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Abstract. The Condorcet winner in an election is a candidate that could defeat
each other candidate in a series of pairwise majority rule elections. The Con-
dorcet e½ciency of a voting rule is the conditional probability that the voting
rule will elect the Condorcet winner, given that such a winner exists. The study
considers the Condorcet e½ciency of basic voting rules under various assump-
tions about how voter preference rankings are obtained. Particular attention is
given to situations in which the maximal culture condition is used as a basis
for obtaining voter preferences.

1. Introduction

Consider an election on three alternatives (A, B, and C ). There are six possi-
ble rankings that each of n (odd) voters might have on these candidates.

A A B C B C

B C A A C B

C B C B A A

n1 n2 n3 n4 n5 n6

Here, ni denotes the number of voters having the associated preference rank-
ing, with n �P6

i�1 ni. Since each of the six rankings represents a linear pref-
erence order, voter indi¨erence between candidates is not allowed. A speci®c
combination of ni's is referred to as a voter pro®le, or simply as a pro®le.

A candidate is the Condorcet winner if it would be able to defeat each of
the other two candidates in a series of pairwise majority votes. Thus, candi-
date A would be the Condorcet winner if n1 � n2 � n3 > n4 � n5 � n6 (A beats
C by majority rule) and if n1 � n2 � n4 > n3 � n5 � n6 (A beats B by majority
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rule). It is well known that a Condorcet winner does not necessarily exist
(Condorcet 1785). However, when such a candidate does exist, the Condorcet
criterion suggests that it should be elected as the winner of the election.

The Condorcet e½ciency of a voting rule is the conditional probability that
the voting rule will elect the Condorcet winner, given that a Condorcet winner
exists. The purpose of the current study is to examine the Condorcet e½ciency
of some common voting rules, when voter pro®les meet the maximal culture
condition, which will be de®ned later. Particular attention will be given to
general observations that can be made regarding the Condorcet e½ciency of
common voting rules over three di¨erent previously established conditions for
obtaining voter pro®les.

2. Pro®le generating methods

Since the notion of Condorcet e½ciency involves conditional probabilities of
events related to voter pro®les, some assumption must be made about the
likelihood that various pro®les will occur. If some candidate has a relatively
high likelihood of being preferred by most voters, then that candidate will be
likely to be elected by any voting procedure that is used. Thus, the most in-
teresting cases are situations in which there is a balance, or neutrality, in vot-
ers' preferences, to re¯ect situations in which the selection of the voting rule to
be used is likely to be most critical in determining the outcome of the election.
Gehrlein and Fishburn (1981) de®ne three di¨erent methods of describing
how voter pro®les might be randomly generated. Each of these pro®le gen-
erating methods is neutral toward candidates and tends to have an overall
expected balance of voter preferences, to suggest the case of close elections.
The three pro®le generating methods are:

Impartial Culture (IC) ± Each of the n voters is independently assigned a
preference ranking. Each of the six possible preference rankings is equally
likely to be assigned to the voters.

Impartial Anonymous Culture (IAC) ± Each voter pro®le with a combi-
nation of ni's that sum to n is assumed to be equally likely to be observed.

Maximal Culture (MC) ± A positive integer, L, is selected, and each
ni is drawn from a uniformly random distribution on the integers
f0; 1; 2; 3; . . . ;Lg. Unlike IC and IAC, MC does not have a ®xed number
of voters.

We are primarily interested in considering situations for which closed form
representations can be developed for the probabilities in question. As a result,
we shall generally only consider the limiting case in voters �n!y� for IC.

IC and IAC are special forms of PoÂ lya-Eggenberger (P-E ) urn models
(Berg 1988). P-E models describe a family of discrete multivariate contagion
probability models. To describe them in the context of this particular exam-
ple, consider an urn containing six balls of di¨erent colors. Each of the six
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colors represents one of the possible complete preference rankings on the three
candidates. Balls are sequentially drawn at random from the urn, and each is
replaced along with a balls of the same color after each drawing. The proba-
bility of drawing ni balls for each color for i � 1; 2; 3; 4; 5; 6 after n draws is
given by q�n1; n2; n3; n4; n5; n6�. With the assumptions of P-E models, it fol-
lows that

q�n1; n2; n3; n4; n5; n6� � n!

6�n;a�
Y6
i�1

1�ni ;a�

ni!
;

where k�x;a� is the generalized ascending factorial with k�x;a� � k�k � a� � � �
�k � a�xÿ 1��, for x � 2; 3; . . . ; n and k�0;a� � k�1;a� � k.

For the speci®c case of a � 0 with P-E models, q�n1; n2; n3; n4; n5; n6� takes
the form of a standard multinomial model with equal probabilities for each of
six events, which is the case for IC. For the speci®c case of a � 1 for P-E
models, q�n1; n2; n3; n4; n5; n6� is equivalent to the IAC case in which all com-
binations of ni's are equally likely to be observed. MC does not ®t the general
format of P-E models. However, Berg (1998) points out that MC is the same
as IAC for speci®c n , when nUL.

An examination of the Condorcet e½ciency of voting rules would be of
little interest if there is only a small likelihood that a Condorcet winner exists.
Let PCon�PGM� denote the probability that a Condorcet winner exists under
the assumption of pro®le generating method PGM�IC; IAC;MC�. Then:
From Guilbaud (1952),

PCon�IC� � 3

4
� 3

2p
Sinÿ1

1

3

� �
From Gehrlein and Fishburn (1976),

PCon�IAC� � 15�n� 3�2
16�n� 2��n� 4�

From Gehrlein and Lepelley (1997),

PCon�MC� � L�109L4 � 446L3 � 749L2 � 616L� 240�
120�L� 1�5

Each of these pro®le generating methods results in a relatively large proba-
bility that a Condorcet winner exists, so it is of interest to determine the
Condorcet e½ciency of some common voting rules. Our attention will be
focused on constant scoring rules.

3. Constant scoring rules

There are four constant scoring rules on three candidate elections. Two of
these procedures elect the candidate in a single stage procedure. In particular,
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plurality rule �PR� has each voter report their most preferred candidate, and
negative plurality rule �NPR� has each voter report their two most preferred
candidates. Then the winner is selected as the candidate receiving the most
votes. NPR is equivalent to having each voter report their least preferred
candidate and then selecting the winner as the candidate receiving the fewest
`negative' votes.

Two-stage election procedures use a sequential process to eliminate a loser
in the ®rst stage, before continuing on to the second stage. The two constant
scoring rules on three candidates are plurality elimination rule (PER) and
negative plurality elimination rule (NPER). PER ranks candidates in the ®rst
stage according to the number of votes received by PR. The candidate who
receives the fewest votes is removed, and the winner is determined by majority
rule over the remaining two candidates in the second stage. NPER operates in
the same fashion and uses NPR in the ®rst stage.

We are interested in obtaining closed form representations for the Con-
dorcet e½ciency of these four voting procedures. Gehrlein (1997) presents a
general survey of most previous research related to the Condorcet e½ciency of
voting rules. Let CE�VR;PGM� denote the Condorcet e½ciency of voting
rule VR�PR;NPR;PER;NPER� with pro®le generating method PGM.

Gehrlein and Fishburn (1978a) show that CE�PR; IC� � CE�NPR; IC� in
the limiting case, n!y. A closed form representation for CE�PR; IC� is
developed in Gehrlein and Fishburn (1978b) as

CE�PR; IC� �
�
1

4
� 3

4p2

��
Cosÿ1

�
ÿ

���
2

3

r ��2

ÿ 1

4

�
pÿ Sinÿ1

�
1

3

��2�

� 3

4p
Sinÿ1

� ���
1

6

r �
� G�g�

��
PCon�IC�

where,

G�g� � 9

8p2

�1=3
0

Sinÿ1
g

1� 2g

� �
�������������
1ÿ g2

p dg:

Gehrlein (1993) proved that CE�PER; IC� � CE�NPER; IC� and showed
that

CE�PER; IC� �
�

3

16p2

��
3p� Sinÿ1

�
1

3

��2

ÿ
�
2Sinÿ1

� ���
1

3

r ��2�

ÿ 1� 3

4p
Sinÿ1

� ���
1

6

r �
ÿ G�g�

��
PCon�IC�:

When IAC is the pro®le generating method, the results of Gehrlein (1982)
give the Condorcet e½ciencies of the constant scoring rules as:
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CE�PR; IAC� � �119n4 � 1348n3 � 5486n2 � 10812n� 10395�
135�n� 1��n� 3�2�n� 5�

CE�NPR; IAC� � �68n3 � 501n2 � 834nÿ 315�
108�n� 1��n� 3��n� 5�

CE�PER; IAC� � �523n4 � 6191n3 � 25117n2 � 40749n� 22140�
540�n� 1��n� 3�2�n� 5�

CE�NPER; IAC� � �131n4 � 1542n3 � 6144n2 � 9018n� 3645�
135�n� 1��n� 3�2�n� 5�

for n A f9; 21; 33; . . . ; 189; . . .g.

4. Condorcet e½ciencies with MC

Our attention now turns to the problem of obtaining closed form representa-
tions for the Condorcet e½ciencies of the constant scoring rules when MC is
the pro®le generating method for obtaining voter preferences. This process is
simpli®ed by an observation in Gehrlein and Fishburn (1981), where it is
proved that CE�PR;MC� � CE�NPR;MC�. To begin, we show a similar re-
sult concerning two stage election procedures

Theorem.

CE�PER;MC� � CE�NPER;MC�:

Proof: Every distinct MC pro®le has the same probability, �L� 1�ÿ6, that it is
observed. Consider a pro®le in which candidate A is the Condorcet winner
and is elected by PER. For this to happen, A must beat B, C or both by plu-
rality rule. As a result:

n1 � n2 � n3 > n4 � n5 � n6 �1�
n1 � n2 � n4 > n3 � n5 � n6 �2�

and

n1 � n2 > n3 � n5; �3�
or

n1 � n2 > n4 � n6: �4�
For every such pro®le under MC, there is a 1-1 mapping to an equally

likely MC pro®le with the interchange of ni's given by �n1 $ n6; n2 $
n5; n3 $ n4�. Equations (1) through (4) then become:

n6 � n5 � n4 > n3 � n2 � n1 �5�
n6 � n5 � n3 > n4 � n2 � n1 �6�
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and

n6 � n5 > n4 � n2; �7�
or

n6 � n5 > n3 � n1: �8�
Then, for every pro®le meeting (5) through (8) under MC, there is a 1±1

mapping to an equally likely pro®le with �ni ! Lÿ ni; Ei � 1; 2; 3; 4; 5; 6�. This
transformation e¨ectively reverses the direction of the inequalities in (5)
through (8), which de®nes an MC pro®le in which candidate A is both the
Condorcet winner and the winner by NPER. QED

To compute the conditional probability CE�VR;MC�, we ®rst need the
probability that VR elects the Condorcet winner under MC. Since all MC

pro®les are equally likely to be observed, this is obtained by developing a
representation for the number of MC pro®les in which VR elects the Con-
dorcet winner, which is then divided by the total number of possible MC

pro®les, �L� 1�6. The associated Condorcet e½ciency is then obtained by
dividing this probability by PCon�MC�.

To begin the development of a representation for CE�NPR;MC�, we list
the conditions that result in candidate A being both the Condorcet winner and
the winner by negative plurality rule:

n1 � n2 � n3 > n4 � n5 � n6 �9�
n1 � n2 � n4 > n3 � n5 � n6 �10�

n1 � n3 > n5 � n6 �11�
n2 � n4 > n5 � n6: �12�

Here, (9) and (10) require that A is the majority rule winner over C and B,
respectively; while (11) and (12) require that A is the negative plurality rule
winner over C and B respectively. A representation is needed for the number
of combinations of ni's that meet these four restrictions, and also meet the MC

condition that ni UL, Ei � 1; 2; 3; 4; 5; 6. In this representation, we use the
de®nition n56 � n5 � n6.

The representation is developed in two parts. The ®rst part computes the
number of MC pro®les, aP1, meeting (9), (10), (11) and (12) in which
n4 > n3. For every pro®le in P1, there is exactly one pro®le with n3 > n4 that is
equally likely to be observed under MC. This pro®le is obtained by the ni in-
terchange �n1 $ n2; n3 $ n4; n5 $ n6�. Then, aP1 is a six-summation func-
tion with summation index limits given by

1U n4 UL

0U n3 U n4 ÿ 1

0U n56 UL� n3 ÿ 1
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Max
n56 ÿ L

0

� �
U n5 UMin

n56

L

� �
Max

0

n56 ÿ n3 � 1

� �
U n1 UL

Max

0

n56 � n4 ÿ n3 ÿ n1 � 1

n56 ÿ n4 � 1

264
375U n2 UL:

Here, Max� � and Min� � represent the maximum and minimum values, re-
spectively of arguments contained in the brackets.

The Appendix outlines a procedure that can be used to evaluate the num-
ber of terms in this function by partitioning the space of ni's in a way to re-
move all Max� � and Min� � arguments. The evaluation of the number of
pro®les in each of the resultant subspaces can then be performed by using
known relations for sums of powers of integers. Then, aP1 is obtained from
24 subspaces as

aP1 � L�661L5 � 2280L4 � 2860L3 � 1080L2 ÿ 416Lÿ 480�
5760

This representation requires even L > 4.
The second part of the representation considers MC pro®les in space P2

meeting (9), (10), (11) and (12) while n3 � n4. This results in a ®ve-summation
function for aP2 with summation index limits given by

0U n4 UL

0U n56 UL� n4 ÿ 1

Max
n56 ÿ L

0

� �
U n5 UMin

n56

L

� �
Max

0

n56 ÿ n4 � 1

� �
U n1 UL

MaxU

0

n56 ÿ n1 � 1

n56 ÿ n4 � 1

264
375U n2 UL:

This is partitioned into 12 subspaces in the Appendix to develop the
representation

aP2 � L�26L4 � 105L3 � 170L2 � 130L� 44�
80

:

Given the arguments above, with the symmetry of MC with respect to candi-
dates, and the fact that there are �L� 1�6 possible MC pro®les; the probabil-
ity that negative plurality rule elects the Condorcet winner is given by
P�NPR;CW �, with
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P�NPR;CW� � 6aP1 � 3aP2

�L� 1�6

P�NPR;CW � � L�661L5� 3216L4� 6640L3� 7200L2� 4264L� 1104�
960�L� 1�6 :

Using the previously stated representation for PCon�MC�, we obtain

CE�PR;MC� � CE�NPR;MC�

� �661L5 � 3216L4 � 6640L3 � 7200L2 � 4264L� 1104�
8�L� 1��109L4 � 446L3 � 749L2 � 616L� 240� :

Again, this representation is valid for even L > 4.
To develop a representation for CE�NPER;MC�, we must ®rst ®nd a

representation for the probability that NPER elects the Condorcet winner.
This process can be simpli®ed, given results obtained in deriving the repre-
sentation for CE�NPR;MC�. We note that candidate A will be the Condorcet
winner and will beat B by NPR if the conditions noted in (9), (10) and (12) are
met. Let aQ denote the number of MC pro®les meeting these conditions. By
the symmetry of MC with respect to candidates, it follows that there are aQ

di¨erent MC pro®les meeting (9), (10) and (11), so that candidate A is the
Condorcet winner and beats C by NPR. The number of MC pro®les in which
A is the Condorcet winner and the winner by NPER is then given by
2aQÿ 2aP1 ÿaP2.

A representation for the number of combinations of ni's in Q is partitioned
into two components, Q1 and Q2. We have Q1 with n3 > n4 and Q2 with
n4 V n3. Then aQ1 is obtained as a six-summation function with summation
indexes on the ni's given by

0U n4 ULÿ 1

n4 � 1U n3 UL

0U n56 UL� n4 ÿ 1

Max
n56 ÿ L

0

� �
U n5 UMin

n56

L

� �
Max

0

n56 � n3 ÿ n4 ÿ L� 1

� �
U n1 UL

Max

0

n56 � n3 ÿ n4 ÿ n1 � 1

n56 ÿ n4 � 1

264
375U n2 UL:

The Appendix partitions Q1 into seven subspaces that have no Max� � or
Min� � arguments in the summation index limits.

The six-summation function to enumerate the pro®les in Q2 has summa-
tion index limits given by
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0U n4 ULÿ 1

n4 � 1U n3 UL

0U n56 UL� n4 ÿ 1

Max
n56 ÿ L

0

� �
U n5 UMin

n56

L

� �
Max

0

n56 � n3 ÿ n4 ÿ L� 1

� �
U n1 UL

Max

0

n56 � n3 ÿ n4 ÿ n1 � 1

n56 ÿ n4 � 1

264
375U n2 UL:

The Appendix partitions Q2 into 22 subspaces that have no Max� � or Min� �
arguments in the summation indexes. After developing representations for the
number of pro®les in each of the 29 subspaces, we ®nd

aQ � L�149L5 � 738L4 � 1538L3 � 1668L2 � 968L� 240�
576

:

The probability, P�NPER;CW �, that some candidate is the NPER winner
and the Condorcet winner under MC is then given by

P�NPER;CW� � 6aQÿ 6aP1 ÿ 3aP2

�L� 1�6

P�NPER;CW � � L�829L5�4164L4�8740L3�9480L2�5416L�1296�
960

:

Using the representation for PCon�MC� from before,

CE�PER;MC� � CE�NPER;MC�

� �829L5�4164L4�8740L3�9480L2�5416L�1296�
8�L� 1��109L4 � 446L3 � 749L2 � 616L� 240� :

As above, L is an even integer, with L > 4. All of the representations devel-
oped above were veri®ed by computer enumeration.

5. Computed values of Condorcet e½ciencies

It is of interest to compare Condorcet e½ciency values that are obtained for
the three di¨erent pro®le generating methods, to look for consistent results
in the situations of close elections. Table 1 shows computed values of
CE�VR; IC� for the four voting rules that were considered. The computations
were obtained by using a partial enumeration process that is described in
Gehrlein (1995). Condorcet e½ciencies were obtained for n � 9; 21; 33; . . . ; 153
so that direct comparisons could be made to allowable n values with IAC

representations that have been developed. Limiting values in Table 1 came
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from the sources referenced for the associated limiting IC representations that
were given in Section 3. Computed values of PCon�IC� can be partially veri®ed
by a comparison to reported values of previous results in Gehrlein and Fish-
burn (1979), and computed values of CE�VR; IC� can be partially veri®ed by
a comparison to reported values of previous results in Gehrlein (1995).

Table 2 shows computed values of CE�VR; IAC� for the four voting rules
that were considered. These values were obtained by using the closed form
representations that were presented in Section 3. As noted in before, these
representations are valid for n � 9; 21; 33; 45; 57; . . . ; as reported in Table 2.

Table 3 shows computed values of CE�VR;MC� for the four voting rules
that were considered. With MC, recall that CE�PR;MC� � CE�NPR;MC�
and that CE�PER;MC� � CE�NPER;MC�. The number of voters with MC

is not ®xed, as with IC and IAC. The expected number of voters, E�n�, with
MC is 3�L. Table 3 gives CE�VR;MC� for L � 8; 12; 16; . . . ; 52 in order to
have E�n� as close as possible to the n values used in Tables 1 and 2 so that
results can be more directly compared across pro®le generating methods.

6. Conclusions

Tables 1, 2 and 3 show some consistent behavior in computed values of Con-
dorcet e½ciency for the four voting rules considered over the three di¨erent
pro®le generating methods:

. PER and NPER have identical values for Condorcet e½ciency for all L

under MC, and in the limit of voters under IC. They have nearly identical
computed values of Condorcet e½ciency under IAC and for ®nite values of
IC.

Table 1. Condorcet e½ciencies of voting rules under IC

n PCon�IC� PR NPR PER NPER

9 0.92202 0.74466 0.60837 0.91389 0.91104
21 0.91635 0.73809 0.65593 0.93646 0.93567
33 0.91484 0.73922 0.67560 0.94315 0.94289
45 0.91415 0.74058 0.68699 0.94658 0.94654
57 0.91375 0.74176 0.69464 0.94874 0.94879
69 0.91349 0.74273 0.70024 0.95024 0.95035
81 0.91331 0.74355 0.70455 0.95136 0.95151
93 0.91317 0.74424 0.70802 0.95224 0.95241
105 0.91307 0.74484 0.71088 0.95295 0.95313
117 0.91298 0.74536 0.71329 0.95354 0.95373
129 0.91292 0.74582 0.71536 0.95404 0.95423
141 0.91286 0.74623 0.71716 0.95446 0.95467
153 0.91281 0.74660 0.71875 0.95484 0.95504
y 0.91226 0.75720 0.75720 0.96290 0.96290
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. PER and NPER consistently have signi®cantly greater Condorcet e½ciency
than both PR and NPR.

. PR and NPR have the same Condorcet e½ciency under MC, and in the
limiting case of voters under IC. However, PR signi®cantly outperforms
NPR under IAC. In addition, NPR approaches its limiting Condorcet e½-
ciency value quite slowly under IC, and PR de®nitely outperforms NPR for
relatively large numbers of voters under IC.
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Appendix

This section outlines the procedures that are used to evaluate the number of
MC pro®les that are in subspaces that de®ne probabilities in the text. The ®rst
of these subspaces is P1, which enumerates the subspace of MC pro®les in
which candidate A is both the Condorcet winner and the negative plurality
rule winner, while n4 > n3.

1U n4 ULÿ 1

0U n3 U n4 ÿ 1

0U n56 UL� n3 ÿ 1

Max
n56 ÿ L

0

� �
U n5 UMin

n56

L

� �

Max
0

n56 ÿ n3 � 1

� �
U n1 UL

Max

0

n56 � n4 ÿ n3 ÿ n1 � 1

n56 ÿ n4 � 1

264
375U n2 UL:
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To remove the Max� � and Min� � arguments from these index limits, we
sequentially partition the P1 subspace. First, we divide this into subspaces PI

1 ,
with n56 V n3, and PII

1 , with n56 U n3 ÿ 1. PII
1 is then further partitioned to

remove the Max� � argument in the n2 counter. This is done by partitioning
PII
1 into subspaces PIIA

1 , with n56 � n4 ÿ n3 ÿ n1 � 1 > 0, and PIIB
1 , with

n56 � n4 ÿ n3 ÿ n1 � 1U 0. After some algebraic reduction to eliminate un-
necessary limitations resulting from the partitioning, PIIA

1 and PIIB
1 reduce re-

spectively to Subspace a1 and Subspace a2, with:

Subspace a1
2U n4 UL

1U n3 U n4 ÿ 1
0U n56 U n3 ÿ 1
0U n5 U n56

n56 � n4 ÿ n3 � 1U n1 UL

0U n2 UL

Subspace a2
2U n4 UL

1U n3 U n4 ÿ 1
0U n56 U n3 ÿ 1
0U n5 U n56

0U n1 U n56 � n4 ÿ n3

n56 � n4 ÿ n3 ÿ n1 � 1U n2 UL

Subspace PI
1 is partitioned ®rst into PIA

1 , with n56 V n4, and PIB
1 , with

n56 U n4 ÿ 1. After additional partitioning and algebraic reduction, PIB
1

reduces to Subspace a3 through Subspace a9, and PIA
1 reduces to Subspace

a10 through Subspace a24

Subspace a3
L=2U n4 ULÿ 1
0U n3 U 2�n4 ÿ L

n3 U n56 UL� n3 ÿ n4 ÿ 1
0U n5 U n56

n56 � n4 ÿ n3 � 1U n1 UL

0U n2 UL

Subspace a4
L=2U n4 ULÿ 2
2�n4 ÿ L� 1U n3 U n4 ÿ 1
n3 U n56 U n4 ÿ 1
0U n5 U n56

n56 � n4 ÿ n3 � 1U n1 UL

0U n2 UL

Subspace a5
1U n4 UL=2ÿ 1
0U n3 U n4 ÿ 1
n3 U n56 U n4 ÿ 1
0U n5 U n56

n56 � n4 ÿ n3 � 1U n1 UL
0U n2 UL

Subspace a6
L=2� 1U n4 UL

0U n3 U 2�n4 ÿ 1ÿ L

L� n3 ÿ n4 U n56 U n4 ÿ 1
0U n5 U n56

n56 ÿ n3 � 1U n1 UL

n56 � n4 ÿ n3 ÿ n1 � 1U n2 UL

Subspace a7
L=2U n4 ULÿ 1
0U n3 U 2�n4 ÿ L

n3 U n56 ULÿ 1� n3 ÿ n4

0U n5 U n56

n56 ÿ n3 � 1U n1 U n56 � n4 ÿ n3

n56 � n4 ÿ n3 ÿ n1 � 1U n2 UL

Subspace a8
L=2U n4 ULÿ 2
2�n4 ÿ L� 1U n3 U n4 ÿ 1
n3 U n56 U n4 ÿ 1
0U n5 U n56

n56 ÿ n3 � 1U n1 U n56 � n4 ÿ n3

n56 � n4 ÿ n3 ÿ n1 � 1U n2 UL
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Subspace a9
1U n4 UL=2ÿ 1
0U n3 U n4 ÿ 1
n3 U n56 U n4 ÿ 1
0U n5 U n56

n56 ÿ n3 � 1U n1 U n56 � n4 ÿ n3

n56 � n4 ÿ n3 ÿ n1 � 1U n2 UL

Subspace a10
1U n4 UL=2ÿ 1
n3 � 0
2�n4 � 1U n56 ULÿ 1
0U n5 U n56

n56 � 1U n1 UL
n56 ÿ n4 � 1U n2 UL

Subspace a11
1U n4 UL=2ÿ 1
n3 � 0
n4 U n56 U 2�n4

0U n5 U n56

2�n4 � 1U n1 UL

n56 ÿ n4 � 1U n2 UL

Subspace a12
L=2U n4 ULÿ 1
n3 � 0
n4 U n56 ULÿ 1
0U n5 U n56

n56 � 1U n1 UL

n56 � n4 ÿ n1 � 1U n2 UL

Subspace a13
1U n4 UL=2ÿ 1
n3 � 0
n4 U n56 U 2�n4 ÿ 1
0U n5 U n56

n56 � 1U n1 U 2�n4

n56 � n4 ÿ n1 � 1U n2 UL

Subspace a14
L=2U n4 ULÿ 2
2�n4 � 1ÿ LU n3 U n4 ÿ 1
2�n4 U n56 UL� n3 ÿ 1
n56 ÿ LU n5 UL

n56 ÿ n3 � 1U n1 UL

n56 ÿ n4 � 1U n2 UL

Subspace a15
2U n4 UL=2ÿ 1
1U n3 U n4 ÿ 1
LU n56 UL� n3 ÿ 1
n56 ÿ LU n5 UL

n56 ÿ n3 � 1U n1 UL

n56 ÿ n4 � 1U n2 UL

Subspace a16
2U n4 UL=2ÿ 1
1U n3 U n4 ÿ 1
2�n4 U n56 ULÿ 1
0U n5 U n56

n56 ÿ n3 � 1U n1 UL
n56 ÿ n4 � 1U n2 UL

Subspace a17
L=2� 1U n4 ULÿ 2
2�n4 � 1ÿ LU n3 U n4 ÿ 1
LU n56 U 2�n4 ÿ 1
n56 ÿ LU n5 UL

2�n4 ÿ n3 � 1U n1 UL

n56 ÿ n4 � 1U n2 UL

Subspace a18
2U n4 UL=2
1U n3 U n4 ÿ 1
n4 U n56 U 2�n4 ÿ 1
0U n5 U n56

2�n4 ÿ n3 � 1U n1 UL

n56 ÿ n4 � 1U n2 UL

Subspace a19
L=2� 1U n4 ULÿ 2
2�n4 � 1ÿ LU n3 U n4 ÿ 1
n4 U n56 ULÿ 1
0U n5 U n56

2�n4 ÿ n3 � 1U n1 UL

n56 ÿ n4 � 1U n2 UL

Subspace a20
L=2� 1U n4 UL

1U n3 U 2�n4 ÿ Lÿ 1
LU n56 UL� n3 ÿ 1
n56 ÿ LU n5 UL

n56 ÿ n3 � 1U n1 UL

n56 � n4 ÿ n3 ÿ n1 � 1U n2 UL
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Subspace a21
L=2� 1U n4 ULÿ 1
1U n3 U 2�n4 ÿ Lÿ 1
n4 U n56 ULÿ 1
0U n5 U n56

n56 ÿ n3 � 1U n1 UL

n56 � n4 ÿ n3 ÿ n1 � 1U n2 UL

Subspace a22
L=2� 1U n4 ULÿ 1
2�n4 ÿ LU n3 U n4 ÿ 1
n4 U n56 UL

0U n5 U n56

n56 ÿ n3 � 1U n1 U 2�n4 ÿ n3

n56 � n4 ÿ n3 ÿ n1 � 1U n2 UL

Subspace a23
2U n4 UL=2
1U n3 U n4 ÿ 1
n4 U n56 U 2�n4 ÿ 1
0U n5 U n56

n56 ÿ n3 � 1U n1 U 2�n4 ÿ n3

n56 � n4 ÿ n3 ÿ n1 � 1U n2 UL

Subspace a24
L=2� 1U n4 ULÿ 1
2�n4 ÿ LU n3 U n4 ÿ 1
L� 1U n56 U 2�n4 ÿ 1
n56 ÿ LU n5 UL

n56 ÿ n3 � 1U n1 U 2�n4 ÿ n3

n56 � n4 ÿ n3 ÿ n1 � 1U n2 UL

At this point, the sequential use of known relations for sums of powers of
integers can be used to develop closed form representations for the number of
pro®les in each of these subspaces. Then, aP1 is the sum of the 24 subspace
representations. After algebraic reduction, we obtain

aP1 � L�661L5 � 2280L4 � 2860L3 � 1080L2 ÿ 416Lÿ 480�
5760

:

Since there are terms in some of these subspace index limits that contain
the term L=2, the requirement that index limits must be integer valued forces
the restriction that L must be an even integer. Also, for internal consistency
(the upper index limit must be greater than or equal to the lower index limit)
of the limits for the n4 indexes in Subspace a17, and others, we must have
L > 4.

The second subspace of interest is P2, which enumerates the list of MC

pro®les in which candidate A is both the Condorcet winner and the negative
plurality rule winner, with the additional restriction that n3 � n4:

0U n4 UL

0U n56 UL� n4 ÿ 1

Max
n56 ÿ L

0

� �
U n5 UMin

n56

L

� �
Max

0

n56 ÿ n4 � 1

� �
U n1 UL

Max

0

n56 ÿ n1 � 1

n56 ÿ n4 � 1

264
375U n2 UL:

Following the same general procedures that were used to partition sub-
space P1 in order to remove the Max� � and Min� � arguments from summa-
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tion indexes, subspace P2 can be partitioned into 12 subspaces. The twelve
components of this partition are listed as Subspace a25 through Subspace
a36:

Subspace a25
1U n4 UL

0U n56 U n4 ÿ 1
0U n5 U n56

n56 � 1U n1 U n4

0U n2 UL

Subspace a26
1U n4 UL

0U n56 U n4 ÿ 1
0U n5 U n56

0U n1 U n56

n56 ÿ n1 � 1U n2 UL

Subspace a27
L=2� 1U n4 UL

LU n56 U 2�n4 ÿ 1
n56 ÿ LU n5 UL

n56 ÿ n4 � 1U n1 U n4

n56 ÿ n1 � 1U n2 UL

Subspace a28
L=2� 1U n4 ULÿ 1
n4 U n56 ULÿ 1
0U n5 U n56

n56 ÿ n4 � 1U n1 U n4

n56 ÿ n1 � 1U n2 UL

Subspace a29
1U n4 UL=2
n4 U n56 U 2�n4 ÿ 1
0U n5 U n56

n56 ÿ n4 � 1U n1 U n4

n56 ÿ n1 � 1U n2 UL

Subspace a30
0U n4 UL=2ÿ 1
2�n4 U n56 ULÿ 1
0U n5 U n56

n56 ÿ n4 � 1U n1 UL

n56 ÿ n4 � 1U n2 UL

Subspace a31
L=2U n4 ULÿ 1
2�n4 U n56 UL� n4 ÿ 1
n56 ÿ LU n5 UL

n56 ÿ n4 � 1U n1 UL

n56 ÿ n4 � 1U n2 UL

Subspace a32
1U n4 UL=2ÿ 1
LU n56 UL� n4 ÿ 1
n56 ÿ LU n5 UL

n56 ÿ n4 � 1U n1 UL

n56 ÿ n4 � 1U n2 UL

Subspace a33
1U n4 ULÿ 1
0U n56 U n4 ÿ 1
0U n5 U n56

n4 � 1U n1 UL

0U n2 UL

Subspace a34
L=2� 1U n4 ULÿ 1
LU n56 U 2�n4 ÿ 1
n56 ÿ LU n5 UL
n4 � 1U n1 UL

n56 ÿ n4 � 1U n2 UL

Subspace a35
L=2� 1U n4 ULÿ 1
n4 U n56 ULÿ 1
0U n5 U n56

n4 � 1U n1 UL

n56 ÿ n4 � 1U n2 UL

Subspace a36
1U n4 UL=2
n4 U n56 U 2�n4 ÿ 1
0U n5 U n56

n4 � 1U n1 UL

n56 ÿ n4 � 1U n2 UL

Using known relations for sums of powers of integers on these twelve
subspaces, we obtain
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aP2 � L�26L4 � 105L3 � 170L2 � 130L� 44�
80

:

In order to evaluate the probability that some candidate is both the Con-
dorcet winner and the negative plurality elimination rule winner under MC,
we ®rst need to develop a representation for the number of pro®les in two
subspaces, Q1 and Q2. Subspace Q1 represents pro®les for which candidate A

is the Condorcet winner and also beats B by NPR, with n3 > n4. Subspace Q2

is similar, but it has a restriction that n3 U n4. The six-summation function
that enumerates the number of pro®les in subspace Q1 has summation index
counters with

0U n4 ULÿ 1

n4 � 1U n3 UL

0U n56 UL� n4 ÿ 1

Max
n56 ÿ L

0

� �
U n5 UMin

n56

L

� �

Max
0

n56 � n3 ÿ n4 ÿ L� 1

� �
U n1 UL

Max

0

n56 � n3 ÿ n4 ÿ n1 � 1

n56 ÿ n4 � 1

264
375U n2 UL:

Sequential partitioning can be used, as above, to partition this into seven
subspaces with no Max� � or Min� � arguments in the indexes, as shown in
Subspace a37 through Subspace a43.

Subspace a37
1U n4 ULÿ 1
n4 � 1U n3 UL

0U n56 U n4 ÿ 1
0U n5 U n56

0U n1 U n56 � n3 ÿ n4

n56 � n3 ÿ n4 ÿ n1 � 1U n2 UL

Subspace a38
1U n4 ULÿ 1
n4 � 1U n3 UL
0U n56 U n4 ÿ 1
0U n5 U n56

n56 � n3 ÿ n4 � 1U n1 UL

0U n2 UL

Subspace a39
0U n4 ULÿ 2
n4 � 1U n3 ULÿ 1
n4 U n56 ULÿ 1
0U n5 U n56

n3 � 1U n1 UL
n56 ÿ n4 � 1U n2 UL

Subspace a40
1U n4 ULÿ 2
n4 � 1U n3 ULÿ 1
LU n56 UL� n4 ÿ 1
n56 ÿ LU n5 UL

n3 � 1U n1 UL

n56 ÿ n4 � 1U n2 UL
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Subspace a41
0U n4 ULÿ 2
n4 � 1U n3 ULÿ 1
n4 U n56 UL� n4 ÿ n3 ÿ 1
0U n5 U n56

0U n1 U n3

n56 � n3 ÿ n4 ÿ n1 � 1U n2 UL

Subspace a42
0U n4 ULÿ 1
n4 � 1U n3 UL

L� n4 ÿ n3 U n56 ULÿ 1
0U n5 U n56

n56 � n3 ÿ n4 ÿ L� 1U n1 U n3

n56 � n3 ÿ n4 ÿ n1 � 1U n2 UL

Subspace a43
1U n4 ULÿ 1
n4 � 1U n3 UL

LU n56 UL� n4 ÿ 1
n56 ÿ LU n5 UL

n56 � n3 ÿ n4 ÿ L� 1U n1 U n3

n56 � n3 ÿ n4 ÿ n1 � 1U n2 UL

The six-summation function index limits that enumerate the number of
MC pro®les in subspace Q2 have

0U n4 UL

0U n3 U n4

0U n56 UL� n4 ÿ 1

Max
n56 ÿ L

0

� �
U n5 UMin

n56

L

� �

Max
0

n56 � n3 ÿ n4 ÿ L� 1

� �
U n1 UL

Max

0

n56 � n3 ÿ n4 ÿ n1 � 1

n56 ÿ n4 � 1

264
375U n2 UL:

This subspace can be partitioned into 22 subspaces which eliminate all
Max� � and Min� � arguments in the summation index limits. These are shown
as Subspace a44 through Subspace a65.

Subspace a44
L=2U n4 ULÿ 1
0U n3 U 2�n4 ÿ L

0U n56 UL� n3 ÿ n4 ÿ 1
0U n5 U n56

n56 � n4 ÿ n3 � 1U n1 UL

0U n2 UL

Subspace a45
n4 � L
1U n3 U 2�n4 ÿ L

0U n56 UL� n3 ÿ n4 ÿ 1
0U n5 U n56

n56 � n4 ÿ n3 � 1U n1 UL

0U n2 UL
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Subspace a46
L=2U n4 ULÿ 1
2�n4 ÿ L� 1U n3 U n4

0U n56 U n4 ÿ 1
0U n5 U n56

n56 � n4 ÿ n3 � 1U n1 UL

0U n2 UL

Subspace a47
1U n4 UL=2ÿ 1
0U n3 U n4

0U n56 U n4 ÿ 1
0U n5 U n56

n56 � n4 ÿ n3 � 1U n1 UL
0U n2 UL

Subspace a48
L=2� 1U n4 ULÿ 1
0U n3 U 2�n4 ÿ Lÿ 1
0U n56 UL� n3 ÿ n4 ÿ 1
0U n5 U n56

0U n1 U n56 � n4 ÿ n3

n56 � n4 ÿ n3 ÿ n1 � 1U n2 UL

Subspace a49
n4 � L

1U n3 U 2�n4 ÿ Lÿ 1
0U n56 UL� n3 ÿ n4 ÿ 1
0U n5 U n56

0U n1 U n56 � n4 ÿ n3

n56 � n4 ÿ n3 ÿ n1 � 1U n2 UL

Subspace a50
L=2� 1U n4 UL

2�n4 ÿ LU n3 U n4

0U n56 U n4 ÿ 1
0U n5 U n56

0U n1 U n56 � n4 ÿ n3

n56 � n4 ÿ n3 ÿ n1 � 1U n2 UL

Subspace a51
1U n4 UL=2
0U n3 U n4

0U n56 U n4 ÿ 1
0U n5 U n56

0U n1 U n56 � n4 ÿ n3

n56 � n4 ÿ n3 ÿ n1 � 1U n2 UL

Subspace a52
L=2� 1U n4 UL

0U n3 U 2�n4 ÿ Lÿ 1
L� n3 ÿ n4 U n56 U n4 ÿ 1
0U n5 U n56

n56 � n4 ÿ n3 ÿ L� 1U n1 UL

n56 � n4 ÿ n3 ÿ n1 � 1U n2 UL

Subspace a53
L=2U n4 ULÿ 1
0U n3 U 2�n4 ÿ L

LU n56 U 2�L� n3 ÿ n4 ÿ 1
n56 ÿ LU n5 UL

n56 � n4 ÿ n3 ÿ L� 1U n1 UL
n56 � n4 ÿ n3 ÿ n1 � 1U n2 UL

Subspace a54
L=2U n4 ULÿ 1
0U n3 U 2�n4 ÿ L

n4 U n56 ULÿ 1
0U n5 U n56

n56 � n4 ÿ n3 ÿ L� 1U n1 UL

n56 � n4 ÿ n3 ÿ n1 � 1U n2 UL

Subspace a55
L=2U n4 ULÿ 1
2�n4 ÿ L� 1U n3 U n4

n4 U n56 ULÿ 1� n3 ÿ n4

0U n5 U n56

0U n1 U 2�n4 ÿ n3

n56 � n4 ÿ n3 ÿ n1 � 1U n2 UL

Subspace a56
0U n4 UL=2ÿ 1
0U n3 U n4

n4 U n56 ULÿ 1� n3 ÿ n4

0U n5 U n56

0U n1 U 2�n4 ÿ n3

n56 � n4 ÿ n3 ÿ n1 � 1U n2 UL

Subspace a57
L=2U n4 ULÿ 1
2�n4 ÿ L� 1U n3 U n4

LU n56 UL� n4 ÿ 1
n56 ÿ LU n5 UL

n56 � n4 ÿ n3 ÿ L� 1U n1 U
2�n4 ÿ n3

n56 � n4 ÿ n3 ÿ n1 � 1U n2 UL
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Subspace a58
L=2U n4 ULÿ 2
2�n4 ÿ L� 1U n3 U n4 ÿ 1
L� n3 ÿ n4 U n56 ULÿ 1
0U n5 U n56

n56 � n4 ÿ n3 ÿ L� 1U n1 U
2�n4 ÿ n3

n56 � n4 ÿ n3 ÿ n1 � 1U n2 UL

Subspace a59
1U n4 UL=2ÿ 1
0U n3 U n4

LU n56 UL� n4 ÿ 1
n56 ÿ LU n5 UL
n56 � n4 ÿ n3 ÿ L� 1U n1 U
2�n4 ÿ n3

n56 � n4 ÿ n3 ÿ n1 � 1U n2 UL

Subspace a60
1U n4 UL=2ÿ 1
0U n3 U n4 ÿ 1
L� n3 ÿ n4 U n56 ULÿ 1
0U n5 U n56

n56 � n4 ÿ n3 ÿ L� 1U n1 U
2�n4 ÿ n3

n56 � n4 ÿ n3 ÿ n1 � 1U n2 UL

Subspace a61
L=2U n4 ULÿ 1
2�n4 ÿ L� 1U n3 U n4

LU n56 UL� n4 ÿ 1
n56 ÿ LU n5 UL

2�n4 ÿ n3 � 1U n1 UL

n56 ÿ n4 � 1U n2 UL

Subspace a62
L=2U n4 ULÿ 1
2�n4 ÿ L� 1U n3 U n4

n4 U n56 ULÿ 1
0U n5 U n56

2�n4 ÿ n3 � 1U n1 UL

n56 ÿ n4 � 1U n2 UL

Subspace a63
1U n4 UL=2ÿ 1
0U n3 U n4

LU n56 UL� n4 ÿ 1
n56 ÿ LU n5 UL

2�n4 ÿ n3 � 1U n1 UL
n56 ÿ n4 � 1U n2 UL

Subspace a64
0U n4 UL=2ÿ 1
0U n3 U n4

n4 U n56 ULÿ 1
0U n5 U n56

2�n4 ÿ n3 � 1U n1 UL

n56 ÿ n4 � 1U n2 UL

Subspace a65
n4 � L

1U n3 U 2�n4 ÿ L

LU n56 U 2�L� n3 ÿ n4 ÿ 1
n56 ÿ LU n5 UL

n56 � n4 ÿ n3 ÿ L� 1U n1 UL

n56 � n4 ÿ n3 ÿ n1 � 1U n2 UL

Known relations for sums of powers of integers were used to obtain rela-
tionships for the number of pro®les in each of Subspace a37 through Sub-
space a65. After adding them together and algebraic reduction, we obtain

aQ � L�149L5 � 738L4 � 1538L3 � 1688L2 � 968L� 240�
576

:
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