KR.

. When qn is in a transitive ranking region, that ranking is the KR ranking.

Otherwise, treat qn as the center of a cube, called the KR cube, oriented so
that its diagonals are parallel to the coordinate axes. Increase the size of the

KR cube until it ®rst touches the boundary of a transitive ranking region at

point qKR. The transitive ranking associated with this region de®nes the KR

ranking; qKR is called the KR point. (The boundary of a transitive ranking
region involves either an indi¨erence plane, or the intersection of indi¨er-
ence planes.)

The geometry associated with this description leads to the following geometric
property which, as shown in Sect. 4, is responsible for the remarkable KR
consistency properties.

Proposition 1. Point qKR can be chosen so that the line de®ned by qn and qKR is

orthogonal to a boundary component of the qKR ranking region. For a KR out-

come with s rankings (and s di¨erent KR points), this assertion holds for each

of the s vectors.

To illustrate with the Eq. 2.1 pro®le, q3 �
3

19
;

9

19
;

1

19

� �
is the center of the

KR cube. As the diagonals of the KR cube are parallel to a coordinate axis,

the smallest
1

19
distance determines that the cube vertex in this direction ®rst

hits the boundary of a transitive ranking region. Indeed, it hits the x3;1 � 0

plane at the KR point qKR �
3

19
;

9

19
; 0

� �
. The vector �q3 ÿ qKR� is orthogo-

nal to the indi¨erence plane x1;3 � 0.3
A more interesting ®ve-candidate example is where q5 allows a1 to beat all

other candidates and x2;3; x3;4; x4;5; x5;2; x4;2; x5;3 have positive values where
the two smallest are x5;3 < x2;3. (As q5 is in RC5, there are supporting pro-
®les.) Notice that q5 de®nes the three cycles a2 � a3 � a4 � a5 � a2; a2 � a3 �

3 While kqn ÿ qKRk1 is not the Kemeny distance, it can be related to the Kemeny
distance.
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a4 � a2; a3 � a4 � a5 � a3 and that the associated KR ranking is a1 � a3 �
a4 � a5 � a2 generated by reversing the rankings of the two pairs with the
smallest sum of di¨erences in the vote tallies. To describe the geometry of the
growing KR cube for q5 (see Fig. 2), notice that the KR cube ®rst cuts across
the x3;5 � 0 indi¨erence plane (because x5;3 has the smallest value) and then
the x2;3 � 0 plane. Although portions of the KR cube are in the a3 � a5 and
the a3 � a2 ranking regions, no ranking represented by points on the KR cube
is transitive because no point on the KR cube simultaneously satis®es both

conditions. Thus the KR cube continues to grow until it ®nally touches the
boundary of the region that satis®es both conditions. As indicated by Fig. 2,
this point of contact is where the x3;5 � 0; x2;3 � 0 planes intersect. Therefore,
qKR is in this intersection, and qn ÿ qKR is the sum of scalar multiples of two
vectors orthogonal to the two indi¨erence surfaces.

To illustrate the qualifying Proposition 1 comment that qKR can have the
orthogonality property, add three candidates to this example which de®ne a
top-cycle a7 � a8; a8 � a6; a6 � a7 cycle where x6;7 > 0 is much smaller than
x5;3. This condition ensures that the KR cube ®rst crosses the x6;7 � 0 axis to
straighten out the new cycle; the point of intersection is where the expanding
cube ®rst hits the vertical axis of the region on the right in Fig. 2. However,
the KR cube continues to grow until the alternatives in the ®gure on the left
are reversed. Thus, the qKR components for the new candidates can be any
point on the dashed line in the upper left-hand quadrant; the actual choice is
as given. This point is de®ned by extending the line from q8 through where the
KR cube ®rst hits the vertical axis until it ®nally intersects the KR cube.4

Incidentally, the l1 distance in Thm. 1 cannot be replaced with the usual
Euclidean distance. This is because the di¨erent ``distances'' can generate

4 A more useful de®nition (Sect. 4.4) places a KR cube in each ``layer'' where di¨erent
qKR components de®ne disjoint cycles. Here, the qKR components are where each KR
cube hits the boundary of a transitivity region.

Fig. 2. Finding KR outcomes
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con¯icting election outcomes; e.g., all points equal l1 distance from a reference
point q form a box or cube (the source of the ``expanding'' KR cube) while all
points equal Euclidean distance from q form a sphere. By choosing points in
the obvious overlaps caused by a circle and square, pro®les can be found with
con¯icting outcomes.

2.4 BC and CM geometry

Important to our discussions are KR comparisons with the Borda Count
(Borda [2]) and Copeland Method (Copeland [4]). For transitive preferences,

(as known) the BC tally is equivalent to summing each candidate's pairwise
tallies. With the Eq. 2.1 pro®le, the a1; a2; a3 respective BC tallies are 11� 9 �
20, 8� 14 � 22, 10� 5 � 15 de®ning the BC ranking of a2 � a1 � a3. Simi-
larly, the BC ranking for the Eq. 2.7 pro®le is a1 � a3 � a2 with tally
12 : 10 : 8. Both pro®les, then, exhibit disagreement between the BC and KR
rankings.

The CM di¨ers from the BC in that the tally of a pairwise election is
replaced by assigning the winner and loser, respectively, 1 and ÿ1 points; with
a tie vote, both candidates receive zero points. A candidate's ®nal ranking is
determined by the sum of points she receives. With the Eqs. 2.1, 2.7 pro®les,
each candidate wins and loses one election forcing both CM rankings to be
a1 @ a2 @ a3. Thus the introductory pro®les have con¯icting KR, BC, and
CM election outcomes.

To compare KR, BC, and CM outcomes (and explain all con¯ict), we use
the geometric representation for the BC and CM developed in (Saari [20]).
This description uses the transitivity plane of the orthogonal cube where the
tallies satisfy a demanding condition similar to that required of the points
p1; p2; . . . ; pn along a line; i.e., �p1 ÿ p2� � �p2 ÿ p3� � � � � � �pnÿ1 ÿ pn� �
p1 ÿ pn. Namely, the ``transitivity plane'' goes beyond the usual ``ordinal
transitivity'' requirement to impose the ``additive transitivity'' condition where
the sum of di¨erences among the pairwise tallies of any k V 3-tuple deter-
mines the missing tally. The three-candidate transitivity plane x1;2 � x2;3�
x3;1 � 0, represented in Fig. 1b, requires the tallies of any two pairwise elec-
tions to uniquely determine the tally for the remaining election; e.g., if x1;2 �
1
2 ; x2;3 � ÿ 1

6, then x1;3 � x1;2 � x2;3 � 1
3. In general, the transitivity plane for n

candidates is the �nÿ 1� dimensional plane passing through the origin and

spanned by RCn vectors where candidate aj unanimously beats all other candi-

dates while all remaining pairwise elections are ties; j � 1; . . . ; n. (See [20].)
The BC and CM geometry follows.

Theorem 2. (Saari, [20]) If qn is in the transitivity plane, then its ranking is the

BC and CM outcomes. If qn is not in the transitivity plane, the BC ranking is
that of the closest point (in Euclidean distance) in the transitivity plane. Denote

this point by qBC . The BC tally obtained from qBC , where aj's tally is the sum of

votes she receives in all pairwise elections, equals the standard BC tally after

each tally is multiplied by the same positive scalar and a ®xed number of votes

are given to each candidate.
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To ®nd the CM ranking, replace all non-zero values of qn with the nearest of
1 or ÿ1; let q�CM denote the resulting point. (With no pairwise ties, q�CM is the

nearest orthogonal cube vertex.) The CM ranking for qn is that of the closest

point (in Euclidean distance) in the transitivity plane to q�CM; denote this point

by qCM .

This result is not obvious. It asserts that all RCn points can be described in
terms of components in the transitivity plane and orthogonal directions. For
n � 3 this becomes

q3 � qT � t�1; 1; 1� �2:10�
where qT is the transitivity plane component and �1; 1; 1� is the orthogonal,
cyclic direction. (Scalar t can have positive or negative values.) The �1; 1; 1�
term of Eq. 2.10 is the ``cyclic axis'' direction of Fig. 1b where the pairwise
tallies in the cycle agree.

The important fact (see Sect. 3) is that the component orthogonal to the
transitivity plane is the sum of terms which involve cycles among the candi-
dates. In particular, the victory di¨erence for each pair in each cycle from
each term is identical. So, when a candidate's tallies over these terms are
added, they cancel. But because a candidate's BC and CM scores are the sums
of her tallies over all opponents, these terms just add a ®xed value to each
candidate's tally. As only the transitivity component remains, this supports
the conclusion.

2.4.1 Geometric comparisons
Theorems 1, 2 provide a uni®ed way to envision the BC, KR, and CM rank-
ings relative to the transitivity plane. If qn is in the transitivity plane, all three
procedures agree. If qn is in a transitive ranking region, that is the KR and
CM outcome. If qn is not in a transitive ranking region, then, as described,
®nd the KR ranking by increasing the size of the KR cube centered at qn until
it touches a transitive ranking region. This KR point of contact is not in the
transitivity plane. (This plane is in the interior of the regions de®ning transi-
tive rankings.)

As the BC uses the Euclidean, rather than the l1 distance, all points equal
distance from qn are on a BC sphere, or balloon, centered at qn. To ®nd the
BC outcome, blow up the BC balloon (i.e., change the Euclidean distance)
until it ®rst touches the transitivity plane at the Borda point qT � qBC ; the
ranking de®ned by qBC is the BC outcome.5

RC3 (Fig. 1a) allows q3 to be in a transitive ranking region (so the pair-
wise rankings are transitive), but the slant of the transitivity plane forces the
BC sphere to ®rst strike this plane in a di¨erent ranking region. Consequently
the Condorcet and KR outcomes (the q3 ranking) di¨er from the BC ranking.

5 Kendall [8] characterizes the BC (in statistics called the ``Kendall method'') with the
Euclidean distance; about ®fteen years later Farkas and Nitzan [5] rediscovered the
same condition. This is immediate from the geometry.
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This geometry leads to several new results and examples. For instance, to
exhibit a BC and KR con¯ict, just choose q3 in Fig. 1 near the a1 @ a2 (or
x1;2 � 0) boundary of the a1 � a2 � a3 region; the geometry mandates di¨er-
ent BC and KR rankings.

The only CM and BC di¨erence is that the reference point is moved to
q�CM before adjusting the radius of the expanding CM sphere. This translation
permits situations, such as the introductory pro®les, with di¨erent BC and
CM election rankings. More striking settings have q3 in a transitive region
(this is the CM ranking) so close to a boundary that qBC is in a di¨erent
region; this causes con¯icting BC and CM conclusions. For instance, if q3 in
the a1 � a2 � a3 region is near the a1 @ a2 boundary, q�CM is the a1 � a2 � a3

``unanimity vertex'' causing the same CM election outcome. (The translation
of the centers of the CM and BC spheres provides a new geometric explana-
tion for certain CM results in Saari and Merlin [21].)

This geometry requires remarkable agreement for KM and CM three-
candidate rankings. In a transitive ranking region, they agree. In a cyclic
region, KR provides a ranking while CM opts for indi¨erence. But, as
explained in Theorem 8, KR and CM agreement weakens with nV 4
candidates.

Proposition 2. For n � 3 candidates, the only di¨erence between KR and CM

rankings for a pro®le is that the ``�'' rankings can be replaced with ``@.'' The
KR and BC outcomes can di¨er.

As the geometry allows us to identify all q3 with KR±BC con¯icts, we
discover that KR and BC di¨erences occur because KR depends upon com-
ponents in the cyclic direction while the BC ignores them. The signi®cance of
this observation is explained in Sect. 3.

2.4.2 Examples
To illustrate the geometric di¨erences in the KM, BC, and CM outcomes, use

the Eq. 2.1 pro®le de®ning q3 �
3

19
;

9

19
;

1

19

� �
and the a1 � a2; a2 � a3; a3 �

a1 cycle. As described, the KM outcome is a1 � a2 � a3 because the a3 � a1

tally is the closest to a tie. Point qKR on the x3;1 � 0 surface is found by

determining the unique s value for
3

19
;

9

19
;

1

19

� �
ÿ s�0; 0; 1� which makes the

x3;1 component zero; i.e., qKR �
3

19
;

9

19
; 0

� �
.

To de®ne the transitivity plane component of q3 �
3

19
;

9

19
;

1

19

� �
, Eq. 2.10

requires the component sum of q3 ÿ t�1; 1; 1� � 3

19
ÿ t;

9

19
ÿ t;

1

19
ÿ t

� �
to

equal zero (recall, the t�1; 1; 1� term eliminates cycles), so t � 13

57
. Thus the Eq.

2.10 decomposition of q3 has
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qBC � ÿ 4

57
;
14

57
;ÿ 10

57

� �
; the cyclic component is

13

57
�1; 1; 1� �2:11�

As qBC 's ranking is a2 � a1; a2 � a3; a1 � a3, the BC outcome is a2 � a1 � a3.
Finally, the associated CM point is q�CM � �1; 1; 1�; the CM ranking is deter-
mined by mimicking Eq. 2.10 where q�CM replaces q3 to obtain qCM � �0; 0; 0�.

2.5 Comparisons

With geometry, we can identify all KR rankings which di¨er from a ®xed BC
outcome. Start with n � 3 where, without loss of generality, the BC ranking is
a1 � a2 � a3; this is the shaded region of the transitivity plane of Fig. 1b.
According to Eq. 2.10, the di¨erence between a q3 outcome and its qBC point
is a multiple of �1; 1; 1�. Therefore, to ®nd all q3's with a a1 � a2 � a3 BC
outcome, slide a line parallel to the cyclic diagonal �1; 1; 1� along the bound-
ary of the shaded region. (That is, compute all qBC � t�1; 1; 1� outcomes, for
positive and negative t values, as qBC moves along the boundary of the shaded
region.) This collection of lines traces the surface boundary of the set of q3

points with a Borda point in the speci®ed region of the transitivity plane. The
resulting set includes portions of the two cyclic and 1, 2, 6 regions.

In this manner, all q3 values with con¯icting KR±BC outcomes can be found

with elementary algebra. Namely, going beyond comparing pairwise rankings,
we can identify the precise pairwise tallies which cause di¨erent KR and BC
conclusions. By replacing the labels and q3 values with rankings, we obtain the
assertion (Theorem 3) that KR always ranks the BC winner above the BC loser.

As an important aside, notice that a2 is the Condorcet winner in region 6 and
the Condorcet loser in region 2; this provides a n � 3 geometric proof that the
Condorcet winner always is BC strictly ranked above the Condorcet loser.

2.5.1 Fixed KR ranking
Next we determine which BC outcomes accompany a KR ranking of, say,
a1 � a2 � a3. This KR ranking requires q3 to be in the a1 � a2 � a3 ranking
region, or in a portion of the cyclic region in the positive orthant. The cyclic
region portion is where q3 is closest to the a1 � a2 � a3 ranking region, so it is
the shaded region of Fig. 3a where x1;2 > 0; x2;3 > 0; x1;2 > x3;1; x2;3 > x3;1 >
0. (It is the convex hull de®ned by the vertices of the a1 � a2 � a3 ranking
region in RC3 along with the vertex �13 ; 1

3 ;
1
3� de®ned by the Condorcet pro®le.)

To ®nd the associated BC outcomes, slide a line parallel to �1; 1; 1� along the
region's boundary to generate the shaded region in the transitive plane of Fig.
3b; it has all associated BC outcomes. Also, as indicated, we have precise
limits on the associated BC tallies. (The vertices of the triangular regions,
which determine limits on these tallies, are the projections of the two vertices
shared by the a1 � a2 � a3 transitive and the cyclic regions.)

So, if the BC ranking a1 � a2 � a3 is not the KR ranking, then the KR
ranking involves a1 � a3 � a2 and/or a2 � a1 � a3. The Eq. 2.7 pro®le proves
that the KR outcome can include both rankings (but not all three; this is a
simple exercise using KR with RC3). Similarly, it follows from Fig. 3b that
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the a1 � a2 � a3 KR ranking can be accompanied by the BC rankings a1 �
a3 � a2 and a2 � a1 � a3 along with a1 � a2 @ a3 and a1 @ a2 � a3. In par-
ticular, the BC always ranks the KR winner above the KR loser.

2.5.2 Any number of candidates
Similar conclusions hold for any number of candidates. (A proof is in Sect. 5.)
This is because the BC tally is determined by a point qBC in the transitivity
plane, so all possible qn which de®ne qBC are given by

q t
n � qBC � tv �2:12�

where v is any vector orthogonal to the transitivity plane. (Eq. 2.12 is
the natural extension of Eq. 2.10.) Each RCn point has a unique Eq. 2.12

representation.

Proposition 3. (Saari [19]) Suppose qn A RCn can be represented as

qn � qBC � tv � q�BC � t�v�: �2:13�
Then qBC � q�BC and tv � t�v�.

By extending the n � 3 geometric argument to nV 3, similar relationships
among the BC and KR winners and losers are found. But our nV 4 argu-
ments require the more delicate pro®le properties described in Sect. 3. In part,
the argument uses the fact that the KR top and bottom ranked candidates
agree with the Condorcet winner and loser as long as the latter are de®ned.
Thus the BC and KR rankings are related in the same manner as the BC and
Condorcet rankings. As all BC-Condorcet relationships are completely char-
acterized in (Saari, [16]), we know all possible KR rankings that can be asso-
ciated with a BC ranking. This leads to the following two theorems which are
among our main results.

a b

Fig. 3a,b. Comparing the BC and KR outcomes. a The a1 � a2 � a3 KR region;
b The associated BC outcomes
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Theorem 3. For nV 3 candidates, the BC always ranks the KR top-ranked
candidate strictly above the KR bottom-ranked candidate. Conversely, the KR

ranks the BC top-ranked candidate strictly above the BC bottom-ranked candi-

date. There are no other restrictions between the KR and BC rankings.

When the Condorcet winner and loser are de®ned, they are, respectively, KR

top and bottom ranked. However, the BC only ensures that the Condorcet

winner is BC strictly ranked above the Condorcet loser.

These results signi®cantly extend what was previously known. For exam-
ple, the nice Le Breton and Truchon [10] paper only establishes that a
Kemeny winner (loser) is not the BC loser (winner). So, Theorem 3 extends
their results beyond ``bottom'' and ``top'' ranks to capture all possible restric-

tions; Theorem 3 also provides the ®rst converse results. Moreover, Theorem 3
holds even with cyclic and other non-transitive rankings.

As the BC is a positional voting method (where a voter's ballot is tallied by
assigning a speci®ed number of points to his jth ranked candidate, j � 1; . . . ;
n; e.g., the plurality vote is where one point is assigned to the top-ranked
candidate and zero to all others), it is natural to wonder whether the KR has a
similar relationship with other positional methods.

Theorem 4. For nV 3 candidates and any positional method other than the BC,

there is no relationship between the KR and the positional rankings. Thus, for

any two rankings of the n candidates, there exists a qn so that the KR and

positional outcomes are, respectively, the ®rst and the second ranking.

We are unaware of any previous KR comparisons of this type.

3 Pro®le decomposition

The RCn geometry proves that arguments favoring either the BC or KR must
justify one projection over the other. Namely, we need to determine whether
and why we should ®nd the closest transitive ranking region, or the closest
transitivity plane region. As the answers (and the proof of Theorems 3, 4)
intimately depend upon results from (Saari [19, 20]), portions of these con-
clusions required for our current needs are described.

3.1 Pro®le di¨erentials

The pro®le decomposition of (Saari [19, 20]) describes all pro®les in terms of
``basis pro®les.'' Each class is de®ned by their e¨ect on elections outcomes of
speci®ed subsets of candidates with speci®ed procedures. The decomposition
uses pro®le di¨erentials which can be thought of as the di¨erence between two
pro®les with the same number of people. (So, some voter types have a nega-
tive number of voters.)

De®nition 3. A pro®le di¨erential is where there can be a positive, negative, or

zero number of voters of each type. The only restriction is that the sum of all

voters equals zero.
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For procedures using only pairwise votes, such as CM, BC, and KR, the
pro®le decomposition involves only two kinds of pro®le di¨erentials. The
Basic pro®les require the outcomes of all positional methods and pairwise
outcomes to agree on the set of all candidates and on all possible subsets.
Moreover, with an appropriate normalization of the tallying procedures, even
the tallies agree! As no con¯ict of any kind can occur with Basic pro®les, all
con¯ict which has motivated choice theory is caused by pro®le components
orthogonal to the space of Basic pro®les.

We need (for pairwise voting) the Condorcet pro®le di¨erentials. Start with
a ranking r of the n candidates, say r � a1 � a2 � � � � � an and create the
associated Condorcet n-tuple. To do so, mark, in evenly spaced intervals, the
numbers from 1 to n around the edge of a disk. Attach this movable disk to a
®xed surface, and mark on the surface a candidate's name next to the number
identifying her ranking in r. Rotate the ``ranking disk'' so that number 1 is
under the next candidate; the new numbering provides a second ranking.
Continue until n di¨erent rankings are de®ned; this is the Condorcet n-tuple

de®ned by ranking r. If r is a ranking of n candidates, let r�r� be the reversed
ranking; e.g., if r � a1 � a2 � a3 � a4, then r�r� � a4 � a3 � a2 � a1.

De®nition 4. A Condorcet pro®le di¨erential de®ned by strict ranking r,
denoted by Cn

r , is where there is one voter for each ranking in the associated

Condorcet n-tuple, and ÿ1 voters assigned to each ranking in the associated

Condorcet n-tuple de®ned by r�r�.
The aj Basic pro®le di¨erential, Bn

aj
, j � 1; . . . ; n, is where one voter is

assigned to each of the �nÿ 1�! rankings where aj is top ranked, and ÿ1 voters

are assigned to each of the �nÿ 1�! rankings where aj is bottom-ranked.

Each of the n! possible rankings is in precisely one Condorcet pro®le dif-

ferential and each di¨erential has 2n rankings, so there are
n!

2n
� 1

2
�nÿ 1�!

Condorcet pro®le di¨erentials. The only Condorcet di¨erential for n � 3 is
de®ned by r � a1 � a2 � a3.

To use these pro®le di¨erentials, add appropriate multiples to achieve a
desired election outcome. Convert the resulting di¨erential into a pro®le by
adding a ``neutral'' pro®le (i.e., the pro®le with an equal number of voters of
each type) to ensure a non-negative number of voters of each type. The role of
these pro®le di¨erentials is explained next.

Theorem 5. (Saari [20]) All pairwise election outcomes are determined only by

the Basic and Condorcet pro®le di¨erentials. The e¨ects of all remaining por-

tions of a pro®le is to add an equal number of points to each candidate's tally in

each pair; they do not, in any manner, in¯uence the di¨erence between the tallies
of any two candidates. The vectors de®ned by the point tallies of a Basic pro®le

and of a Condorcet portion are orthogonal in RCn.
The Condorcet portion of a pro®le has no e¨ect on the positional tallies of all

n-candidates. For all positional methods, the tally of a Basic pro®le agrees with

the pairwise ranking.
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To illustrate with �3B3
a1
� B3

a3
� � 8C3

a1�a2�a3
, only the bracketed Basic term

a¨ects the BC and positional outcomes where its a1 � a3 � a2 conclusion
re¯ects the relative magnitudes of the two scalars. The C3 Condorcet portion,
however, adds a strong pairwise cyclic e¨ect changing the original transitive
a1 � a3; a1 � a2; a3 � a2 outcome of the Basic portion into the a1 � a2; a2 �
a3; a3 � a1 cycle. For all nV 3, all possible cycles and other non-transitive
pairwise rankings are completely due to the Condorcet portion of a pro®le.

Theorem 5 provides a simpler way to analyze any and all procedures based
on pairwise voting for any number of candidates. This is because we only need
to analyze the procedure with the Basic and Condorcet pro®le di¨erentials.
(Theorem 5 ensures that no other part of a pro®le matters.) Also, Theorem 5
states that although the Condorcet portion a¨ects pairwise rankings, it has no
e¨ect on positional rankings of the n candidates. This assertion ®ngers the
Condorcet portion as being completely responsible for causing the pairwise
rankings to di¨er from positional outcomes. (Other pro®le components fur-
ther distort the positional outcomes.) In turn, the Condorcet portion of a
pro®le can cause the KR outcome to deviate from positional outcomes for the
same pro®le.

3.2 Geometry of pro®le di¨erentials

To compare the BC and KR, we must interpret how they are e¨ected by the
two pro®le di¨erentials. We start with a geometric interpretation.

Proposition 4. (Saari [20]) The Basic pro®le uniquely determines the qn com-

ponent in the transitivity plane. The Condorcet pro®le di¨erential uniquely

determines the v term from Eqs. 2.10, 2.12.

3.2.1 Basic pro®le
As a pro®le's Condorcet portion has no e¨ect upon the BC outcome (Theo-
rem 5) and the Basic portion de®nes transitivity plane entries (Proposition 4),
it follows that qBC determines the BC ranking and a scaled version of the BC
tally. To compute aj's BC tally from qBC , add the points she receives in each
pairwise election. With the Eq. 2.11 example, the a1; a2; a3 BC tally from qBC

is bc3 � 6

57
;
18

57
;ÿ 24

57

� �
. As all remaining portions of a pro®le add a ®xed

value to each candidate's BC tally (Thm. 5), there are scalars a; b so that
abc3 � b�1; 1; 1� � �20; 22; 15� where �20; 22; 15� is the BC tally from Eq. 2.1.

Indeed, a � 57

6
; b � 19. This argument adds support for the BC sphere and

qBC characterization of the BC.
The BC and KR geometry prove that the BC depends upon the Basic

pro®les while ignoring all Condorcet e¨ects, but the KR outcome critically
depends upon both the Basic and the Condorcet portions of a pro®le. There-
fore, comparisons of these procedures depend upon the e¨ects of each pro®le
di¨erential. To start, the Basic pro®les form the highly idealized setting where
di¨erences between tallies of pairwise elections satisfy an ordinal and additive
transitivity condition. Moreover, the Basic pro®les force agreement among all

420 D. G. Saari, V. R. Merlin



procedures (Theorem 5). Thus, it remains to explain the e¨ects of the Con-
dorcet portion. As this portion causes all non-transitive behavior, we must
expect unfavorable conclusions.

3.2.2 Condorcet portion
Proposition 4 asserts that the Condorcet portion of a pro®le is identi®ed with
the v term from Eqs. 2.10, 2.12. That we should anticipate negative inter-
pretations of the Condorcet portion comes from the fact that no candidate has
an advantage over another in a Condorcet n-tuple because, by its ranking disk
construction, each is in ®rst, second, . . . , last place precisely once. Moreover,
for a Condorcet pro®le di¨erential, the sum of votes received by a candidate
against her opponents is zero ([20]). When accompanied by the usual neutral-
ity and anonymity conditions, it is di½cult to argue for a societal ranking
other than a complete tie. But, the pairwise voting outcome is a cycle.

These cycles occur because the pairwise vote cannot distinguish the Con-
dorcet pro®le (of transitive preferences) from ballots cast by irrational voters
with cyclic preferences (Saari [18, 19, 20]). In other words, using the pairwise
vote with a Condorcet pro®le di¨erential has the e¨ect of dismissing, for all
practical purposes, the crucial assumption that the voters are rational. Instead,
as shown in these references, the pairwise vote treats the Condorcet n-tuple
generated by a1 � a2 � � � � � an as though the votes are cast by non-existent,
irrational voters where �nÿ 1� of them have the cyclic preferences a1 �
a2; . . . ; anÿ1 � an; an � a1 while one voter has the reversed cyclic preferences.
Adding support to these assertions is Eq. 2.10 where the t�1; 1; 1� term admits
the interpretation that t measures the number of cyclic voters with a1 � a2;
a2 � a3; a3 � a1 beliefs. Equation 2.12 continues this theme because the v term
can be viewed as the sum of di¨erent kinds of cyclic voters. (The anonymity of
the pairwise vote prohibits it from distinguishing between the Condorcet pro-
®le and the cyclic irrational one.) This is a serious indictment.

As the Condorcet pro®le di¨erentials cause all pairwise vote tallies o¨ of
the transitivity plane, it follows that KR, the Condorcet winner, and any other
pairwise procedure with outcomes based on components o¨ of the transitivity
plane are subject to the criticism that their conclusions are biased because
these procedures dismiss the assumption of individual rationality. Even
stronger, it can be argued that these procedures misinterpret certain voters'
preferences as coming from a phantom group of irrational voters with cyclic
preferences. So, any justi®cation for using these procedures must justify the
procedure's implicit dismissal of individual rationality.

3.2.3 Finding decompositions
The following matrix (Saari [19]) provides a quick way to ®nd the Basic and
Condorcet portions of a three-candidate pro®le.

T � � 1

6

2 1 ÿ1 ÿ2 ÿ1 1

1 ÿ1 ÿ2 ÿ1 1 2

1 ÿ1 1 ÿ1 1 ÿ1

1 1 1 1 1 1

0BBB@
1CCCA �3:1�
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If the jth component of pro®le p is the number of voters with the jth prefer-
ence of Eq. 2.9, then the T ��pT � components (pT is the column vector repre-

sentation of p) are, respectively, the B3
a1
;B3

a2
;C3;K3 � �1; 1; . . . ; 1� coe½cients.

The B3
a3

coe½cient comes from the relationship B3
a1
� B3

a2
� B3

a3
� 0 and the

requirement that all coe½cients are non-negative. For instance, the Eq. 2.1
pro®le has the Eq. 2.9 representation p1 � �6; 0; 5; 0; 5; 3�, so its pairwise
components are

5

6
B3

a1
� 7

6
B3

a2

� �
� 13

6
C3 � 19

6
K3:

The Basic pro®le term in the brackets de®nes the qBC point in the transitivity
plane while the dominant Condorcet portion explains both why q3 is far from
the transitivity plane and forces KR and BC di¨erences. (This dominant
portion of the pro®le dismisses the assumption of rationality of the voters.)
Similarly, dominating the Eq. 2.9 pro®le p2 � �4; 0; 4; 0; 2; 0� decomposition

1

3
B3

a1
ÿ 1

3
B3

a2

� �
� 5

3
C3 � 5

3
K3 � 2

3
B3

a1
� 1

3
B3

a3

� �
� 5

3
C3 � 5

3
K3

is the Condorcet di¨erential forcing di¨erent KR and BC conclusions.
The important point is that all methods which use components o¨ of the

transitivity plane, such as KR and Condorcet winner, are subject to the criticism

that their outcomes and properties partially re¯ect the procedure's tendency to

ignore the rationality of the voters. These procedures replace transitive prefer-
ences with those of phantom cyclic voters.

4 The Kemeny dictionary

To describe how KR rankings vary as candidates are added and/or dropped
from contention, we use the concept of a word introduced in (Saari [15, 16]).
The KR word for pro®le p lists p's KR ranking for each subset of candidates.
The KR dictionary for n candidates, Dn�KR�, is the set of KR words for all
possible pro®les. The KR word for the Eq. 2.1 pro®le is

�a1 � a2; a2 � a3; a3 � a1; a1 � a2 � a3� A D3�KR�;
while that for Eq. 2.7 is

�a1 � a2; a2 � a3; a3 � a1; fa1 � a2 � a3; a3 � a1 � a2g� A D3�KR�:
In this section, we show how geometry dictates the admissible KR words and
properties. This assertion means that geometric explanations exist for known
KR results such as the following one due to Young and Levenglick.

Proposition 5. (Young and Levenglick [26]) If xi; j > 0, then aj cannot be

ranked just above ai in a KR social order.

Certain of our results can be obtained by careful, repeated use of Proposi-
tion 5. Insight (which can be converted into a proof ) into its geometry comes
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from Eq. 2.12 and the pro®le decomposition. For example, a pro®le with only
a Basic portion has transitive pairwise rankings so xi; j > 0 requires ai to be
ranked above aj; Proposition 5 is trivially satis®ed. Non-transitive pairwise
rankings arise only when the Condorcet term v is dominant. If xi; j > 0 is not a
reversed value, then ai is ranked above aj . Otherwise, a direct computation of
a Condorcet di¨erential of k candidates proves that i) there are no more than
a choices of j where xi; j > 0 and a choices where xi; j < 0 where a is the ®rst
integer less than k=2, and ii) the KR ranking reverses rankings involving
a candidates. But if xi; j > 0 is a reversed term, then aj is ranked at least a
candidates above ai in the KR ranking. This agrees with the proposition. A
proof analyzes pro®les with Basic and Condorcet terms.

4.1 Change to nontransitive rankings

As Proposition 5 suggests, con¯ict in rankings in a KR word requires the
Condorcet portion of a pro®le to disrupt the transitivity of the pairwise rank-
ings. We illustrate this con¯ict with computational and geometric approaches
where r � A � B � C � D de®nes the Condorcet di¨erential C4

r of the pro®le

p � aB4
A � bB4

B � cB4
C � gC4

r ; a > b > c > 0: �4:1�
When g � 0, the pairwise, BC, and all positional methods share the A � B �
C � D ranking. As Thm. 5 ensures, this is the BC and positional ranking for
all g values. It remains to understand how g changes the pairwise and KR
rankings.

A direct computation shows that a pairwise tally from the Basic portion is
six times the di¨erence between the appropriate coe½cients; e.g., for an fA;Bg
election, A and B receive, respectively, 6�aÿ b� and 6�bÿ a� points. Similarly,
for the Condorcet di¨erential portion, the ®rst and second listed candidate for
the pairs fA;Bg; fB;Cg; fC;Dg; fD;Ag receive, respectively, 2g and ÿ2g
points. The remaining two pairs end in a zero ± zero tie.

As pro®le di¨erentials require the sum of the tallies for each pair to be
zero, only the tally for the ®rst listed candidate from a pair need be stated.
With this convention, the outcomes for the Eq. 4.1 pro®le are:

Pair fA;Bg fA;Cg fA;Dg fB;Cg fB;Dg fC;Dg
Tally 6�aÿ b� � 2g 6�aÿ c� 6aÿ 2g 6�bÿ c� � 2g 6b 6c� 2g

(4.2)

Rankings change at two kinds of turning points: de®ne a ranking turning point

as a g value where a pairwise ranking changes; a KR turning point as a g value
where the pairwise rankings remain the same, but the KR ranking changes.

4.1.1 Positive g values
Positive g values reinforce three pairwise outcomes, leave two untouched, but
weaken the fA;Dg outcome. The only ranking turning point is g � 3a where
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the original A � D outcome is reversed (for g > 3a) to generate the four-cycle
A � B;B � C;C � D;D � A. As the new fA;Dg tally always is the smallest
within the cycle, the KR outcome reverses D � A to its original form.
(Retaining D � A requires reversing the rankings of at least two pairs. But,
for instance, reversing the fD;Cg and fD;Bg rankings a¨ects 6�bÿ c� � 2g�
6b voters which is more than the j6aÿ 2gj � 2gÿ 6a for the fA;Dg change.)
Thus, for all gV 0, the BC and KR rankings agree.

If a candidate is dropped for 0U g < 3a, the three-candidate KR ranking
agrees with the four-candidate KR ranking. For g > 3a, however, this consis-
tency is ensured only if A or D is dropped. (A cycle occurs only if both A and
D are in a set.) Dropping any other candidate introduces a KR turning point;
e.g., if B is dropped, the remaining candidates form a cycle where two tallies
grow in magnitude while the fA;Cg tally remains ®xed. While the D � A tally
is initially the closest to a tie, this tally equals the fA;Cg tally when
j6aÿ 2gj � 2gÿ 6a � 6�aÿ c�. Thus g � 6aÿ 3c is a KR turning point. For
3a < g < 6aÿ 3c, the KR ranking is A � C � D; for g > 6aÿ 3c, the KR
ranking ¯ips A � C, rather than D � A, to create the KR ranking C � D �
A. This change, which moves from one term in a Condorcet triplet to another,
creates con¯ict within the KR word. A similar scenario holds if C is dropped
with the KR turning point of g � 3�a� b�; for g satisfying 3a < g < 3�a� b�,
the three-candidate KR ranking is A � B � D; for g > 3�a� b� it is the con-
¯icting D � A � B. (At g � 3�a� b�, both rankings are KR rankings.)

4.1.2 Negative g values
The g < 0 turning points de®ne more complicated relationship. Here, g < 0
reinforces the A � D conclusion, but erodes the tallies for three pairs. Indeed,
the aÿ b; bÿ c; c values determine the ordering of the pairwise turning points,
which determine when the pairs fA;Bg, fB;Cg, fC;Dg change rankings. As
the ®rst change involves candidates adjacently ranked in the Basic pro®le
outcome, the new rankings are transitive but de®ne a KR ranking that di¨ers
from the BC and Basic outcome. Again, the transitivity of the tallies ensures
that if a candidate is dropped, the KR ranking of the remaining candidates
agrees with their relative position in the KR four-candidate ranking.

As g grows in negative values, a second pair changes ranking. If the pairs
are fA;Bg and fC;Dg (which holds if bÿ c > c; aÿ b), we have a third tran-
sitive ranking of the pairs and a third KR ranking; all three-candidate KR
rankings agree with the four-candidate KR ranking. But, if the reversal
involves a di¨erent set of two pairs, a cycle is created. For instance, if g
reverses A � B and B � C, the three-cycle A � C;C � B;B � A is de®ned
where D is the Condorcet loser.6

A KR turning point occurs when the ®xed fA;Cg tally equals the g
changed tally of the other pairs in the cycle. To be speci®c, if A � B was the

6 If B � C and C � D are reversed, A is the Condorcet winner and the cycle involves
the remaining candidates.
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second ranking to change (at g � 3�bÿ a�), the KR turning point is found by
setting equal the B � A and A � C tallies to obtain j6�aÿ b� � 2gj �
ÿ2g� 6�bÿ a� � 6�aÿ c�, or g � 3�b� c� ÿ 6a. So, the KR ranking is A �
C � B � D for g > 3�b� c� ÿ 6a and C � B � A � D for g < 3�b� c� ÿ 6a.
Whether this KR turning point occurs depends on whether the fC;Dg pair-
wise turning point of 2g � ÿ6c occurs ®rst. Thus, the second KR ranking
requires the coe½cients to satisfy ÿ3c < g < 3�b� c� ÿ 6a.

The analysis of dropping candidates is similar to that of g > 0. If the
Condorcet loser D is dropped, the KR ranking of the three candidates agrees
with their relative positions in whichever KR four-candidate ranking is in ef-
fect. If any other candidate is dropped, the tally not involving g introduces
three-candidate KR turning points. (Dropping A or C leaves the 6b value for
a bifurcation; dropping B leaves 6�aÿ c�.) The new rankings, and the con¯ict
in KR words, is analyzed as above. Once g < ÿ3c, the remaining pair is
reversed creating a four cycle with two accompanying three cycles. The anal-
ysis is essentially that same as given for g > 3a.

4.1.3 Geometry and other examples
We can emphasize the Condorcet term by treating the Basic pro®le as a per-
turbation. To do so, let m � 1=g so that Eq. 4.1 becomes

q4
�;m � C4

r � mB4: �4:3�

For m � 0 (corresponding to g �y), only the Condorcet term remains to de-
®ne the KR outcome fA � B � C � D;B � C � D � A;C � D � A � B;
D � A � B � Cg ± a Condorcet four-tuple. From the geometry, this outcome
occurs because q4

�;0 is equal distance from these four ranking regions. But

m > 0 uses the Basic term to break the tie. As the dominating (l1) aspect is the
largest point di¨erence between the Basic pro®le winner (A) and loser (D),
q4
�;m moves toward the closest transitive ranking region with A � D. Only one

m � 0 outcome has this ranking, so the only possible KR outcome is A �
B � C � D. This is consistent with the earlier analysis.

For negative g values and m � ÿ1=g, the governing equation is

q4
ÿ;m � ÿC4

r � mB4

where m � 0 de®nes the KR outcome fD � C � B � A;C � B � A � D;
B � A � D � C;A � D � C � Bg; this is the reversed Condorcet four-tuple.
Again, when m > 0, the Basic pro®le term pushes q4

ÿ;m away from its central
position toward an outcome favoring A � D. As there are three choices (D �
C � B � A is excluded), other Basic entries in¯uence the exact choice. Again,
this is consistent with the above argument.

To use a di¨erent example, let the Condorcet term be de®ned by r2 � A �
B � D � C. For large positive g2 values, the Condorcet term dominates; it
de®nes the KR outcome fA � B � D � C;C � A � B � D;D � C � A � B;
B � D � C � Ag. Again, the Basic pro®le moves the pairwise outcomes from
its central position from four transitive regions to favor a region where A � D.
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Two choices satisfy the condition; other Basic di¨erences determine the exact
choice.

4.2 Dictionary

The Dn�KR� dictionary of KR words describes everything that simultaneously
happens for all subsets of candidates, so characterizing Dn�KR� determines all
possible changes in the societal ranking as candidates enter and/or leave.
Similarly, as lists of rankings which are not in Dn�KR� are KR paradoxes that

cannot occur, they de®ne KR relationships.
Section 4.1 shows how the Condorcet portion of a pro®le changes KR

words in the dictionary. While small changes in g (i.e., small pro®le changes)
can dramatically alter the KR ranking, notice how the rankings among sub-
sets of candidates remained fairly predictable. To analyze this behavior, we
describe what happens when candidates are dropped. When a candidate
leaves, qnÿ1 is de®ned from the original qn by dropping all coordinates
involving the missing candidate. (This corresponds to our Sect. 4.1 analysis of
ignoring tallies involving a missing candidate.) In geometric terms, the larger
n-candidate orthogonal cube collapses into a lower-dimensional base ± a
�nÿ 1�-candidate orthogonal cube ± by eliminating all axes involving the
missing candidate. This projection is in directions parallel to coordinate axes
(and orthogonal to xj;n � 0 planes). The importance of this observation is that
these same directions are used to orient the KR cube and to determine
(Proposition 1) KR rankings. As such, we must expect, and it is true, that this
directional compatibility causes KR's remarkable consistency properties.

As an immediate observation, suppose that qn is in a transitive ranking
region; i.e., the pairwise rankings are transitive. When a candidate is dropped,
the resulting qnÿ1 also is in a transitive ranking region where the KR rankings
for both sets of candidates are consistent. Thus Dn�KR� contains all words
where the rankings of all subsets agree. This assertion relating the qn and qnÿ1

KR rankings, however, fails to hold for the BC even with transitive pairwise
rankings. The Basic components project as desired, but Condorcet terms can
project in nontrivial ways into the transitivity plane for �nÿ 1� candidates. To
see this, notice for the Condorcet pro®le generated by A � B � C � D that
dropping a candidate, say D, creates a Condorcet triplet de®ned by A � B �
C and one voter with preference A � B � C. This last voter's preferences
changes the three-candidate Basic pro®le and the BC outcome. Consequently,
it is the Condorcet portion of a pro®le which causes the BC outcomes to vary
when dropping candidates.

Proposition 6. Suppose p is a pro®le where the pairwise election outcomes, qn,

de®ne a transitive ranking. This ranking de®nes all KR rankings as candidates

are dropped. However, the BC ranking can change as candidates are dropped.

While Proposition 6 appears to promote KR over the BC, recall from
Sect. 3 that KR buys this consistency by ignoring the rationality of voters. The
assertion blaming the Condorcet portion for all BC di¨erences over subsets
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shows that the BC outcome for subsets can manifest a partial loss of the
assumption of the rationality of voters. Thus we should trust the BC outcome
for all n candidates over its ranking of any subset.7

4.3 Among layers

To extend Proposition 6, we generalize concepts such as the Condorcet
winner, the top-cycle, the Condorcet loser, and the bottom-cycle into ``lay-
ers.'' While similar concepts appear in [26], our description di¨ers with its
emphasis on geometry. To avoid special cases, assume there are no pairwise
ties. (Extensions to pairwise ties are immediate, but wordy.) The layers are
completely determined by the pairwise rankings in a KR word.

De®nition 5. From the strict pairwise rankings de®ned by qn, the ®rst layer, L1,
is the smallest subset of candidates where each candidate in L1 beats all candi-

dates not in L1. By induction, the jth layer, Lj, is the smallest subset of candi-

dates where each candidate in Lj is beaten by all candidates in the earlier layers

L1; . . . ;Ljÿ1 but beats all candidates not in L1; . . . ;Lj.

When qn consists of transitive rankings, it de®nes n layers where each layer
has a single candidate. Similarly, with a Condorcet winner (loser), she is the
only candidate in the top-layer (bottom-layer). As in Sect. 4.1, the top-cycle
where A � B;B � C;C � A, but everyone beats D, de®nes two layers; the ®rst
one consists of the three candidates in the cycle while the second layer is the
Condorcet loser D. More imaginative examples, all justi®ed by RCn, have
several layers where each layer consists of three or more candidates. At the
other extreme, a n-candidate Condorcet pro®le has only a single layer. The
following assertion follows from the fact that belonging to a layer is an
equivalence relationship.

Proposition 7. For any qn de®ning strict pairwise rankings, the set of all candi-

dates is partitioned into the di¨erent layers. There always is at least one layer. If

a layer has more than one candidate, it has at least three candidates.

There are at least three candidates in a layer because transitivity requires a
speci®c sequencing of rankings of each triplet. So, each layer identi®es a subset
of candidates whose rankings KR must replace with transitive rankings inde-
pendent of what KR does with any other set of candidates. This suggests using a
KR cube in each layer subspace to ``straighten out'' these particular rankings.
By using these new rankings instead of the original ones, a transitive ranking
emerges. (So, by treating candidates in a layer as a ``super-candidate,'' the
super-candidates de®ne a transitive ranking. Thus, once each layer has a
transitive ranking, we obtain a n-candidate transitive ranking.) Because the
KR must replace the rankings from each layer with a transitive ranking and

7 See (Saari [20]) for a detailed discussion.
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because any other changes de®nes a new vector of changes, it follows from the
triangle inequality (using the l1 metric) that the resulting n-candidate ranking
is the KR ranking. This is the content of the ®rst part of the following theorem
which includes Proposition 6 as a special case.

The second part of Theorem 6 re¯ects the geometry that dropping a can-
didate is a projection along coordinate axes. Thus, the relationship between
candidates in di¨erent layers is not in¯uenced by the changing KR cubes;
what happens in each layer is disjoint from what happens in other layers. As
dropping aj is a projection, the layers not containing aj and their relationships
remain intact.

Theorem 6. Suppose the strict pairwise rankings of qn de®ne at least two layers.

In the KR rankings of any subset, candidates from Li are strictly ranked above

candidates from Lj , j > i. Moreover, dropping a candidate from Li has no
e¨ect upon the resulting KR ranking of the candidates within Lk, k 0 i.

As samples of the many possible corollaries of this theorem, we recover the
fact (e.g., [10, 26] that when a Condorcet winner and/or loser is de®ned, she
has the expected KR ranking (e.g., the Condorcet winner is top-ranked) for all
subsets to which she belongs. If the ®rst layer consists of k > 1 candidates,
then all k candidates (but maybe with di¨erent orderings) always are ranked
above all other candidates. Or, suppose that all candidates who beat a3 also
beat all candidates who a3 beats. This limited information requires at least
three layers where all KR rankings have a3 sandwiched according to this
partial transitivity structure. On the other hand, according to the BC geo-
metric structure relative to the transitivity plane, the BC does not, in general,
satisfy these properties. Special cases of these relations have been observed by
Young [25]; he noticed that the ranking on a subset of alternatives is stable if
we remove from consideration a bloc of bottom ranked alternatives (or a
block of top ranked alternatives).

4.4 Within layers

As Theorem 6 asserts that KR honors the relationship among layers when
candidates are dropped, it follows that all con¯ict in a KR word ± con¯icting
KR rankings of di¨erent subsets of candidates ± is strictly due to how the
rankings of candidates within each layer can be altered when candidates are
dropped. As indicated in Sect. 4.1, these interesting structures are caused by
the KR cube ``straightening out'' the cycles of each layer. As this is the case
for each layer, it su½ces to consider a single layer. Our ®rst explanation
emphasizes geometry, the second emphasizes the pro®le decomposition.

4.4.1 Four candidates
Identify each of the four candidates fA;B;C;Dg with points as in Fig. 4.
Connect each pair of points with an arrow pointing to the preferred candidate
so that the rankings de®ne a single layer. It is not di½cult to show that (up to
a change in the names of the candidates) the only possible arrangement of
strict rankings involves the cycle A � B;B � C;C � D;D � A along with the
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rankings C � A;D � B.8 The structure of the triplets is important because
this is what remains by dropping a candidate. Two triplets are transitive
(C � D � A and D � A � B in Fig. 4); two are cyclic. So, there are two par-
ticular candidates (B or C from Fig. 4) which, if dropped, the layer structure
changes into a transitive ranking. Dropping either of the other two candidates
creates a related cycle. In general, when a candidate is dropped from a k-
candidate layer, the remaining k ÿ 1 candidates can de®ne any admissible
k ÿ 1 candidate layer structure.

Con¯ict among KR rankings of subsets depends upon how the KR handles
the tallies of cycles. Using Fig. 4, it follows that the only possible KR rankings
are

Ranking Tally of reversed terms

A � B � C � D xD;A � xD;B � xC;A

B � C � D � A xD;B � xA;B

C � D � A � B xB;C

D � A � B � C xC;D � xC;A

D � B � C � A xC;D � xA;B

(4.4)

where the actual choice is determined by which term in the second column has
the minimum value.9 The RCn has pro®les supporting each of the ®ve possi-
bilities. That the ®rst four rankings de®ne a Condorcet four-tuple is a conse-
quence of the Condorcet term of the pro®le decomposition. The last ranking is
due to terms from other Condorcet di¨erentials.

An interesting pattern for the KR words emerges as candidates are
dropped. As we know, dropping either B or C results in a transitive ranking
(the restriction of C � D � A � B). But this ranking (see Eq. 4.4) con¯icts
with three of the ®ve KR four-candidate rankings. That di¨erences must oc-
cur is mandated by the Condorcet nature of the possible KR rankings.

8 Two other non-transitive arrangements exist, but they have one candidate either as
the Condorcet winner or loser of these four candidates. This de®nes two layers, so it is
not admitted.
9 For instance, A � D � B � C is not an option (with strict pairwise rankings) because
its tally of reversed terms xD;A � xC;A � xC;D is xD;A larger than the tally of terms
reversed to achieve D � A � B � C.

Fig. 4. Four candidates
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It remains to determine how this layer portion changes if A or D is
dropped. Dropping either candidate, say A, creates a three-cycle, so the new
KR choices come from the Condorcet triplet B � C � D, D � B � C, and
C � D � B; the actual choice depends, respectively, upon whether xD;B,
xC;D, or xB;C is the minimum. If xB;C is the minimum value, then, after A is
dropped, the KR ranking C � D � B agrees with its relative ranking in the
KR four-candidate ranking. Otherwise, (as assured by RCn) there are pro®les
creating con¯ict in the KR word as this three-candidate ranking can be either
of the remaining two rankings. A similar statement holds if D is dropped
where the three choices come from the Condorcet triplet de®ned by A � B � C.
So, while changes in rankings can occur, they are related through the Con-
dorcet structure.

This description completely describes all possible KR words (based on
strict pairwise rankings) that can occur where no more than four candidates
are in any layer. This allows, for instance, the construction of a sixteen can-
didate example involving four layers of four candidates each. As candidates
are dropped, the relative layer structure remains invariant; e.g., a candidate
from L2 always is ranked above a candidate from L3 or L4. Within the
layers, the change in rankings can ¯ip among Condorcet rankings with any
combination of the scenarios described above. (What happens within a layer
is independent of the behavior within any other layer. Properties of RCn

ensure illustrating examples for each scenario.) The stages in the description of
the possible KR words involve the ways the relative rankings of candidates of
a layer can change for the move from four to three candidates, and then for
the move from three to two candidates.

4.4.2 General statements
A similar ``Condorcet �k ÿ 1�-tuple'' description holds when candidates are
dropped from layers involving k V 5 candidates; dropping a candidate can
convert a k-candidate layer into any admissible �k ÿ 1�-candidate layer struc-
ture. Con¯ict comes from how the KR assigns rankings to di¨erent cycles. In
turn, as indicated by the Sect. 4.1 example, con¯ict is caused because dropping
a candidate creates a new Basic portion of a pro®le. As this e¨ect is funda-
mental for creating con¯ict in all procedures, we emphasize the root cause
(Saari [20]) in the following proposition. Indeed, Proposition 8 explains why
most examples illustrating changes in outcomes when candidates are dropped
involve a Condorcet portion of the pro®le. (Two of many illustrations are the
examples of Arrow and Raynaud [1] and of Merlin [11].)

Proposition 8. Let a k-candidate ranking r and its associated Condorcet pro®le
di¨erential Ck

r be given. If alternative aj is dropped, then the resulting pro®le

di¨erential has non-zero components in the Ckÿ1
r1

and Bkÿ1
ai

directions where r1 is

the ranking obtained from r by dropping aj and ai is the candidate immediately

dominated by aj in r.

Proof. Without loss of generality, let r � a1 � a2 � � � � � ak and let a1 be the
dropped alternative. A direct computation shows that dropping a1 creates
the pro®le di¨erential Ckÿ1

r1
and the pro®le di¨erential where one voter has the
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ranking r1 � a2 � a3 � � � � � ak and ÿ1 voters have r�r1�. As this last term is
a Bkÿ1

a2
entry, the assertion follows. (This decomposition also includes other

Condorcet terms; see (Saari [19, 20]).) r

The combination of Proposition 8 and Sect. 4.1 explains why KR words
can change when candidates are dropped. Namely, the pro®le's Condorcet
portion generates several di¨erent KR rankings where the actual choice is
determined by the pro®le's Basic portion. But the Basic portion changes when
candidates are dropped, so the new ways to break ties can change the ranking
for the remaining alternatives. Thus, when the actual Basic pro®le is small
(i.e., when the strict BC outcome has tallies near a complete tie), then radical
changes in the KR choices (which are restricted to those o¨ered by the cyclic
terms) can emerge when candidates are dropped. This completely describes
how KR admits di¨erent rankings with di¨erent subsets of candidates.

Theorem 7. A layer either has a single candidate, or it has three or more can-

didates where the pairwise rankings de®ne cycles. If a layer has k V 3 candi-
dates, then each candidate is in at least one three-cycle and there is a cycle

involving all k candidates. The possible KR outcomes for this layer (which de-

pend on the tallies) include all k ways (from the associated Condorcet pro®le of

k candidates) that this k-cycle can be broken by reversing one pair.

If a candidate dropped is not in layer Lj, then the KR ranking of this layer

remains unchanged. If the dropped candidate is from layer Lj , then the Lj rel-

ative ranking of the remaining candidates can change. With k V 3 candidates,

there are k choices for the dropped candidate. If k � 3, dropping any candidate
returns the KR ranking of the remaining pair to their pairwise ranking. If k V 4,
the most regular arrangement is where there are precisely two candidates so that

when either is dropped, the rankings of the remaining k ÿ 1 candidates form a

transitive ranking. When any other candidate is dropped, the ranking is a cycle.

(This occurs when k � 4.) Thus, of the k sets of k ÿ 1 candidates, at most two

can be transitive, and the rest are non-transitive. For k V 5, there can be at most

one transitive ranking when a candidate is dropped, or none.

These theorems, which show the consistency of KR words as candidates
are dropped, re¯ect the KR geometry in resolving non-transitive behavior
(captured by the ``growing cube'') and the changes when candidates are
dropped ± both tend to be parallel to the RCn coordinate axes. On the nega-
tive side, the same geometry emphasizes the KR dependency upon a pro®le's
Condorcet component. This underscores that the consistency emerges only
because KR weakens the crucial assumption of rational voters. The KR
structure and the consistency of the KR words are impressive; the reasons why
they occur are worrisome.

4.4.3 Comparison with CM

A crude geometric similarity exists between KR and CM outcomes because
the CM ®rst replaces qn with the nearest orthogonal cube vertex before
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unleashing the expanding CM sphere. The partial CM full KR dependency on
this geometry, suggests that these methods share ranking relationships beyond
that described in Proposition 2. They do. By use of Theorems 6 and 7 we
obtain a KR and CM result similar to that of Theorem 3.

Theorem 8. When there are no pairwise ties, the CM and KR rankings agree in
the following manner. After the candidates are placed in layers, both the KR and

CM rank all candidates from Li above all candidates from Lj; i < j. If there

are three candidates in a layer, the CM ranking has them tied. With four can-

didates, the CM ranks them in indi¨erent pairs where one pair is preferred to the

other. With more than three candidates in a layer, there need not be any rela-

tionship between the relative KR and CM rankings of these candidates.

So, similarity between KR and CM derives only from the layer structure.
Within each layer, the KR resolves the cyclic di½culties with the KR cube
while the CM uses the Euclidean distance; but di¨erent distances permit dif-
ferent results. (For BC-CM comparisons, see Saari and Merlin [21].) Another
Theorem 8 consequence is that when qn de®nes a transitive ranking, the CM
and KR outcomes agree, this common ranking can di¨er from the BC rank-
ing. The theorem also tells us that a Condorcet winner and a loser are, respec-
tively, top and bottom ranked in both the CM and the KR rankings; this need
not be so for the BC.

5 Proofs

Proof. Theorem 1. This assertion is a direct consequence of Eqs. 2.5, 2.8.
From Eq. 2.5, we know that the KR ranking P is the transitive ranking P

which minimizes the
P

i<j Kij�P; p� value. The constraint that P is transitive is
crucial because otherwise the minimizing ranking would be the ranking P�

that is de®ned by the pairwise rankings. Thus, an equivalent representation of
KR is to ®nd a transitive P which minimizes

1

v
�K�P; p� ÿ K�P�; p�� �

X
i<j

1

v
�Kij�P; p� ÿ Kij�P�; p�� �5:1�

where v is the total number of voters. Each term in the summation is non-
negative. This is because for those fai; ajg pairs where both P and P� have the
same relative ranking, we have that Kij�P; p� � Kij�P�; p�. However, if the
rankings disagree, it is because the Kij�P; p� term changed the pairwise rank-
ing; thus Kij�P; p� ÿ Kij�P�; p� > 0.

To express Eq. 5.1 in the notation of Eq. 2.8, recall that Kij�P; p� � vÿ
ti; j � tj; i if the fai; ajg relative ranking in P is ai � aj; otherwise Kij�P; p� �
ti; j. This means that the terms in the summation of Eq. 5.1 which are non-zero
can be expressed as

1

v
jKij�P; p� ÿ Kij�P�; p�j � 1

v
jti; j ÿ tj; ij � jxi; j j:
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Consequently, an equivalent way to ®nd the KR ranking is to select xi; j terms
so that

. reversing the fai; ajg ranking for each selected �i; j� pair creates a transitive
ranking and

. the summation
P jxij j over the selected xi; j terms is a minimum.

This summation condition is equivalent to replacing the selected xij compo-
nents of qn with a zero to de®ne a vector q� and then computing the distance
kqn ÿ q�k1. Finding the minimum value is equivalent to ®nding the minimum
of the kqn ÿ q�k1 over all such q� values. The condition requiring the indi-
cated binary rankings to be reversed in order to create a transitive ranking
combined with the construction of q� requires q� to be on the boundary of
a transitive ranking region. This not only proves the assertion of Theorem 1
but it also adds support for the discussion which follows the statement of the
theorem. Indeed, the q� causing the minimum value of the l1 distance is qKR.
Also, the (increasing) cube description is nothing more than the level sets of
the l1 distance from the center point qn; that is, all points on the cube are the
same particular l1 distance from qn. r

Proof. Proposition 1. The proof follows from the geometry. As an alternative
proof, notice that if the �i; j� term of q� ÿ qn is non-zero, the vector either
passes through, or touches the indi¨erence plane xi; j � 0. However, the gra-
dient of this surface is a vector in precisely this direction. If several q� ÿ qn

components are non-zero, then q� is on the intersection of all of the identi®ed
indi¨erence planes. This completes the proof. (Incidentally, if Ni; j is the unit
normal vector of xij � 0, then q� ÿ qn �

P
xijNij where the summation is over

the pairs that were reversed. This adds precision to a comment following
Proposition 1.) r

Proof. Theorem 3. The proof extends to nV 3 the geometric argument used to
prove this theorem for n � 3. We ®rst show that the KR winner is BC ranked
above the KR loser. Without loss of generality, assume that the KR ranking is
a1 � a2 � � � � � an. If qn is in the associated transitive ranking region, then a1

and an are, respectively, the Condorcet winner and loser. The conclusion now
follows from the result (Saari [16]) that the Condorcet winner is BC strictly
ranked above the Condorcet loser and that no other restrictions exist among
the rankings. (Special cases of this result were known by Nanson [14] and
maybe even Borda.)

Instead of ®nding all qn's which de®ne the indicated KR ranking, we use
the larger set consisting of all convex combinations of the vertices of the
a1 � a2 � � � � � an transitive ranking region plus all �nÿ 1�! vectors de®ned
by Cn

r for any strict ranking r of the n candidates. According to the pro®le
decomposition, the set for the indicated KR ranking is a subset of the convex
hull of these rankings. However, because of the earlier described property
from (Saari [20]) that the BC cancels the e¨ects of all Cn

r rankings, the BC
outcome for this convex hull consists of all BC rankings de®ned by points in
the a1 � a2 � � � � � an transitive ranking region. This completes the proof.
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A simple modi®cation of this proof allows multiple KR outcomes which
do not include a full Condorcet cycle with all n candidates. One way to ensure
this condition is to require a BC outcome with a single winner and single loser.

It remains to show that the BC winner is KR strictly ranked above the BC
loser; assume a1 � a2 � � � � � an is the BC outcome. According to Eq. 2.12
and Theorem 5, all qn's which give rise to this BC outcome can be expressed
as

qn � qBC � v

where qBC is any point in the a1 � a2 � � � � � an ranking region from the
transitivity plane and v is any vector orthogonal to this plane. Moreover, we
know from Theorem 5 that the pro®le di¨erentials supporting v are of the
form

pD �
X

mjC
n
rj
: �5:2�

Our proof depends upon an important characteristic of each Condorcet
pro®le di¨erential Cn

rj
. To motivate the description, Fig. 5a indicates Cn

r for
r � A � B � C � D � E � F . In this ®gure, solid lines connect candidates
adjacently ranked in some ranking of the Condorcet pro®le de®ned by r; the
arrow points toward the preferred candidate. The dashed lines point to can-
didates separated by one candidate. With more candidates, new lines are
drawn to connect candidates separated by sÿ 1 candidates. When n is even,
the cases where connecting arrows ``cancel'' (they are not included) is where
the tally for that particular binary ends in a tie.

In the Condorcet cycle de®ned by r, the tally for adjacent candidates is 5 to
1 in favor of the preferred candidate; with n candidates it is nÿ 1 to 1. If the
candidates di¨er by sU n=2 candidates in any ranking of the cycle, the tally is
6ÿ s to s; in general, it is nÿ s to s.

For a transitive ranking, say r� � B � D � A � C � E � F , consider the
number of Fig. 5a binary changes needed to make these binaries compatible
with r�. This requires three changes (fA;Bg; fC;Dg; fF ;Ag) with the solid
lines and one each from the dashed line triangles (fE;Ag; fF ;Bg). For any

a b

Fig. 5a,b. Cyclic arrangements. a Six candidates; b Building larger cycles
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other transitive ranking from the Condorcet cycle generated by r�, say A �
C � E � F � B � D, ®nd the number of Fig. 5a binary changes needed to
convert it into the speci®ed ranking. Again, there are three with solid lines and
one from each of the two triangles de®ned by dashed lines. As the next lemma
asserts, this behavior extends to any number of candidates and choice of
rankings.

Lemma 1. Let r and r� be two strict rankings of the nV 3 candidates. Take any

two rankings r1 and r2 from the Condorcet cycle generated by r�. The number of

changes in pairwise rankings from Cn
r required to convert the binaries into r1

and into r2 not only agree, but both use the same number of changes where the

candidates di¨er by s candidates, s � 1; . . . ; n=2.

Proof. By iteration, it su½ces to show this for r1 � r� and r2 ± the next rank-
ing in the r� Condorcet cycle where the r1 top-ranked candidate, say a1, now is
bottom-ranked. In a Cn

r diagram, each collection of lines de®ned by connect-
ing candidates s candidates apart de®nes a cycle; each aj may be in several
cycles, but she need not be in all cycles.

Choose a cycle of connected lines from the diagram. If a1 is not in this
cycle, then each binary from the cycle that must be reversed to be compatible
with r1 or r2 also must be reversed to be compatible with the other ranking.
(The only di¨erence between r1 and r2 is whether a1 is top or bottom ranked,
so all faj; akg; j; k 0 1, binary rankings in r1 and r2 agree.) If a1 is in this cycle,
she is ranked immediately above one candidate, say a2, and immediately
below another, say a3. To be compatible with r1, a3 � a1 must be reversed, but
a1 � a2 remains unchanged. (Recall, a1 is top-ranked in r1.) To be compatible
with r2, a1 � a2 is reversed while a3 � a1 remains ®xed. (In r2, a1 is bottom-
ranked.) No other binary ranking in the cycle involves a1, so each is compat-
ible in r1 and r2, or must be reversed to be compatible in r1 and r2. Thus, the
number of changes to realize either r1 or r2 is the same. As this is true for each
cycle, this completes the proof. r

To complete the proof of Theorem 3, suppose r� is a ranking closest to pD

of Eq. 5.2. According to the lemma, the tally of Cn
rj

binary rankings changed
to agree with r� is the same as to convert the binaries into any other ranking
from the r� Condorcet cycle. It now follows from the linear structure of Eq.
5.2 that all rankings from the Condorcet cycle de®ned by r� are in the KR
outcome for pD. (This KR outcome can include several Condorcet cycles.)

The Condorcet cycle is in the KR outcomes for pD because v is equal dis-
tance to each of these ranking regions. But the actual pairwise tally is qBC � v,
so the tie is broken by qBC . As the qBC components re¯ect the Basic pro®le,
the largest component value is x1;n for the outcome between the BC winner
�a1� and loser �an�. Thus, the center of the KR cube, located at qBC � v, is
moved the greatest distance from the previously tied position of v in the x1;n

direction. Consequently, geometry requires the KR cube to ®rst hit a transi-
tive ranking region from the Condorcet cycle where a1 � an. As the BC
winner is ranked above the BC loser, the proof is completed. r
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Proof. Theorem 4. The KR depends upon the binary rankings. However, no
relationships exist between pairwise and a non-BC positional method's rank-
ings (Saari [15]). Thus, no relationship exists between KR and non-BC posi-
tional rankings. r

Proof. Theorem 6, Proposition 7. We ®rst show (to prove Proposition 7) that
if a layer has more than one candidate, it has least three candidates. If layer
Lj has only candidates a1 and a2, then (as we ignore pairwise ties) we have,
say, a1 � a2. But the de®nition of the layer structure requires all candidates in
Li, i < j, to beat these two candidates and all candidates in Lk, k > j, to be
beaten by them. Thus, Lj can be divided into two separate layers. By creating
cycles, it is trivial to show there are layers with only three candidates. Drop-
ping candidate aj drops only xj;k components, k 0 j. As this does not change
the rankings, the assertion holds. r

Proof. Theorem 7. Assume Lj has k V 3 candidates. We ®rst show that each
candidate is involved in at least one three-cycle. This follows because if a1 is in
Lj, she beats some Lj candidate and is beaten by another candidate. Let
B�a1� be all Lj candidates that beat a1 and L�a1� be all Lj candidates that
lose to a1. But some candidate in B�a1�, say a2, loses to a candidate in L�a1�,
say a3. (If false, we have a contradiction because Lj can be divided into at
least two layers consisting of B�a1� and a1 WL�a1�.) This relationship imme-
diately de®nes a three-cycle a1 � a3; a3 � a2; a2 � a1.

We claim that at least one Lj cycle involves all k candidates. If not, let
cs � a1 � a2 � � � � � as � a1 be the longest cycle involving sV 3 candidates.
Let B�cs� be all Lj candidates that beat each candidate in the cycle cs; let
L�cs� be all Lj candidates that lose to all candidates in cs.

B�cs� and L�cs� may be empty. More generally, let aj be a Lj candidate
that is not in cs and not in B�cs�WL�cs�. Thus aj beats some cs candidates
and loses to others. By comparing aj to a1 and a2, then to a2 and a3; . . . ; then
to as and a1, there is an adjacent pair in the cycle where aj loses to the ®rst
candidate and beats the second one. To see why, place the cs candidates on a
circle as in Fig. 5b, and place aj in the center with arrows pointing to the
preferred candidate in each pair. At least one arrow indicates that aj loses, so
continue in the clockwise direction to the ®rst arrow where aj wins. Thus
adjacent arrows point in opposite directions in the indicated manner; at this
portion of the cycle aj is inserted to create a longer one.

If no such aj exists, then some Lj candidate, say at A B�cs� loses to a L�cs�
candidate, say ar. Insert ar � at anywhere in the cycle to create a longer one.
Thus, unless all Lj candidates are in the cycle, we can create a longer one.
This completes the proof.

To show that at most two transitive rankings can occur by dropping a
layer candidate, assume there is one where the binary rankings agree with
a1 � a2 � . . . � akÿ1. To come from a k candidate layer, we must have
a

kÿ1 � ak and ak � a1. If ak is dropped, a transitive ranking occurs. A second
transitive ranking occurs by dropping a1 if and only if faj � akgkÿ2

j�2 . Dropping
any other candidate creates a cycle, so there are at most two transitive rank-
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ings. To show that once k V 5, a cyclic ranking can occur whenever any can-
didate is dropped, create a cyclic setting as in Fig. 5a. Whatever candidate is
dropped, the remaining candidates de®ne a cycle.

The rest of the proof follows immediately from the geometry of the layer
structure. r

Proof. Theorem 8. To show that the CM ranking respects the layer structure,
it su½ces to prove this is true for candidates from neighboring layers. So,
assume that a1 A Li; a2 A Li�1 where the layers have ki and ki�1 candidates
respectively. A pairwise election with a Lj candidate, j < i, provides both a1

and a2 with ÿ1 points for their loss. Likewise, each Lj candidate for j > i � 1
gives a1 and a2 1 point for their pairwise victory. Thus, these candidates have
no e¨ect upon the a1 and a2 relative ranking.

For each Li�1 candidate, a1 receives 1 point for a total of ki�1 points. By
being in Li, a1 beats at least one Li candidates. Thus a worse case scenario
(which can happen) is that a1 loses to all other candidates. So, the points a1

receives from these two layers cannot be less than ki�1 � 1ÿ �ki ÿ 2� � ki�1ÿ
ki � 3. Likewise, as a2 loses to each Li candidate, she receives a total of ÿki

points. Also, a2 loses to at least one Li�1 candidate. The best case setting is if
she beats the �ki�1 ÿ 2� other Li�1 candidates. Thus her score from the two
layers is no larger than ki�1 ÿ 2ÿ ki ÿ 1 � ki�1 ÿ ki ÿ 3. As a1 receives the
larger total from these layers, she is CM ranked above a2.

The same argument shows that the CM rankings of the candidates within a
layer depend only on their relative rankings. With three candidates in a layer,
the cycle has a completely tied CM outcome. With four candidates, the six
rankings de®ne a four cycle (adding a CM total of zero for each candidate)
and two other rankings which determine the CM outcome. Thus two candi-
dates are CM tied for top-ranked within the layer and two are CM tied for
bottom. This ranking has nothing to do with the point tallies, so it follows
that the KR ranking can be anything.

The k V 5 result follows from the arguments of Saari and Merlin [21].
What makes the result apparent is that the k candidates in the layer de®ne a
cycle; as these elections cancel in the CM ranking, the outcome is determined
by the remaining pairwise outcomes. By choosing appropriate xi; j values
(which can be done by the RCn properties), the KR outcome can be deter-
mined by this cycle. So, the two outcomes can di¨er by any desired amount.

r
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