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Abstract. Tournaments are complete and asymmetric binary relations. This
type of binary relation rules out the possibility of ties or indi¨erences which
are quite common in other contexts. In this work we generalize, from a nor-
mative point of view, some important tournament solutions to the context in
which ties are possible.

1. Introduction

A tournament over a ®nite set of outcomes A (candidates, decisions, . . .) is a
complete and asymmetric binary relation T on A, where aTb is interpreted as
``alternative a beats alternative b.'' This kind of binary relation appears in
many di¨erent models: sports competitions, biometric and psychometric
models, collective choices (majority voting rules), etc. (see Moon 1968;
Moulin 1986).

If there exists an alternative which beats all others (a Condorcet winner),
then it is obvious that such an alternative must be selected. But this is not
usually the case, and it is generally not clear which one (or ones) should be
considered the winner of the tournament. Indeed, social choice theorists have
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formulated several choice rules, to tackle, in di¨erent ways, the di½culty
posed by the nonexistence of a clear winner.

From a normative point of view, a great number of solutions have been
proposed for the problem of choosing from a tournament: Copeland (1951);
Slater (1961); top cycle (Schwartz, 1972); uncovered set (Fishburn 1977;
Miller 1980); minimal covering (Dutta 1988); equilibrium set (Schwartz 1990);
etc. Moreover, from a positive point of view, other solution concepts have
been introduced with regard to choosing from a tournament: Banks set (Banks
1985); bipartisan set (La¨ond et al. 1993); matching solutions (Levchenkov
1994). La¨ond et al. (1995) provide a good set-theoretical comparison of the
main solutions.

As Moulin (1986) points out, ``a widely open question is the generalization
to any complete relation on A (not necessarily asymmetric: indi¨erences are
allowed)''. In most of the models, there is an actual possibility of ties: two
football teams may tie; two candidates or alternatives may obtain the same
number of votes; . . .

The aim of this paper is to generalize, from a normative point of view,
some of the previously mentioned solutions for tournaments, to the context in
which ties are allowed. We speci®cally analyze the top cycle, the uncovered set
and the minimal covering for complete (not necessarily asymmetric) binary
relations R (weak tournaments), in such a way that, when R is a tournament,
the de®nition of such extensions coincides with the usual one.

In the existing literature, there are some papers that deal with what we
have called weak-tournaments. In Schwartz (1986), two extensions of the top
cycle are de®ned. In Bordes (1983), and Banks and Bordes (1988), di¨erent
extensions of the notion of the uncovered set and the Banks set are intro-
duced. Henriet (1985) extends the Copeland set. In Schwartz (1990) some
proposals for extending the equilibrium set are presented. Finally, in a recent
paper, Dutta and Laslier (1997) de®ned the essential set as an extension of the
bipartisan set. From the axiomatic point of view (the one in which we are
interested), it must be emphasized that Henriet (1985) provides character-
izations of the Copeland choice rule in terms of neutrality, monotonicity and a
new property called ``independence of cycles''. Some of the other extensions
we have mentioned are axiomatically analyzed, although not completely
characterized.

In most of the above-mentioned extensions there appears to be no single
clear-cut way of extending the tournament solutions to the case of weak-
tournaments (a fact that has prompted some authors to propose di¨erent
extensions). A similar problem occurs with some of the axioms used in the
axiomatic characterizations: there are several possibilities of extending them
into the context of weak-tournaments (as, for instance, in Banks and Bordes
(1988), Condorcet consistence is generalized in three di¨erent ways: inclusive
Condorcet, exclusive Condorcet and strict Condorcet). In our extensions, we
have tried to maintain those properties (axioms) which are satis®ed by the
corresponding solutions in tournaments. Some of the axioms, of course, have
had to be modi®ed, and other new axioms have been introduced.
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To appreciate the di½culties that arise when ties (indi¨erences) are allowed
in a tournament, one simply has to observe how a Condorcet choice corre-
spondence selects the winners when there are two or three alternatives. In the
case of a tournament, when there are only two alternatives, one of them is a
Condorcet winner, but this is not the case in weak-tournaments, in which such
alternatives may well be indi¨erent. In tournaments, the Condorcet choice
correspondences we are concerned with in this work (top cycle, uncovered set
and minimal covering), never select just two alternatives, although this could
be possible in their generalizations to weak-tournaments. The axiom TDP
(two-point discrimination property), de®ned in Section 2, will play a funda-
mental role in ensuring that a choice correspondence selects just two alter-
natives when these elements are indi¨erent.

When there are three alternatives, only two possibilities appear in a tour-
nament: there is either a Condorcet winner, or a 3-cycle. The tournament
solutions analyzed in the present work, select either the Condorcet winner (if
it exists), or the three alternatives. In the case of weak-tournaments, there
are other possibilities and the axiom CDP (Condorcet dominance principle),
de®ned in Section 2, will be the key factor in such a case.

The outline of this paper is as follows: in Section 2 some preliminary de®-
nitions and properties are introduced. Section 3 is devoted to the extensions of
the top cycle and uncovered set, and in Section 4 we generalize the minimal
covering solution.

2. Weak tournaments and choice correspondences

A weak tournament on A is a pair (R,A) where A is a ®nite set containing all
feasible outcomes, and R is a complete (that is Ea; b A A, aRb or bRa) binary
relation on A. From this relation, it is always possible to de®ne two new
binary relations, P and I, the asymmetric and symmetric part of R, respec-
tively,

Ea; b A A; aPb if and only if aRb and not �bRa�;
Ea; b A A; aIb if and only if aRb and bRa:

The statement aPb means that alternative a beats b in a pairwise comparison,
while aIb means a tie between both alternatives. A tournament is the particular
case in which Ea; b A A; aIb if and only if a � b.

P�A� will denote the entire set of non-empty subsets of A; R will denote
the set of weak tournaments on A.

Given a binary relation R de®ned on A, we will say that an element a� A A

is R-maximal on A if a�Rb; Eb A A; b0 a�. Given two non-empty subsets of
A, we will use the following notation:

BRB 0 if and only if bRb0 Eb A B; Eb0 A B 0:
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We will also make use of the transitive closure relation: given a binary
relation R on A, its transitive closure RR is de®ned in the following way:

Ea; b A A; aRRb if and only if there are a1; a2; . . . ; an A A

such that a � a1Ra2R � � �Ran � b:

This relation depends both on the binary relation R and on the set in which it
is de®ned. Whenever it is necessary, we denote this dependence by represent-
ing the transitive closure of R in BJA as RRB.

A choice correspondence S is a mapping S : R�P�A� ! P�A� such that
for every �R;B� A R�P�A�;S�R;B� is a non-empty subset of B: S�R;B� is
usually interpreted as the best outcomes of �R;B�.

It is usual to look for choice correspondences that ful®ll some properties
which select as few elements as possible. In this sence, given two choice cor-
respondences S and S0, S is said to be smaller than S0 (or S0 is said to be larger

than S) if E�R;B� A R�P�A�;S�R;B�JS0�R;B�. A choice correspondence
S is said to be the smallest (respectively, the largest) that satisfy some proper-
ties (P), if any other choice correspondence holding (P) is larger (respectively,
smaller) than S.

In the case of tournaments, a great number of choice correspondences have
been de®ned, none of which have enjoyed universal acceptance. In order to
defend and compare di¨erent solutions, a multitude of properties have been
discussed in the existing literature. In the following de®nition we extend, in a
natural way, some of these axioms to the context of weak-tournaments.

De®nition 1. A choice correspondence S : R�P�A� ! P�A� satis®es

A) Condorcet consistency if for all �R;B� A R�P�A�,
If b� A B is P-maximal in B; then S�R;B� � fb�g:

B) Condorcet transitivity if for all �R;B� A R�P�A�,
If a; b A B; a A S�R;B�; b B S�R;B�; then aPb:

C) Smith consistency if for all �R;B� A R�P�A�,
If B � B1 WB2 and B1PB2; then S�R;B�JB1:

Next, we introduce two new axioms; the ®rst one analyzes the choices
when we can divide the feasible outcomes into three subsets of indi¨erent ele-
ments with a dominance relation between them; the second one establishes
conditions for the choice consisting of just two elements.

De®nition 2. A choice correspondence S : R�P�A� ! P�A� satis®es Condor-
cet dominance principle (CDP) if for all �R;B� A R�P�A� such that

B � B1 WB2 WB3; BiIBiEi; BiPBi�1Ei � 1; 2; B1RB3;

Bi�1 XS�R;B�0q) Bi XS�R;B�0q i � 1; 2:

This property establishes that if the subset Bi is ahead of Bi�1 (in the sense that
every outcome in Bi beats any one in Bi�1) then, if the choice set contains any
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outcome in Bi�1, it should contain one or more in Bi. It must be mentioned
that, when the relation is a tournament, every Condorcet choice corre-
spondence satis®es this property.

De®nition 3. A choice correspondence S : R�P�A� ! P�A� satis®es the two-

points discrimination property (TPD) if for all �R;B� A R�P�A�
S�R;B� � fx; yg ) xIy:

In tournament theory (when indi¨erences are not allowed), the top cycle,
uncovered set or minimal covering cannot contain just two elements (see, for
instance, Moulin (1986)). The idea is: if only two elements are chosen and one
of them beats the other, it seems ``natural'' to select the winner alone.

Other usual axioms, used in general choice theory, analyze how the choice
correspondence changes when the binary relation changes.

Independence of irrelevant alternatives

A choice correspondence S : R�P�A� ! P�A� satis®es independence of
irrelevant alternatives (IIA) if for every B A P�A� and every R;R0 A R such
that RjB � R0jB (that is, R and R0 coincide on B),

S�R;B� � S�R0;B�:

Neutrality

A choice correspondence S : P�P�A� ! P�A� is neutral if for any permu-
tation s of A and every �R;B� A R�P�A�,

S�s�R�; s�B�� � s�S�R;B��;
where s�R� is the weak tournament de®ned from R as:

Ea; b A A; as�R�b, sÿ1�a�Rsÿ1�b�:

Monotonicity

A choice correspondence S : R�P�A� ! P�A� is monotonic if for every
R;R0 A R and every B A P�A�, such that RjBÿfxg � R0jBÿfxg and Eb A B; xPb

implies xP 0b and xIb implies xR0b,

x A S�R;B� ) x A S�R0;B�:
Finally, the following axioms (also usual in choice theory) analyze how the

choice correspondence changes when the feasible set changes.

Expansion

A choice correspondence S : R�P�A� ! P�A� satis®es Expansion if for any
class of sets fBi; i A IgJP�A� and any R A R,

7
i A I

S�R;Bi�JS R;6
i A I

Bi

 !
:
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Axiom g�

A choice correspondence S : R�P�A� ! P�A� satis®es g� if for any class of
sets fBi; i A IgJP�A� and any R A R,

a A 7
i A I

S�R;Bi� ) 6
i A I

Bi

" #
ÿ fag0S R;6

i A I

Bi

 !
:

Strong superset property

A choice correspondence S : R�P�A� ! P �A� satis®es the strong superset
property (SSP) if for any B;B 0 A P�A� and any R A R,

S�R;B�JB 0JB) S�R;B� � S�R;B 0�:

Aizerman

A choice correspondence S : R�P�A� ! P�A� satis®es Aizerman if for any
B;B0 A P�A� and any R A R,

S�R;B�JB0JB) S�R;B0�JS�R;B�:
The following result shows how some axioms determine the choice set in

certain weak tournaments (a similar result for tournaments can be found in
Moulin (1986)); the easy proof is omitted.

Lemma 1. Let S : R�P�A� ! �A� be a choice correspondence satisfying neu-

trality and (IIA). Then:

a) If B � fa; b; cg; aPb; bPc; cPa; then S�R;B� � B.
b) If aIb for every a; b A B; then S�R;B� � B.

3. Top-cycle and uncovered set

One of the basic solution concepts for tournaments is the top cycle, which is
the smallest choice correspondence satisfying Condorcet transitivity, and the
largest satisfying Smith's consistency. But, apart from being a large choice
correspondence, the top cycle has another drawback: it may select Pareto
dominated outcomes when the tournament is derived from a binary majority
comparison (see Fishburn 1977; McKelvey 1979, and Moulin 1986, for com-
ments and examples). In Fishburn (1977) and Miller (1980) the notion of
uncovered set is introduced; this choice correspondence is more discriminating
than the top cycle and, moreover, selects elements in the Pareto set.

In the following de®nition the immediate translation of the top cycle to
weak-tournaments is presented. This solution coincides with the known
GETCHA set (minimum P-dominant subset), introduced by Schwartz (1986),
who gives a characterization of that set as the maximal elements of the tran-
sitive closure of R.
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De®nition 4. The top cycle choice correspondence TC : R�P�A� ! P�A�
assigns the set

TC�R;B� � fa A B j aRRBb; Eb A B; b0 ag;
to each weak tournament �R;B� A R�P�A�.

From Schwartz's work (1986), it is easy to observe that the top cycle,
de®ned in this way, satis®es the same properties as in the case of tournaments,
that is, it is the smallest choice correspondence satisfying Condorcet tran-
sitivity and the largest satisfying Smith consistency.

In order to extend the de®nition of the uncovered set to weak-tournaments,
we use the following binary relation which is a generalization of the cover
relation used by Miller (1980). This generalization has been used in the con-
text of voting games (see McKelvey (1986) and Bordes, Le Breton and Salles
(1992)).

De®nition 5. Let �R;B� A R�P�A� be a weak tournament and let a; b A B. It is

said that a R-covers b in B, if and only if aPb, and

Ew A B;
bPw) aPw;

bIw) aRw:

�
We will denote this fact by a C�R;B�b.

It is easy to prove that C�R;B� is a transitive (possibly not complete) binary
relation. It is also obvious that if B 0JB and a; b A B 0,

aC�R;B�b) aC�R;B 0�b:

As in the original idea of Miller, when an element b is covered by some
other element a, this second element is thought to be better than the ®rst, since
a beats b and, moreover, a has ``better results'' than b in a pairwise compari-
son with the other elements in the alternative set.

De®nition 6. The uncovered choice correspondence U : R�P�A� ! P�A�
assigns the set

U�R;B� � fa A B j bC�R;B�a for no b A Bg;
to each weak tournament �R;B� A R�P�A�.

It must be noted that if y B U�R;B� then there is x A U�R;B� such that
xC�R;B�y. The following result provides a characterization of the uncovered
choice correspondence which is quite similar to the one for tournaments (see
Moulin (1986)).

Theorem 1. U is the smallest choice correspondence satisfying (IIA), Neutral-

ity, Expansion, Aizerman, Condorcet consistency, (CDP) and (TPD).

Proof. Let us see ®rst that U satis®es all the properties. It is obvious that
(IIA), Neutrality, Expansion, Aizerman and Condorcet consistency are
ful®lled.
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In order to prove (CDP), let �R;B� A R�P�A� such that

B � B1 WB2 WB3;BiIBiEi;BiPBi�1Ei � 1; 2;B1RB3:

Given b A B1, there is not a A B such that aPb, so B1 XU�R;B�0q. On
the other hand, suppose B2 XU�R;B� �q, and let c A B3. Then, for
every b A B2, bPc and, as b is not in the uncovered set, there is a A B

such that aC�R;B�b and therefore aPc. It follows now that aC�R;B�c, so
B3 XU�R;B� �q.

To prove (TPD), consider (R,B) such that U�R;B� � fx; yg and suppose
xPy. Then, there is w A B such that yPwRx, or yIwPx. In any case,
U�R;B 0� � fx; y;wg, where B 0 � fx; y;wg. Thus, we have

U�R;B�JB 0JB;

and U�R;B 0� is not contained in U�R;B�, contradicting Aizerman.
To prove that the uncovered choice correspondence is the smallest one that

satis®es the properties, let S : R�P�A� ! P�A� satisfying them and let
a A U�R;B�. Consider the following partition of set B:

B� � fb A B j aPbg;
B� � fb A B j aIbg;
Bÿ � fb A B j bPag:

Let b A Bÿ; then, since a A U�R;B�, one of the next three possibilities must
occur:

[1] bwb A B such that aPwb and wbPb.
[2] bwb A B such that aPwb and wbIb.
[3] bwb A B such that aIwb and wbPb.

Consider the set C � fa; b;wbg. In the ®rst case, Lemma 1 a) gives us that
S�R;C� � fa; b;wbg. In case [2], Lemma 1 b) ensures that S�R; fb;wbg� �
fb;wbg and, if a B S�R;C�, Aizerman implies S�R;C� � fb;wbg contradicting
(CDP) with B1 � fbg, B2 � fag and B3 � fwbg. In case [3], (CDP) implies
wb A S�R;C�. If b B S�R;C�, Lemma 1 b) and Aizerman imply S�R;C� �
fa;wbg contradicting (CDP) and if b A S�R;C�, (TPD) implies S�R;C�0
fb;wbg. So, in any case, a A S�R;C�. Then,

a A 7
b ABÿ

S�R; fa; b;wbg�:

On the other hand, from Lemma 1 b) and Condorcet consistency

a A 7
b AB�WB�

S�R; fa; bg�:

Finally, Expansion ensures a A S�R;B�. 9

The uncovered set depends on the cover relation which is used in its de®-
nition. For a tournament T, this relation is de®ned as:
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a covers b if and only if aTb and aTw whenever bTw.
There is no single clear-cut way of extending this de®nition to the case of

weak-tournaments. The covering relation we have introduced (as well as the
cover relation in tournaments) deals with the idea of dominance: an alter-
native a ``dominates'' some other alternative b if it has a ``better'' behavior
with respect to any other alternative w in pairwise comparisons. In Bordes
(1983) and Banks and Bordes (1988) two covering relations are examined
(Gillies and Miller's relations, see also Bordes et al. 1992):

aCub, aPb and aRw whenever bRw;

aCdb, aPb and aPw whenever bPw;

and from these relations the corresponding uncovered sets, UCu�R;B� and
UCd�R;B�, can be de®ned. In these two cover relations the idea of dominance
is not so clear (note that aCub, aIw and bPw is possible for some w, or aCdb,
wPa and bIw for some w; in either situation it is not clear that a has a ``better''
behavior than b).

Nevertheless it is clear that UCu�R;B�WUCd�R;B�JU�R;B� for every
�R;B�. On the other hand, each of these covering relations requires a direct
strict preference between the two alternatives: that is, if a covers b then aPb. It
is possible to de®ne a weaker dominance relation (see McKelvey 1986) only
asking for weak preference. Formally,

aCwb,
aRb and

bPw) aPw

bIw) aRw

there is some c A B such that aPc; cRb; or aIc; cPb:

���������
The idea with this new covering relation is to ask for the minimum con-

ditions which preserve the notion of dominance. Again, it is clear that if a

R-covers b, then aCwb which implies UCw�R;B�JU�R;B�, where UCw�R;B�
is de®ned in the usual way.

In order to characterize the elements in UCw�R;B�, we will use the fol-
lowing binary relations obtained from R:

Consider the weak-tournament �R;B�,
A) we will say that aGb in B, if there is c A B such that

(1) aRc, cPb, or
(2) aPc, cRb.

B) we will say that two elements a; b A B are indistinguishable in B, a1 b, if
for any other alternative w A B,
aPw if and only if bPw,
aIw if and only if bIw,
wPa if and only if wPb.

The ®rst relation extends the idea that the alternative a beats the alter-
native b in the feasible set B, either in one or two steps, to the context of weak-
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tournaments. From these de®nitions we obtain the following result which is a
kind of two-step principle (Miller, 1980) for weak tournaments.

Proposition 1. a A UCw�R;B� , Eb A B, aGb or a1 b.

Proof. Let a A UCw�R;B�, then for every b A B, no bCwa. If aCwb this implies
aGb. In another case, we may have aPb, in which case aGb, or bRa; but then,
as a A UCw�R;B�, we have the following possibilities:

(1) there is c A B such that aPc, cRb;
(2) there is c A B such that aRc, cPb, or
(3) for every w A B, aPw if and only if bPw, and aIw if and only if bIw.

The two ®rst cases imply aGb, and the third one shows that a1 b.
Conversely, consider a A B such that for every b A B, aGb or a1 b and

suppose a B UCw�R;B�. Then there is c A B such that cCwa. This implies that
a and c cannot be indistinguishable, so aGb. But this possibility contradicts
cCwa. Thus a A UCw�R;B�. 9

It is not hard to prove that the choice correspondence de®ned by
UCw�R;B� satis®es Condorcet-consistency, Neutrality, (IIA) and Monoto-
nicity. Nevertheless, from an axiomatic point of view, UCw�R;B� does not
maintain the properties of the uncovered set in tournaments: Aizerman and
Expansion are not satis®ed.

4. Minimal covering

The minimal covering choice correspondence was introduced by Dutta (1988),
in the context of tournaments, with the aim of de®ning a more discriminating
solution than the uncovered set. Dutta (1988) proved that, for tournaments,
the minimal covering is the smallest choice correspondence satisfying Neu-
trality, (IIA), Monotonicity, (SSP), condition g� and Condorcet consistency.
Duggan and Le Breton (1996) provide a positive foundation for the minimal
covering by using zero-sum games (they prove that it coincides with the weak
saddle of the corresponding tournament game).

In order to generalize the minimal covering to the context of weak tour-
naments we use the notion of covering set in Dutta (1988).

De®nition 7. Given �R;B� A R�P (A), a nonempty set E JB is a covering set

of �R;B� if and only if

a) U�R;E� � E,
b) b A Bÿ E implies b B U�R;E W fbg�.

If E is a covering set of �R;B�, then E is internally stable in accordance
with the cover relation de®ned in the previous section, since condition a)
establishes that all of the elements in E should be uncovered within E. Con-
dition b) requires an external stability in the sense that the elements outside
the covering set cannot cover the elements in E.

226 J. E. Peris, B. Subiza



We denote the family of all covering sets of �R;B� by C�R;B�. The next
property relates the covering sets to the uncovered choice correspondence
analyzed in the previous section.

Lemma 2. If E A C�R;B� then E JU�R;B�.
Proof. Suppose b A E and b B U�R;B�; then there is c A B such that cC�R;B�b,
which implies cC�R;EWfcg�b. If c A E, a contradiction to the internal stability
of the covering set is obtained. Then, c B U�R;E W fcg� and so, there is
w A E such that wC�R;EWfcg�c. Transitivity of the covering relation gives us
wC�R;EWfcg�b, which in turn implies wC�R;E�b, contradicting again internal
stability. 9

The following result proves the existence of covering sets for every weak
tournament. Consider a weak tournament �R;B� and denote U0�R;B� � B.
For any tV 1, let Ut�R;B� � U�R;Utÿ1�R;B��. As B is a ®nite set, there is
some k A N such that Uk�R;B� � Uk�1�R;B�. We will denote by Uy�R;B�
the set Uk�R;B� holding this condition.

Theorem 2. Uy�R;B� A C�R;B�.
Proof. By de®nition, U�R;Uy�R;B�� � Uy�R;B�. Now, let b B Uy�R;B�;
then there exists t A N such that b A Ut�R;B� and b B Ut�1�R;B�, that is, there
is c A Ut�R;B� such that cC�R;Ut�R;B��b. If c A Uy�R;B� we have the result,
because Uy�R;B�JUt�R;B�. Otherwise, by following an analogous argu-
ment, we can ®nd d A Us�R;B�, sV t, such that dC�R;Us�R;B��c. As Us�R;B�W
fbgJUt�R;B� for sV t, and the covering relation is transitive, then
dC�R;Us�R;B�W fbg�b. By repeating this process, as B is a ®nite set, we obtain
an element a A Uy�R;B� such that aC�R;Uy�R;B�Wfbg�b. Then b B
U�R;Uy�R;B�W fbg�. 9

As Lemma 2 showed, every covering set is a selection of the uncovered set.
One way of de®ning a choice correspondence which is as discriminating as
possible, would be to select the minimal covering set with respect to the set-
inclusion (Dutta, 1988).

De®nition 8. The minimal covering choice correspondence MC : R�P�A� !
P�A� assigns the minimal covering set of �R;B� (with respect to the set-

inclusion) to each weak tournament �R;B� A R�P�A�.
The following results are devoted to proving the existence of such a

covering set and that it is unique. So, the minimal covering choice corre-
spondence is well de®ned.

Lemma 3. Let E;F A C�R;B�, then E XF 0q.

Proof. Let us suppose E XF �q, and consider e1 A E. As e1 A Bÿ F , then
there is f1 A F such that

f1C�R;F W fe1g�e1:
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As f1 A Bÿ E, then there is e2 A E such that

e2C�R;E W f f1g� f1:

By following this process, we obtain a chain

ek�1C�R;E W f fkg� fkC�R;F W fekg�ekC�R;E W f fkÿ1g� fkÿ1 . . . f1C�R;F W fe1g�e1:

It follows now that

ftPet and et�1Pft; t � 1; 2; . . . ;

and then, from the de®nition of the covering relation,

et�1Pet and ft�1Pft; t � 1; 2; . . . �1�
As B is a ®nite set, for a large enough k, i < j must exist in the chain such that
fi � fj and therefore

fiC�R;FWfejg�ej:

This implies fi�1Pej (otherwise fiRfi�1 contradicting [1]) and, since
ei�2C�R;EWf fi�1g� fi�1, ei�2Pej which in turn implies ei�2Pfjÿ1 and fi�2Pfjÿ1. By
repeating this argument we obtain a contradiction to [1]. 9

Theorem 3. For all �R;B� A R�P�A� there is a set MC�R;B� A C�R;B� such

that for every E A C�R;B�, MC�R;B�JE.

Proof. First, suppose that there is a Condorcet winner in �R;B�; then the set
containing this element is the unique covering set and the result is true. Note
that, when there is not a Condorcet winner, a covering set must contain at
least two elements and, in the case where it contains just two elements, they
must be indi¨erent.

Now consider �R;B� A R�P�A� and choose a covering set MC�R;B�
with minimal cardinality. Thanks to the previous Lemma, the arguments in
Dutta (1988) apply to prove the result. 9

Theorems 4 and 5 provide an axiomatic characterization of the minimal
covering choice correspondence.

Theorem 4. MC satis®es Monotonicity, Neutrality, (IIA), Condorcet con-
sistency, (SSP), condition g� and (CDP).

Proof. It is clear that MC satis®es Neutrality and (IIA). In order to prove
Monotonicity, let R;R0 A R and B A P�A�, such that

RjBÿfxg � R0jBÿfxg;
Eb A B; xPb implies xP0b and xIb implies xR0b; and

x A MC�R;B�:
Suppose x B MC�R0;B�; we are going to prove that MC�R0;B� is a covering
set in �R;B� and therefore MC�R;B�JMC�R0;B�, contradicting x A M�R;B�.
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As the uncovered choice correspondence satis®es (IIA),

U�R;MC�R0;B�� � U�R0;MC�R0;B�� �MC�R0;B�:
Let b B MC�R0;B�. If b0 x, then as RjBÿfxg � R0jBÿfxg;

b B U�R0;MC�R0;B�W fbg� � U�R;MC�R0;B�W fbg�:
If b � x, x B U�R0;MC�R0;B�W fxg� and there is a A MC�R0;B� such that

aC�R0;MC�R0;B�W fxg�x;

that is, aP 0x, and for every w A MC�R0;B�,
xP0w implies aP0w; and

xI 0w implies aR0w:

From the relationship between R and R0, it follows that a also covers x in the
relation R, so x B U�R;MC�R0;B�W fxg� and therefore

MC�R0;B� A C�R;B�:
In order to prove (SSP) consider B;B 0 A P�A� and R A R, such that

MC�R;B�JB 0JB. This implies that MC�R;B� is a covering set in �R;B 0�
and then MC�R;B 0�JMC�R;B�. Let us suppose MC�R;B 0�0MC�R;B�;
we are going to prove that, in this case, MC�R;B 0� is a covering set in �R;B�,
contradicting the minimality of MC�R;B�.

Obviously, U�R;MC�R;B 0�� �MC�R;B 0�. On the other hand, if
b A BÿMC�R;B 0� we will distinguish between two cases:

1) b A B 0; then b B U�R;MC�R;B 0�W fbg�, because MC�R;B 0� is a covering
set in �R;B 0�.

2) b B B 0; in this case, as MC�R;B�JB 0, b A BÿMC�R;B� and therefore,
b B U�R;MC�R;B�W fbg�, so there is a A MC�R;B�JB 0 such that

aC�R;MC�R;B�Wfbg�b:

If a A MC�R;B 0� then b B U�R;MC�R;B 0�W fbg�. In the other case,
a A B 0 ÿMC�R;B 0� implies the existence of d A MC�R;B 0� such that

dC�R;MC�R;B 0�Wfag�a;

and then by transitivity

dC�R;MC�R;B 0�Wfbg�b:

So, in either case, b B U�R;MC�R;B 0�W fbg� and MC�R;B 0� A C�R;B�.
Now, in order to prove that the minimal covering choice correspondence

satis®es condition g�, let Bi A P�A�; i A I , and R A R, such that

a A 7
i A I

MC�R;Bi�

andsuppose

�
6
i A I

Bi

�
ÿ fag �MC

�
R;6

i A I

Bi

�
; then, there isb A MC

�
R;6

i A I

Bi

�
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such that bR-covers a in MC

�
R;6

i A I

Bi

�
W fag. Let j A I such that b A Bj;

then, as Bj ÿ fagJMC

�
R;6

i A I

Bi

�
, bR-covers a in Bj which contradicts the

fact that a A MC�R;Bj�.
Finally, if �R;B� A R�P�A�, and B � B1 WB2 WB3 such that

BiIBiEi; BiPBi�1Ei � 1; 2;B1RB3:

If B1 XMC�R;B� �q, then MC�R;B�JB2 WB3 and for every b A B1 there
is c A B2 WB3 such that cPb; but this is not possible. Now consider �R;B� such
that B2 XMC�R;B� �q; then for a A B2, a B U�R;MC�R;B�W fag� and
there is b A MC�R;B� which R-covers a in MC�R;B�W fag. In particular,
bPa which implies b A B1. If c A B3 XMC�R;B�, then aPc and thus b R-covers
c in MC�R;B�, which is a contradiction. Therefore MC satis®es (CPD). 9

We are now interested in proving that the minimal covering choice corre-
spondence is more discriminating than any other which satis®es the axioms of
Theorem 4. First, we need an auxiliary lemma (its proof is similar to Lemma 5
in Dutta, 1988).

Lemma 4. Let �R;B� A R�P�A�, and B1, B2 be any partition of B such that
B1 XMC�R;B�0q. Then, there is a A B1 such that a A U�R;B2 W fag�.
Theorem 5. MC is the smallest choice correspondence satisfying the axioms in

Theorem 4.

Proof. Let S : R�P�A� ! P�A� be a choice correspondence which satis®es
all axioms in Theorem 4. Suppose �R;B� A R�P�A� such that

MC�R;B� ÿ S�R;B�0q;

and consider the sets B1 �MC�R;B� ÿ S�R;B� and B2 � S�R;B�, then
MC�R;B�JB1 WB2 JB;

and (SSP) implies MC�R;B� �MC�R;B1 WB2�. Lemma 4 ensures the exis-
tence of a A B1 such that a A U�R;B2 W fag�. Consider the following partition
of B2

�B2�� � fb A B2 such that aPbg;
�B2�� � fb A B2 such that aIbg;
�B2�ÿ � fb A B2 such that bPag:

By reasoning as in the proof of Theorem 1, but using (SSP) instead of Aizer-
man and (TPD), we obtain

a A S�R; �B2��W fag�X
�

7
b A �B2��

S�R; fa; bg�
�
X

�
7

b A �B2�ÿ
S�R; fa; b; cg�

�
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and condition g� implies

S�R;B2 W fag�0B2;

but, S�R;B� � B2 JB2 J fagJB, and (SSP) implies

S�R;B2 W fag� � B2

which is a contradiction. 9
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