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Abstract. This paper shows that in the simplest one-dimensional, two-
candidate probabilistic spatial voting model (PSVM), a pure strategy Nash
equilibrium may fail to exist. The existence problem studied here is the result
of a discontinuity in the function mapping the candidates' platforms into their
probabilities of winning. Proposition 1 of the paper shows that, whenever this
probability of winning function satis®es a certain monotonicity property, it
must be discontinuous on the diagonal. As an immediate consequence of the
discontinuity in the probability of winning function, the candidates' objective
functions are discontinuous as well. It is therefore impossible to invoke stan-
dard theorems guaranteeing the existence of a pure strategy equilibrium, and
an example is developed in which in fact there is no pure strategy equilibrium.
Finally, however, it is demonstrated that, for a large class of probability of
winning functions, the PSVM satis®es all the conditions of a theorem of
Dasgupta and Maskin (1986a) which guarantees that it will always have an
equilibrium in mixed strategies.

1 Introduction

This paper shows that in the simplest one-dimensional, two-candidate proba-
bilistic spatial voting model (PSVM), a pure strategy Nash equilibrium may
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fail to exist. The existence problem studied here is the result of a discontinuity
in the function mapping the candidates' platforms into their probabilities of
winning. As an immediate consequence of the discontinuity in the probability
of winning function, the candidates' objective functions are discontinuous as
well. It is therefore impossible to invoke standard theorems guaranteeing the
existence of a pure strategy equilibrium, and an example is developed in which
in fact there is no pure strategy equilibrium. Finally, however, it is demon-
strated that, for a large class of probability of winning functions, the PSVM
satis®es all the conditions of a theorem of Dasgupta and Maskin (1986a)
which guarantees that it will always have an equilibrium in mixed strategies.

The PSVM has its origins in the Hotelling-Downs model of spatial com-
petition between two candidates in an election. In the original formulations of
the model, the candidates were motivated only by the desire to gain o½ce, and
the outcome of the election was deterministic.1 This model yielded the well-
known result that, in the unique Nash equilibrium of the game, both candi-
dates locate their platforms at the ideal point of the median voter. More re-
cent literature on the PSVM (Wittman 1983, 1990; Hansson and Stuart 1984;
Calvert 1985; Mitchell 1987; Alesina 1988; Morton 1993; Ball forthcoming)
has investigated how this convergence result is a¨ected when the model is
generalized in two ways: candidates are assumed to care not only about who
wins the election, but also about the policy implemented after the election
(regardless of who is in o½ce); and the outcome of the election depends sto-
chastically on the locations of the candidates' platforms. A central result in
this literature is that the introduction of policy preferences and electoral un-
certainty can lead to equilibria with less than complete platform convergence.

This literature, however, has not recognized the discontinuity that can
arise in the probability of winning function, nor that this discontinuity can
lead to the non-existence of a pure strategy equilibrium. The discontinuity in
the probability of winning function arises at points where the candidates'
platforms are identical. When the candidates' platforms coincide, either one
can discretely increase his probability of winning by moving his platform in-
®nitesimally in the direction of the greatest mass of voters.2 Generally, a can-
didate will want to choose a platform between that of his opponent and his
own ideal point. For certain positions of the opponent, however, a candidate
can do better than this by exploiting the discontinuity in the probability

1 Voters' preferences were assumed to be single-peaked, so each member of the elec-
torate voted for the candidate whose platform was closest to his ideal point. (Absten-
tions were implicitly assumed away.) The distribution of the voters' ideal points was
common knowledge, and the candidate whose platform was closest to the ideal point
of the median voter won the election with probability one. (Ties were resolved by a
coin ¯ip.) For an early formulation of the modern PSVM, see Davis et al. (1970).
Enelow and Hinich (1984) provide a survey of spatial models both of elections and of
committee voting. An exhaustive survey of models of majority rule and elections can
be found in Coughlin (1990).
2 Unless both candidates already happen to be located at the median.
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of winning function, choosing a platform in®nitesimally close to that of his
opponent and capturing all the mass of voters located to one side of that
position. Such ``undercutting'' behavior leads to a discontinuity in the candi-
date's reaction function. The discontinuity in the candidates' reaction func-
tions in turn gives rise to the possibility that they mail fail to intersect, result-
ing in the non-existence of a pure strategy Nash equilibrium. As discussed
further at the end of Section 4, this non-existence is a consequence of the twin
assumptions that candidates are both o½ce-motivated and policy-motivated:
without the introduction of policy preferences, classic Hotelling-Downs con-
vergence at the median would constitute a pure strategy Nash equilibrium;
and without some degree of o½ce-motivation there would be no incentive for
the undercutting that gives rise to the discontinuous reaction functions.

Proposition 1 of this paper shows that this continuity and existence prob-
lem necessarily arise in models that obey a kind of monotonicity, namely that
a candidate can not decrease his probability of winning if he moves his plat-
form closer to that of his opponent. Such a monotonicity assumption is com-
monly maintained in spatial voting models (see, for instance, Hansson and
Stuart 1984; Calvert 1985; Mitchell 1987; Alesina 1988; Alesina and Cukier-
man 1990; Morton 1993; Ball forthcoming). What the proposition shows is
that if a probability of winning function satis®es monotonicity, then it must
be discontinuous on the diagonal. Failing to recognize this fact, some authors
(including Alesina 1988; Alesina and Cukierman 1990) have incorrectly
invoked existence theorems for pure strategy equilibria that rely on continuity
despite the fact that monotonicity was a stated assumption in their models.

Proposition 1, however, does not invalidate pure strategy existence results
for a class of models (including Wittman 1983, 1990; Hinich et al. 1972, 1973;
Coughlin 1992) in which no assumption of monotonicity is stated. Without
the monotonicity assumption, the probability of winning function may well be
continuous and standard existence theorems may apply. The implication of
Proposition 1 for such models is simply that if continuity is assumed or dem-
onstrated, then monotonicity must fail. An example presented at the end of
Section 3 illustrates a plausible model in which the probability of winning
function is non-monotonic and continuous.

Other properties of the PSVM that can lead to di¨erent kinds of existence
problems have previously received a great deal of attention. When there are
more than two candidates in the election, the model may have no equilibrium
(Wittman 1984; Hinich and Ordeshook 1970, pp. 785±788). There is also a
large body of literature that studies existence problems in multi-dimensional
elections with voting cycles or intransitivities (see, for example, Plott 1967;
Davis et al. 1972; Kramer 1973; McKelvey 1974; McKelvey and Ordeshook
1977). None of these previously studied problems, however, arises in the ver-
sion of the model developed in this paper: there are only two candidates in the
election, the policy space is one-dimensional, and there are no intransitivities.
The existence problem analyzed in this paper, resulting from the discontinuity
in the probability of winning function, is thus distinct from the existence
problems that have previously been studied in the PSVM.
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Section 2 of this paper presents the basic structure of the PSVM. Section 3
examines the behavior of the function mapping the candidates' platforms into
their probabilities of winning, and develops a proposition showing that fun-
damental properties of the PSVM ± including monotonicity ± imply that this
function must be discontinuous on the diagonal. A simple example in which
no pure strategy equilibrium exists is developed in Section 4. This example
illustrates how candidate strategies involving undercutting can lead to the
failure of equilibrium, and the role of the twin assumptions that candidates
are both o½ce-motivated and policy-motivated is discussed. In Section 5, it is
shown that the PSVM satis®es all the conditions of a theorem of Dasgupta
and Maskin (1986a), which guarantees that it will always possess a mixed
strategy Nash equilibrium. Concluding remarks are contained in Section 6.

2 The probabilistic spatial voting model

Two candidates, A and B, are competing in an election for public o½ce. After
being elected, the winner will choose a policy z from a one-dimensional policy
space, which is normalized to the interval �0; 1�. During the electoral cam-
paign, each candidate announces a platform, which is simply the policy z that
he commits to enact if elected.3 The outcome of the election depends on the
platforms announced by the two candidates, but is stochastic. The probability
that Candidate A wins the election (which equals one minus the probability
that Candidate B wins) is given by a function P�a; b�, where a and b denote
the platforms announced by Candidates A and B. Three minimal assumptions
are made about the probability of winning function P:

(A1) 0UP�a; b� � 1
(A2) P�a; b� � 1ÿ P�b; a�
(A3) For a < b, P�a; b� is non-decreasing in a and non-decreasing in b, and

for a > b, P�a; b� is non-increasing in a and non-increasing in b.

(A1) simply ensures that P always gives a valid probability.
(A2) implies that it is the location of the candidates' platforms, not their

labels ``A'' or ``B,'' that determine their probabilities of winning. Calvert
(1985, p. 81, Assumption 2) called this assumption ``unbiasedness.''

The monotonicity assumption (A3) re¯ects the spatial nature of the com-
petition between the candidates. It says that if one candidate moves his plat-
form toward that of his opponent, then he does not decrease (and may in-
crease) the probability with which he wins the election; if he moves his

3 There is thus an implicit assumption that some mechanism exists by which the can-
didates are able to commit not to renege on their campaign promises after the election.
Alesina (1988) considers a version of the model in which no such mechanism exists, but
in which play is in®nitely repeated so that reputational considerations induce candi-
dates to faithfully implement their announced platforms.
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platform away from his opponent's, then he does not increase (and may de-
crease) his probability of winning.

Candidates are assumed to be both o½ce-motivated (they value winning
the election intrinsically) and policy-motivated (they care about what policy
is enacted after the election). Let k A and kB represent the intrinsic values
that the candidates place on holding o½ce, and let uA�z� and uB�z� represent
respectively the preferences of Candidates A and B over the policy z A �0; 1�
implemented after the election.

Each candidate's objective function is equal to the sum of his ``expected
policy payo¨ '' ± the probability that he wins the election times the policy
payo¨ that he receives from having his platform implemented plus the prob-
ability that his opponent wins times the payo¨ that he receives from having
his opponent's platform implemented ± and his ``expected o½ce payo¨ '' ± the
probability that he wins the election times the intrinsic value he places on
holding o½ce. These objective functions can be written for Candidates A and
B respectively as

UA�a; b; kA� � P�a; b��uA�a� � kA� � �1ÿ P�a; b��uA�b�
UB�a; b; kB� � P�a; b�uB�a� � �1ÿ P�a; b���uB�b� � kB�

�1�

The normal form of this election game can be written compactly as GE �
�fA;Bg; f�0; 1�; �0; 1�g; fUA�a; b; kA�;UB�a; b; kB�g�.

3 The discontinuity

As discussed at the end of this section, several authors have claimed that
the PSVM will always have a pure strategy Nash equilibrium. These claims
have been based on standard existence theorems, such as the classic Debreu-
Glicksberg-Fan (hereafter DGF) theorem:

Theorem 1 (Debreu 1952; Glicksberg 1952; Fan 1952). A normal form game
G � �f1; . . . ;Ng; fSig; fUi� � �g� has a pure strategy Nash equilibrium if for all

i � 1; . . . ;N

(i) Si is a nonempty, convex, compact subset of Rn,
(ii) Ui is continuous in �s1; . . . ; sN�, (where si A Si), and

(iii) Ui is quasiconcave in si.

This section shows that it is in fact incorrect to apply this theorem to the
PSVM. It shows that the minimal assumptions (A1)±(A3) made about the
probability of winning function necessarily imply that the continuity condition
of Theorem 1 will be violated. In particular, it is continuity on the diagonal
(at points �a; b� such that a � b) that must be violated in models satisfying
(A1)±(A3). A general result is presented in Proposition 1, and its implications
for existence of equilibrium in the PSVM are examined in the following
discussion.4

4 Thanks are due to a referee who suggested this simple form of the proof.
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Proposition 1. If P satis®es assumptions (A1), (A2) and (A3), and it is con-
tinuous at all points in the set f�a; b� A �0; 1� � �0; 1� j a � bg, then P�a; b� � 1

2
for all �a; b� A �0; 1� � �0; 1�.

Proof. Take any �a; b� A �0; 1� � �0; 1�. If a � b, then (A2) implies P�a; b� � 1
2.

If a 6� b, suppose without loss of generality that a < b. (A3) then implies
that P�z; b�VP�a; b� for all z A �a; b�. If P is continuous at �b; b�, then
limz!bÿ P�z; b� � P�b; b�, and since (A2) implies that P�b; b� � 1

2, we have
limz!bÿ P�z; b� � 1

2. Since P�z; b�VP�a; b� for all z A �a; b� and limz!bÿ P�z; b�
� 1

2, it must be the case that P�a; b�U 1
2. Similarly, (A3) implies that P�a; z�U

P�a; b� for all z A �a; b�. If P is continuous at �a; a�, then limz!a� P�a; z� �
P�a; a�, and since (A2) implies that P�a; a� � 1

2, we have limz!a� P�a; z� � 1
2.

Since P�a; z�UP�a; b� for all z A �a; b� and limz!a� P�a; z� � 1
2, it must be the

case that P�a; b�V 1
2. Consequently, P�a; b� � 1

2. t

This proposition shows that unless P�a; b� is completely degenerate, in the
sense that both candidates always have equal chances of winning the election
regardless of where their platforms are located, then it must be discontinuous
somewhere on the diagonal. The candidates' objective functions, which de-
pend on P�a; b� as shown in equation (1), will therefore also be discontinuous
on the diagonal. Consequently, the DGF theorem cannot be invoked to prove
existence of a pure strategy equilibrium in the PSVM.

This discontinuity and existence problem have not been appreciated in
the literature on the PSVM. In the foreword to a collection of articles on
spatial voting models, for instance, Arrow (1990, p. ix) discusses the origins of
spatial voting models in Hotelling's duopoly model, and cites the ®nding of
d'Aspremont, Gabszewicz and Thisse that, in a game between duopolists
choosing prices, ``[f ]or a ®xed pair of locations, there is no equilibrium in pure
strategies.'' He goes on to argue, however, that ``this di½culty does not a¨ect
the analogous equilibrium for di¨erentiated political parties, for there is no
equivalent of the price competition'' [italics in the original]. Although it is true
that the electoral competition in the PSVM is not perfectly analogous to price
competition in the Hotelling model, they are nonetheless related in that they
both exhibit a fundamental discontinuity that can lead to non-existence of a
pure strategy equilibrium.

Proposition 1 shows that, except in degenerate models, the monotonicity
assumption (A3) implies that the probability of winning function must be
discontinuous on the diagonal. Models that assume both monotonicity and
continuity are therefore internally inconsistent. For example, in his study of
an in®nitely repeated PSVM, Alesina (1988) develops an incorrect ``proof '' of
existence of equilibrium in the stage game, which is simply the one-shot
PSVM. He explicitly states a monotonicity assumption equivalent to (A3),
and then goes on in a footnote (footnote 4, p. 798), to argue that concavity of
P in a and convexity of P in b constitute a ``su½cient condition for existence
and uniqueness'' of an equilibrium. But these concavity properties imply that
P will be continuous everywhere in the interior of the policy space, including
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on the diagonal.5 Proposition 1, however, shows that this is impossible under
the assumption of monotonicity. Alesina's claim to have a proof of existence
is therefore not valid. Although he comments that ``the function P could be
discontinuous along the diagonal'' (p. 798), he recognizes neither that this
discontinuity follows necessarily from his assumption of monotonicity, nor
that it is incompatible with his concavity assumptions. Moreover, he fails to
recognize that this discontinuity could lead to an existence problem, as illus-
trated in Example 1 in the following section. Alesina and Cukierman (1990)
similarly acknowledge that a discontinuity could be present in their probabil-
ity of winning function, but again recognize neither that this will necessarily
be true under their monotonicity assumption, nor that it has implications for
existence of equilibrium.

Although Proposition 1 shows that it is not possible to invoke any theorem
that relies on continuity to prove existence of equilibrium in models where
monotonicity is assumed to hold, standard existence theorems can be applied
to probabilistic voting models that do not assume monotonicity. Wittman
(1983, 1990) Hinich et al. (1972, 1973) and Coughlin (1992) all take this
approach. The primitives in these models are individual probability of voting
functions, showing the probability that each member of the electorate will
vote for each candidate. Continuity and concavity/convexity assumptions
about these individual probability of voting functions are shown to imply
appropriate continuity and concavity/convexity properties of the aggregate
probability of winning or plurality functions, which in turn are su½cient to
show existence by standard theorems.

These existence results, for models which assume continuity but not
monotonicity, are not invalidated by Proposition 1. The implication of Prop-
osition 1 for these models is simply that, because of the continuity assumption,
they must violate monotonicity. Since monotonicity is a common assumption
in spatial voting models, the fact that these models must not possess this
property might appear to be a serious defect. In fact, however, it is possible
to construct reasonable and internally consistent models that do not obey
monotonicity. As an illustration, consider the following simple example.6
Suppose the electorate consists of a single voter, whose preferences over poli-
cies z A �0; 1� are represented by a function n�z� that attains a unique maxi-
mum at the ideal point x A �0; 1�. The voter's policy preferences are common
knowledge to the two candidates, but the voter also cares about some non-
policy parameter d, which the candidates believe to be uniformly distributed
on the interval �ÿ1; 1�; the voter votes for Candidate A if n�a� � d > n�b� and
votes for Candidate B otherwise. Then the candidates perceive the probability
that the voter chooses Candidate A as P�a; b� � Prfn�a� � d > n�b�g; using
the uniform distribution of d, this can be written as P�a; b� � 1

2 �1� n�a�ÿ
n�b��. As long as n�z� is continuous everywhere, P�a; b� will be continuous
everywhere as well. This probability of winning function, however, does not

5 See Varian (1984), p. 315, Fact A.5.
6 Thanks are due to an associate editor for suggesting this example.
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satisfy the monotonicity property (A3): for instance, if 0U b < a < xU 1,
monotonicity would imply that P�a; b�VP�x; b�, but the fact that n�z�
reaches a unique maximum at x implies that P�a; b� < P�x; b�.

This example shows that it is possible to construct well-de®ned, internally
consistent examples in which monotonicity is violated. Consequently, models
that rely on continuity to invoke existence theorems ± and that therefore must
violate monotonicity ± are perfectly plausible. What is ruled out by Proposi-
tion 1 is the possibility of a probability of winning function that is both con-
tinuous and monotonic.

4 An example

Of course, the DGF theorem gives su½cient, rather than necessary, conditions
for the existence of a pure strategy Nash equilibrium. The fact that one of the
conditions is necessarily violated in monotonic models, therefore, does not
rule out the possibility that the such models could still always possess a pure
strategy equilibrium. This section develops an example that demonstrates that
the discontinuity in the PSVM can in fact lead to an existence problem. The
example also illustrates the main intuition underlying the discontinuity of the
probability of winning function and the failure of existence.

Example 1. Consider the PSVM presented in Section 2. Suppose the proba-
bility of winning function P�a; b� is of the form

P�a; b� �

a� b

2
for 0U a < bU 1

1

2
for 0U a � bU 1

1ÿ a� b

2
for 0U b < aU 1

8>>>>><>>>>>:
�2�

It is easy to verify that this formulation satis®es assumptions (A1)±(A3). A
similar functional form was used by Alesina and Cukierman (1990), who
proposed the following motivation. Suppose that the voters' ideal points are
distributed along the policy space �0; 1�, and each individual votes for the
candidate whose platform is closest to his ideal point.7 Then the candidate
whose platform is closest to the ideal point of the median voter will win the
election.8 The randomness represented by P�a; b� arises because the distribu-
tion of the ideal points of the electorate, and hence the location of the median

7 This would follow from the assumption that every voter has single-peaked prefer-
ences. If for some voter the distances from his ideal point to each of the candidates'
platforms are equal, then assume he ¯ips a fair coin to decide who to vote for.
8 If the candidates' platforms are equidistant from the median voter's ideal point, as-
sume that each wins with probability one half.
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voter, are not known to the candidates.9 When choosing their platforms, the
candidates know only the density f �m� with which the median voter's ideal
point, m, is distributed on �0; 1�. A candidate therefore perceives his probabil-
ity of winning the election as the integral of that density over all points that
are closer to his platform than to his opponent's platform. This interpretation
of the model yields a probability of winning function of the form

P�a; b� �

� �a�b�=2

0

f �m� dm for 0U a < bU 1

1

2
for 0U a � bU 1�1

�a�b�=2

f �m� dm for 0U b < aU 1

8>>>>>>>><>>>>>>>>:
�3�

If we assume in addition that the median voter's location is distributed uni-

formly on the policy space �0; 1�, so that f �m� � 1 for 0UmU 1

0 otherwise

�
, the

probability of winning function given in (3) reduces to the particular form
given in (2).

Suppose also that the candidates' policy preferences are represented by
uA�z� � ÿ 1

2 �zÿ 1�2 and uB�z� � ÿ 1
2 z2. These policy preferences were also

used by Alesina and Cukierman (1990) and by Alesina (1988). They are both
single-peaked, with Candidate A's ideal policy at z � 1, the right-hand end-
point of the policy space, and Candidate B's ideal point at z � 0, the left-hand
end-point of the policy space.

Suppose ®nally that the candidates' o½ce motivation parameters are k A �
:05 and k B � 3. This speci®cation implies that Candidate B places a greater
intrinsic value on holding o½ce (relative to his policy preferences) than does
Candidate A.

The non-existence of a pure strategy equilibrium in this example is dem-
onstrated by explicit derivation of the two candidates' reaction functions. It is
shown that the discontinuities in the objective functions lead to discontinuities
in the reaction functions, and that these discontinuous reaction functions fail
to intersect.

Panels (a), (b) and (c) of Figure 1 illustrate Candidate A's objective func-
tion UA�a; b; :05�, with Candidate B's platform b ®xed at three di¨erent
values. In Panel (a), Candidate B's platform is ®xed at b � 0:2. The discon-
tinuity in Candidate A's payo¨ function at a � b � 0:2 is evident in the illus-
tration. The platform that gives Candidate A the highest payo¨, labeled
a��b�, lies between Candidate B's platform and Candidate A's ideal policy

9 In other formulations of the model, the randomness in the outcome of the election is
a consequence of (rational) abstentions by voters. Papers that consider this approach
include Hinich et al. (1972, 1973), Hinich (1977) and Ledyard (1984).
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of 1, and will be referred to as an ``interior solution.'' In the neighborhood of
this solution, Candidate A's payo¨ function can be written as

UA�a; b; k A� � P�a; b��uA�a� � kA� � �1ÿ P�a; b��uA�b� �4�
Since this interior solution occurs at a point where a > b, P and UA are con-
tinuous and di¨erentiable, and the solution a��b� is de®ned by the ®rst-order
condition

qUA�a; b; k A�
qa

� qP�a; b�
qa

�uA�a� ÿ uA�b� � kA� � P�a; b�u 0A�a� � 0 �5�

The ®rst term in this derivative,
qP�a; b�

qa
�uA�a� ÿ uA�b� � kA�, represents the

marginal cost to Candidate A of an increase in his platform. The expression in
square brackets shows the di¨erence between what he gets if he wins the

Fig. 1a±c. Candidate A's objective function. a: b � 0:2; b: b � 0:57; c: b � 0:67
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election ± the payo¨ uA�a� from his platform plus the intrinsic value kA he
places on holding o½ce ± and what he gets if he loses ± the payo¨ uA�b� from
Candidate B's platform. This net bene®t of winning is weighted by the change
in the probability of winning induced by an increase in a. Since an increase in
a represents a divergence of Candidate A's platform from Candidate B's, as-
sumption (A3) implies that this change in probability will be negative, and so
the entire ®rst term is negative. The second term, P�a; b�u 0A�a�, represents the
marginal bene®t to Candidate A of an increase in his platform. An increase in
a moves his platform closer to his ideal point of 1, and therefore increases the
payo¨ that he gets if he wins by u 0A�a�; this increased payo¨ is weighted by the
probability that he does in fact win, P�a; b�. Condition (5) states that, at an
interior solution, the costs and bene®ts associated with a change in platform
are equated at the margin.

For the functional forms and parameter values introduced in Example 1,

Fig. 1 (continued)
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the ®rst-order condition (5) can be written as10

qUA�a; b; :05�
qa

� ÿ 1

2

� �
ÿ 1

2

� �
�aÿ 1�2 � 1

2

� �
�bÿ 1�2 � :05

� �
� 1ÿ a� b

2

� �
�1ÿ a� � 0 �6�

Solving (6) for Candidate A's choice of platform as a function of Candidate
B's platform yields11

Fig. 1 (continued)

10 For these functional forms it is also easy to verify that, for 0U b < aU 1,
q2UA

qa2
< 0,

so that the second-order condition for a maximum is satis®ed.
11 Condition (6) is a quadratic equation with two roots. The solution given in (7) is the
one that lies in the policy space �0; 1�.
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a��b� �
4ÿ bÿ

�����������������������������
4�1ÿ b�2 � :3

q
3

�7�

In panel (a) of Figure 1, where b � 0:2, this solution value is a��0:2�A 0:70.
In Panel (b) of Figure 1, where Candidate B's platform is ®xed at b � 0:57,

Candidate A's optimal choice of platform is again given by an interior
solution labeled a��b�. The important feature of Panel (b) is the behavior of
Candidate A's objective function in the neighborhood of Candidate B's plat-
form. In this case, Candidate A's payo¨ would be greater from a platform
marginally below b than from a platform marginally above b. Since Candidate
B's platform is greater than the median of the distribution of the median
voter's ideal point,12 Candidate A's probability of winning is less than 1

2 when
his platform is slightly to the right of Candidate B's, but greater than 1

2 when it
is slightly to the left. Candidate A consequently has an incentive to choose
a platform that just undercuts Candidate B. The cost of such undercutting,
however, is that Candidate A would have to move his platform away from
his ideal point of 1. For b � 0:57, as illustrated in Panel (b), the bene®t
of undercutting is less than the associated cost, and Candidate A's optimal
platform is still the interior solution a��b�. In this case, this solution value is
a��0:57�A 0:80.

As b gets larger, however, this situation changes. For larger values of b,
the probability that the median voter is located to the left of b increases.
The probability of winning that Candidate A can attain by undercutting
Candidate B's platform consequently increases, so Candidate A has a greater
incentive to undercut. Simultaneously, as b gets larger, the distance that Can-
didate A must deviate from his ideal point of 1 in order to undercut b is
reduced, so the cost of undercutting decreases. When b exceeds some critical
value, which will be denoted b̂, Candidate A will be able to do better by
marginally undercutting b than by choosing the interior solution a��b�. This
critical value b̂ is formally de®ned in Appendix 1; it can be numerically
approximated as b̂A 0:61. Panel (c) of Fig. 1, in which b � 0:67, illustrates
Candidate A's objective function when Candidate B's platform is greater than
b̂. It shows that Candidate A's payo¨ will be greater if he chooses a platform
in®nitesimally below that of Candidate B than if he chooses any platform
greater than b.

Candidate A's entire reaction function, for all values b A �0; 1�, is illustrated
in Fig. 2. For values of b less than or equal to b̂, he chooses the interior
solution a��b�. For values of b greater than b̂, Candidate A would want to
in®nitesimally undercut Candidate B's platform, and so his reaction function
is not well de®ned.13 In Fig. 2, this region of Candidate A's reaction function
is represented by small dots just below the 45� line.

12 Since the median voter's location is assumed to be uniformly distributed on �0; 1�,
the median of this distribution is 1

2.

13 For b > b̂, Candidate A would like to choose the largest platform that is less than b,
but since the policy space is continuous this value is not well de®ned.
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Candidate B's reaction function is also illustrated in Fig. 2. Candidate B's
o½ce motivation parameter, k B � 3, is large enough that his policy prefer-
ences are completely dominated by his desire to hold o½ce. Appendix 2 shows
that, wherever Candidate A locates, Candidate B would simply like to choose
a platform that gives him the largest probability of winning the election. If
Candidate A chooses a platform a < 1

2, Candidate B would like to choose a
platform in®nitesimally greater than a. Since the value of Candidate B's best
response at these points is not well de®ned (for reasons analogous to those
discussed in footnote 13), his reaction function is represented by hash-marks
just below the 45� line. If Candidate A chooses a platform a > 1

2, Candidate B
would like to choose a platform in®nitesimally less than a, and his reaction
function for these values is represented by hash-marks just above the 45� line.
And if Candidate A chooses the platform a � 1

2, Candidate B maximizes his
probability of winning (and his entire payo¨ function) by choosing b � 1

2. This
point on Candidate B's reaction function is represented by a heavy dot at
�a � 1

2 ; b � 1
2�.

The non-existence of a pure strategy Nash equilibrium is evident in the
lack of an intersection in the two reaction functions illustrated in Fig. 2: there
is no pair of strategies that are mutual best responses.

This failure of equilibrium is a consequence of the twin assumptions that
the candidates care about holding o½ce and that they care about the policy
that is chosen.14 If either of these assumptions is dropped, the game will have

Fig. 2. The candidates' reaction ``functions''

14 Thanks are due to a referee who suggested that this point be highlighted.
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a pure strategy Nash equilibrium. If candidates are solely o½ce motivated,
then it is a Nash equilibrium for both of them to locate at the median of the
distribution of the median voter: each candidate would then have a probabil-
ity of 1

2 of winning the election, and deviating to any other platform could
never increase that probability.15 For the case in which the candidates are
purely policy-motivated and do not care at all about holding o½ce, Hansson
and Stuart (1984, Theorem 2, p. 436) have shown that minimal assumptions
about the policy preferences (boundedness) and about the behavior of the
probability of winning function (concavity o¨ the diagonal) are su½cient
conditions for existence of a pure strategy Nash equilibrium in the PSVM.
The main intuition is that, if a candidate is purely policy-motivated, an
undercutting strategy will never be optimal: the potential bene®t to under-
cutting is an increase in the probability of winning, but this carries no weight
if the candidates are purely policy-motivated; and undercutting is costly be-
cause it means that the candidate chooses a platform that he likes less than
any interior point between his opponent's platform and his own ideal point.
Policy-motivation eliminates convergence at the median of the distribution of
the median voter as an equilibrium, and o½ce-motivation generates the
undercutting behavior that gives rise to discontinuous reaction functions.

5 Existence of a mixed strategy equilibrium

Despite the fact that the PSVM may fail to have a pure strategy equilibrium, a
theorem of Dasgupta and Maskin ensures that (with minimal additional
assumptions) the model will always possess an equilibrium in mixed strategies.
In a pair of papers, Dasgupta and Maskin (1986a, b) study existence problems
in a class of discontinuous games including Hotelling's (1929) spatial duopoly
game (and the subsequent analysis of d'Aspremont et al. 1979), the spatial
competition games of Eaton and Lipsey (1975) and of Shaked (1975), as well
as the insurance market game of Rothschild and Stiglitz (1979). The common
characteristic of these games is that discontinuities in the payo¨ functions lead
to the non-existence of pure strategy Nash equilibria. In particular, the dis-
continuities in these games arise at points at which the players choose identical
actions. Proposition 1 of this paper established that under the assumption of
monotonicity the PSVM shares this property.

15 More generally, even if candidates care both about winning and about policy, it is a
Nash equilibrium for both candidates to locate at the median of the distribution of the
median voter if the weights they place on holding o½ce are large enough. In example 1,
for instance, if Candidate A placed as much weight on holding o½ce as Candidate B
�k A � k B � 3�, then Candidate A's best response function would be similar to Candi-

date B's, and �12 ; 1
2� would be a Nash equilibrium. A fortiori, it is a Nash equilibrium for

both candidates to locate at the median of the distribution of the median voter if they
place in®nite weight on holding o½ce (i.e., if they place zero weight on the policy out-
come).
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Dasgupta and Maskin (1986a) provide a series of existence theorems for
such discontinuous games.16 The theorem that applies to the version of the
PSVM studied in this paper is their Theorem 5b (p. 16), which establishes the
following:

Theorem 2 (Dasgupta and Maskin 1986a). A two-player normal form game
G � �fA;Bg; fSig; fUi���g� has a mixed strategy Nash equilibrium if

(i) SA � SB � �zl ; zh� (some closed interval),

(ii) for i � A; B, Ui is bounded and continuous except on the set f�a; b� A
SA � SB j a � bg, and

(iii) for every z A �zl ; zh� there exists a player i A fA;Bg, such that

(iii.i) lima!zÿ;b!z� Ui�a; b�VUi�z; z�V lima!z�;b!zÿ Ui�a; b� and

(iii.ii) lima!zÿ;b!z� Uj�a; b�UUj�z; z�U lima!z�;b!zÿ Uj�a; b� for j 6� i

where the left (right) inequality in (iii.i) holds with equality if and only if
the right (left) inequality in (iii.ii) holds with equality.

The version of the PSVM considered in this paper clearly satis®es con-
ditions (i) and (ii) of this theorem: each candidate's strategy space is the unit
interval, and the discontinuities in the payo¨ functions arise along the diago-
nal. Condition (iii), stated in terms of the PSVM, says roughly that if one
candidate's payo¨ drops discontinuously at some point on the diagonal, then
the other candidate's payo¨ must increase discontinuously at that point. This
will typically be the case in the PSVM, where a discontinuous drop in one
candidate's probability of winning necessarily implies a discontinuous increase
in the other candidate's probability of winning.

For Theorem 2 to apply to the PSVM, one additional condition must be
placed on the probability of winning function:

(A4) There exists a continuous function P : �0; 2� ! �0; 1� such that for a < b

P�a; b� � P�a� b�.
As shown in Appendix 3, (A4) ensures that the limits invoked in condition

(iii) of Theorem 2 exist. Intuitively, this assumption says that (o¨ the diago-
nal) the value of P is constant as long as the sum of the candidates' platforms
is constant, or equivalently that the level sets of P are line segments perpen-
dicular to the diagonal.17 This will be true for probability of winning func-

16 Although the model considered in this paper involves a one-dimensional policy
space, and the theorem of Dasgupta and Maskin invoked in this section applies only to
one-dimensional models, there are versions of the Dasgupta and Maskin theorems,
developed in the appendix to their 1986a paper, that apply to multi-dimensional
models. Investigating the extent to which these theorems can be used to establish
the existence of mixed strategy equilibria in multi-dimensional voting models, where
pure strategy equilibria commonly fail to exist, is an interesting area for future re-
search.
17 To be precise, (A4) states that the level sets of P are line segments perpendicular to
the diagonal only on one side of the diagonal, where a < b. But the symmetry as-
sumption (A2) would then imply that the level sets of P are also line segments per-
pendicular to the diagonal on the other side of the diagonal, where a > b.
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tions of the form given in equation (3), in which the value of P is determined
by the midpoint of the interval between the two candidates' platforms (since
the midpoint of this interval is constant as long as the sum of the platforms is
constant). The further stipulation in (A4) that P must be continuous ensures
that P is continuous o¨ the diagonal, which is required by condition (ii) of
Theorem 2.

It is easy to check that (A4) is satis®ed in Example 1. In that case, the

required function P is given by P�x� � x

2
. More generally, (A4) will be sat-

is®ed for any probability of winning function of the form given in equation
(3), as long as m, the location of the median voter, is a continuous random

variable. In that case, we have P�x� � � x=2

0 f �m� dm.
The following proposition shows that assumptions (A1)±(A4), along with

an assumption of boundedness and continuity on the candidates' policy pref-
erences, imply that the PSVM satis®es all the conditions of Theorem 2, and so
must possess a mixed strategy Nash equilibrium.

Proposition 2. Consider the election game GE presented in Sect. 2. This game

will have a mixed strategy Nash equilibrium if

(i) P�a; b� satis®es assumption (A1), (A2), (A3) and (A4), and
(ii) uA�z� and uB�z� are bounded and continuous for z A �0; 1�.

Proof. To establish the existence of a mixed strategy Nash equilibrium, we
simply need to verify that all of the conditions of Theorem 2 are satis®ed.

Condition (i) of Theorem 2 is satis®ed since each player's strategy space is
the closed interval �0; 1�.

The boundedness requirement of condition (ii) of Theorem 2 is satis®ed as
a consequence of the boundedness of uA and uB assumed in condition (ii) of
Proposition 2.

Given the continuity of uA and uB assumed in condition (ii) of Proposition
2, the continuity requirement of condition (ii) of Theorem 2 will be satis®ed as
long as P is continuous o¨ the diagonal. The continuity of P o¨ the diagonal
is implied by the continuity of P assumed in (A4): Assume P is discontinuous
at a point �â; b̂�, and assume without loss of generality that â < b̂. Then there
exists a sequence of points �an; bn� that converges to �â; b̂� for which P�an; bn�
does not converge to P�â; b̂�. Then although an � bn will converge to â� b̂,
P�an � bn� will not converge to P�â� b̂�, implying that P is discontinuous at
â� b̂. So if P is continuous, P must be continuous o¨ the diagonal.

We will verify that condition (iii) of Theorem 2 is satis®ed in each of three
mutually exclusive and mutually exhaustive cases: lima!zÿ;b!z� P�a; b� > 1

2,
lima!zÿ;b!z� P�a; b� < 1

2 and lima!zÿ;b!z� P�a; b� � 1
2. (Appendix 3 shows that

lima!zÿ;b!z� P�a; b� exists.)

Case (i): lima!zÿ;b!z� P�a; b� > 1
2. In this case, Candidate A ful®lls the role of

player i in condition (iii) of Theorem 2. Rearranging slightly the expression for
UA�a; b; k A� given in equation (1), we can write
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lima!zÿ;b!z� UA�a; b; kA� � lima!zÿ;b!z�fP�a; b��uA�a� ÿ uA�b� � kA�
� uA�b�g:

Using the fact that the continuity of uA required by condition (ii) of Proposi-
tion 2 implies that lima!zÿ uA�a� � limb!z� uA�b� � uA�z�, we then obtain

lima!zÿ;b!z� UA�a; b; k A� � flima!zÿ;b!z� P�a; b�gkA � uA�z�: ���
A similar argument shows that

lima!z�;b!zÿ UA�a; b; k A� � flima!z�;b!zÿ P�a; b�gkA � uA�z�:
Since assumption (A2) implies that lima!zÿ;b!z� P�a; b� � 1ÿ
lima!z�;b!zÿ P�a; b�, this can be rewritten as

lima!z�;b!zÿ UA�a; b; k A� � f1ÿ lima!zÿ;b!z� P�a; b�gk A � uA�z�: ����
Finally, since Assumption (A2) implies that P�z; z� � 1

2 for any z A �0; 1�, we
have

UA�z; z; k A� � 1
2 kA � uA�z�: �����

For this case where lima!zÿ;b!z� P�a; b� > 1
2, it is easy to use expressions ���,

���� and ����� to verify that

lima!zÿ;b!z� UA�a; b� > UA�z; z� > lima!z�;b!zÿ UA�a; b�:
In terms of condition (iii) of Theorem 2, Candidate A is ful®lling the role of
player i.

Symmetric arguments show that

lima!zÿ;b!z� UB�a; b� < UB�z; z� < lima!z�;b!zÿ UB�a; b�
so that Candidate B ful®lls the role of player j 6� i, and condition (iii) of
Theorem 2 is satis®ed.

Case (ii): lima!zÿ;b!z� P�a; b� < 1
2. In this case, an argument symmetric to

that given for case (i) shows that

lima!zÿ;b!z� UB�a; b� > UB�z; z� > lima!z�;b!zÿ UB�a; b�
and

lima!zÿ;b!z� UA�a; b� < UA�z; z� < lima!z�;b!zÿ UA�a; b�
so that condition (iii) of Theorem 2 is satis®ed with Candidate B ful®lling the
role of player i and Candidate A ful®lling the role of player j.

Case (iii): lima!zÿ;b!z� P�a; b� � 1
2. In this case, similar arguments show that

for all i A fA;Bg
lima!zÿ;b!z� Ui�a; b� � Ui�z; z� � lima!z�;b!zÿ Ui�a; b�

so that condition (iii) of Theorem 2 is satis®ed, with all of the inequalities
holding with equality. t
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6 Conclusion

As discussed in the introduction, existence problems in the PSVM related to
multi-candidate elections and voting cycles have been extensively studied. This
paper has focused on an existence problem arising from a di¨erent source, a
discontinuity inherent in the probability of winning function. It has not pre-
viously been recognized that, because of this property, the PSVM falls into the
class of discontinuous games studied by Dasgupta and Maskin (1986a, b), in
which pure strategy Nash equilibria commonly fail to exist. Despite the pos-
sible failure of a pure strategy equilibrium, however, this paper has invoked a
theorem of Dasgupta and Maskin (1986a) to demonstrate that, for a large
class of probability of winning functions, the PSVM will always have an
equilibrium in mixed strategies. These results suggest that an important area
for further research on the PSVM will be to characterize the mixed strategy
equilibria of the game that will exist when it has no pure strategy equilibrium.

Appendix 1

De®nition of b̂

By choosing a platform below Candidate B's platform �a < b�, Candidate A
earns a payo¨ of

UA�a; b; k A� � P�a; b��uA�a� � kA� � �1ÿ P�a; b��uA�b� (A1-1)

which for the functional forms and parameter values introduced in Example 1
can be written as

UA�a; b; :05� � a� b

2

� �
ÿ 1

2
�aÿ 1�2 � :05

� �
� 1ÿ a� b

2

� �
ÿ 1

2

� �
�bÿ 1�2

(A1-2)

If Candidate A chooses a platform that is below Candidate B's platform b, he
will want to in®nitesimally undercut b: by converging toward b from below, he
both increases his probability of winning the election and moves his platform
closer to his ideal point of 1. As Candidate A's platform approaches Candi-
date B's platform from below, Candidate A's payo¨ approaches, but is always
less than,

lim
a!bÿ
fUA�a; b; :05�g � b� b

2

� �
ÿ 1

2
�bÿ 1�2 � :05

� �
� 1ÿ b� b

2

� �
ÿ 1

2
�bÿ 1�2

� �
� ÿ 1

2
�bÿ 1�2 � :05b (A1-3)

By choosing the interior solution a��b� de®ned in text equation (7), Candidate
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A earns a payo¨ of

UA�a��b�; b; :05� � P�a��b�; b��uA�a��b�� � :05� � �1ÿ P�a��b�; b��uA�b�
(A1-4)

Since the interior solution a��b� lies in the interval �b; 1�, (A1-4) can be written
as

UA�a��b�; b; :05� � 1ÿ a��b� � b

2

� �
uA�a��b�� � :05� � � a��b� � b

2

� �
uA�b�

(A1-5)

The critical value b̂ is de®ned as the value of Candidate B's platform at which
the limiting payo¨ that Candidate A could earn by undercutting Candidate
B's platform is equal to the payo¨ that Candidate A would earn by choosing
the interior solution a��b�:

lim
a!bÿ
fUA�a; b̂; :05�g1UA�a��b̂�; b̂; :05� (A1-6)

Using (A1-3), (A1-5), and the expression for a��b� given in text equation (7), b̂

can be numerically approximated as b̂A :61. For b � b̂, the payo¨ that Can-
didate A can earn by undercutting approaches, but is always less than, the
payo¨ that he can earn by choosing a��b�. For values of b less than b̂, the
limiting value of the payo¨ that Candidate A can earn by undercutting is
strictly less than the payo¨ he could earn by choosing a��b�; but for values
of b greater than b̂, Candidate A can earn a higher payo¨ by in®nitesimally
undercutting than by choosing a��b�.

Appendix 2

Candidate B's reaction function

If Candidate B chooses a platform below Candidate A's platform �b A �0; a��,
he earns a payo¨ of

UB�a; b; kB� � P�a; b�uB�a� � �1ÿ P�a; b���uB�b� � kB� (A2-1)

which for the functional forms and parameter values introduced in Example 1
can be written as

UB�a; b; 3� � 1ÿ a� b

2

� �
ÿ 1

2
a2

� �
� a� b

2

� �
ÿ 1

2
b2 � 3

� �
(A2-2)

It is easy to verify that, for b A �0; a�, qUB�a; b; 3�
qb

> 0, so that if Candidate B

chooses a platform less than a, his payo¨ increases monotonically as his plat-
form converges toward a from below. The payo¨ that he earns as his platform
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converges toward a approaches, but is always less than,

lim
b!aÿ
fUB�a; b; 3�g �

�
1ÿ a� a

2

��
ÿ 1

2
a2

�
�
�

a� a

2

��
ÿ 1

2
a2 � 3

�
� ÿ 1

2
a2 � 3a (A2-3)

Similarly, if Candidate B chooses a platform greater than Candidate A's
platform �b A �a; 1��, he earns a payo¨ of

UB�a; b; kB� � P�a; b�uB�a� � �1ÿ P�a; b���uB�b� � kB� (A2-4)

which for the functional forms and parameter values introduced in Example 1
can be written as

UB�a; b; 3� �
�

a� b

2

��
ÿ 1

2
a2

�
�
�

1ÿ a� b

2

��
ÿ 1

2
b2 � 3

�
(A2-5)

It is easy to verify that, for b A �a; 1�, qUB�a; b; 3�
qb

< 0, so that if Candidate B

chooses a platform greater than a, his payo¨ increases monotonically as his
platform converges toward a from above. The payo¨ that he earns as his
platform converges toward a approaches, but is always less than,

lim
b!a�
fUB�a; b; 3�g �

�
a� a

2

��
ÿ 1

2
a2

�
�
�

1ÿ a� a

2

��
ÿ 1

2
a2 � 3

�
� ÿ 1

2
a2 � 3�1ÿ a� (A2-6)

Finally, by choosing a platform identical to Candidate A's platform �b � a�,
Candidate B earns a payo¨ of

UB�a; a; kB� � P�a; a�uB�a� � �1ÿ P�a; a���uB�a� � kB� (A2-7)

which for the functional forms and parameter values introduced in Example 1
can be written as

UB�a; a; 3� �
�

1

2

��
ÿ 1

2
a2

�
�
�

1

2

��
ÿ 1

2
a2 � 3

�
� ÿ 1

2
a2 � 3

2
(A2-8)

Using expressions (A2-3), (A2-6), and (A2-8), it is easy to check that for a A
�0; 1

2�, the limiting payo¨ that Candidate B can earn by choosing a platform
in®nitesimally greater than a is strictly greater than the payo¨ that could be
earned by choosing any platform less than or equal to a; for a A �12 ; 1�, the
limiting payo¨ that Candidate B can earn by choosing a platform in®nitesi-
mally less than a is strictly greater than the payo¨ that could be earned by
choosing any platform greater than or equal to a; and for a � 1

2, Candidate B
maximizes his payo¨ by choosing b � a.
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Appendix 3

Existence of lima!zÿ;b!z� P�a; b�
Claim: For any z A �0; 1�, lima!zÿ;b!z� P�a; b� � P�2z�.
Proof: Take any sequence of points �an; bn� that converges to �z; z�, with an

converging to z from below and bn converging to z from above. Since an � bn

converges to 2z, the continuity of P implies that P�an � bn� converges to
P�2z�. Since an < bn for all n, P�an; bn� � P�an � bn� for all n, so P�an; bn�
converges to P�2z�.
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