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Abstract. The purpose of the paper is to provide a general framework for
analyzing ``preference for opportunities.'' Based on two simple axioms a
fundamental result due to Kreps is used in order to represent rankings of
opportunity sets in terms of multiple preferences. The paper provides several
re®nements of the basic representation theorem. In particular, a condition of
``closedness under compromise'' is suggested in order to distinguish the
¯exibility interpretation of the model from normative interpretations which
play a crucial role in justifying the intrinsic value of opportunities. Moreover,
the paper clari®es the link between the multiple preference approach and the
``choice function'' approach to evaluating opportunities. In particular, it is
shown how the well-known Aizerman/Malishevski result on rationalizability
of choice functions can be obtained as a corollary from the more general
multiple preference representation of a ranking of opportunity sets.

1. Introduction

Imagine an individual who faces the following two-stage decision problem.
In the ®rst stage, the individual has to choose among di�erent opportunity
sets. In the second stage, exactly one alternative from the set determined by
the ®rst stage decision has to be chosen. In such a situation, one may think of
two di�erent factors determining ®rst stage choices. First, each menu entails
indirect utility derived from the ultimately chosen alternative. Secondly, a
decision maker might attach intrinsic value to the range of second-stage
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choices (on the importance of the intrinsic value of choice in individual
decision making, see e.g. Jones and Sugden [4] and Sen [14, 15]). The aim of
the present paper is to develop a minimal, and in this sense general theory of
``preference for opportunities'' that combines both aspects. While perhaps
not terribly ambitious, a minimal theory does not seem to be without merits
in view of the conceptual elusiveness and complexity of the notion of
``freedom of choice.'' With our analysis we intend to clarify and lend support
to the emerging multi-preference conceptualization of ``preference for op-
portunities'' (see e.g. Jones and Sugden [4], Pattanaik and Xu [10]). The
analysis is minimalistic in that we consider orderings of sets that are com-
parable with respect to set inclusion; such orderings will be referred to as
qualitative set orders (QSOs).1 The proposed theory maintains the least
controversial assumption in the context of ranking opportunities, namely
that for any given opportunity set no subset can have greater value than the
original set (condition M, cf. Sect. 2).2 The focus is therefore whether or not,
for any given pair �A;B� of sets, AnB is of marginal value when B is available.
A decision maker's QSO thus describes the value of additional opportunities
while being silent about trade-o�s.

Given an ordering of the basic alternatives, the indirect utility principle
compares opportunity sets solely on the basis of preference between best
elements in each opportunity set. A ®rst step beyond this is to assume a
``preference for ¯exibility'' due to uncertainty about future tastes (see the
classic article by Kreps [5]). For instance, suppose that an individual is un-
certain about his preferences between the alternatives x and y. Then, in terms
of ¯exibility the set fx; yg would be strictly preferred to either fxg and fyg. In
general, one would have A [ fxg � A if and only if x is superior to all ele-
ments in A with positive probability. Intuitively, preference for ¯exibility may
thus be conceptualized by the notion of expected indirect utility. However,
this interpretation is unnecessarily particular. More generally, it is conceiv-
able that A [ fxg � A if and only if x is superior to all elements in A with
respect to some possible preference. In contrast to the set of probable pref-
erences, the set of (relevantly) ``possible'' preferences in general might include
any legitimate, or reasonable, or plausible preference ordering even if it has
zero subjective probability. In particular, a preference may be possible be-
cause it can itself be chosen.

Any of these interpretations entails the following restriction on a QSO.
Suppose that for some set A the addition of the alternative x is of positive
marginal value. Then the addition of x to any subset B � A must be of
positive marginal value as well. We will refer to this property as a condition

1 The term ``qualitative'' refers to the fact that a QSO is only de®ned on the domain of
all pairs �A;B� such that A � B, or B � A.
2 Hence, the theory abstracts from phenomena such as ``weakness of will,'' or ``e�ort-
of-decision costs,'' or any other restricitions on the decision maker's ability to choose
from his opportunities.
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of ``Contraction Consistency'' (condition CC, cf. Sect. 2).3 This condition
makes intuitive sense even from a more general perspective based on the
notion of diversity of opportunities. Indeed, suppose that diversity strictly
increases when the alternative x is added to the set A. Now, any diversity
possessed by a subset of A is also possessed by A. Hence, the addition of x to
any subset B � A must strictly increase diversity as well. Thus, condition CC
seems to be an appropriate general condition for evaluating opportunities. In
particular, in the above interpretations in terms of multiple preferences one
may allow for co-actuality of the di�erent preferences, e.g. as di�erent
``points of view.'' For instance, one may derive utility from consuming the
fantasy of doing a multitude of things while knowing that they won't be
done.

By a result of Kreps [5] conditions M and CC are the only restrictions on
``preference for ¯exibility,'' and hence on ``preference for opportunities.''
Consequently, conditions M and CC are the key axioms of this paper, and
our goal is to explore the resulting structure. A QSO satisfying M and CC
will be referred to as a consistent qualitative set order (CQSO). Kreps [5] has
shown further that M and CC remain the only restrictions if one assumes an
additive, i.e. an expected indirect utility representation. Thus even under that
much more structure, the CQSO captures ``where the action is.''

In contrast to the recent literature on multi-preference conceptualizations
of ``preference for opportunities'' (see [4], [10]), such a conceptualization
arises here from a representation theorem. This has two important impli-
cations. First, the principle that adding opportunities is always strictly
preferred, as sometimes assumed in the literature on freedom of choice,4

cannot be considered a general principle of evaluating opportunities.
Secondly, for a typical CQSO the marginal value of adding an alternative is
context-dependent, i.e. in general there exist sets A;B and alternatives x; y
such that,

A [ fxg � A and A [ fyg � A ;

B [ fxg � B and B [ fyg � B :

This observation suggests that conditions of context independence popular in
the literature on ranking sets may not be very helpful in the context of
ranking opportunities; see Section 2 for further discussion.

The present paper provides re®nements of Kreps' result based on
two motivations. First, one may want to incorporate (resp. axiomatically
characterize) constraints on the set of possible preferences such as the
``rigid'' superiority of some alternative x over another y for all possible

3 We note that, given condition M from above and transitivity, condition CC is
equivalent to Kreps' condition (1.5) (see [5, p. 567]).
4 E.g. the principle of strict monotonicity with respect to set inclusion is assumed in
Gravel [3], and implied in Pattanaik and Xu [9]. Similarly, strict monotonicity is
implied in the models considered in Bossert, Pattanaik and Xu [2].
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preferences. While the implications of rigid weak preference on the CQSO
are straightforward, the implications of rigid strict preference are more
complex and involve restrictions on the entire CQSO. We are also inter-
ested in clarifying the relation between multi-preference representations in
an opportunity context and multi-preference rationalization of choice
functions as provided by the well-known theorem of Aizerman and Mali-
shevski [1]. Taking a cue from the analysis of Puppe [12], it turns out that
on the class of CQSOs satisfying a condition IIE (for: ``Irrelevance of
Inessential Elements'') Kreps' representation theorem specializes to that of
Aizerman/Malishevski (see Section 7). This raises the question whether IIE
is a mere technical artefact, or whether it has substance, and more specif-
ically: whether IIE can be understood within the multi-preference approach
itself. We answer this question by characterizing IIE in terms of two al-
ternative conditions on the representation: that there exists a representing
set of linear orderings (Theorem 6.1), or that there exists a set of repre-
senting preference orderings that is convex in an appropriate sense (Theo-
rem 5.1). Intriguingly, each of these requirements can be imposed on the
multi-preference rationalization of a choice function without loss of gener-
ality.5 The notion of convexity, introduced in Nehring [7] as ``closedness
under compromise,'' expresses the intuitive idea that orderings that lie ``in
between'' possible orderings should itself be possible. This seems a natural
enough requirement if ``possible'' is interpreted as ``reasonable,'' or ``le-
gitimate,'' but less so under a ¯exibility interpretation of ``possible'' as
``probable.'' It is not entirely clear how to assess the strength of IIE. While
the linearity characterization imports some ¯avour of genericity on it, we
show by means of two examples that it may be rich in implications not
obtainable without it.

The paper is organized as follows. Section 2 introduces some basic de®-
nitions and brie¯y discusses the issue of context-dependence. Based on the
result of Kreps [5], Section 3 derives the representation of a CQSO by means
of multiple preferences on the set of alternatives. The interrelation between a
CQSO and preferences over alternatives, speci®cally the problem of rigidity
of strict preference, is discussed in Section 4. Section 5 provides the char-
acterization of IIE rankings as those that admit a convex representation.
Condition IIE is further examined in Section 6, where it is shown to be the
necessary and su�cient condition for the existence of a representation with
multiple linear preferences. Also, it is demonstrated by means of two ex-
amples that IIE allows for inferences from partial knowledge of a CQSO. As
a further application of IIE, Section 7 establishes the link between QSOs and
choice functions. Concluding remarks are o�ered in Section 8. All proofs are
found in an appendix.

5As to ``linearity'' this is obvious; as to convexity, see Nehring [7], Theorem 6.
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2. Basic de®nitions and facts

Let X be a ®nite set of alternatives and denote by P 0�X � :� P �X �nf;g the set
of all non-empty subsets of X . By R�X � we denote the set of all pairs
�A;B� 2 P 0�X � � P 0�X � which are ordered by set inclusion, i.e.

R�X � :� �A;B� 2 P 0�X � � P 0�X � : A � B or B � A
� 	

:

By � we denote a re¯exive binary relation in R�X �. We call � an ordering in
R�X � if and only if � is complete and transitive in R�X �, i.e. if and only if for
all �A;B� 2 R�X �, �A � B or B � A�, and for all �A;B�; �B;C�; �A;C� 2 R�X �,
�A � B and B � C� ) A � C. An ordering in R�X � is also referred to as a
qualitative set order (QSO). The intended interpretation of � is that A � B if
and only if A entails at least as much ``opportunity value'' as B. The sym-
metric and asymmetric parts of � are de®ned as usual, i.e. A � B :, �A � B
and B � A�, and A � B :, �A � B and not B � A�, respectively. Note that by
transitivity of �, both relations, � and �, are transitive in R�X �.

The intended interpretation of the QSO � as describing a ``preference for
opportunities'' is formally captured by the following two basic conditions.
M (Monotonicity) For all B � A, A � B.

Monotonicity states that any set A entails at least as much opportunity value
as any of its subsets. Note that, given condition M, a binary relation � in
R�X � is automatically complete in R�X �. Furthermore, in this case � is
transitive in R�X � if and only if for all sets A;B;C 2 P 0�X � such that
A � B � C, �A � B and B � C� , A � C. The second basic condition is as
follows.
CC (Contraction Consistency) For all B � A and all x 2 X ,

A [ fxg � A) B [ fxg � B :

Contraction consistency states that if joining the element x to A increases the
entailed opportunity value then this value must also increase when joining x
to the smaller set B � A. Note that since � is re¯exive, the element x 2 X in
CC cannot be contained in A. We will say that an element x 62 A is essential at
A if and only if A [ fxg � A, that is if and only if it marginally enhances
opportunity value. Otherwise, if x 62 A and A � A [ fxg we will say that x is
inessential at A. Hence, CC may be rephrased as follows. Suppose that x 62 A
is essential at A. Then x must be essential at any subset B of A.

In our approach, we take conditions M and CC as implicitly de®ning the
notion of ``preference for opportunities.'' Hence, the object of our study is
the set of QSOs � in R�X � which satisfy M and CC. We refer to a QSO
satisfying M and CC as a consistent qualitative set order (CQSO) and denote
the set of all CQSOs in R�X � by RCC�X �.

The simplest examples of CQSOs are indirect utility preferences. A CQSO
� is said to be an indirect utility preference (henceforth: IU -preference) if and
only if there exists a complete preference ordering R on X such that for all
�A;B� 2 R�X �,
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A � B, for all b 2 B there exists a 2 A such that aRb :

If � is an IU -preference with underlying preference ordering R, we will write
� � IU�R�.

Any CQSO � canonically induces the following partial order6 R� on X .
For all x; y 2 X ,

xR�y :, fxg � fx; yg : �2:1�
Hence, xR�y if and only if y is inessential at fxg. Note that if � 2 RCC�X � is
an IU -preference then � � IU�R��. The partial order R� can be interpreted
as the decision maker's context-independent preference judgements among
incremental alternatives added to given opportunity sets. Such an interpr-
etation is indeed warranted due to the following fact.

Fact 2.1 Let � 2 RCC�X �, and let R� be the induced partial order on X . Then,
xR�y if and only if for all B;C such that B; fx; yg � C,

B [ fyg � C ) B [ fxg � C : �2:2�
Hence, xR�y if and only if a decision maker would always be willing to
exchange y for x independently of the context in which x and y occur. Note
that, in general, for given elements z;w 2 X , (2.2) will be true for some
B;C 2 P 0�X � and for others not.

IU -preferences can be characterized on R�X � by a condition which in
e�ect says that all preference judgements among incremental alternatives are
context-independent (in the sense of Fact 2.1).7

Theorem 2.1 Let � 2 RCC�X �. Then � is an IU -preference if and only if the
induced partial order R� is complete on X .

In concluding this section, we note that in our context the requirement of
strict monotonicity with respect to set inclusion would imply
R� � f�x; x� : x 2 Xg. Hence, such a requirement is incompatible with the
notion that the decision maker may have some (non-trivial) preferences (s)he
is committed to (cf. Sen [15], Puppe [11, 12]).

6 The term ``partial order'' is sometimes reserved for binary relations that are
re¯exive, transitive and antisymmetric, whereas a binary relation satisfying just
re¯exivity and transitivity is sometimes called a preorder. In this paper, antisymmetry
is nowhere assumed and both terms are used synonymously.
7 The context-independence condition (2.2) is strong in that it allows the sets B and
fx; yg to have non-empty intersection. However, the importance of this feature seems
rather limited. In particular, in Nehring and Puppe [8] it is shown that on non-®nite
domains even very weak context-independence conditions (with a disjointness-clause)
imply the indirect utility principle provided that the set of alternatives is rich enough.
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3. Setting the stage: The basic representation theorem

In the following, it will be convenient to work with the asymmetric part � of
an ordering � in R�X � as the primitive notion. Suppose that � is complete in
R�X �, as is e.g. the case if � satis®es condition M. Then, A � B, not B � A.
Hence, � is transitive if and only if � is negatively transitive in the sense that
for all �A;B�; �B;C�; �A;C� 2 R�X �,
�not �B � A� and not �C � B�� ) not �C � A� :

Let PCC�X � denote the set of all asymmetric CQSOs, i.e. the set of all re-
lations � in R�X � which are negatively transitive in R�X � and satisfy con-
ditions M and CC. Obviously, �2 PCC�X � if and only if its complement is in
RCC�X �.

The basic construction of the following analysis leans heavily on Kreps
[5]. Our presentation, however, emphasizes how the multi-preference repre-
sentation emerges naturally from an analysis of the structure of the set of
CQSOs. The following fact is easily established.

Fact 3.1 The set PCC�X � is closed under unions, i.e. �;�02 PCC�X � implies
that � [ �02 PCC�X �.

Fact 3.1 suggests the following two questions. What are the CQSOs that
are minimal with respect to set inclusion, and: can every CQSO be repre-
sented as the union of such minimal CQSOs? The (non-trivial) minimal
CQSOs are easily characterized. For any A 2 P 0�X � de®ne an element �A of
PCC�X � as follows. For all �C;D� 2 R�X �,

C �A D :, C 6� A and D � A : �3:1�
Note that �X� ;. Observe also that, for each A 2 P 0�X �, the relation �A is
the IU -preference derived from the following preference ordering PA on X .
For all x; y 2 X ,

xPAy :, x 62 A and y 2 A :

Indeed, it is easily veri®ed that C �A D if and only if there exists x 2 C such
that xPAy for all y 2 D. Hence, �A� IU�PA� In the following, we will refer to
the orderings PA and �A as dichotomous orderings. Denote by P

�
CC�X � the set

of all dichotomous orderings �A, i.e.

P�CC�X � :� �A: A 2 P 0�X �� 	
:

Fact 3.2 The set P�CC�X �nf;g consists exactly of those elements in PCC�X �n
f;g that are minimal with respect to set inclusion.

Theorem 3.1 The setP�CC�X � is a base ofPCC�X � in the sense that each element
of PCC�X � is the union of elements of P�CC�X �. That is, for all �2 PCC�X �,
��

[
A2A
�A for some family A � P 0�X � :
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The proof of Theorem 3.1 uses, for each given CQSO �, the following
particular family A � P 0�X �. Let �2 PCC�X �, and de®ne a mapping
f : P 0�X � ! P 0�X � by

f �A� :�
[

fA�C:A�Cg
C : �3:2�

It can be shown that the familyA � ff �A� : A 2 P 0�X �g indeed provides the
desired decomposition as stated in Theorem 3.1 (for a rigorous proof, see the
appendix).

It has already been noted that all relations used for the decomposition of
the ordering � in Theorem 3.1 are IU -preferences. Therefore, one may re-
state Theorem 3.1 in the following way. A relation � is in PCC�X � if and only
if there exists a ®nite set fP1; . . . ; Png of preference orderings on X such that
for all �A;B� 2 R�X �,

A � B, for some i;A �i B �3:3�
where for each i 2 f1; . . . ; ng, �i� IU�Pi�. The su�ciency part of this state-
ment is precisely the content of Theorem 3.1. For the necessity part, note that
any IU -preference satis®es M and CC, and hence is an element of PCC�X �.
By Fact 3.1, PCC�X � is closed under unions, hence any ®nite union of IU -
preferences also satis®es M and CC. Henceforth, we will refer to a set of
preference orderings fP1; . . . ; Png satisfying (3.3) as a representing family of
the CQSO �.

In Theorem 3.1, one may think of the elements of the family A as cor-
responding to di�erent states. For instance, in the speci®c interpretation
adopted in [5] the elements �f �A�, or rather the corresponding preference
orderings Pi as above, correspond to di�erent future ``tastes'' in mutually
exclusive states of the world about which an individual is uncertain. In the
more general perspective of this paper, the orderings Pi may be interpreted as
the di�erent viewpoints from which an individual evaluates the elements of
X . In our framework, the content of Theorem 3.1 may thus be described as
follows. If a ranking � in R�X � exhibits a ``preference for opportunities'' in
the sense of conditions M and CC then there exists a set of viewpoints such
that, for all B � A, A � B if and only if from some viewpoint A is strictly
better than B. In particular, by Theorem 3.1 one obtains that x is essential at
A i� x is uniquely best in A [ fxg from some viewpoint Pi.

It can easily be checked that the ``state space'' (i.e. the family A in
Theorem 3.1, or equivalently, a representing family fP1; . . . ; Png) is not
uniquely determined by �. However, as already observed in [5], there are
state spaces which deserve special interest. Consider the set
ff �A� : A 2 P 0�X �g where f : P 0�X � ! P 0�X � is de®ned as in (3.2) above. A
subset C of this set is a chain if and only if C is completely ordered by set
inclusion. A chain C is maximal if and only if C is not a proper subset of any
other chain. Denote by Cmax the set of maximal chains in ff �A� : A 2 P 0�X �g.
Obviously, every f �A� is contained in some maximal chain. Hence, the rep-
resentation in Theorem 3.1 may be written as,
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��
[

C2Cmax

[
f �A�2C

�f �A�

24 35 : �3:4�

We will refer to this representation of � as the maximal chain representation.
Observe that since C is a chain, each of the relations

Sf�f �A�: f �A� 2 Cg in
(3.4) is an IU-preference. Hence, one may think of each maximal chain as
corresponding to one single state. In particular, if � itself is already an IU-
preference then the maximal chain representation of� involves only one state.

Using the duality between a CQSO �2 RCC�X � and the corresponding
strict CQSO �2 PCC�X �, one may restate Theorem 3.1 in the following way.
For each A 2 P 0�X �, let �A denote the weak dichotomous preference cor-
responding to the ordering �A de®ned in (3.1). Furthermore, denote by
R�CC�X � the set of all weak dichotomous preferences, i.e.

R�CC�X � :� f�A: A 2 P 0�X �g :

Theorem 3.10 The set R�CC�X � is a (``dual'') base of RCC�X � in the sense that
each element of RCC�X � is the intersection of elements of R�CC�X �. That is, for
all �2 RCC�X �,
��

\
A2A
�A for some family A � P 0�X � :

Clearly, as in the proof of Theorem 3.1, in order to verify Theorem 3.10 one
may use the family A � ff �A� : A 2 P 0�X �g. By Theorems 3.1 and 3.10, it is
just a matter of convenience whether one represents a CQSO as the inter-
section of a set of weak IU -preferences, or its strict part by the union of the
corresponding strict orderings. In particular, we will also refer to a set
fR1; . . . ;Rng of weak orderings on X as a representing family for �2 RCC�X �
whenever the set fP1; . . . ; Png of the corresponding strict orderings is a rep-
resenting family for the corresponding strict ordering �2 PCC�X � in the
sense de®ned previously.

4. Rigid preferences over alternatives

Let �2 RCC�X �, and let R� be the induced partial order on X de®ned by
(2.1). As we have argued, R� may be interpreted as describing a decision
maker's context independent preference jugdements involved in the ranking
of opportunity sets. The following fact is easily veri®ed.

Fact 4.1 Let �2 RCC�X � and let fR1; . . . ;Rng be a representing family of �
according to Theorem 3.10. Then, for all x; y 2 X ,

xR�y , for all i 2 f1; . . . ; ng; xRiy :

By Fact 4.1, a weak preference for x over y is context-independent if and only
if it is respected by all viewpoints, or in other words, if and only if it is
respected in every possible ``preference world.'' In accordance with termi-
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nology in the theory of possible worlds, one might thus call R� also the
decision maker's rigid preferences among the elements of X .

Also, consider the case where there is an independently given partial
order R on X representing the decision maker's (partial) preference judge-
ments on the set X . Assume that the ordering � of sets respects R in the sense
that xRy ) xR�y. Then by Fact 4.1, R is respected by all viewpoints,
i.e. xRy ) xRiy for all i 2 f1; . . . ; ng. Obviously, analoguous statements are
true for the symmetric part I� of R�.

A natural question to ask in this context is therefore whether the same
applies also to the asymmetric part P� of R� which is de®ned by

xP�y :, fxg � fx; yg and fx; yg � fyg� � ;
for all x; y 2 X . Perhaps surprisingly, the answer is no. To see this, consider
the following example.

Example 4.1 Let X � fx; y; zg and de®ne an element �2 RCC�X � as follows.
For all �A;B� 2 R�X �,

A � B :, �A � B or �A 6� fyg and A 6� fzg�� :
It can be veri®ed that, for instance, fR1;R2g with

xI1yP1z and xI2zP2y

is a representing family of weak orders for �. Note that for the ordering �
de®ned above one has xP�y. However, the weak order R1 does not respect this
strict preference judgement. Indeed, in this example there cannot exist a
representing family fR1; . . . ;Rng such that each Ri respects the strict prefer-
ence for x over y in the sense that for all i, xPiy. To see this, assume that for
each i, xPiy. First, observe that since fy; zg � fzg there must exist j 2f1; . . . ; ng
such that yPjz. Hence, by transitivity one could conclude xPjz and xPjy which
would imply fx; y; zg � fy; zg. However, this is false by assumption.

By this example, the induced strict preference relation P� cannot always
be interpreted as a rigid strict preference. In the following, we will charac-
terize the class of orderings in RCC�X � for which an interpretation of P� as
the rigid strict preference judgements is possible. The characterization is
based on the following condition of strict monotonicity. Let Q be a binary
relation on X . Say that � is strictly monotone with respect to Q if and only if
� satis®es the following condition.
SM(Q) (Strict Monotonicity) For all A 2 P 0�X �, and all x; y 2 X with xQy,

A [ fyg � A) A [ fyg [ fxg � A [ fyg :
Intuitively, this condition may be paraphrased as follows. Suppose that xQy,
i.e. suppose that x is ``Q-preferred'' to y. Condition SM(Q) states that, if
adding y is of value, then adding x, which is Q-preferred to y, must be of even
greater value. The following theorem shows that SM(P�) is the necessary and
su�cient condition for P� being interpretable as the decision maker's rigid
strict preference judgements. In the theorem, it is convenient to work with
the asymmetric part � of an ordering �2 RCC�X �.

50 K. Nehring, C. Puppe



Theorem 4.1 Let �2 PCC�X �. There exists a representing family fP1; . . . ; Png
such that

xP�y , for all i 2 f1; . . . ; ng; xPiy

if and only if � is strictly monotone with respect to P�, i.e. if and only if (the
complement � of ) � satis®es condition SM�P��.

Consider now the case where in addition to the ranking � in R�X � there is
an independently given partial preference relation P on X which is asym-
metric and transitive. Furthermore, suppose that � respects P in the sense
that for all x; y 2 X ,

xPy ) xP�y : �4:1�
The following result, which is proved along the same lines as Theorem 4.1,
gives the necessary and su�cient condition under which P can be interpreted
as the decision maker's rigid strict preferences.

Corollary 4.1 Let �2 RCC�X �, and let P be a strict partial order on X . There
exists a representing family fR1; . . . ;Rng such that for all i 2 f1; . . . ; ng,
xPy ) xPiy if and only if � satis®es (4.1) and condition SM (P ), i.e. strict
monotonicity with respect to P .

5. Closedness under compromise

Any family fR1; . . . ;Rng of preference orderings on X can be represented by a
family U of utility functions on X in the sense that each Ri is represented by
some u 2 U, i.e. for all x; y 2 X , xRiy , u�x� � u�y�, and conversely, that each
u 2 U represents some Ri 2 fR1; . . . ;Rng. Say that a family fR1; . . . ;Rng is
closed under compromise if and only if there exists a family U of representing
utility functions that is convex, i.e. for all k 2 �0; 1�, u; v 2 U implies
ku� �1ÿ k�v 2 U. A property such as convexity seems to be suitable to
distinguish the interpretation of ``possible'' preference as reasonable, or le-
gitimate preference from the ¯exibility interpretation of ``possible'' preference
as probable preference. Indeed, there seems to be good reason to assume that
a convex combination of legitimate (or reasonable) preferences should itself
be legitimate (reasonable). In contrast, this does not seem to apply to the case
of probable future preferences. For instance, a decision maker may be un-
certain about her/his preferences between x and y while knowing for sure that
(s)he will never be indi�erent. On the other hand, if both strict preferences,
xPy and yPx, are legitimate one would feel that xIy must be legitimate, too.

Convexity of sets of preferences has been introduced in Nehring [7] as
``closedness under compromise'' to clarify what it means to rationalize a
choice function in terms of a set of preferences. While it was shown there that
convexity can be required without loss of generality, it adds a surprising
amount of structure in the present context. For instance, it will be shown in
the next section that it implies rigidity of strict preference, i.e. it implies
condition SM(P�). Moreover, it implies the following property.
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IIE (Irrelevance of Inessential Elements) For all A 2 P 0�X � and all x; y 2 X
such that not xI�y,

�A [ fxg [ fyg � A [ fxg and A [ fxg [ fyg � A [ fyg� ) A [ fx; yg � A :

The intuition behind IIE is as follows. Suppose that in a set containing x and
y the deletion of either x and y does not reduce the entailed opportunity
value. Then the joint deletion of x and y does not reduce opportunity value
either. In this sense, inessential elements are irrelevant for the ordering �.
This seems to be plausible enough except in the case where x and y are
indi�erent from every relevant viewpoint. Indeed, suppose that x and y are
indi�erent in any possible ``preference world,'' i.e. suppose that xI�y. Then
the set A [ fxg [ fyg is indi�erent to both A [ fxg and A [ fyg. However, if
from some viewpoint all elements of A are inferior to x and y, one would
obtain A [ fx; yg � A, in contradiction to the conclusion of IIE. Hence, the
clause excluding rigid indi�erence between x and y in IIE.8

Theorem 5.1 Let �2 RCC�X �. There exists a representing family for � that is
closed under compromise if and only if � satis®es IIE.

As an illustration of Theorem 5.1, consider the CQSO � de®ned in Example
4.1. Obviously, � does not satisfy IIE. Indeed, by de®nition one has
fx; y; zg � fx; zg and fx; y; zg � fy; zg, but fx; y; zg � fzg although x and y are
not rigidly indi�erent. Accordingly, there cannot exist a representing family
that is closed under compromise. This can be veri®ed as follows. Let
fR1; . . . ;Rng be any representing family for �. Since fx; y; zg � fxg and
fy; zg � fyg, there must exist Ri such that xRizPiy. Similarly, since
fx; y; zg � fxg and fy; zg � fzg, there must also exist Rj such that xRjyPjz.
Closedness under compromise would imply the existence of Rl such that xPly
and xPlz. However, this is not possible since by de®nition, fx; y; zg � fy; zg.

6. On the structure of IIE orderings

In the ``possible preference worlds'' interpretation, ex-post indi�erence is
arguably pointless, or irrelevant, at least unless alternatives are ex-ante
(i.e. rigidly) indi�erent.9 Consequently, it seems natural to require a repre-
senting family of a CQSO to e�ectively consist of linear orderings. Say that a

8 One way to think about the clause is as follows. For x 2 X , denote by �x� the
equivalence class of x with respect to the equivalence relation I�. Then IIE is
equivalent to the following condition. For all A and all x; y, A [ f�x�g
[f�y�g � A [ f�x�g and A [ f�x�g [ f�y�g � A [ f�y�g implies A [ f�x�; �y�g � A. Hence,
IIE with clause on X is equivalent to IIE, with or without clause, on the quotient
space. A condition equivalent to IIE without clause has been introduced in [12] where
the analysis is implicitly restricted to the quotient space.
9 For an analysis of the role of indi�erence in the context of freedom and ¯exibility
supporting this view, see [12, Sect. 6].
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representing family fR1; . . . ;Rng of a CQSO is e�ectively linear if and only if
for all x; y 2 X ,

xIiy for some i 2 f1; . . . ; ng ) xI�y :

Hence, a representing family is e�ectively linear if and only if any indi�er-
ence is rigid. As it turns out, the requirement that any indi�erence be rigid is
equivalent to the requirement of closedness under compromise, and hence to
IIE.

Theorem 6.1 Let �2 RCC�X �. There exists a representing family for � that is
e�ectively linear if and only if � satis®es IIE.

Note that Theorems 6.1 and 4.1 entail that for CQSOs, IIE implies
SM(P�).10 The converse is, however, not true as the following example
shows.

Example 6.1 Let X � fx; y; zg and de®ne a CQSO �2 RCC�X � as follows. For
all �A;B� 2 R�X �,

A � B :, �A � B or #A � 2� :
Note that for no x; y 2 X , xP�y, hence � trivially satis®es SM(P�). Also
observe that xI�y , x � y. It can be veri®ed that, for instance, the set
fR1;R2;R3g with

xI1yP1z; xI2zP2y and yI3zP3x

is a representing family of weak orders for �. Obviously, fR1;R2;R3g is not
(e�ectively) linear. Indeed, there cannot exist a representation with linear
orderings since in that case fx; y; zg would have to be strictly preferred to one
of the sets fx; yg, fx; zg, or fy; zg. However, by the de®nition of � this is not
the case.

It is not entirely clear how strong an assumption IIE really is. While the
linearity characterization of Theorem 6.1 suggests the generic applicability of
IIE in some sense, the following two examples show that IIE may be rich in
implications.

Example 6.2Denote by R the set of real numbers. Let X � R2 and let � be an
ordering in R�R2� such that � satis®es M and CC. Furthermore, suppose it is
known that for all a; b; x 2 R2,

fa; bg � fa; b; xg , x 2 cofa; bg ;
where coA denotes the convex hull of A. Then IIE implies the following
property. For all A 2 P 0�R2�,

x 2 coA) A � A [ fxg :
In order to verify this claim, suppose that x 2 coA. There are two possible
cases.

10 This can, of course, also be shown directly, using M and CC.

Evaluating opportunities 53



Case 1. There exist two points of A, say a1 and a2, such that x 2 cofa1; a2g.
Then, by assumption fa1; a2g � fa1; a2; xg, hence by application of CC,
A � A [ fxg.
Case 2. There do not exist two points as in Case 1. It is easily veri®ed that in
this case there must exist three points of A, say a1; a2 and a3, such that
x 2 cofa1; a2; a3g. Consider the straight line through a1 and x, and denote by
y the intersection of this line with the line segment a2a3 as shown in Fig. 1. By
assumption, fa1; yg � fa1; x; yg and fa2; a3g � fa2; a3; yg. This implies by
CC,

fa1; a2; a3; yg � fa1; a2; a3; x; yg and fa1; a2; a3; xg � fa1; a2; a3; x; yg ;
respectively. From this, one obtains by IIE, fa1; a2; a3g � fa1; a2; a3; x; yg,
which ®nally implies A � A [ fxg using M and CC.

Example 6.3 As in the previous example, let X � R2 and let � be an ordering
in R�R2� satisfying M and CC. Suppose it is known that

A � B, A � coB �6:1�
for all A;B 2 P 0�R2� such that B � A and such that A has at most 4 elements.
Then, IIE implies that (6.1) holds for all ®nite sets A;B 2 P 0�R2� with B � A.
In order to verify this, let B � A. First, it is shown that A � coB implies
B � A. Let A � fx1; . . . ; xng [ B, and consider for every i 2 f1; . . . ; ng the set
B [ fxig. By the argument given in the previous example, one has
B � B [ fxig for every i 2 f1; . . . ; ng. Using M and CC, this implies by in-
duction B � A.

Next, let x 2 AncoB. By the separating hyperplane theorem, there exists a
straight line l1 separating the point x and the set coB. Now one can construct
two further straight lines l2 and l3 as shown in Fig. 2 such that the set coB is
contained in the triangle spanned by the intersection points t1; t2 and t3 of
these straight lines.

By the ®rst part, ft1; t2; t3g � ft1; t2; t3g [ B. By assumption, fx; t1; t2; t3g �
ft1; t2; t3g, hence using transitivity and M,

fx; t1; t2; t3g [ B � ft1; t2; t3g [ B :

This ®nally implies by CC, fxg [ B � B, and therefore A � B.

Fig. 1
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7. Multiple preferences and choice functions

In this section, Theorem 6.1 is applied in order to uncover a structural
isomorphism between the subclass of QSOs satisfying IIE and choice func-
tions. As in Puppe [12], de®ne for each set A 2 P 0�X � its subset of essential
elements E�A� � A by

E�A� :� fx 2 A : A � Anfxgg : �7:1�
For notational convenience, in (7.1) we have set A � ; for all A 2 P 0�X �.
Hence, in our terminology, x 2 E�A� if and only if x is essential at Anfxg.
Fact 7.1 Let � be an ordering in R�X � satisfying conditions M and IIE such
that for all x; y 2 X , xI�y ) x � y. Then,

(i) for all �A;B� 2 R�X �, A � B, �AnB� \ E�A� 6� ;,
(ii) for all A 2 P 0�X �, E�A� 6� ;.
Consider now an independently given mapping

G : P 0�X � ! P 0�X � ;
such that for all A 2 P 0�X �, G�A� � A. The interpretation is that the corre-
spondence G associates to each A 2 P 0�X � the subset of ``potentially valu-
able'' alternatives in A. Consider the following (novel) condition.
SD(G) (Strict G-Dominance) For all �A;B� 2 R�X �,

A � B, �AnB� \ G�A� 6� ; :
Hence, by SD, the set A is strictly preferred to B � A if and only if A contains
some potentially valuable alternative that is not available in B. Condition SD
may be viewed as generalizing, at least prima facie, the account of preference

Fig. 2
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for opportunities o�ered in Section 3. Let fP1; . . . ; Png be a set of linear
orderings, and denote, for each A 2 P 0�X �, by maxPi A the (singleton-)set of
maximal elements in A with respect to Pi. If one de®nes for all A 2 P 0�X �,

G�A� �
[

i2f1;...;ng
max

Pi

A ;

condition SD(G) coincides with (3.3). Other interpretations of G and SD(G)
include the following. G�A� may describe a set of acceptable alternatives
based on the partial elicitation of the decision maker's preferences, and
SD(G) an assessment of ¯exibility value based on the expectation of further
elicitation in the second stage of choice. Alternatively, G�A� may represent
the set of alternatives that are ``normatively acceptable,'' or ``reasonably
eligible,'' and SD(G) a condition re¯ecting an ``intrinsic value of freedom of
choice.'' Interestingly enough, any ordering � derived from some G via SD
must satisfy IIE. In particular, SD(G) yields IIE without any assumptions on
the choice function.

Fact 7.2 Let � be a re¯exive and complete binary relation in R�X �, and let
G : P 0�X � ! P 0�X � be given such that the asymmetric part � of � satis®es
condition SD(G). Then,

(i) for all A 2 P 0�X �, G�A� � E�A�,
(ii) � is transitive in R�X �,
(iii) for all x; y 2 X , xI�y , x � y,
(iv) � satis®es condition M,
(v) � satis®es condition IIE.

By Fact 7.2(i), condition SD identi®es the sets of essential elements with the
sets of ``potentially valuable'' elements. Conversely, by Fact 7.1 any ordering
� satisfying conditions M and IIE, satis®es condition SD with respect to
G � E provided that any I�-indi�erence is trivial.

Condition SD indeed establishes a structural isomorphism between the
subclass of QSOs satisfying IIE and choice functions. The following result
describes some of the connections between properties of the ranking � and
well-known consistency properties of the ``choice function'' G : P 0�X � !
P 0�X � (see e.g. Sen [13], Aizerman and Malishevski [1], Moulin [6]).

Theorem 7.1 Let � be a complete binary relation in R�X � such that its
asymmetric part � satis®es condition SD with respect to G : P 0�X � ! P 0�X �.
Then � satis®es condition CC if and only if G satis®es the following condition.
For all A;B 2 P 0�X � with B � A,

�a� B \ G�A� � G�B� :
Furthermore, if � is negatively transitive then G satis®es the following so-called
``Aizerman'' condition. For all A;B 2 P 0�X � with B � A,

�Aiz� G�A� � B) G�B� � G�A� :
Conversely, if G satis®es (a) and (Aiz) then � is negatively transitive.
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Thus, the key consistency conditions de®ning a CQSO correspond to the
basic rationality conditions on choice functions, (a) and (Aiz). This nicely
con®rms the claimed generality of the CQSO approach (see the concluding
section for further discussion). Notably absent is ``expansion consistency''
(Sen's c), which would translate into the following condition on CQSOs. If
for all x 2 A, fy; xg � fxg, then fyg [ A � A. However, the status of this
condition as a rationality requirement is less clear. Indeed, the appeal of
expansion consistency has already been questioned in Aizerman and Mali-
shevski [1] and Nehring [7].

Combining Theorems 7.1 and 6.1 one obtains the following result which
has ®rst been proved by Aizerman and Malishevski [1] (see also [6]).

Corollary 7.1 (Aizerman and Malishevski) Let G : P 0�X � ! P 0�X � be a map-
ping with G�A� � A for all A 2 P 0�X �. Then G satis®es (a) and (Aiz) if and only
if there exists a set fP1; . . . ; Png of linear orderings on X such that for all
A 2 P 0�X �,

G�A� �
[

i2f1;...;ng
max

Pi

A :

Note that, conversely, Corollary 7.1 could be used to deduce Theorem 6.1.
Indeed, suppose without loss of generality that for all x; y 2 X , xI�y , x � y,
and let �2 PCC�X � satisfy IIE. By Fact 7.1, � satisifes SD with respect to the
correspondence G � E where E : P 0�X � ! P 0�X � is de®ned as in (7.1). By
Theorem 7.1, E satis®es (a) and (Aiz), hence by Corollary 7.1, E can be
``rationalized'' by a set of linear orderings fP1; . . . ; Png. It is then easily shown
that this set fP1; . . . ; Png constitutes a representing family for the ordering �.
Note, however, that our proof in the appendix entails a somewhat stronger
result than Theorem 6.1, in that it shows that given IIE the maximal chain
representation of a CQSO is e�ectively linear; this would also seem to lend
support to the genericity interpretation of the result.

8. Conclusion: On the generality of CQSOs

In this paper, we have developed a theory of ``preference for opportunities''
based on two simple axioms. Condition M seems to be uncontroversial,
hence the crucial condition is CC. Can CC aspire to the status of a general
axiom of ``consistent'' preference for opportunities? Quite possibly, as we
shall argue in concluding this paper based on the discussion of an apparent
counterexample, provided that the ``alternatives'' are appropriately speci®ed
as the carriers of all value. Consider an agent whose choices between be-
having ``commonly sel®shly'' (x), ``cheaply'' (y) and ``magnanimously'' (z) are
described as follows.

C�fx; yg� � fxg;C�fx; zg� � fxg;C�fy; zg� � fzg and C�fx; y; zg� � fzg :
The underlying story might be that while the agent is naturally inclined to
behave commonly sel®shly, she is roused to magnanimity in the presence of
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an opportunity for cheap behaviour. If one distinguishes magnanimity when
cheapness is feasible (z3y) from magnanimity when cheapness is not feasible
(z 63y), these choices can be rationalized by the preference ordering z3yPxPz 63yPy
on the set X̂ :� fx; y; z3y ; z 63yg. Ranking sets by their chosen element yields the
following ordering � on P 0�X � with X � fx; y; zg,
fx; y; zg � fy; zg � fx; zg � fx; yg � fxg � fzg � fyg :

Let �r denote the restriction of � to R�X �. Obviously, �r is transitive in
R�X � and satis®es M. Choice is valued here ± speci®cally the possibility of
being magnanimous in the face of the opportunity of being cheap ± in the
sense that fy; zg �r fyg as well as fy; zg �r fzg, and fx; y; zg �r fx; yg as well
as fx; y; zg �r fx; zg. On the other hand, CC is violated, since fxg �r fx; zg
while fx; y; zg �r fx; yg. Clearly, if one redescribes sets as subsets of the re-
®ned universe X̂ , CC (appropriately applied) is satis®ed again.

The above example shows how particular instances of a context-depen-
dence of the value of elements can be accommodated by including the rele-
vant features of the ``context'' in the speci®cation of an element. Sometimes it
is asserted that the process of choice has intrinsic value itself. Jones and
Sugden, for instance, substantiate that intuition by developing an interesting
argument for the value of ``signi®cant choice'' which occurs when a person
``while choosing reasonably, acts contrary to a preference that he might
reasonably have had'' ([4, p.60]). Notions of the intrinsic value of signi®cant
choice and the ``process of choice'' more generally may11 thus lead to per-
vasive context-dependence. While this would not invalidate M and CC, it
would rob these conditions of their bite, at least without additional structure
on the nature of the context-dependence.

Appendix: Proofs

Proof of Fact 2.1 Suppose that xR�y, i.e. fxg � fx; yg. By CC this implies
B [ fxg � B [ fx; yg. Furthermore, M implies B [ fx; yg � B [ fyg. There-
fore, B [ fyg � C implies B [ fx; yg � C, and hence B [ fxg � C. Con-
versely, (2.2) implies xR�y by letting B � fxg and C � fx; yg.
Proof of Theorem 2.1 Clearly, if � is an IU -preference the induced partial
order R� is complete. Conversely, let R� be complete on X . In order to show
�� IU�R�� we have to verify that for all �A;B� 2 R�X �,

A � B, for all b 2 B there exists a 2 A such that aR�b : �A:1�
If B � A, (A.1) is trivially satis®ed. Hence, let A � B, and let a� be a maximal
element in A � fx1; . . . ; xmg with respect to R�, i.e. fa�g � fa�; xig for all
i � 1; . . . ;m. First, suppose that A � B. By CC, fa�; xig � fa�; xi; xjg for all
i; j, hence by transitivity fa�g � fa�; xi; xjg for all i; j. Thus, by induction one

11May, since we do not know of any worked out theory articulating these intuitions.
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obtains fa�g � A, and hence by transitivity, fa�g � B. This implies, by
condition M and transitivity, a�R�y for all y 2 B. Next, suppose that the
right-hand side of (A.1) is satis®ed. Then, a�R�y for all y 2 B, hence by
induction and CC, fa�g � B. This implies A � B by M and transitivity.

Proof of Fact 3.2 First we show that for any �2 PCC�X �nf;g there exists
A 2 P 0�X �, A 6� X , such that �A��. This can be veri®ed as follows. Given
�2 PCC�X �, let f : P 0�X � ! P 0�X � be the mapping de®ned in (3.2). Observe
that by M and CC, B � A implies f �B� � f �A� (cf. [5, Lemma 2(b)]). Also,
one easily shows that for all A 2 P 0�X �, f �f �A�� � f �A� (cf. [5, Lemma 2(a)]).
In particular, the sets of the form f �A�, A 2 P 0�X �, are precisely the ®xed
points of the mapping f . Let D � C be such that C �f �A� D, i.e. C 6� f �A� and
D � f �A�. In particular, f �D� � f �A�. We will show that C � D. Assume to
the contrary that D � C. Then, by the de®nition of f , C � f �D�, hence
C � f �A�. However, this is false by assumption, and therefore C � D. This
shows that for each A 2 P 0�X �, �f �A���. Finally, suppose that �6� ;, hence
for some �C;D� 2 R�X �, C � D. Then, C 6� f �D�, hence f �D� 6� X . This
proves that if an element of PCC�X �nf;g is minimal it is contained in
P�CC�X �nf;g.

It remains to be shown that indeed every element of P�CC�X �nf;g is
minimal. Hence, let A;B 2 P 0�X � be such that A 6� X and �A��B. By de®-
nition of �A, one has for all x 62 A, A [ fxg �A A. Hence, by assumption
A [ fxg �B A, which by de®nition of �B is only possible when A � B. Con-
sequently, �A��B implies A � B which immediately implies minimality of
each element in P�CC�X �nf;g.
Proof of Theorem 3.1 Consider the family A � ff �A� : A 2 P 0�X �g. By the
proof of Fact 3.2, �f �A��� for all A 2 P 0�X �. Hence, it su�ces to show that
for all �C;D� 2 R�X �, C � D implies C �f �A� D for some A 2 P 0�X �. How-
ever, by the de®nition of f : P 0�X � ! P 0�X �, C � D implies C 6� f �D�. Also,
one has D � f �D�. Hence, by de®nition of �f �D�, C �f �D� D.

Proof of Theorem 4.1 Necessity of SM(P�) can easily be checked along the
lines of Example 4.1. Su�ciency of SM(P�) is veri®ed by considering the
maximal chain representation (3.4). It is shown that for each maximal chain
C the corresponding preference ordering PC satis®es xP�y ) xPCy, provided
that � satis®es condition SM(P�). Thus, let C � fH1; . . . ;Hmg be a maximal
chain of ®xed points of the mapping f de®ned in (3.2) such that

H1 � H2 � . . . � Hm � X :

Let PC denote the preference ordering on X corresponding to that maximal
chain. Obviously, for all z;w 2 X ,

zPCw, for some j 2 f1; . . . ;mg; z 62 Hj and w 2 Hj : �A:2�
Now let x; y 2 X be given such that xP�y, and let j0 be the minimal index such
that x 2 Hj0 . First, we show that j0 > 1. Indeed, assume to the contrary that
x 2 H1. In this case, H1 � fxg and fxg � fx; yg, hence using the fact that
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f �Hj� � Hj one would obtain y 2 H1. This in turn implies f �fyg� � H1.
However, x 62 f �fyg�, hence f �fyg� is a proper subset of H1 which contradicts
maximality of the chain C. This proves j0 > 1.

Next, we show that y 2 Hj0ÿ1. Again, assume to the contrary that
y 62 Hj0ÿ1. Then, Hj0ÿ1 [ fyg � Hj0ÿ1. Let H 0 :� f �Hj0ÿ1 [ fyg�. Clearly, H 0 is
a proper superset of Hj0ÿ1. Also observe that Hj0 � fxg � fx; yg implies
y 2 Hj0 , and therefore, H 0 � Hj0 . We now show that x 62 H 0. Indeed, by
condition SM(P�), Hj0ÿ1 [ fyg � Hj0ÿ1 implies Hj0ÿ1 [ fyg [ fxg � Hj0ÿ1
[fyg, hence x 62 H 0. But this implies that H 0 is a proper subset of Hj0 which
again contradicts maximality of the chain C. Therefore, one must have
y 2 Hj0ÿ1. From this one ®nally obtains xPCy using (A.2).

Hence, xP�x) xPiy for all i if fP1; . . . ; Png is the representing family
corresponding to the maximal chain representation of �. Conversely, it is
obvious that �xPiy for all i 2 f1; . . . ; ng� ) xP�y.

Proof of Theorem 5.1 (Necessity of IIE) In order to verify necessity of IIE,
suppose that A [ fx; yg � A [ fxg, A [ fx; yg � A [ fyg and not xI�y. Let
R � fR1; . . . ;Rng be a representing family for � that is closed under com-
promise. Assume, contrary to what IIE claims, that A [ fx; yg � A. This
implies that for some j, A [ fx; yg �j A where �j� IU�Rj�. Without loss of
generality, suppose that xRjy. Given this, one can conclude that xPja for all
a 2 A. Since by assumption, A [ fx; yg � A [ fyg one must have zRjx for
some z 2 A [ fyg, hence yRjx and therefore xIjy. Since not xI�y there must
exist k 6� j such that yPkx, or there exists l 6� j such that xPly. In the ®rst case,
consider the convex-combination kuk � �1ÿ k�uj, where uk; uj represent
Rk;Rj, respectivley, and let Rk denote the corresponding preference ordering
in R. For su�ciently small (but positive) k one obtains yPkx and yPka for all
a 2 A. However, this contradicts the assumption that A [ fx; yg � A [ fxg. In
the second case, a symmetric argument can be applied in order to derive a
contradiction to the assumption that A [ fx; yg � A [ fyg. Hence, in both
cases one can conclude A [ fx; yg � A as required by IIE. The su�ciency part
of Theorem 5.1 is conveniently based upon Theorem 6.1. Hence, we prove
that result ®rst.

Proof of Theorem 6.1 Necessity of IIE is easily veri®ed. The proof of the
su�ciency part consists in showing that, given condition IIE, the repre-
senting family corresponding to the maximal chain representation of � is
e�ectively linear. Let C � fH1; . . . ;Hmg be a maximal chain of pairwise
di�erent ®xed points of the mapping f de®ned in (3.2) such that Hm � X and
Hj � Hj�1 for j 2 f1; . . . ;mÿ 1g. From (A.2) it is clear that the representing
family corresponding to the maximal chain representation is e�ectively lin-
ear provided that (i) fv;wg � H1 implies vI�w, and (ii) for all
j 2 f1; . . . ;mÿ 1g, fv;wg � Hj�1nHj implies vI�w. In order to verify (i),
suppose that fv;wg � H1 for v 6� w. By CC, f �fv;wg� � H1. Assume that not
vI�w, i.e. fv;wg � fvg or fv;wg � fwg. Without loss of generality, we may
assume that fv;wg � fvg. However, this would imply that f �fvg� is a proper

60 K. Nehring, C. Puppe



subset of H1 which contradicts maximality of the chain. Hence, one must
have vI�w.

Next, we show (ii). Suppose that fv;wg � Hj�1nHj for v 6� w. In partic-
ular, Hj [ fvg � Hj and Hj [ fwg � Hj. Consider H 0 :� f �Hj [ fvg� and
H 00 :� f �Hj [ fwg�. By condition CC, H 0;H 00 � Hj�1, hence by maximality of
the chain C, H 0 � H 00 � Hj�1. This implies Hj [ fv;wg � Hj [ fvg and
Hj [ fv;wg � Hj [ fwg. Now assume that not vI�w. Then, IIE would imply
Hj [ fv;wg � Hj which contradicts the fact that Hj is a ®xed point of f .
Hence, vI�w.

Proof of Theorem 5.1 (Su�ciency of IIE) Let �2 RCC�X � satisfy IIE, and let
fR1; . . . ;Rng be a representing family for � that is e�ectively linear according
to Theorem 6.1. The following proof is based upon the construction in [7,
Th. 6]. Fix � such that 0 < � < 1=n, and de®ne for each i � 1; ::; n and all
x 2 X , ui�x� :� �#fz2X :zRixg. Obviously, for all i � 1; . . . ; n, ui represents Ri. It
will be shown that the convex hull U of fu1; . . . ; ung constitutes a repre-
senting family for � as well. Let �A;B� 2 R�X �. Obviously, maxx2A u�x� �
maxx2B u�x� for all u 2 U implies A � B. The converse implication is shown
by a contradiction argument. Hence, suppose that A � B, i.e. for all
i � 1; . . . ; n,

max
x2A

ui�x� � max
x2B

ui�x� ; �A:3�

while for some u 2 U and some b 2 B,

u�b� > u�x� for all x 2 A : �A:4�
Let u �Pn

i�1 kiui. For all i � 1; . . . ; n, de®ne k�i :� kiui�b�=�
P

j kjuj�b��. By
(A.4),

1 >
Xn

i�1
k�i

ui�x�
ui�b� for all x 2 A : �A:5�

For all i, let x�i 2 arg maxx2A ui�x�. We now show that, for all i, x�i Pib.
Indeed, by (A.3) one has x�i Rib. On the other hand, x�kIkb for some k would
imply by e�ective linearity, x�i Iib for all i, which is not possible by (A.4).
Consequently, for all i,

ui�x�i �
ui�b� �

1

�
> n : �A:6�

Since, ui�z� is non-negative for all i and all z 2 X , (A.5) and (A.6) together
imply that for all i, k�i < 1=n. However, this contradicts the fact that the k�i
add up to 1.

Proof of Fact 7.1 Given �A;B� 2 R�X �, it is clear that �AnB� \ E�A� 6� ; im-
plies A � B. Conversely, let B � A and suppose that for all x 2 AnB,
A � Anfxg. Then, by succesive application of IIE, A � B. This proves (i).

In order to verify (ii), assume that for some A 2 P 0�X � with #A � 2,
E�A� � ;. Hence, for some v 6� w, fv;wg � A and A � Anfxg for every x 2 A.
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Succesive application of IIE implies A � fvg and A � fwg. Hence by
condition M, fv;wg � fvg and fv;wg � fwg which contradicts the assump-
tions. Thus, E�A� 6� ; for all A 2 P 0�X �.
Proof of Fact 7.2 Parts (i) ± (iv) are easily veri®ed. Hence, it su�ces to show
that � satis®es condition IIE. Clearly, A [ fxg [ fyg � A [ fxg and
A [ fxg [ fyg � A [ fyg imply y 62 G�A [ fxg [ fyg� and x 62 G�A[
fxg [ fyg�, respectively. However, this implies by SD(G), A [ fx; yg � A.

Proof of Theorem 7.1 Given SD(G), the equivalence between CC and (a) is
easily veri®ed. In order to deduce (Aiz) from negative transitivity, observe
that for B � A, G�A� � B implies A � B. Now suppose that x 2 G�B�,
i.e. B � Bnfxg. By negative transitivity, A � Bnfxg, hence by SD,
��AnB� [ fxg� \ G�A� 6� ; :

Given G�A� � B this immediately implies x 2 G�A�. Finally, the last state-
ment in Theorem 7.1 follows from the observation that under SD, (a) and
(Aiz), for all B � A, A � B, G�A� � G�B�.
Proof of Corollary 7.1 Necessity of (a) and (Aiz) is obvious. In order to show
their su�ciency, de®ne a binary relation � in R�X � by conditions M and
SD(G). By Theorem 7.1, � is an element of RCC�X �. By Fact 7.2(v), �
satis®es IIE. Furthermore, by Fact 7.2(iii), any rigid indi�erence is trivial.
Hence, by Theorem 6.1 there exists a representing family fP1; . . . ; Png for �
that consists of linear orderings. It can be veri®ed that fP1; . . . ; Png ratio-
nalizes G in the sense of Corollary 7.1.
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