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Abstract. An Excess-Voting Function relative to a pro®le p assigns to each
pair of alternatives �x; y�, the number of voters who prefer x to y minus the
number of voters who prefer y to x. It is shown that any non-binary separable
Excess-Voting Function can be achieved from a preferences pro®le when
individuals are endowed with separable preferences. This result is an exten-
sion of Hollard and Le Breton (1996).

1 Introduction

We consider a committee having to take decisions over several distinct issues
(bills). This framework, where an alternative can be seen as a sequence of
bills with two positions (yes or no) underlies analysis of logrolling and vote
trading (see e.g. Miller 1977; Schwartz 1977). In this setting, a standard
hypothesis is to assume that voter preferences over the set of alternatives are
separable; loosely speaking, separability means that preferences on each
bundle of issues are independent of what could be decided for the remaining
issues.

Hollard and Le Breton proved in their paper (1996) that in the case of
binary bills, any separable tournament could be achieved through majority
pairwise voting from separable individual preferences. This paper follows the
spirit of their result both from technical and conceptual point of view.

The extension that is proposed here goes in two directions.
We don't restrict ourselves to binary bills.
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Since in many contexts, the decisions may not be as clear as `yes' or `no',
it may be more useful to assume that issues can take as many position as
required and, also, to study whether or not, the results obtained in the binary
setting remain valid.

Instead of tournaments, we will consider Excess-Voting Functions, which
we will de®ne below.

An aggregation method consists in picking up some information from the
pro®le, usually, in order to make the decision easier to take. But all the
aggregation methods do not require the same amount of information. In this
article, we will consider an aggregation method which contains the infor-
mation `number of individual preferences that are not counterbalanced in
pairwise comparisons'. This method leads to what we will call an Excess-
Voting Function. This function has been referred to (with no name) in Young
(1974), is called `Benjamin Franklin matrix' by Debord (1987), `Comparison
Matrix' by Laslier (1996) and `net plurality' by Dutta and Laslier (1996).

This paper contains two main results. The ®rst one states that, assuming
that the number of voters is unrestricted, for any Separable Excess-Voting
Function, there exists a separable preference pro®le that contains exactly the
information picked up by that function. The second result gives a condition
on the number of voters required to allow any non-binary separable tour-
nament.

This paper is organized as follows; ®rst, we introduce the notation and
de®nitions (section 2). Then the main theorems and some preliminary results
are given in section 3. The concluding section puts these results together with
some already established results and raises some open problems.

2 Notation and de®nitions

Let X be a non-empty ®nite set of alternatives (candidates) and T be a binary
relation de®ned over X . If an alternative x 2 X dominates another alternative
y 2 X then we denote this relation xTy. Let N � 1; . . . ; nf g be a set of voters,
each endowed with a complete strict preference ordering Pi over X . A pro®le
p � P1; . . . ; Pn� � is the list of the preferences of each voter. Let L be the set of
all possible complete strict orderings on X , and Ln be the set of all possible
pro®les. Let p 2 Ln and x; y 2 X , the pairwise majority relation M�p� is de-
®ned by xM�p�y () # i 2 N : xPiyf gP # i 2 N : yPixf g. If n is odd then
M�p� is complete (for any x 6� y 2 X : �x; y� j2 U ) �y; x� 2 U ) and asym-
metric (for any x 6� y 2 X : �x; y� 2 U ) �y; x� j2 U ) and it de®nes a tour-
nament.

De®nition 1 Given a set of alternatives X, the set of voters N and a pro®le p, the
Excess-Voting Function EVp relative to p is de®ned as follows:

X � Xÿ! Z

�x; y� # # i 2 N : xPiyf g ÿ# i 2 N : yPixf g
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It is obvious that EVp�x; y� � ÿEVp�y; x� and that if the number of voter is
even (resp. odd), then for any distinct x and y, EVp�x; y� is even (resp. odd).
Moreover, for any distinct alternatives x and y, EVp�x; y�P0 () xM�p�y.

Denote K � 1; 2; . . . ; kf g the set containing the di�erent bills that are to
be voted on by a committee (see Black 1958; Miller 1996). Let us suppose
that each bill i comprises ni positions. The set of all possible positions for bill
i will be denoted bi � 0; 1; . . . ; ni ÿ 1f g. The set of all possible outcomes, over
which the preference relations are de®ned, is denoted and de®ned by
X �Q1OiOk bi. The cardinality of X is given by #X �Q1OiOk ni.

An alternative x in X is a vector x � x1; x2; . . . ; xk� �. For any a � K; x will
be denoted xa; xKna

ÿ �
where xa � xi : i 2 af g and xKna � xi : i j2 af g. A binary

relation R satis®es the separability hypothesis1 over X if 8a � K; 8xKna; yKna
2Qi2Kna bi and 8za; ua 2

Q
i2a bi then xKna; za

ÿ �
R yKna; za
ÿ �

if and only if

xKna; ua
ÿ �

R yKna; ua
ÿ �

.

If a binary relation (tournament or preference) satis®es the separability
hypothesis, we'll say that this relation is separable.

This de®nition corresponds to the explanation given in the introduction.
xKna; yKna are the di�erent coordinates of the compared alternatives and the
common coordinates are to be changed from za to ua. One can see that all the
comparisons of a separable relation can be sorted with respect to the relation
they are linked to by separability. For any x 6� y, there exists a non empty
separability set S x;yf g containing unordered pairs u; vf g such that the relation
between u and v follows from the relation between x and y as a direct con-
sequence of separability. De®nition 2 gives the formal expression of a sep-
arability set.

De®nition 2 Let X �Q1OiOk bi and x; y 2 X be two distinct alternatives. Let
a � i 2 K : xi � yif g. The separability set of x; yf g is de®ned by

S x;yf g �
u � xKna; ua

ÿ �
and v � yKna; ua

ÿ �
u; vf g : or

u � yKna; ua
ÿ �

and v � xKna; ua
ÿ �

8<:
9=;

By de®nition, x; yf g 2 S x;yf g.
Alternatives for which S x;yf g � x; yf gf g have no coordinate in common.

In this case, we'll say that x is an opposite of y. Let us denote opp�x� the set
of all the opposites of x according to the space X . The cardinality of opp�x� is
given by #opp�x� � Q1OiOk ni ÿ 1� � and is the same for all x.

We denote LS�X � be the set of all possible separable preferences over X
and Ln

S�X � be the set of all possible pro®les of separable preferences over X
for n voters. An analysis of separable preferences and tournaments in a
binary framework (i.e. when each bill contains two positions) can be found in
Vidu (1996).

1This de®nition as well as the de®nition of separability set below were introduced by
Hollard and Le Breton (1996).
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We now de®ne a separable excess-voting function:

De®nition 3 Given X � Q1OiOk bi the set of alternatives, N the set of voters and
p a pro®le, the excess-voting function EVp is separable if 8a � K; 8xKna ; yKna
2Qi2Kna bi and 8za; ua 2

Q
i2a

bi then EVp xKna; za
ÿ �

; yKna; za
ÿ �ÿ �� EVp xKna; ua

ÿ �
;

ÿ
yKna; ua
ÿ ��.

Let R be a binary relation over a set X , )R is the converse relation of R,
that is to say that xRy () y�ÿR�x. If R is transitive (resp. separable) relation
then ÿR is transitive (resp. separable) as well. Given R a binary relation over
X and x; y two distinct alternatives in X , Rhx;yi is such that Rhx;yi � R except
over the pair x; yf g where Rhx;yi � ÿR. If R is a transitive relation, then Rhx;yi
is transitive if and only if x and y are adjacent in this relation. Moreover, if R
is separable, then Rhx;yi is separable if and only if S x;yf g � ffx; ygg.

3 Theorems and preliminary results

Theorem 1 For any separable excess-voting function EV de®ned over X, there
exists a separable pro®le p such that EV � EVp.

Theorem 2 If nP
Q

i2K ni ni ÿ 1� � � 1� � ÿ 1 and n is even then for every sepa-
rable binary relation R over X, there exists P 2 Ln

S�X � such that R � M�P �. If
nP

Q
i2K ni ni ÿ 1� � � 1� � ÿ 2 and n is odd then for every separable tournament

T over X, there exists P 2 Ln
S�X � such that T � M�P �.

The proof of the ®rst theorem is essentially based upon separability sets.
It consists in building a convenient pro®le so that an analysis of separable
orderings is required. The proof of the second one implies a combinatoric
approach. We have to prove the following claims in order to make the proof
of these theorems easier.

Claim 1 Given X �Q1OiOk bi and P 2 LS�X � such that x is ranked ®rst in P
and y is ranked last in P, we have y 2 opp�x�. Moreover, given the ®rst ranked
alternative, any of its opposite can be ranked on last position.

Proof of Claim 1 Assume that x is ranked ®rst in P but y, ranked last, is not
an opposite of x. Then x and y have some coordinates in common. So
x � xKna; xa

ÿ �
P yKna; xa
ÿ � � y () xKna; za

ÿ �
P yKna; za
ÿ �

where za 2
Q

i2a bi. But
x ranked ®rst implies xKna; xa

ÿ �
P xKna; za
ÿ � () y � yKna; xa

ÿ �
P yKna; za
ÿ �

which
implies that y cannot be ranked last.

Consider now that x is ranked ®rst and that one of its opposite y is ranked
last. To show that any opposite z of x can be ranked last even though x
remains ®rst, one just has to consider each coordinate of the alternatives one
at a time and set xi as the preferred outcome for the ith issue and zi as the
most disliked outcome for the ith issue. By doing this, one gets the skeleton of
a separable ordering. j

The next claim shows that the separability sets are a partition of X � X .
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Claim 2 Let fx; yg be a pair of alternatives. For any pair of alternatives fu; vg
either Sfx;yg � Sfu;vg or Sfx;yg \ Sfu;vg � ;.

Proof of Claim 2 Assume that Sfx;yg and Sfu;vg have a non-empty intersection.
If fx; yg � fu; vg then the claim is trivially true. Any pair in Sfx;yg can be
denoted f�x0a; xKna�; �x0a; yKna�g and any pair in Sfu;vg can be denoted
f�u0b; uKnb�; �u0b; vKnb�g. The nonempty intersection leads to a one-to-one
correspondence between the coordinates of the alternatives in two of these
pairs. In other words, we have �x0a; xKna� � �u0b; uKnb� and �x0a; yKna� �
�u0b; vKnb� which implies a � b, xKna � uKnb and xKna � uKnb. We can conclude
that any pair in Sfx;yg belongs to Sfu;vg. Due to the symmetry of equality, the
converse is also true. j

De®nition 4 Two orderings P and ~P , both de®ned over X, are neutral around
fx; yg if P � ~P over Sfx;yg and P � ÿ ~P elsewhere.

This neutrality has a simple meaning. If the majority relation is applied
on a pro®le p containing two orderings P and ~P that are neutral around
fx; yg, then we have faM�p�b and bM�p�ag () fa; bg j2 Sfx;yg

Claim 3 Given x and y in X such that y is an opposite of x, there exists two
separable orderings P and ~P that are neutral around fx; yg.

Proof of Claim 3 Let us consider x � x1; . . . ; xk� � and y � y1; . . . ; yk� �. Let
F 0; F 1; . . . ; F n1ÿ1 be the partition of X such that 8j 2 b1 : F j � x 2 Xf
: x1 � jg. The second part of Claim 1 states that it is always possible to ®nd
an ordering in which two given alternatives x and y 2 opp�x� are respectively
ranked in the ®rst and last position. Then, there exists a separable ordering
P 0 over F 0 such that 0; x2; . . . ; xk� � is ranked last while 0; y2; . . . ; yk� � is ranked
®rst. Denote P j the copy of P 0 over F j.

P is defined as follows :

P � P j over F j 8j

F x1PF j 8j 6� x1
F y1PF j 8j 6� x1; y1
F jPF l if j < l andfj; lg \ fx1; y1g � ;

8>><>>:
A careful inspection of P shows that it is separable. Indeed, P is a jux-

taposition of identical separable orderings. ~P � ÿP<x;y> is separable as well
since the converse of any separable relation is itself separable, and reversing a
single arc in a separable ordering doesn't break either transitivity (because x
and y are adjacent) nor separability (because y 2 opp�x�). For any pair fu; vg,
we have uPv () v ~Pu except for the pair fx; yg which is Sfx;yg itself (because
y 2 opp�x�). We can conclude that P and ~P are neutral around Sfx;yg. j

Claim 4 Given x and y in X, there exists two separable orderings P and ~P that
are neutral around fx; yg.

Proof of Claim 4 The proof is by induction on the number of distinct bills k.
The theorem is evident when k � 1. We suppose then that it is true for all k
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up to k � nÿ 1. Let us consider x � x1; . . . ; xn� � and y � y1; . . . ; yn� �. If x and
y are opposites then Claim 3 applies. x and y have at least one coordinate in
common. Without loss of generality, assume that x1 � y1 � 0. Let
F 0; F 1; . . . ; F n1ÿ1 be the partition of X such that 8j 2 b1 : F j � x 2 Xf
: x1 � jg. Then, we know by induction that for two alternatives x0 �
x2; . . . ; xk� � and y0 � y2; . . . ; yk� �, it is possible to ®nd two orderings overQ
2OiOk bi that are neutral around Sfx0;y0g. Let P j and ~P j be the copies of those

two orderings over F j.

P is defined as follows :
P � P j over F j 8j

F jPF l 8j < l

�

~P is defined as follows :
~P � ~P j over F j 8j

F j ~PF l 8j > l

�
To see that P and ~P are separable ordering is made easier by remarking

that these two ordering are the juxtaposition of separable orderings. Let us
check that P and ~P are neutral around fx; yg. Consider a pair �u; v� 2 Sfx;yg. u
and v belong to the same subset F u1 . By neutrality around Sfx;yg of P j and ~P j,
we have uPv () u ~Pv.

If �u; v� j2 Sfx;yg, then two cases are possible.

Case 1: There exists a j such that fu; vg 2 F j. In this case, by neutrality of P j

and ~P j, we have uPv () v ~Pu.

Case 2: u 2 F j and v 2 F l where j 6� l. Without loss of generality, suppose
that j > l. In this case vPu and u ~Pv. j

We are now ready to prove the two theorems.

Proof of Theorem 1 Let us consider a separable Excess-Votion Function EV
and denote R the pairwise majority relation this function induces (i.e.
8x; y 2 X : EV �x; y�P0 () xRy). Let us partition the set of paired compar-
isons into the collection of separability sets according to Claim 2. Without
loss of generality, let us denote this partition Sj

� 	
1OjOJ . For any separability

set Sfx;yg, when xRy, it is possible, by Claims 3 and 4 to build two orderings Pj

and ~Pj that are neutral around fx; yg and comply with the relation described
by R through majority pairwise comparisons. If xIy then take any separable
ordering Pj and de®ne ~Pj � ÿPj. In this way, a pro®le p � P1; ~P1; P2; ~P2; . . . ;

ÿ
PJ ; ~PJ � can be constructed in order to obtain any binary relation R. Con-
cerning the function EVp, remark that, for this pro®le p, when the number of
voters is even, then the excess-voting function can take only three di�erent
values, namely ±2, 0 or 2, whereas 1 and ±1 are the only two possible values
of the excess-voting function when the number of voters is odd. We ®rst
prove the theorem for an even number of voters.

Consider two distinct alternatives x and y such that EV �x; y� � 2i where i
is an integer. Without loss of generality, assume that the preferences Pj and ~Pj

are neutral around fx; yg in the pro®le p. By duplicating those two prefer-
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ences iÿ 1 times, the new pro®le p0 is such that EVp0 �x; y� � EV �x; y�. The
pro®le �p is obtained by doing the same duplication when necessary for each
distinct separability set of X .

When the number of voters is odd, duplicating the preferences is not
su�cient because the excess-voting function is necessarily odd. The con-
struction of �p is achieved in three steps:

First, build a separable pro®le p0 from p such that for any distinct alterna-
tives x and y, EV �x; y� > 0 () EVp0 �x; y� � EV �x; y� � 1.

Second, remove an arbitrary preference Pl from pro®le p0. Let p00 be this new
pro®le. For any distinct alternative x and y such that EV �x; y� > 0, either
EVp00 �x; y� � EV �x; y� or EVp00 �x; y� � EV �x; y� � 2.

Third, for any distinct alternatives x and y such that EVp00 �x; y� 6� EV �x; y�,
remove two individual preferences that are neutral around fx; yg. The pro®le
�p ®nally obtained is such that for any x 6� y, EV�p�x; y� � EV �x; y�. j

Proof of Theorem 2 Let us use the pro®le p � �P1; ~P1; P2; ~P2; . . . ; PJ ; ~PJ � that is
constructed at the beginning of the proof of Theorem 1. This construction
requires n � 2J individuals. Let us calculate J . Given fx; yg and b � Kna �
fi 2 K : xi 6� yig the subset containing the distinct coordinates of x and y,
there are some separability sets for which b coincide, the number of distinct
separability sets with the same b is

Q
i2b ni�ni ÿ 1�. Taking into account all

possible b we obtain J � 1
2

P
b�K

Q
i2b ni�ni ÿ 1�. The number 2J can also be

written
Q
i2K
�ni�ni ÿ 1� � 1� ÿ 1. If nP2J and n is even then the conclusion

remains valid by allocating any additional pair of voters on any arbitrary
chosen Sj using the construction above. If n is odd and nP2 J ÿ 1 then we
can proceed by using the pro®le p since from the construction of p, if xTy we
have: #fi 2 N : xPiyg ÿ#fi 2 N : yPixg � 2. Any voter can be deleted
without any consequence on the majority result. j

When for any i 2 K; ni � g, then Theorem 2 becomes: if nP�g�gÿ 1��
1�k ÿ 1 and n is even, then for every separable binary relation R over
X �Q1OiOk bi, there exists P 2 Ln

S�X � such that R � M�P�. This result co-
incides with Hollard and Le Breton when g � 2.

Concluding remarks

The results contained in the present paper can be brought together with
many special cases that have been proved in the literature (the most basic
particular case being McGarvey 1953). Concerning the Excess-Voting
function, a similar theorem has been already proved by Debord (1987) in the
case where separability is not assumed. Nevertheless, the present proof
cannot be obtained from that of Debord. On the contrary, though a hy-
pothesis is added to the model, our proof can be adapted to get the one of
Debord by considering that the separability set Sfx;yg is always equal to
ffx; ygg for any distinct alternatives x and y. To be convinced that this is not
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meaningless and that the proof is more general than one could believe at ®rst,
recall that a separability set contains some pairs of alternatives over which
the relation depends on that of the others. We have seen that when the
alternatives are opposite then the relation is independent of that of any other
pair of alternatives. More than separability by itself, our theorem is based
upon the dependence of relations over a given set of alternatives. The de®-
nition of separability allows (and implies) a formal (and simple) de®nition of
the sets of dependent relations, and the proof given here remains valid no
matter what kind of dependence is assumed.

Most of the time, separability is studied either in the binary case or in the
spatial case. Hollard and Le Breton (1996), proved a theorem similar to ours,
in the restricted case of tournaments and dichotomous bills. The structure of
the proof that is used in this paper is very much inspired by that of Hollard
and Le Breton but it extends their result in the direction of a higher infor-
mation-level and of a wider range of alternatives. In the case of tournaments,
it is possible to state Theorem 2 and to introduce a clue upon the number of
voters that coincides with Hollard and Le Breton in the binary case. The
pro®les constructed in the di�erent proofs are not optimal with respect to the
required number of individuals. This number depends, as it could be ex-
pected, on the number of alternatives in X . Refering to the work of Stearns
(1959), a lower bound to the minimal number of required voters cannot be
found without ®rst knowing the number of possible separable orderings
which, to my knowledge, remains unknown (see Vidu (1996) for some clues
in the binary case).

In this paper, the marginal preferences are not restricted at all. We could
consider restricting further the setting of this paper2 by assuming that the set
of alternatives is, say, a grid in Rk and that the preferences of each voter is
separable as before but also that each marginal preference is single-peaked
(that is single-peakedness applies for each dimension). This single-peaked-
ness in addition to separability is close but di�erent from the multidimen-
sional single-peakedness given by BarberaÁ et al. (1993).

In such a setting, the majority relation remains separable as before but
also, all its marginals are single-peaked and transitive. A proof of this as-
sertion may be found for example in Moulin (1988). An interesting
McGarvey question would be: Can any separable binary relation with single-
peaked marginals be obtained through the majority aggregation of a pro®le
of separable and single-peaked preferences? This question makes sense when
bills can take more than two position since preferences on two positions are
trivially single-peaked and transitive. It is interesting to note that this setting
corresponds to the discrete version of the spatial model used by political
scientists.

When we consider only dichotomous bills, it is possible to determine the
Condorcet position in each bill. A logrolling situation appears when there

2 Thanks are due to an anonymous referee for the following suggestion.
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exists an alternative in f0; 1gk that dominates (through the majority relation)
the alternative made of the k Condorcet positions. If single-peakedness is
introduced in the marginal preferences, the existence of a Condorcet position
is secured even though more than two positions are possible in some bills.
This is a good reason to explore the subject for future research in the case of
single-peaked preferences.
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