
Soc Choice Welfare (1999) 16: 513±532

Comparison functions and choice correspondences*

Bhaskar Dutta1, Jean-Francois Laslier2

1 Indian Statistical Institute, New Delhi, India
2CNRS and THEMA, UniversiteÂ de Cergy-Pontoise, F-95011 Cergy-Pontoise Cedex,
France

Received: 4 November 1996/Accepted: 13 April 1998

Abstract. In this paper, we introduce the concept of a comparison function,
which is a mapping g that assigns numbers to ordered pairs of alternatives
�x; y� with the property that g�x; y� � ÿg�y; x�. The paper discusses how
some well-known choice correspondences on tournaments such as the un-
covered set, the minimal covering set and the bipartisan set can be extended
to this general framework. Axiomatic characterizations and properties are
studied for these correspondences.

1 Introduction

The problem of choosing one or more ``best'' alternatives out of a set of
feasible alternatives on the basis of pairwise rankings or contests arises in
a variety of di¨erent contexts. The most familiar context in which such
problems occur is that of sports tournaments. Another area is in social choice

theory, where the central problem is one of choosing the socially optimal
outcome(s) given the preferences of individual voters over di¨erent alter-
natives. These individual preferences can be aggregated to yield a binary
``social preference relation'', which in turn is used to specify the optimal out-
comes. A similar structure occurs in individual decision theory, when an indi-
vidual agent has to choose from a feasible set on the basis of multiple criteria.

In all such cases, the choice problem is relatively simple if the binary rela-
tion over the set of alternatives is transitive. Unfortunately, it is very natural
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to observe or expect non-transitive preferences in various di¨erent choice
contexts, the Condorcet Paradox being perhaps the most well-known instance.

A special case of nontransitive binary relations is represented by a tourna-

ment, which is a complete and asymmetric binary relation.1 There is by now a
vast literature which discusses various issues connected with problems of
deriving choice sets on the basis of tournaments. Many choice correspon-

dences, that is, mappings which specify the choice set for each tournament,
have been de®ned. Axiomatic characterizations of many of the choice corre-
spondences are also available.2

Despite the substantial volume of work on choice problems based on
tournaments, the latter concept is very restrictive. In particular, since a tour-
nament is an asymmetric binary relation, it cannot accommodate situations
where ties amongst alternatives is a natural outcome. This provides the pri-
mary motivation for the present paper. We introduce the concept of a com-

parison function, which is a mapping g that assigns numbers to ordered pairs
of alternatives �x; y� with the property that g�x; y� � ÿg�y; x�. So, ties can
be accommodated since g�x; y� � g�y; x� � 0 if x and y tie with each other.
Notice that comparison functions also admit the possibility of taking into
account the intensity of preference of (say) x over y.

The main purpose of this paper is to discuss ways of choosing on the
basis of comparison functions. In Sect. 3, we describe some well-known choice
correspondences on tournaments, and also discuss how these can be extended
to the larger class of comparison functions. We then go on to analyse the
axiomatic properties of these correspondences. We also analyse the con-
sequences of deriving a new choice correspondence through a seemingly
promising process. We show that although the process yields a well-de®ned
correspondence, the latter does not have very attractive axiomatic properties.

2 Basic concepts

Let X be a ®nite set of alternatives. A comparison function g is a mapping
g : X � X ! R such that for any x and y in X ; g�x; y� � ÿg�y; x�. This
obviously implies that g�x; x� � 0 for all x A X . Given any X and comparison
function g, we will call �X ; g� a comparison structure.

As we have remarked earlier, the notion of a comparison function is very
general, and various di¨erent contexts ®t into this structure. We list some of
these below.

(a) Binary relation: Let R be a complete binary relation on X. For instance, R

could be a social preference relation on X derived from individual preference
orderings on X by means of some aggregation rule such as the majority rule.

1 McGarvey (1953) showed that any tournament could be the outcome of majority
voting.
2 See Laslier (1997) for accounts of this literature.
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Alternatively, if �N;W� is a proper, simple game where W is the set of winning
coalitions, then xRy may hold if no winning coalition prefers y to x. Whatever
the interpretation of R, a comparison function g can be speci®ed to ``repre-
sent'' R. That is, for all x; y A X ,

g�x; y� �
1 if xRy and @yRx

0 if xRy and yRx

ÿ1 if @xRy and yRx.

8<:
(b) Tournaments: Let P be a complete and asymmetric3 binary relation on X.
For instance, P may correspond to the domination relation of a strong, proper,
simple game �N;W� where the set of winning coalitions has the property that
either a coalition is winning or its complement (in N) is winning. (Of course, a
coalition and its complement cannot both be winning if it is a proper game).
Then, let g be such that for all x; y A X ,

g�x; y� �
1 if xPy

0 if x � y

ÿ1 if yPx

8<:
(c) Symmetric, two-player, zero-sum game: Let g be the pay o¨ function of a
symmetric, two-player, zero sum game with X as the set of pure strategies.

(d) Plurality voting: Given a society of individuals, and a pro®le of individual
preference orderings, let n�x; y� be the number of individuals who strictly
prefer x to y, and set g�x; y� � n�x; y� ÿ n�y; x�. The number g�x; y� is called
the net plurality in favour of x against y. The function g is then a useful tool in
the analysis of two-party election contexts in which each party seeks to maxi-
mise the size of its victory.

(d) Reciprocal matrix: This is a positive matrix �Rij� such that Rij � 1

Rji
. Such

matrices are often used in psychometrics4. A reciprocal matrix can be trans-
formed into a comparison function by setting g�i; j� � ln Rij .

We will say that two comparison functions g and g 0 on X are ordinally

equivalent i¨ there is a strictly increasing mapping c : R! R such that
g 0�x; y� � c�g�x; y�� for all x; y A X .

We denote by G�X� the set of all comparison functions on X. If Y is a
subset of X and g A G�X �, the restriction of g to Y � Y is a comparison
function on Y, which will also be denoted by g in order to simplify notation.

Given any comparison structure �X ; g�, a choice correspondence selects a
subset of X as the choice set. The interpretation of the choice set depends upon
the speci®c situation which is being modelled through the comparison struc-
ture. For example, if g represents a binary social preference relation R or a

3 That is, for all distinct x; y A X , xPy!@yPx.
4 See, for instance, Saaty (1977) or Aupetit and Genest (1993).

Comparison functions and choice 515



tournament, the choice set represents the ``socially optimal'' set. If g represents
the domination relation of a simple game, then the choice set represents the set
of ``stable'' alternatives. Finally, in the two party election contests, the choice
set is the set of candidates (or policy packages) which might be adopted by
any party.

Let P�X � denote the set of nonempty subsets of X.

De®nition 2.1: A choice correspondence is a mapping S : P�X� � G�X � !
P�X � such that for all Y A P�X� and g A G�X�, S�Y ; g�JY

Notice that the de®nition given above explicitly allows variations in the set
of alternatives as well as in the comparison function. In all cases, the choice
correspondence must select a nonempty subset of the set of feasible alter-
natives. Two conditions which will be used extensively are given below.

De®nition 2.2: The following conditions are de®ned for an arbitrary choice cor-

respondence S.

(2.2.1) Strong Condorcet: If x A Y and g�x; y� > g�y; x� for all y A Ynfxg,
then fxg � S�Y ; g�.
(2.2.2) Tie-Splitting: If Y � Y 0WY 00 with Y 0XY 00 �q and for all y 0 A Y 0,
for all y 00 A Y 00, g�y 0; y 00� � 0, then S�Y ; g� � S�Y 0�WS�Y 00�.

The Strong Condorcet condition requires that a Condorcet winner if it
exists must be the unique element in the choice set. The condition of Tie-
Splitting is new. It says that if a set Y can be partitioned into two subsets such
that all elements in one subset ``tie'' with all elements from the other subset,
then the choice set corresponding to Y must be the union of the choice sets
corresponding to the two subsets.

We will ®nd it convenient to distinguish between two types of choice
correspondences. The distinction lies in the speci®cation of the choice set
for triples of alternatives in a speci®c situation. More formally, we have the
following de®nition.

De®nition 2.3: A choice correspondence is of Type 1 if for all g A G�X�, and all

fx; y; zgJX ; fx; y; zg � S�fx; y; zg; g� if g�x; y� � g�y; x�; g�x; z� > g�z; x�
and g�z; y� > g�y; z�. A choice correspondence is of Type 2 if it is not of

Type 1.

Remark 2.1: Note that if g represents a tournament, then there cannot be any
tuple fx; y; zg satisfying the required antecedent. Hence, all choice corre-
spondences must be Type 1 correspondences.

Notice that if g�x; y� � g�y; x�; g�x; z� > g�z; x� and g�z; y� > g�y; z�, then
x is in an obvious sense ``undefeated'' in the triple fx; y; zg. So, it is natural
that x should be in the choice set of fx; y; zg. A Type 1 choice correspondence
insists that y and z should also be in the choice set since y ties with x and z

beats y. We emphasize at this point that the above de®nition is purely de-
scriptive, and has no ethical connotation.
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We now introduce some properties of choice correspondences. In the ®rst
group of properties, the comparison function on X is ®xed. To simplify nota-
tion, we write S�Y�;S�Z� instead of S�Y ; g�;S�Z; g�.
De®nition 2.4: Let Y ;Z A P�X �, and S a choice correspondence.

(2.4.1) Aizerman: S�Y �JZ JY ) S�Z�JS�Y�.
(2.4.2) Strong superset property (SSP): S�Y�JZ JY ) S�Z� � S�Y �.
(2.4.3) Idempotency: S�S�Y�� � S�Y �.

(2.4.4) Expansion: For all Y1 . . . ;YK A P�X �, 7
K

i�1

S�Yi�JS 6
K

i�1

Yi

 !
.

(2.4.5) Contraction: If jY jV 4 and x A S�Y �, then there exist fY1; . . . ;YKg
such that Yk HY for all k � 1; . . . ;K , 6

K

i�1

Yi � Y and x A 7
K

i�1

S�Yi�.5

(2.4.6) Property g�: For all Y1; . . . ;YK A P�X �, x A 7
K

k�1

S�Yk� ) S 6
k

k�1

Yk

 !
6� 6

K

k�1

Yknfxg.

Except for contraction, all the other properties are familiar from the liter-
ature on tournaments. However, we prove below a result which has not been
noticed previously.

Proposition 2.1: SSP , Aizerman and Idempotency.

Proof: SSP is obviously stronger than Aizerman or Idempotency. So, we prove
that these two together imply SSP. So, let S�Y�JZ JY . By Aizerman,
S�Z�JS�Y�JZ. But, again by Aizerman, S�S�Y��JS�Z�JS�Y�. From
Idempotency, S�Y� � S�Z� since S�S�Y�� � S�Y�. 9

We now consider properties which place restrictions on how the choice sets
can vary when the feasible set is ®xed, but the comparison function varies.
Again, to simplify notation, we simply write S�g�; S�g 0�, etc., instead of
S�Y ; g� and S�Y ; g 0�.
De®nition 2.5: Let g; g 0 A G�X �, and S any choice correspondence.

(2.5.1) Ordinality: S�g� � S�g 0� whenever g and g 0 are ordinally equivalent.

(2.5.2) Monotonicity: If x A S�g�, then x A S�g 0� whenever for all y; z A Xnfxg;
g�y; z� � g 0�y; z� and g 0�x; y�V g�x; y�.
(2.5.3) Independence of losers: S�g� � S�g 0� whenever g and g 0 are such that for

all x; y A Y , x A S�g� ) g 0�x; y� � g�x; y�.

5 Note that � denotes proper subset. So, if jY j � 3, then the familiar Condorcet cycle
shows that no correspondence can satisfy the required condition.
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3 Some choice correspondences

In this section, we describe three speci®c choice correspondences which have
been extensively studied in the literature on tournaments. We then go on to
discuss di¨erent ways of modifying these correspondences for the case of
general comparison functions, that is, when the comparison functions are not
necessarily representations of complete asymmetric binary relations.

Let G T be the set of comparison functions which are generated by tour-
naments. In other words, g A G T i¨ g�x; y� A f1;ÿ1g for all distinct x; y A X .

3.1 The uncovered set

The notion of covering has been widely used in the literature on tournaments.6
Let g A GT , and Z JX . Then, for all x; y A Z, x covers y in Z if Ez A Z;

g�x; z�V g�y; z� with at least one strict inequality.
The notion of covering is used to de®ne the uncovered set for tournaments.
The uncovered set of g A G T for any set Z JX is the set of elements which

are not covered in Z. We refer the reader to Moulin (1986) for an axiomatic
characterization of the uncovered set in the case of tournaments.

When g A G T , the de®nition of an alternative x covering another alterna-
tive y can be phrased in terms of the familiar game-theoretic concept of (weak)
dominance.

De®nition 3.1: Let g A G, and Z JX . Then, for any x; y A Z, x dominates y in

Z if for all z A Z, g�x; z�V g�y; z� with at least one strict inequality.
So, let g A G, and de®ne the set of undominated elements as UD�X ; g� �

fx A X j 6 9y A X such that y dominates x in Xg.
The equivalence between the uncovered set and the undominated set is

no longer true when g B G T .7 Indeed, the next example shows that UD�X ; g�
viewed as a choice correspondence does not satisfy Expansion, which is
the main property in Moulin's characterization of the uncovered set for
tournaments.

Example 3.1: Let X � fx1; x2; x3; x4g. Consider g such that g�x1; x2� �
g�x2; x3� � g�x3; x4� � g�x1; x4� � 1 and g�x1; x3� � g�x2; x4� � 0.

Then, x1 dominates x3 and x4. So, UD�X � � fx1; x2g. But, x3 A
UD�fx1; x3g�XUD�fx2; x3; x4g�. Since x3 B UD�X�, this shows that UD
does not satisfy Expansion.

The problem revealed by Example 1 can be avoided by carefully de®ning
the notion of covering. Consider the following de®nitions.

De®nition 3.2: Let g A G. Then, for any x; y A X , x covers y in X for g if (i)

g�x; y� > 0 and (ii) for all z A Xnfx; yg, g�x; z�V g�y; z�.

6 See, for instance Fishburn (1977), Miller (1980), Moulin (1986).
7 This was ®rst pointed out by McKelvey (1986).
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De®nition 3.3: Let g A G. Then, for any x; y A X , x sign-covers y in X for g if
(i) g�x; y� > 0 and (ii) for all z A Xnfx; yg, g�x; z� � 0 implies g�y; z�U 0 and

g�x; z� < 0 implies g�y; z� < 0.

Observe that x sign-covers y for g if and only if x covers y for sign�g�
where,

Ex; y A X ; sign�g��x; y� �
1 if g�x; y� > 0

0 if g�x; y� � 0

ÿ1 if g�x; y� < 0.

8<:
Henceforth, we will call the Uncovered Set and denote by UC�X ; g� the set

of uncovered elements corresponding to De®nition 3.2. We will call Sign-
Uncovered Set and denote by SUC�X ; g� � UC�X ; sign�g�� the set of ele-
ments which are not sign-covered. Clearly, these sets are never empty. Note
that if x covers y, then x dominates y and x sign-covers y. Hence, UD�X ; g�J
UC�X ; g� and SUC�X ; g�JUC�X ; g�.
Remark 3.1: Notice that for comparison functions g with values in fÿ1; 0; 1g,
De®nition 3.2 is equivalent to De®nition 3.3, and to the de®nition of covering
used by McKelvey (1986) and Peris and Subiza (1997).

3.2 The minimal covering set

The notion of covering was used by Dutta (1988) to de®ne a covering set. Let
Z JY JX . Then, if Z is a covering set of Y, it must satisfy two properties.
First, all x A YnZ must be covered in Z W fxg. Second, all elements in Z must
be uncovered in Z itself. That is, Z must be the uncovered set of itself.

Dutta (1988) went on to show that there is a unique minimal covering set8,
denoted MC�X ; g�, and also gave an axiomatic characterization of MC�X ; g�.
The minimal covering set has recently been generalized by Peris and Subiza
(1996) to the case of comparison functions such that g�x; y� A fÿ1; 0; 1g.9

Since we have two alternative de®nitions of ``covers'' in the more general
framework of comparison functions, there are two corresponding notions of
covering sets and hence minimal covering sets. These are de®ned formally
below.

De®nition 3.4: Let g A G and Y A P�X�. Then, Y is a covering set for g in X if

the following are satis®ed:
(i) UC�Y ; g� � Y
(ii) Ex A XnY , x B UC�Y W fxg; g�.

De®nition 3.5: Let g A G, and Y A P�X�. Then, Y is a sign covering set for g in

X if the following are satis®ed:
(i) SUC�Y ; g� � Y

(ii) Ex A XnY , x B SUC�Y W fxg; g�.

8 Minimality is in terms of set inclusion.
9 For related work, see also Duggan and Le Breton (1996).
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The minimal covering set and the sign minimal covering set for X and g are
denoted MC�X ; g� and SMC�X ; g� respectively. Notice that it is not immedi-

ately apparent that a smallest (in terms of set inclusion) covering set will exist in

general. However, in the next section, we show that MC�X ; g� is well de®ned.10

Since the set of weakly undominated elements coincides with the un-
covered set in the case of tournaments, it is natural to ask whether weak
dominance can be used to generate ``dominating sets''. That is, let us call Y a
dominating set of X if UD�Y � � Y and for any x A XnY ; x B UD�Y W fxg�.
We have the following.

Proposition 3.1: bg A G for which there is no dominating set.

Proof: Let X � fx1; x2; x3; x4g, and consider the comparison function g

described in Example 3.1.
Since x1 dominates x3 and x4, the only candidate for a dominating set is

fx1; x2g. However, UD�fx1; x2� � fx1g 6� fx1; x2g. Hence there is no domi-
nating set. 9

3.3 The essential set

A third solution is the Bipartisan set of La¨ond et al. (1993) [LLL]. LLL
consider the tournament game in which two parties can each propose a policy
platform from X. If x and y are the platforms proposed, then x wins the
election i¨ g�x; y� � 1. Assuming that the two parties are interested only in
winning11, the payo¨ functions of this symmetric, two-person zero-sum game
are given by g�x; y� and g�y; x�. It is well known that there is no pure strategy
Nash equilibrium in this game unless some candidate is a Condorcet winner.
However, LLL show that there is a unique mixed strategy equilibrium, and the
support of the equilibrium strategy is called the Bipartisan set.

We now de®ne the extension of the Bipartisan Set. Notice ®rst that if
g A GnG T , then the corresponding tournament game may no longer have a
unique Nash equilibrium. To see this, the simplest example is when X � fx; yg
and g�x; y� � g�y; x� � 0. Obviously, there are two pure strategy symmetric
Nash equilibria.

We show that the appropriate generalization of the Bipartisan set is the
Essential Set; that is, the set of strategies which are played with positive
probability in some mixed strategy Nash equilibrium of the tournament game.
We de®ne this more formally.

Denote by D�X� the simplex on X, so that

D�X� � p A �0; 1�X
����X

x AX

p�x� � 1

( )
:

10 Peris and Subiza (1996) show that SMC�X ; g� is well de®ned.
11 That is, they do not care about net pluralities.
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The linear extension of g to D�X� � D�X� is still denoted by g, and we write

g�x; p� �
X
y AX

g�x; y�p�y�:

We know from the theory of symmetric, zero-sum games that if �p; q� is a
Nash equilibrium of g, then g�p; q� � 0 and �p; q�; �q; q�; �q; p� are all Nash
equilibria. There is, therefore, no loss of generality is considering only sym-
metric equilibria. So, let N�g� � fp A D�X� j �p; p� is a Nash equilibrium of
gg. Let supp �p� � fx A X jp�x� > 0g denote the support of any p A D�X�.
De®nition 3.7: Let g A G. Then, the Essential Set of g, denoted ES�X ; g� is

ES�X ; g� � W fsupp�p� : p A N�g�g:
Note that since N�g� is convex, there is some q A N�g� such that

supp�q� � ES�X ; g�. We show in the next section that the Essential Set retains
the more important axiomatic properties of the Bipartisan Set.

We conclude this section by de®ning the Sign Essential Set.

De®nition 3.8: Let g A G. Then, the Sign Essential Set of g, denoted SES�X ; g�
is

SES�X ; g� � ES�X ; sign�g��:

4 Characterization results

In this section, our initial set of results describes the axiomatic structure of the
choice correspondences de®ned in the last section. It turns out that although
the Essential set is a re®nement of the other correspondences, it may still con-
tain weakly dominated elements. Hence, we examine the possibility of con-
structing ethically desirable choice correspondences which re®ne the Essential
set through the sequential elimination of dominated elements. We show that
the process yields a well-de®ned correspondence. Unfortunately, this corre-
spondence does not satisfy Monotonicity.

4.1 Characterization of the sign uncovered set

We ®rst provide a characterization of the sign-uncovered set. This generalizes
Moulin's earlier characterization in two directions. First, Moulin had shown
that the uncovered set (for tournaments) is the ®nest correspondence satisfy-
ing Expansion, a weaker version of the Strong Condorcet Condition and the
familiar condition of Neutrality. Here, we provide a more ``complete'' char-
acterization by showing that SUC is the only Type 1 choice correspondence
satisfying Expansion, Contraction, Tie-Splitting, Monotonicity and the Strong
Condorcet Condition. Second, unlike Moulin, our result is not restricted to
comparison functions representing tournaments.

We ®rst prove a lemma which will be used in subsequent characterizations.
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Lemma 4.1: If jX jU 3, then a Type 1 choice correspondence satis®es the Strong
Condorcet Condition, Tie-Splitting and Monotonicity i¨ it is the Sign Uncovered

Set.12

Proof: Let S be any choice correspondence satisfying the stated conditions.
Suppose ®rst that X � fx; yg. Let g�x; y� � g�y; x� � 0. Then, the con-

clusion follows from Tie-Splitting. If g�x; y� > 0, then the Strong Condorcet
Condition proves the lemma.

Suppose now that jX j � fx; y; zg. First, note that if a Condorcet winner,
say x exists, then by the Strong Condorcet condition, it is the unique element
in the choice set. Of course, x also sign-covers every other element.

If g�x; y� � g�y; z� � g�z; x� � 0, then the repeated use of Tie Splitting
implies S�X ; g� � SUC�X ; g� � X .

Suppose g�x; y� > 0; g�y; z� > 0; g�z; x� > 0. Let g 0 be such that g 0�x; y� �
g�x; y�, g 0�y; z� � g�y; z� and g 0�x; z� � 0. Then, since S is a Type 1 choice
correspondence, S�X ; g 0� � X . Using monotonicity, we get z A S�X ; g�. The
argument can be repeated to establish that x; y A S�X ; g�.

Suppose g�x; y� > 0; g�x; z� � g�y; z� � 0. Then, since S�fx; yg; g� � fxg,
S�X ; g� � fx; zg from Tie-Splitting.

Suppose now that g�x; y� > 0; g�z; y� > 0; g�x; z� � 0. Consider g 0 such
that g 0�x; y� � g�x; y�; g 0�x; z� � g 0�y; z� � 0. Then, we have shown that
S�X ; g 0� � fx; zg. So, by Monotonicity, y B S�X ; g� and z A S�X ; g�. For
analogous reasons, x A S�X ; g�, so that S�X ; g� � fx; zg.

Finally, if g�x; y� > 0; g�x; z� � 0; g�y; z� > 0, then S�X ; g� � X since S is
a Type 1 choice correspondence.

Therefore, in all cases S coincides with the sign-uncovered set.
Noting that SUC satis®es all the conditions in the Lemma, we conclude the

proof of the lemma. 9

Theorem 4.1: The sign-uncovered set is the only Type 1 choice correspondence

satisfying Expansion, Contraction, Monotonicity, Tie-Splitting and the Strong

Condorcet Condition.

Proof: It is easy to check that SUC is a Type 1 choice correspondence sat-
isfying Expansion, Monotonicity, Tie-Splitting and the Strong Condorcet
Condition. We ®rst show that the sign-uncovered set satis®es Contraction.

For any a A X , let X��a� � fy A X j g�a; y� > g�y; a�g, Xÿ�a� � fy A X j
g�y; a� > g�a; y�g and X o�a� � fy A X j g�y; a� � g�a; y�g.

Let x A SUC�X ; g�. If X o�a� � X , then x A SUC�fx; yg; g� for all y A
Xnfag. Also, x A SUC�fx; yg; g� for all y A X��x�.

Suppose Xÿ�x� is nonempty. Then, for every y A Xÿ�x�, there is z A X

such that one of the following is true.

(i) g�y; z�U 0 and g�x; z� > 0.
(ii) g�y; z� < 0 and g�x; z�V 0.

12 Note that when jX jU 3, then SUC and SMC coincide.
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In either case, x A SUC�fx; y; zg; g�. Hence, for every y A Xÿ�x�, there is
Z�y�HX such that x A SUC�Z�y��.

Putting these together, SUC satis®es Contraction.
Let S be any Type 1 choice correspondence satisfying Expansion, Tie-

Splitting and the Strong Condorcet Condition. Moulin's proof is easily
adapted to show that SUC JS. For suppose x A SUC�X ; g�. From Tie-
Splitting, the Strong Condorcet Condition and Expansion, it follows that
x A S�X��x�WX o�x��. Now consider any y A Xÿ�x�. Then, there is z A X

such that one of (i) or (ii) above is true. Noting that x A SUC�fx; y; zg; g�,
Lemma 4.1 ensures that x A S�fx; y; zg; g�. Hence, SUC JS.

So, we only need to show that if S also satis®es contraction, then
S JSUC.

Suppose the statement is true for all X such that jX jUK where K V 3. Let
jX j � K � 1 and x A S�X ; g�. Then, since jX jV 4, there are X1; . . . ;XL with
each Xj being a proper subset of X such that 6L

j�1Xj � X and x A 7L

j�1
S�Xj ; g�.

From the induction hypothesis, S�Xj; g�JSUC�Xj; g� for all j � 1; 2; . . . ;
L. So, x A 7L

j�1
SUC�Xj ; g�. Since SUC satis®es Expansion, x A SUC�X ; g�.

Hence, S�X ; g�JSUC�X ; g�.
The proof of the theorem is completed by noting that Lemma 4.1 has

established that S�X� � SUC�X� if jX jU 3. 9

Remark 4.1: The sign-uncovered set (as well as the uncovered set) are ordinal
choice correspondences satisfying Aizerman and Monotonicity.

Remark 4.2: Peris and Subiza also have a characterization of the sign uncov-
ered set which is in the spirit of Moulin's original characterization. They show
that the sign uncovered set is the smallest choice correspondence satisfying
Expansion, and a set of conditions whose role is essentially to show that the
choice correspondence coincides with the sign uncovered set when there are
only three elements.

A similar characterization cannot be extended to cover UC. Indeed, UC

does not satisfy the Strong Condorcet Condition,13 although it does satisfy
Expansion. UC also does not satisfy Contraction, as pointed out in Example
4.1.

Example 4.1: Let X � fx; y; z; ag, and consider g such that g�x; y� � g�y; z� �
g�z; x� � 2, g�b; a� � 1 for all b A fx; y; zg. Then, a A UC�X ; g�, although a is
not in the uncovered set of any proper subset of X. Notice that a is a Con-
dorcet loser, that is, it loses in pairwise comparisons to all other alternatives.
The reader can check that in this example, MC coincides with UC. Hence,
both UC and MC have the undesirable property of sometimes picking up
Condorcet losers. On the other hand, SUC, SES, SMC and ES can never
choose Condorcet losers.

13 We are most grateful to one of the referees for pointing this out.
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We conclude this section by showing that the conditions of Expansion and
Contraction are logically independent.

Proposition 4.1: Expansion and Contraction are logically independent.

Proof: Since SMC JSUC, it follows from Moulin's characterization of SUC

that SMC does not satisfy Expansion. However, SMC satis®es Contraction.
To see this, note again that SMC JSUC and that SMC�A� � SUC�A�
whenever jAjU 3. So, the proof that SUC satis®es Contraction can be applied
to show that SMC also satis®es the property.

We now show that Expansion does not imply Contraction. Take any
x; y A X , and g A G. We say that x reaches y if there exists a sequence fxkgK

k�1

such that x1 � x; xK � y and g�xk; xk�1�V g�xk�1; xk� for all k � 1; . . . ;
K ÿ 1. Then, de®ne the Top Cycle Set, denoted TC�X ; g�, as follows.

TC�X ; g� � fx A X j E y A X ; x reaches yg:
It is easy to check that TC satis®es Expansion. However, TC does not satisfy
Contraction. To see this, consider X � fx; y; z;wg, g�x; y� � g�y; z� � g�z;w�
� g�w; x� � g�w; y� � g�z; x� � 1. Then, x A TC�X ; g�. But, x does not belong
to the top cycle of any proper subset of X containing w. 9

4.2 Properties of minimal covering set

We now turn to the properties of the minimal covering set. We state the
following theorem, which extends the original theorem of Dutta (1988) to
cover all comparison functions in G.

Theorem 4.2: For any g A G, MC and SMC are well-de®ned Type 1 choice

correspondences satisfying SSP, Tie-Splitting and g�. Moreover, SMC is con-

tained in every Type 1 choice correspondence satisfying the Strong Condorcet

Condition in addition to these properties.

Proof: We ®rst prove the statement regarding MC.14
In what follows, we call a subset Y of X externally stable if

Ex B Y ; x B UC�Y W fxg; g�:
Claim 1: Let pV 2, X1, X2 be two externally stable subsets of X, and
x1; . . . ; xp A X be such that:

(i) if i is odd, xi A X1, and for i > 1; xi covers xiÿ1 in X1 W fxiÿ1g.
(ii) if i is even, xi A X2, xi covers xiÿ1 in X2 W fxiÿ1g.
Then, if i < j, g�xj; xi� > 0.

Proof of Claim 1: The proof is by induction on p. For p � 2, the claim is true
since x2 covers x1 implies g�x2; x1� > 0: Suppose the claim is true for pÿ 1,

14 The proofs of both parts are quite similar to the orginal proof of Dutta (1988). The
demonstration given here that MC is well-de®ned is adapted from Laslier (1997),
whose proof was for tournaments.
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and consider the two sequences x1; . . . ; xpÿ1 and x2; . . . ; xp. Then, g�xj; xi� > 0
is true for any i < j except possibly for i � 1, j � p. If p is odd, xp A X1, and
so xp covers xpÿ1 in X1 W fxpÿ1g. This implies g�xp; x1�V g�xpÿ1; x1� > 0. If p

is even, xp A X2; x2 covers x1 in X2 W fx1g implies that g�x2; xp�V g�x1; xp�.
Hence, g�xp; x1�V g�xp; x2� > 0.

Claim 2: The intersection of two externally stable sets is nonempty.

Proof of Claim 2: Let X1;X2 be two externally stable sets with X1 XX2 �q.
Take x1 A X1. There is x2 A X2 such that x2 covers x1 in X2 W fx2g. The
®niteness of X can now be used in an obvious manner to arrive at a contra-
diction with Claim 1.

Claim 3: The intersection of two externally stable sets is externally stable.

Proof of Claim 3: Let X1;X2 be externally stable with Y � X1 XX2. Take
x0 B X1. There exists x1 A X1 which covers x0 in X1 W fx0g. If x1 A Y , then x1

covers x0 in Y W fx0g, and we are done. Otherwise, there exists x2 A X2 which
covers x1 in X2 W fx1g. Extension of these arguments produces a sequence
x1; x2; . . . ; xp such that xp A Y and the sequence satis®es the conditions of
Claim 1. Because xp A X1 and x1 covers x0 in X1 W fx0g, g�x1; xp�V g�x0; xp�.
So, g�xp; x0�V g�xp; x1� > 0, where the last inequality follows from Claim 1.
Also, for any y A Y , g�xp; y�V g�xpÿ1; y�V � � � V g�x1; y�V g�x0; y�. So, xp

covers x0 in Y W fx0g.
Since X is ®nite, it follows that the intersection of two externally stable sets

is externally stable. This is clearly the smallest externally stable set.

Claim 4: Let Y be the intersection of all externally stable sets. Then,
UC�Y � � Y .

Proof of Claim 4: It is su½cient to prove that UC�Y � is externally stable. So,
take any x B UC�Y�. If x A Y , then by de®nition there is some y A UC�Y �
such that y covers x in UC�Y �W fxg. If x B Y , there is y A Y which covers x

in Y W fxg because Y is externally stable. If y A UC�Y�, then y also covers x

in UC�Y�W fxg, and we are done. Otherwise, there exists some z A UC�Y � to
cover y in Y. It is easy to show that z covers x in UC�Y �W fxg. Hence, the
claim is proved.

We have just shown that Y, the intersection of all externally stable sets, is a
covering set. Since by de®nition any covering set is externally stable, any
covering set must contain Y. Hence, Y is the minimal covering set, and MC is
well-de®ned.

We now show that MC satis®es g�, Tie-Splitting and SSP. To check that
MC satis®es g�, note that if x A 7K

k�1MC�Yk�, then x A 7K

k�1 UC�Yk�
since MC JUC. Since UC satis®es Expansion, x A UC�6K

k�1Yk�. So,
MC�6K

k�1Yk� 6�6K

k�1Yknfxg. Hence, MC satis®es g�.
For Tie-Splitting, let X � Y 0WY 00, with Y 0 and Y 00 like in the de®nition

of Tie-Splitting. Denote Z 0 �MC�Y 0�, Z 00 �MC�Y 00� and Z � Z 0WZ 00. We
must prove that MC�X� � Z. Let us ®rst show that Z is externally stable for
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X. Let y 0 A XnZ, without loss of generality we can take y 0 A Y 0. There exists
z 0 A Z 0 such that z 0 covers y 0 in Z 0W fy 0g. Since y 0 and z 0 both tie with all the
alternatives in Z 00, z 0 also covers y 0 in Z W fy 0g, hence Z is externally stable
for X and MC�X�JZ. Conversely let W be externally stable for X and let
W 0 �W XY 0. For y 0 A Y 0nW 0, there exists w A W such that w covers y 0

in W W fy 0g. Since g�w; y� > 0, w A W 0, and w covers y 0 in W 0W fy 0g. It
follows that MC�Y 0� � Z 0JW 0, and likewise Z 00JW XY 00. Therefore
Z JW and we deduce that Z �MC�X�.

For SSP, suppose now that MC�X� � Y JZ JX . Since Y is a covering
set for X, it is also a covering set for Z. If Y is not the minimal covering set for
Z, then some W which is a proper subset of Y is the minimal covering set for
Z, and thus a covering set for X, a contradiction.

Notice that we have shown that MC is well-de®ned for any g. This shows
that SMC is also well-de®ned since SMC�X ; g� �MC�X ; sign�g��.

Finally, note that Lemma 4.1 also implies that any choice correspondence
satisfying the stated properties coincides with SMC when jX jU 3. Given
this, the proof of minimality of SMC is almost identical to that of Dutta
(1988). 9

Remark 4.3: Peris and Subiza (1996) were the ®rst to extend the concept of the
minimal covering set to the case of comparison functions such that g�x; y� A
fÿ1; 0; 1g, and to provide a characterization of SMC in terms of minimality
and a set of other axioms.

Remark 4.3: SMC also satis®es Ordinality, Contraction, Monotonicity and
Independence of Losers.

4.3 Properties of the essential set

Before presenting the results on the Essential Set, we need a lemma.

Lemma 4.2: Let g A G. Then, ES�X ; g� � fx A X jg�x; p� � 0 Ep A N�X ; g�g
Proof: First, note that if p A N�X ; g�; then for all x A X :

x A supp�p� ) g�x; p� � 0 �1�
x B supp�p� ) g�x; p�U 0 �2�

Now, suppose p; q A N�X ; g�. Then, 0 � g�q; p� �P g�x; p�q�x�, with q�x�V
0. Also, from (1) and (2), g�x; p�U 0 for all x A X . So, for all x A X , either
q�x� � 0 or g�x; p� � 0. Hence,

ES�X ; g�J fx A X j g�x; p� � 0 Ep A N�X ; g�g:
The fact that fx A X j g�x; p� � 0 Ep A N�X ; g�gJES�X ; g� is well-

known.15 9

15 This is called the Equalizer Theorem and holds for any zero-sum game (see
Raghavan 1994).
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It is easy to check that ES satis®es the Strong Condorcet condition. In the
next theorem, we state and prove some properties of ES which are not so
obvious.

Theorem 4.3: The choice correspondence ES satis®es the following properties

(i) Strong Superset Property

(ii) Independence of Losers

(iii) Monotonicity

(iv) ES is contained in MC.

Proof: (i) It is su½cient to prove that if x B ES�X �, then ES�Xnfxg� �
ES�X �. So, take any x B ES�X �. If p A N�X �, then g�y; p�U 0 for all y A
Xnfxg, and hence p A N�Xnfxg�. It follows that

ES�X �JES�Xnfxg�:
Conversely, suppose y B ES�X�, where y is distinct from x. From Lemma

4.2, there exists p A N�X� such that g�y; p� < 0 and p�x� � 0. So, p A
D�Xnfxg�. Moreover, p is such that Ez A Xnfxg, g�z; p�U 0. Hence, p A
N�Xnfxg�: Hence, g�y; p� < 0 implies that y B ES�Xnfxg�. Therefore,

ES�Xnfxg�JES�X�:
Hence, ES satis®es SSP.

(ii) Let g 0 be such that for any x A ES�X ; g� and y A X , g 0�x; y� � g�x; y�.
Then, for any p A N�X ; g� and any y A X , g 0�p; y� � g�p; y�V 0. So, p A
N�X ; g 0�: Therefore, ES�X ; g�JES�X ; g 0�.

To prove the converse inclusion, let y B ES�g�. Then, there exists p A
N�X ; g� such that g�y; p� < 0. Since we have proved that N�X ; g�JN�X ; g 0�,
p A N�X ; g 0�. Noting that supp�p�JES�X ; g�, the antecedent of the Inde-
pendence of Losers property implies that g�y; p� � g 0�y; p�. It follows that
g 0�y; p� < 0. Hence, y B ES�X ; g 0�.

Hence, ES is independent of losers.
(iii) We now prove that ES satis®es Monotonicity.

Let x A ES�g�; y A X . Suppose g and g 0 are identical on X � X except that
g 0�x; y� > g�x; y�. We need to show that x A ES�X ; g 0�.
Case (a) Suppose ®rst that y B ES�X ; g�. By SSP, ES�X ; g� � ES�Xnfyg; g�.
For any p A N�g� we have g 0�z; p�U g�z; p�U 0, so that p A N�g 0�. Taking p

such that p�x� > 0; g 0�y; p� < g�y; p�U 0 shows that y B ES�X ; g 0�. By SSP,
ES�X ; g 0� � ES�Xnfyg; g 0�. Since g and g 0 are identical on Xnfyg, we have
ES�X ; g� � ES�X ; g 0�.
Case (b) Suppose y A ES�X ; g� and x B ES�X ; g 0�. If y B ES�X ; g 0�, then by
Independence of Losers, ES�X ; g� � ES�X ; g 0�, contradicting x A ES�X ; g�.
If y A ES�X ; g 0�, then by applying arguments of Case (a) (but reversing roles
of x; y; g and g 0), the same contradiction follows. Therefore, x A ES�X ; g 0� if
y A ES�X ; y�.
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(iv) We now show that ES�X�JMC�X �. Let Y be a covering set for g A X .
Choose any p A N�Y ; g�. Let x A X . If x A Y , then g�x; p�U 0. If x B Y , then
there is y A Y such that y covers x in Y W fxg. Noting that p�z� � 0 for all
z B Y , we have g�x; p�U g�y; p�U 0. Hence, p A N�X ; g�. So, we have proved
that N�Y ; g�JN�X ; g�.

We now prove that ES�X ; g� � ES�Y ; g�. Let x A ES�X ; g�. If x B Y , then
there exists y A Y which covers x in Y W fxg. If y A ES�Y ; g�, then consider
p A N�Y ; g� such that p�y� > 0. Then, g�x; p� < g�y; p�. But, since N�Y ; g�J
N�X ; g�, p A N�X ; g�. So, g�x; p� < g�y; p� � 0. This is a contradiction since
x A ES�X ; g�.

If y B ES�Y ; g�, then from Lemma 4.2, there is p A N�Y ; g� such that
g�x; p�U g�y; p� < 0. This gives the same contradiction.

Hence, ES�X ; g�JY . But, since ES satis®es SSP, we must have
ES�X ; g� � ES�Y ; g�. Hence, denoting SMC�X ; g� � Y , we have ES�X ; g� �
ES�Y ; g�JY . So, ES�X ; g�JMC�X ; g�.

This completes the proof of the theorem. 9

Remark 4.4: The following inclusions are true (and may be strict).

SES�X ; g�HSMC�X ; g�HMC�X ; g�; and ES�X ; g�HMC�X ; g�:
An example in LLL (1994) shows that SMC and ES can have empty
intersection.

Proposition 4.2: The correspondence ES is not ordinal.

Proof: Consider X � fa1; a2; a3; b1; b2; b3g.
a1 a2 a3 b1 b2 b3

a1 0 1 ÿ1 ÿa 1 1

a2 ÿ1 0 1 1 ÿa 1

a3 1 ÿ1 0 1 1 ÿa

b1 a ÿ1 ÿ1 0 1 ÿ1

b2 ÿ1 a ÿ1 ÿ1 0 1

b3 ÿ1 ÿ1 a 1 ÿ1 0

Routine calculations yield the following

If a < 2; ES�ga� � fa1; a2; a3g:
If a � 2; ES�ga� � fa1; a2; a3; b1; b2; b3g:
If a > 2; ES�ga� � fb1; b2; b3g:
Since ga and ga 0 are ordinally equivalent for a and a 0 greater than 1, the

result follows. 9

One interesting question is the axiomatic characterization of ES. First, note
that SES and ES both satisfy the properties listed in Theorem 4.3. Since they
may have an empty intersection, it follows that there does not exist a unique
minimal choice correspondence satisfying these properties. Second, since ES is
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not an ordinal choice correspondence, an axiomatic characterization of ES
must employ at least some axiom which is qualitatively di¨erent from the ones
used in this paper. Laslier (1996) proposes such a characterization.

The example in Remark 4.4 illustrates the well-known fact that mixed
strategy equilibria (and hence ES�X ; g�) may for some g contain weakly
dominated elements. So, it is natural to ask whether it is possible to de®ne a
re®nement of the Essential set by eliminating weakly dominated alternatives.
We now turn to this issue.

Recall that UD�X ; g� is the set of undominated elements of the comparison
structure �X ; g�. Let UD0�X� � X , and UDk�1�X � � UD�UDk�X �� for any
k V 0. So, for any integer k, UDk is the set derived by sequentially eliminating
weakly dominated elements. Since X is ®nite, there will be some K such that
UDK�X � � UDKÿ1�X �. We denote UDy�X� � UDK�X �, so that UDy�X � is
the set of elements which ``survive'' sequential elimination of weakly domi-
nated alternatives. One seemingly plausible option is to view ES�UDy� as a
choice correspondence for X. We show below that ES�UDy� actually coin-
cides with ES�X �XUDy�X � and that it is nonempty.

Lemma 4.3: ES�X�XUDy�X� 6�q.

Proof: Take any p A N�X�. If x A ES�X�, then g�x; p� � 0. Clearly, if y

weakly dominates x, then g�y; p�V g�x; p�V 0. So, y A ES�X ; g�. Since X is
®nite, repeated use of this argument establishes that ES�X�XUD1 6�q.
Again, repeated use of this argument establishes that ES�X �XUDy is
nonempty. 9

Theorem 4.4: For any k, and any comparison structure �X ; g�, ES�UDk�X�� �
ES�X �XUDk�X �.
Proof: We prove this by induction on k. First, we want to show that the
statement is true for k � 1.

Let Y � ES�X�XUD�X�. Let p A N�UD�X��. If x A UD�X �, then
g�x; p�U 0. If x B UD�X�, then there is y A UD�X� such that y weakly
dominates x. Then, g�x; p�U g�y; p�U 0. So, p A N�X�. It follows that
ES�UD�X��JES�X �. Hence, ES�UD�X��JY .

Now, we want to prove that Y JES�UD�X��. Choose p A N�X� such that
supp�p� � ES�X�. For each x A ES�X � such that x B UD�X�, denote by d�x�
some alternative which weakly dominates x and such that d�x� A UD�X �.
Note that in the course of proving Lemma 4.2, we showed that d�x� A ES�X�.

For any z A UD�X �, let dÿ1�z� � fx A ES�X�X �XnUD�X �� j d�x� � zg.
De®ne q as follows.

q�z� � 0 if z B UD�X �
p�z� �Px A dÿ1�z� p�x� if z A UD�X �

(
Then, q A D�X � and supp�q� � Y . For any z A UD�X�, we have g�z; q�U

g�z; p�U 0. Hence, q A N�UD�X��. This proves that Y JES�UD�X ��, and
also shows that the statement of the theorem is true for k � 1.
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Now, using the induction hypothesis, we have

q 6� ES�UDk�1�X ��

� ES�UDk�UD�X���
� ES�UD�X ��XUDk�UD�X ��
� ES�X�XUD�X�XUDk�1�X�
� ES�X�XUDk�1�X�:

This completes the proof of the theorem. 9

Proposition 4.2: ES�UDy� does not satisfy Monotonicity.

Proof: Let X � fa1; a2; a3; b1; b2; b3g. The matrix below speci®es g A G.

a1 a2 a3 b1 b2 b3

a1 0 1 0 0 0 0

a2 ÿ1 0 1 0 0 0

a3 0 ÿ1 0 0 0 0

b1 0 0 0 0 1 0

b2 0 0 0 ÿ1 0 1

b3 0 0 0 0 ÿ1 0

It is easy to check that ES�g� � fa1; a3; b1; b3g, and that UDy�g� � fa1; b1g.
Let h A G be identical to g except that h�a1; a3� � 1. Then, UDy�h� � fb1g.
Since g�a1; a3� � 0 and h�a1; a3� � 1, this represents a violation of
monotonicity. 9

5 Conclusion

In this paper, we have introduced the concept of comparison functions. Com-
parison functions are a substantial generalization of tournaments, and are
useful in a number of di¨erent contexts. Given a comparison function, a
choice correspondence speci®es a choice set for every set of feasible alter-
natives. We have examined the issue of how to extend three well-known
choice correspondences (de®ned earlier for choosing on the basis of tourna-
ments) to deal with comparison functions. These correspondences are the
Uncovered set, the Minimal Covering Set and the Bipartisan Set.

The ®rst two correspondences are both based on the binary relation
``covers''. In the context of tournaments, an alternative x covers another
alternative y if and only if x weakly dominates y. The ®rst reaction, therefore,
is to extend these choice correspondences to the general case of comparison
functions by using the ``weakly dominates'' relation. However, we show that
this intuition is wrong. In order to preserve the original properties of these
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choice correspondences, the ``weakly dominates'' relation has to be strength-
ened in order to get the appropriate ``covers'' relation.

Given any tournament, there is a unique mixed strategy Nash equilibrium
of the corresponding tournament game. The Bipartisan Set coincides with the
support of this unique equilibrium. However, the uniqueness result no longer
holds for comparison functions. The natural extension of the Bipartisan Set in
this context is the Essential Set, which is the the union of the supports of all
mixed strategy equilibria.16

The paper also provides a new axiomatic characterization of the Sign-
Uncovered set. We also show that the Essential Set satis®es several desirable
axioms. However, the Essential Set may contain weakly dominated alter-
natives. This raises the question whether the Essential Set can be re®ned by a
process of sequential elimination of weakly dominated alternatives. We show
that this process does produce a well-de®ned choice correspondence.
Unfortunately, the correspondence does not have very good axiomatic prop-
erties. Hence, it seems that the selection of weakly dominated alternatives is
one price that has to be paid in the transition to the more complex world of
comparison functions.
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