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Abstract. This paper introduces the ``Extended Pareto'' axiom on Social
Welfare Functions and gives a characterization of the axiom when it is as-
sumed that the Social Welfare Functions that satisfy it in a framework of
preferences over lotteries also satisfy the restrictions (on the domain and
range of preferences) implied by the von-Neumann Morgenstern axioms.
With the addition of 2 other axioms: ``Anonymity'' and a weak version of
Arrow's Independence of Irrelevant Alternatives axiom: ``Weak IIA'' it is
shown that there is a unique Social Welfare Function called ``Relative
Utilitarianism'' that consists of normalising individual utilities between 0 and
1 and adding them.

1. Introduction

Arrow [1], as far back as 1963, considered the possibility of a resolution of
the social choice paradox by the use of a ``broader concept of rationality'',
meaning thereby the use of the von-Neumann-Morgenstern (vN-M) axioms
on preferences. In this paper I provide an axiomatization of a Social Welfare
Function, in the sense of Arrow [1] called ``Relative Utilitarianism'', in a
framework of preferences over lotteries and using the vN-M axioms on
preferences. Relative Utilitarianism consists of normalizing individual utili-
ties and then adding them, and was introduced separately in Dhillon and
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Mertens [6]. This approach is not new, indeed impossibility results have
already been proved in the more general context of cardinal preferences of
which vN-M axioms are a special case (see e.g. Kalai and Schmeidler [10],
Sen [15]). Chichilnisky [3], studies the aggregation problem when intensities
are taken into account, and the SWF is assumed to be continuous, anony-
mous and to respect unanimity. The result of this paper is however a positive
one; I show that a SWF exists and is unique under the axioms proposed.

These axioms are: the classicalAnonymity axiom (seeMay [11]), aweakened
version (conceptually) of Arrow's Independence of Irrelevant Alternatives,
Weak IIA, and Extended Pareto. The collective choice problem is usually
viewed as amap from individual preferences to social preferences.Most voting
rules, on the other hand, are in ``steps'', i.e. they ®rst aggregate preferences of
individuals in smaller units and then use these ``group'' choices to derive social
choices. If one were to allow di�erent ``groups'' (or coalitions) in society, what
reasonable restrictions couldwe impose on them andwhat do these restrictions
imply for the social rule? A requirement that arises quite naturally is the analog
of Pareto for groups: this is what the Extended Pareto axiom provides. Weak
IIA may be viewed both as one way to adapt Arrow's Independence axiom to
the context of preferences over lotteries, and as an axiom that leads to a for-
mulation of the problem that is quite similar to the bargaining problemwithout
assigning special importance to a disagreement point.

The main results include a characterization of the Extended Pareto axiom
in the context of vN-M preferences and an axiomatic characterization of
Relative Utilitarianism. The latter result is close to and may be considered a
generalization of May's [11] Theorem (on majority rule) to bigger sets of
alternatives. Indeed, as in May, we eschew the use of interpersonal com-
parisons as primitives. This paper provides an alternative axiomatization of
Relative Utilitarianism avoiding the use of Continuity as in Dhillon and
Mertens [6], an axiom that has no clear ethical interpretation, except on
negative considerations, i.e. ``it is only a test that some solution is unsatis-
factory, but does not tell us which are the speci®c equity considerations that
force the speci®c solution'' (Dhillon and Mertens [6]).

There has been, in recent years, a renewed interest in Harsanyi's [9]
Utilitarianism theorems (see e.g. Weymark [17], Mongin [13] Coulhon and
Mongin [4], Hammond [8]). This paper shares some of the features of the
Harsanyi model. In particular, the use of vN-M utilities for individuals and
society and the use of Pareto rules. While Harsanyi's theorem is a single
pro®le one however, this paper uses the classical de®nition (Arrow) of the
SWF. We generalize Harsanyi's single pro®le result, and the use of additional
axioms ®xes the weights for individuals to be the inverse of the range of the
utility function for an individual. Without such an axiomatisation, note that
Harsanyi's result when generalised to the multi-pro®le case means that in-
dividual weights can depend on the whole pro®le of preferences, and any
interpretation of them as scaling factors would fail.

The rest of the paper is organized as follows: Section 2 introduces no-
tation, Section 3 discusses the axioms used, Section 4 gives the main results
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and then the proofs of these, and also provides examples to show the ne-
cessity of the axioms. Section 5 concludes.

2. Preliminaries

The set of individuals is denoted by N � f1; . . . ; n; . . .g and N also denotes
the number of individuals in the society, with1 > N � 3. I denote the set of
alternatives or pure prospects (and also the cardinality of it) by A. Following
Dhillon and Mertens [6], I consider a framework of preferences over the set
D�A� of all lotteries on A (®nite), and assume that all such preferences have a
von Neumann-Morgenstern utility representation. I denote the set of pref-
erence orderings on D�A� byL. A preference ordering is a re¯exive, complete
and transitive binary relation on D�A� � D�A�. The N-fold cartesian product
ofL is denoted byLN . We use the term preference pro®le for an element of
LN , and denote this by RN . The ith coordinate of RN is denoted by Ri.
The set of strict subsets of N is denoted by I.

De®nition 1. A social welfare function is a map u :LN !L that associates to
any pro®le RN a social preference R 2L.

De®nition 2. A Group Aggregation Rule for a subgroup G is a map
wG : LG !L where G 2 I, where a group's preference is denoted by RG.

De®nition 3. A Group Aggregation Rule satis®es Individualism i� whenever all
individuals in the subgroup are completely indi�erent then so is the subgroup.

For all G, we assume wG satis®es Individualism. In addition, we assume:
wG � Ri whenever G � fig.

For any preference relation R;I stands for the corresponding indi�er-
ence relation and P stands for the corresponding strict preference. S denotes
the space of utility functions on A, and an element of SN is denoted by ~u.

3. The axioms

Axiom 1: Extended Pareto (EP) For any pro®le of preferences RN 2LN and
for any 2 element partition fG1;G2g of N ; 9wG1

;wG2
such that: for any pair of

lotteries p and q

pRGi q i � 1; 2

) pRq

And if further, pPG1
q; then

pPq:

Remark. The consequences of using this axiom with the vN-M axioms imply
that in fact the Group Aggregation Rules also satisfy the Extended Pareto
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axiom and are of the same functional form as the SWF, hence the axiom
seems to be the logical expression of what is meant by aggregating prefer-
ences in a ``consistent'' way. There is an obvious di�culty in checking
whether any given SWF satis®es this condition (given that there may be
many such Group Aggregation Rules): hence in the speci®c framework of
this paper Theorem 1 gives a characterization of the axiom.

The restrictions it imposes on the SWF are a kind of separability in group
preferences and monotonicity (cf. Lemma 1 for the multi-pro®le version of
the axiom) with respect to these preferences.
Finally, in the case of two individuals, the axiom is equivalent to Pareto.

Axiom 2: Anonymity (Anon) Any permutation of the pro®le of preferences
leaves the social preferences unchanged.

This axiom is standard and discussions can be found in the literature (e.g.
May [11], also Sen [15]).

Axiom 3: Weak IIA. Consider any two pro®les RN and RN 0 ; such that they
coincide on lotteries on a subset A0 of A; and in addition that every lottery on
AnA0 is unanimously indi�erent to some lottery on A0; for each of the two
pro®les. Then the induced social preferences coincide on D�A�0:
Remark. This axiom is weaker (conceptually) than Arrow's Independence of
Irrelevant Alternatives. Formally however it is di�cult to compare the two as
one would need a version of IIA suitable to the framework of preferences
over lotteries.

In the framework of this paper, the axiom implies that one can restrict
one's attention to convex sets in utility space, quite similar to the bargaining
problem. The di�erence between the bargaining problem and the social
problem lies only in the additional datum of the disagreement point (cf.
Dhillon and Mertens [6]).

Axiom 4: Neutrality. Any permutation p of A induces a permutation of the
space of preferences: RN 7! RN

p where pRN
p q i� p � pRN q � p: Then

u��RN �p� � �u�RN ��p

4. The results

In this section I present the results of the paper. Proposition 0 is a multi-
pro®le version of Harsanyi's [9] Aggregation Theorem. (see also Weymark
[17]). Proposition 0 modi®es Harsanyi's result to the case of a SWF, and is
presented for the sake of completeness and notation.

Proposition 0 (Harsanyi [9], Proposition 1, Dhillon and Mertens [6]): The
social welfare functions u that satisfy the Pareto axiom are those which can be
represented by a map k from SN to RN such that
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1. kn�~u� > 0; 8n; 8�~u� 2 SN :
2. If 8n 2 N ; un is a representation of Rn; then

P
n2N kn�~u�:un is a represen-

tation of u�RN �
3. � kn�~u� is translation invariant, i.e.,

if vn � un � an; 8n; with an 2 R; then kn�~u� � kn�~v�
� kn�~u� is positively homogeneous of degree zero in uk; 8k 6� n and if un is
not constant, of degree minus one in un; i.e., if vn � bnun; 8n; with
bn > 0 then kn�~v� � bÿ1n kn�~u�

The ®rst result I have is a characterization of EP.

Notation. The dimension d�~u� (or d) is the number of linearly independent
non-constant utility functions in the pro®le.

Theorem 1:

(A) If A � 4 and N � 4; a SWF satis®es EP i� it can be represented by:

U �
X
n2N

u0n�Rn�; whenever d�~u� > 2; �1�

where U is a vN-M utility representation of social preferences, and each u0n is a
(unique, up to the function Fn) representation of individual preferences, such
that

u0n�a� � �h�un��a��=Fn��h�un������ ; �2�
where h�un� � un ÿmina2A un�a�; is a utility function in RA; and Fn : RA ! R�
is positively homogeneous of degree 1 (if un is not constant) and translation
invariant1. If un is constant de®ne Fn�un� � 1:

(B) There exists only one function Fn�un� from the space of bounded utility
functions S to R�� that yields with (1) above, the given SWF for pro®les with
d�~u� > 2 (upto multiplication by a positive constant independent of un or of the
pro®le).

Proposition 1 then shows that with Anonymity the functions kn�un� are the
same functions for all n 2 N :

Proposition 1: If A � 4; and N � 3; d�~u� > 2 the social welfare functions u
that satisfy EP and Anon are those that satisfy (1) of Theorem 1 and in
addition the functions Fn��� are independent of individual n.

Finally I de®ne Relative Utilitarianism, and state the main theorem which
gives necessary and su�cient conditions for it to hold.

De®nition 4: Relative Utilitarianism (RU): Let
p�un� � maxa2A un�a� ÿmina2A un�a�:

1Note that Fn��h�un����� � Fn��un����� by translation invariance.
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U �
X

n:p�un�>0
û�Rn� �3�

where û � h�un�
p�un� represents a social preference over lotteries which is independent

of the utility representations of individual preferences.

Theorem 2: For a ®xed set of alternatives A such that A � 4 and for all N such
that N � 3 and for all pro®les such that d�~u� > 2; a SWF u satis®es EP, Anon,
Weak IIA if and only if it is RU.

Remarks

1. The result may be more meaningfully viewed as a representation result
than a characterisation of Utilitarianism. As this issue has been adequately
addressed in the literature on Harsanyi's Theorems [4] (see, e.g. Weymark
[17]), I will not comment on this here, however, it could be observed vis-a-vis
Sen's [14] objection that the use of vN-M utilities is arbitrary, that any
monotonic transform of individual (vN-M) utilities is compatible with the
same social ordering as long as the same transform2 is used for all individ-
uals. Thus, in this framework, it would seem that utilities have meaning only
as measures of preferences.

2. Observe that we begin with no interpersonal comparibility but end up
with full comparibility. Which are the axioms therefore that give us this
comparibility? All the axioms together imply interpersonal comparibility, but
if any one of the axioms has to be isolated, it must be Anonymity, since it is
this axiom that rules out the use of di�erent scaling for di�erent individuals.

4.1 Proofs

Proofs are presented in this section.

4.1.1 Theorem 1

Notation. A ®xed utility representation, un; is assumed for individual n.
Similarly UG and U are ®xed (upto translation) utility representations of
group (respectively social) preferences. wG (or wG�RG�) represents subgroup
preferences and u (or u�RN �) represents social preferences.

Observe that if wG is taken as the restriction of the SWF to the pro®le on
subgroup G (hence having the same representation) any SWF which has the
above representation satis®es EP. Thus we now prove the converse.

With our assumptions on Group Aggregation Rules, it is possible to
derive a multi-pro®le version of the Extended Pareto axiom, and this is done
in Lemma 1, which derives the equivalence of a group aggregation rule for
subgroup G with pro®le RG with the SWF on those particular pro®les where

2Transforms di�erent across individuals would violate the vN-M postulates for
society.
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NnG individuals are assumed to be completely indi�erent, while individuals
in subgroup G have preferences RG: Let RG; IN=G represent such a pro®le.

Lemma 1. If 9 a SWF, u�RN �; that satis®es EP w.r.t. any functions wG�RG�
then all such functions for any G 2 I must satisfy:

wG�RG� � u�RG;INnG�

Proof. Consider the pro®le on N where all individuals in the subgroup NnG
are completely indi�erent between all alternatives. Then by Individualism
wNnG is total indi�erence. The result follows by applying EP to all pairs of
lotteries. h

Corollary:

If 9 a SWF u�RN � that satis®es EP, then,
1. The functions wG induced by u satisfy EP.
2. u satis®es EP with respect to any such wG and for any partition of N ; in

particular u satis®es Pareto.

Proof 1. Consider a partition of N into two subgroups: G and NnG. By
Lemma 1:

wG � u�RG;INnG�
Now consider a further partition of G into two subgroups G1 and G2. We
need to show that wG satis®es EP w.r.t these two subgroups. Thus, given: for
any p; q 2 D�A�;

pwGi
�RGi�q; i � 1; 2

we can rewrite wG1
(by Lemma 1) as:

u�RG1 ;INnG1� �4�
and wG2

as:

u�RG2 ;INnG2�
Noting then that

u�RG2 ;INnG2� � u�RG2[�NnG�;IG1� � u�RNnG1 ;IG1� �5�
where RNnG � INnG; (4) and (5) imply by EP that:

pu�RG1 ;RNnG1�q
which is equivalent to:

pu�RG1 ;RG2 ;INnG�q
and hence to:

pu�RG;INnG�q
as desired. One can show this for any further ®nite partitions of G1.
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2. This follows from 1. h

Note. Henceforth the Group Aggregation Rules referred to in the rest of the
proof are the ones ``induced'' by a SWF satisfying Extended Pareto as shown
above.

Lemma 2. A SWF (respectively Group Aggregation Rule) satis®es EP for any
partition of N (respectively G), i� it can be represented as:

U �
X

i�1;2;3...

bGi
�~U�UGi �6�

respectively

UG �
X

i�1;2;3...

bGi;G�~U�UGi �7�

where U represents the SWF (unique up to positive monotonic transforma-
tions), UG represents the preferences of the subgroup G;UGi represents the
preferences of the subgroups Gi; i � 1; 2; 3; 4 . . . ; bGi

2 R�� and ~U represents
the ``pro®le'' of subgroup utility functions.

Proof. First it is obvious that if a SWF (respectively Group Aggregation
Rule) can be represented by the above, then it must satisfy EP. We now
prove the converse. Observe that by part (2) of the Corollary to Lemma 1,
EP) Pareto . We also assume that individual and social preferences (and
hence by part (1) of the corollary to Lemma 1 also group preferences)
satisfy the vN-M axioms. Hence, Proposition 0 applies to both the SWF
and to group preferences and both can be represented by a weighted sum of
utilities of individuals in the society/group. It remains to prove that social/
group preferences can be represented as in (6) and (7) respectively, in the
speci®c cases where subgroups are not individuals. The proof of Proposition
0 goes through just replacing individual vN-M utilities by group vN-M
utilities, and pro®les of individual preferences by pro®les of group prefer-
ences. h

Lemma 3 now proves the result for a subgroup of three individuals when
the pro®le of preferences has full dimension. By Lemma 1 this result can be
interpreted as a proof of the theorem for social preferences on pro®les of
dimension three when N ÿ 3 individuals are completely indi�erent.
Notation. The vector k of Proposition 0 is now written as ki�ui;~uÿi�, where
u!ÿi denotes the pro®le without ui.

Lemma 3. Let N � 4;A � 4. For all G 2 I s.t. #G � 3, wG satis®es EP i�
9 FG�n; un� 2 R�� such that wG can be represented by:

UG �
X
n2G

1

FG�n; un� :�un ÿmin
a2A

un�a�� �8�

whenever d�~u� � 3:
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Proof. If each UG is represented as in (8), it is clear that it satis®es EP in
terms of any subgroups. The converse is now proved.
(1) Let the 3 individuals be fi; j; kg, and u; v;w their respective (non-constant)

utility functions.

Claim 1. There exists a function gij�u; v� de®ned for all �u; v� 2 S2 which
satisfy d�u; v� � 2, and for every ordered pair fi; jg; i 6� j such that

(a) gij�u; v� � ki�~u�
kj�~u� ; 8�~u� 2 S3 such that~ui � ui;~uj � uj with 3 individuals in

G s.t. i and j belong to G and d�~u� � 3:

(b1) gij�u; v�gji�v; u� � 1, whenever d�u; v� � 2.
(b2) gij�u; v�gjk�v;w�gki�w; u� � 1 whenever the functions g are well de®ned.

Proof: (a) Since N � 3; 9 G0 � fi; jg and a corresponding wG0 , satisfying
Pareto (Lemma 1). By Lemma 2, it is represented by:

UG0 �
X
n2G0

kn;G0 �~u�un: �9�

where kn;G0 satis®es the properties of Proposition 0. De®ne the function
gij � ki;G0 �u;v�

kj;G0 �v;u�. By the uniqueness of k, this function is well-de®ned whenever
i 6� j and d�u; v� � 2. Now we can prove (a):
Let G � fi; j; kg. By Lemma 1 wG satis®es Extended Pareto. Therefore by
Lemma 2 we have, for G1 � fi; jg;G2 � fkg, and for the partition
p1 � fG1;G2g,

UG � aG1
; G�u; v;w��ki;G1

�u; v�u� kj;G1
�v; u�v� � ak;Gw:

and for the partition ffig; fjg; fkgg:
UG � ki;G�u; v;w�u� kj;G�v; u;w�v� kk;G�w; v; u�w:

..

By the uniqueness of the coe�cients in this full-dimensional case we have:

ki; G0 �u; v�
kj; G0 �v; u� �

ki; G�u; v;w�
kj; G�v; u;w� : �10�

The argument for the subgroup G0 is dropped from now on since gij depends
on this (®xed) subgroup and on a ®xed partition.
(b1) Is obvious by using the de®nition of the function gij.
(b2) If d�~u� � 3 then by part(a) the result follows.
Otherwise 9 ŵ; û; v̂ such that d�u; v; ŵ� � d�v;w; û� � d�u;w; v̂� �d�û; v̂; ŵ� �
d�u; v̂; ŵ� � d�û; v; ŵ� � d�û; v̂;w� � 3 (since A � 4;N � 3; by assumption),
such that, using Claim 1(a), equation (10):

gij�u; v� � gik�u; ŵ�gkj�ŵ; v�
gjk�v;w� � gji�v; û�gik�û;w�
gki�w; u� � gkj�w; v̂�gji�v̂; u� �11�

Substituting for the functions gij; gjk; gki in equation (b2) of Lemma 3, and
using successively the equivalence proved in Claim 1(a) we get:
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gij�u; v�gjk�v;w�gki�w; u� � gik�u; ŵ�gkj�ŵ; v̂�gji�v̂; u� �12�
Since d�u; v̂; ŵ� � 3; (12) above equals 1 (using Claim 1 (a) equation (10)).

Claim 2. Notation. S� represents the set of non-constant utility functions on
A. There exists a function Gij : S�2 ! R�; de®ned 8i; j, such that

(a)

Gij�u; v� � gij�u; v� �13�
whenever d�u; v� � 2 and i 6� j
(b)

Gij�u; v�Gjk�v;w�Gki�w; u� � 1: �14�
always, for any i; j; k 2 N .

Proof. Unless otherwise mentioned all utility functions are non-constant in this
proof. First we construct the function Gij.

De®ne Gij�u; v� � gik�u;w�gkj�w; v�. This function is well-de®ned since
9k 62 fi; jg and w s.t. d�u;w� � d�v;w� � 2, hence it is su�cient to show that
Gij�u; v� is independent of the utility function w and the individual k, i.e.:

gik�u;w�gkj�w; v� � gik�u; ŵ�gkj�ŵ; v� �15�
in case N � 3 and otherwise:

gik�u;w�gkj�w; v� � gil�u; x�glj�x; v� �16�
for any l 62 fi; j; kg and �w; x� 2 S�2, satisfying the dimension conditions.

First observe that it is su�cient to prove (15), since (16) is equivalent by
Claim 1 b(1) to:

gli�x; u�gik�u;w� � glj�x; v�gjk�v;w� �17�
By (15), gli�x; u�gik�u;w� � gli�x; û�gik�û;w� and glj�x; v�gjk�v;w� � glj�x; v̂�
gjk�v̂;w�, for any u; v 2 S*. Choose-û; v̂, s.t. d�x; û;w� � d�x; v̂;w� � 3: The
result follows from Claim 1(a).

Note too that part (a) of the claim is obvious using the de®nition of
Gij�u; v� and Claim 1 (b2).
We now prove (15):
There are 4 cases:

If i 6� j and if d�u; v� � 2:
This is proved already in part (a) �gij�u; v� being independent of k and w).

If i 6� j and d�u; v� 6� 2:
We only have to prove for given u, v, w, that:

gik�u;w�gkj�w; v� � gik�u; ~w�gkj�~w; v�: �18�
for any ~w.
This can be done by proving the equality of each side of (18) to the same
expression. It is su�cient to prove this for one side of (18):
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Choose û; v̂ to satisfy:

d�u; v̂� � d�w; v̂� � d�û; v� � d�û;w� � d�û; v̂� � 2 �19�
(this is possible by the domain assumption). Recall that Claim 1(b) (i.e. (b1)
and (b2)) implies that gij�u; v� � gik�u;w�gkj�w; v�, for any u; v;w, satisfying
the full dimensionality of each pair. We now use this implication:

gik�u;w�gkj�w; v� � gij�u; v̂�gjk�v̂;w�gki�w; û�gij�û; v� �20�
Since d�û; v̂� � 2, we can apply Claim 1 (b) to get (20) equal to:

gij�u; v̂�gji�v̂; û�gij�û; v� �21�
Similarly for the other side of (18) with the dimension conditions de®ned as
in (19) above, with ~w substituted for w.
If i � j and d�u; v� � 2 : We need to prove:

gik�u;w�gki�w; v� � gik�u; ~w�gki�~w; v� �22�
This is equivalent by Claim 1 (b) to proving:

gij�u; v̂�gjk�v̂;w�gkj�w; v̂�gji�v̂; v� � gij�u; v̂�gjk�v̂; ~w�gkj�~w; v̂�gji�v̂; v� �23�
By choosing v̂ so that d�u; v̂� � d�v̂; ~w� � d�w; v̂� � d�v; v̂� � 2, we can use
Claim 1 (b1) and so both sides of (23) are equal to:

gij�u; v̂�gji�v̂; v� �24�
If i � j and d�u; v� 6� 2 :
The previous proof goes through since the linear independence of u and v is
never used.

Proof of (b)
i 6� j 6� k; i 6� k; :
We have the following cases to prove: �a�d�u; v� � d�v;w� � d�u;w� � 2; �b�
only two pairs of utility functions have dimension two, �c� only one of the
pairs has dimension two and �d� none of the pairs has dimension two.
In case �a� holds part (a) showed that Gij�u; v� � gij�u; v� and hence, apply
Claim 1 (b2) to get the result.
Now, assume we are in one of cases �b� to �d�.
If we are in case �b�, assume w.l.o.g. that d�u; v� � d�v;w� � 2. Then (14)
becomes:

gij�u; v�gjk�v;w�gkj�w; v�gji�v; u� � 1 �25�
and this is proved already in Claim 1(b1).
If we are in case �c�, assume w.l.o.g. that d�u; v� � 2: (14) becomes:

gik�u; ŵ�gkj�ŵ; v�gji�v; û�gik�û;w�gkj�w; v̂�gji�v̂; u� � 1 �26�
(choosing û; v̂; ŵ to satisfy,

d�u; ŵ� � d�ŵ; v� � d�v; û� � d�û;w� � d�w; v̂� � d�v̂; u� � 2� �27�
Now by choosing û; v̂; ŵ to satisfy in addition to (27), d�û; v̂� � d�ŵ; û�

� d�v̂; ŵ� � 2; and the successive application of Claim 1(b), we get:
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gik�u; ŵ�gkj�ŵ; v̂�gji�v̂; u� � 1 �28�
And this is proved already in Claim 1(b2).

Finally if we are in case �d�, the proof of the previous case goes through,
since the linear independence of u; v is never used.
Two elements of i; j; k are the same :
Assume w.l.o.g that i � j 6� k :
(14) above becomes:

Gii�u; v�Gik�v;w�Gki�w; u� � 1 �29�
As above we have cases �a� through �d�.

If we are in case �a�:
Proving (29) is equivalent to proving:

gij�u; v̂�gji�v̂; v�gik�v;w�gki�w; u� � 1 �30�
choosing v̂ such that d�u; v̂� � d�v; v̂� � d�w; v̂� � 2:
But (30) is equal by Claim 1(b) to:

gij�u; v̂�gjk�v̂;w�gki�w; u� � 1 �31�
which is proved in Claim 1(b2).

If we are in case �b� and d�v;w� � d�w; u� � 2: This is proved above since
the linear independence of u; v was never used. Next consider the case when
d�u; v� � d�v;w� � 2:
Proving (29) is equivalent to proving:

gij�u; v̂�gji�v̂; v�gik�v;w�gkj�w; v̂�gji�v̂; u� � 1 �32�
choosing v̂ such that d�u; v̂� � d�v; v̂� � d�w; v̂� � 2: Using Claim 1 (b1), (32)
is equal to:

gji�v̂; v�gik�v;w�gkj�w; v̂� � 1 �33�
which, again, is proved in Claim 1 (b2).
Case �c� when d�u; v� � 2: Proving (29) is equivalent to proving:

gik�u; ŵ�gki�ŵ; v�gij�v; v̂�gjk�v̂;w�gkj�w; v̂�gji�v̂; u� � 1 �34�
choosing v̂ and ŵ such that d�u; v̂� � d�v; v̂� � d�w; v̂� � d�u; ŵ� � d�v; ŵ�
� d�ŵ; v̂� � 2: Using Claim 1 (b), (34) is equal to:

gik�u; ŵ�gkj�ŵ; v̂�gji�v̂; u� � 1 �35�
which is proved in Claim 1 (b2).
Case �c� when d�v;w� � 2: Proving (29) is equivalent to proving:

gij�u; v̂�gji�v̂; v�gik�v;w�gkj�w; v̂�gji�v̂; u� � 1 �36�
choosing v̂ such that d�u; v̂� � d�v; v̂� � d�w; v̂�2: Using Claim 1 (b), (36) is
equal to:

gij�u; v̂�gjk�v̂;w�gkj�w; v̂�gji�v̂; u� � 1 �37�
which is proved in Claim 1 (b1).
If i � j � k
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(14) above becomes:

Gii�u; v�Gii�v;w�Gii�w; u� � 1: �38�
As above we have cases �a� through �d�. If we are in case �a�: Proving (38) is
equivalent to proving:

gik�u; ŵ�gki�ŵ; v�gij�v; v̂�gji�v̂;w�gik�w; v�gki�v; u� � 1: �39�
choosing v̂ and ŵ such that d�v; v̂� � d�w; v̂� � d�u; ŵ� � d�v; ŵ� � d�v̂; ŵ�
� d�v̂; u� � 2:

But (39) is equal by Claim 1(b) to:

gik�u; ŵ�gkj�ŵ; v̂�gji�v̂; u� � 1 �40�
which is proved in Claim 1(b2).

If we are in case �b�: Assume w.l.o.g, d�u; v� � d�v;w� � 2: Repeat the
proof of �a�, since d�u;w� � 2 was never used in the proof.

If we are in case �c�, assume d�w; v� � 2; repeat the proof of �a� but using
ŵ instead of v in the product gik�w; v�gki�v; u� in (39).

Finally if we are in case �d�; replace v by û in the product gik�w; v�gki�v; u�
in (39), choosing û to satisfy d�v; û� � d�w; û� � d�u; û� � d�v̂; û� � 2 and
repeat the proof of a.

Claim 3. There exist functions FG�n; u�; de®ned on N � S*, such that

Gij�u; v� � FG�j; v�
FG�i; u� �41�

For all n 2 G; the function FG�n; u� is translation invariant, and positively
homogeneous of degree 1 in u 2 S*.

Proof: Observe that Claim 2�b� yields:
± ®rst : Gii�u; u� � 1 (the case i � j � k and u � v � w.)
± next Gij�u; v�Gji�v; u� � 1 (the case i � k and u � w.)
± Finally: 8u; v 2 S�

Gij�u; v� � Gik�u;w�Gkj�w; v�
Now ®x some non-indi�erent individual k0 and some uk0 2 S�

De®ne:

FG�n; u� � Gkon�uk0 ; u� �42�
Thus, (41) follows. Translation invariance of FG�n; u� follows from the

translation invariance of kn (Claim 1) and from Claim (2) and Proposition 0;
so do the homogeneity properties.

Claim 4. End of the proof of Lemma 3.

Note that, by Claim 2(a) we have

Gij�ui; uj� � gij�ui; uj�
whenever d�ui; uj� � 2 and i 6� j. And by Claim 1(a):
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gij�ui; uj� � ki�ui; uj; uk�
kj�ui; uj; uk�

whenever d�ui; uj; uk� � 3: Thus in the full-dimensional case we must have:

FG�j; uj�:kj�ui; uj; uk� � FG�i; ui�:ki�ui; uj; uk�=8i; j:
± i.e. the product is independent of the individual and is only a function of
the utility pro®le, say U�ui; uj; uk�:We can then normalise to U�ui; uj; uk� � 1
without changing social preferences (dividing the vector k ± and hence U ± by
U). Substituting for kn��un�n2N � in equation (6) of Lemma 2,

U � ui:
1

FG�i; ui� � uj:
1

FG�j; uj� � uk:
1

FG�k; uk� :

Subtracting from each un the value mina2A un�a� leaves social preferences
unchanged. h

The next part of the proof extends the result of Lemma 3 to all sets G, and
pro®les with full dimension.

Notation. The number of individuals in G is referred to as g; and the di-
mension d�~u� is also denoted by d.

Corollary 1 to Lemma 3: The representation in Lemma 3 holds for all sub-
groups G 2 I such that g � 3 and d�~u� � g:

Proof. Since the same proof goes through for any G as long as there are at
least 3 individuals in the subgroup, it su�ces to show that the function
FG�n; u� is independent of the subgroup G.
Thus we need to prove:

FG�n; u� � FG0 �n; u�;
whenever n 2 G and n 2 G0. By de®nition of the function FG�n; u� it is su�-
cient to prove that Gk0;n�uk0 ; u� is independent of any i 62 fk0; ng; since we can
always choose the same k0, for each n.

This is equivalent to proving:

gik�u;w�gkj�w; v� � gil�u; ŵ�glj�ŵ; v�; �43�
whenever there exists an individual l 2 G such that l 62 fi; j; kg: But this is
already proved in Lemma 3 Claim (2).

This gives for each non-indi�erent individual n 2 N , a uniquely (up to the
function F ) de®ned map u0n�Rn� (borrowing notation from Theorem (1))
from his set of possible preferences to utility representations of those, such
that for any fi; j; kg; and whenever d�~u� � 3, subgroup preferences are rep-
resented by:

U � u0i�Ri� � u0j�Rj� � u0k�Rk�:
Note that this implies that FG�n; u� � F �n; u� and moreover by the

translation invariance of kn, we have F �n; u� � Fn�h�u�� (notation from (4)
Theorem 1). These are used interchangeably in the rest of the proof. h
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Corollary 2 to Lemma 3: The representation of Theorem 1 holds for any
subgroup G with g � 2.

Proof

Claim 1 The representation of Lemma 3 holds for any subgroup G with
g � 2; on a pro®le where d � 2

Proof: Take a subgroup of three individuals. Let the subgroup be
G � fi; j; kg: Take a partition of the 3 individuals into G1 and G2 such that
G1 � fi; jg:
By Lemma 2 we have:

UG � aG1
���UG1

� bG2
���UG2

and by Lemma 3 we have:

UG �
X
n2G

u0n�Rn�

By the uniqueness of the coe�cients for i; j we get:

UG1
� aG1

X
n2G1

u0n

which can be normalised to:

UG1
�
X
n2G1

u0n

as desired.

Claim 2 The representation of Theorem 1 holds for all subgroups G with
g � 2 and d � 1; whenever N � 4; A � 4:

Proof. Observe that, by Pareto, the statement is trivially true for any such G
whenever d � 0 or the 2 individuals in G do not have opposite preferences.
Hence it is su�cient to prove the Claim for 2 individuals with opposite
preferences. Let the 2 individuals be i; j: Let u be some ®xed representation of
Ri. Then, by Lemma 2, social preferences are given by Mu; where M 2 R. Let
w; ~w represent the utility functions of 2 distinct individuals k; l such that
d�w; ~w� � 2 and d�u;ÿu;w; ~w� � 3:

Consider the subgroup of four individuals G0 � fi; j; k; lg. Let the group
fk; lg be denoted as G. The preferences of G are given (Claim 1) by

UG � w0�Rk� � ~w0�Rl�:
Let s � ffk; lg; fi; jgg and r � ffk; ig; fl; jgg; represent partitions of the set
G0. We get the following:

UG0 � as�w0�Rk� � ~w0�Rl�� � bs�Mu�
� ar�w0�Rk� � u0�Ri�� � br�~w0�Rl� � �ÿu�0�Ri�� �44�
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since the case G � 2; d�~u� � 2 has been solved already. This implies by the
condition d�u;w;w0� � 3, that

ar � br � as

We obtain then:

bs�Mu� � as�u0�Ri� � �ÿu�0Ri� � as

X
n2G

u0n�Rn�

and normalising to as � 1 gives the same social preferences as before. h

Lemma 4: Let [g,d] represent pro®les of g individuals and dimension d. The
representation of Theorem 1 holds for any [g+2, d+1], d > 2 whenever it holds
for any pro®les [g,d].

Proof. If the pro®le [g+2, d+1] does not exist, the statement is trivially true.
Hence, assume that such a pro®le exists. Consider a subgroup pro®le [g, d].
This is solved by assumption. Add two distinct individuals i; j such that
d�~u; ui� � d�~u; uj� � d � 1, and d�ui; uj� � 1. Denote this subgroup as G. We
can partition G into 2 groups: s � fk; lg and G0 � fG=sg, where s contains at
least one of i; j. By Lemma 2 (since the case G)2 is fully solved by as-
sumption and the case G � 2 is solved by Corollary 2 to Lemma 3):

UG � as�u0k�Rk� � u0l�Rl�� � bs

�X
n2G

u0n�Rn� ÿ u0k�Rk� ÿ u0l�Rl�
�
;

for all possible partitions s, where k; l 2 G, with both as and bs strictly
positive. (Note that by choice of ui; uj; the dimension of the pro®le with
Gÿ 2 individuals is always d.)
± i.e.

UG � �as ÿ bs��u0i�Ri� � u0j�Rj�� � bs

�X
n2G

u0n�Rn�
�

We need to show that for some s,

as ÿ bs � 0

Suppose 8s; �as ÿ bs� 6� 0: Then, we have 8m; p 2 G

u0m�Rm� � u0p�Rp� � UG

as ÿ bs
�
X
n2N

u0n�Rn�: bs

as ÿ bs

Adding the above equations for fm; pg � fi; jg and for fm; pg � fj; kg and
subtracting for fm; pg � fi; kg we get:

u0j�Rj� � dUG � q
X
n2G

�u0n�Rn��

± i.e. each u0n�Rn� is a linear combination of � 2 linearly independent vectors
contradicting d�~u� > 2.
Thus we have,
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UG � bs

X
n2G

u0n�Rn�

for some bs > 0, as desired. h

Lemma 5. The representation of Theorem 1 holds for any subgroup [g)1, d)1]
if it holds for the pro®le [g, d ], and such a pro®le exists.

Proof. Consider a subgroup G0 with gÿ 1 individuals and a pro®le ~u with
dimension d ÿ 1. Add an individual i such that d �~u; ui� � d. Denote this
subgroup as G. Partition G into G0 and fig. Then by Lemma 2 we have:

UG � aG0UG0 � biui

where:

UG �
X
n2G

u0n�Rn�

By the uniqueness of the coe�cient of ui we get:

UG0 � a
X
n2G0

u0n

where a > 0, as desired. h

Finally we prove the result for all pro®les [g, d] with 2 � g � N and
2 � d � m; where m denotes the maximum possible dimension for the
problem. Also in what follows we let g represent the number of individuals in
a subgroup G as before, but G may also be the set N .

Proof of Theorem 1 Part (A)

Theorem 1 Part (A). For all pro®les with N � 4 and A � 4, the theorem holds
for any G � N , for all pro®les with d � 2, and it holds for N for all pro®les
with d � 3.

Proof. In Fig. 1, the vertical axis represents the dimension of a pro®le, d, and
the horizontal axis, the number g � N . The diagonal D�1� represents all
pro®les with g � d. Similarly the diagonal D�2� represents all pro®les with
d � gÿ 1; thus D�x� denotes all pro®les with d � gÿ x, for some
0 � x � gÿ 2. Formally, let m denote the maximum possible dimension for a
problem (determined by the numbers N and A). Denote the set
f�g; gÿ x� j m � gÿ x � 2; g � Ng by D�x�. We prove Lemma 6 by induction
on x. Thus, we have to show that D�x� ! D�x� 1�. Then with the starting
points being all the full-dimensional pro®les, i.e. D�0�, the result holds for all
pro®les as claimed.

Let n0 � 2� x, hence for a given x it is the size of the smallest subgroup
(and has d0 � 2). Given �g0; d0� is solved, where d0 � g0 ÿ x for all
m � d0 � 2, and for all N � g0 � n0 by assumption, Lemma 4 implies that
�g0 � 2; d0 � 1� is solved, hence that �g1; d1� is solved, where d1 � g1 ÿ �x� 1�
for all m � d1 � 3 and for all N � g1 � n0 � 1, hence D�x� 1� is solved for
all d � 3. Remains therefore, the case �n0 � 1; 2�, whenever N > n0 � 1
(otherwise there is nothing to prove). To solve this use Lemma 5 on
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�n0 � 2; 3� and this pro®le exists whenever N > n0 � 1, (since A � 4). Remains
to prove that the starting points are solved. This is proved in Corollary 1 to
Lemma 3, for all pro®les [g, d] with g � 3; d � 3, and for the pro®le [2, 2] in
Corollary 2 to Lemma 3.

Proof of Part B

Fix a SWF that satis®es Extended Pareto. Then by Part (A) of the proof, we
know that it can be represented as:

U �
X
n2N

u0n�Rn� �45�

for some functions F �n; u� (see equation (2)).
It is su�cient to prove this for the pro®le [g, d] where g � d � 3, since this
was the starting point of the proof of Part A (Lemma 3).

Suppose that there exists a wG such that there are 2 functions F �n; u� and
F 0�n; u� such that (1) holds for both. Since by hypothesis the SWF, hence wG,
is ®xed, the representation U 0G with the functions F 0�n; u� must be such that:

U 0G � bUG � c

with b > 0. Since we are in full dimensional case we have by the uniqueness
of the coe�cients that:

b
1

F 0�n; u� �
1

F �n; u� ;

as desired. h

4.1.2 Proposition 1

It is clear that whatever be the map F ; the above SWF satis®es our axioms.
Now we prove the converse.

Fig. 1 Theorem 1 Part (A)
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It is su�cient to prove that the functions F �n; u� of Theorem 1 are such
that F �n; u� � F �u�; the rest follows from Theorem 1.

Fix a representation of individual and social preferences. Since the SWF
satis®es Extended Pareto, by Part (A) Theorem 1, the representation of the
SWF is as given by (1). Thus for any full-dimensional case we have that
whenever the preferences (utility functions) of any 2 individuals are permuted
than by Anonymity the social preferences (and hence the utility function up
to a positive a�ne transformation) must remain the same. This implies by the
full-dimensionality that F �n; u� � F �u�: h

4.1.3 Theorem 2

It is obvious that ``Relative Utilitarianism'' satis®es the axioms above. Thus
we now prove the converse.

Fix an SWF satisfying Extended Pareto, Weak IIA, Anonymity. We need
to show that then it can be represented by (3).

It is su�cient to show that if the SWF satis®es Weak IIA in addition to
the other axioms then F �un� � p�un�; since then the translation invariance of
F implies the result.

Claim 1 If F �un� � p�un� for any pro®le [g, g] (i.e. Theorem 2 holds) then it
holds for any pro®le �g� 1; g� 1�.
Proof. Denote the subgroup of g� 1 individuals i; j; k; . . . ; n as G, and let Gÿi

represent the subgroup with all individuals except individual i. Then use EP
to write UG as:

UG � a1�UGÿi� � b1�ui�
UG � a2�UGÿj� � b2�uj�
UG � a3�UGÿk � � b3�uk�

..

. � ..
.

UG � an�UGÿn� � bn�un� �46�
By the uniqueness of the co-e�cients of the un, we have
a1 � a2 � . . . � an � a while bi � a

p�ui� ; and hence the result.
Thus it is su�cient to prove Theorem 2 for the pro®le [2, 2] since this

implies the theorem for all full dimensional pro®les, hence the starting point
of the induction in the proof of Theorem 1 (A). Then use the induction step
of Theorem 1 to get the result.

Claim 2 Let u be a utility function on A0 � A and P a set of lotteries on A0.
Then uP 2 S is de®ned as follows: uP �a� � u�a� for all a 2 A0, and
8a0 2 AnA0; uP �a0� � hpa0 ; ui; for some pa0 2 DA0. Let k�uP � � 1

F �uP � : Then for
every pair of lottery sets P and Q on A0, and for every non-constant u,

k�uP � � k�uQ�:
Proof. Take any subgroup of 2 individuals, such that if u and v represent
their utility functions on A0; d�u; v� � 2 (thus A0 � 3�: For any set of lotteries
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P on A0, let uP and vP represent the corresponding utilities on A. Let
t�P ; u� � k�uP �: Since for every a0 2 AnA0; 9pa0 2 D�A0�, such that it is
unanimously indi�erent to a0, by Weak IIA, we have that for every 2 sets P
and Q: 9b > 0; c; such that: 8a 2 A0;

t�P ; u�u�a� � t�P ; v�v�a� � b�t�Q; u�u�a� � t�Q; v�v�a�� � c

By the linear independence of u and v, we get:

t�P ; u�
t�Q; u� �

t�P ; v�
t�Q; v� ; 8P ;Q �47�

whenever u and v are linearly independent. This is true as well whenever u; v
are non-constant, since there exists some w, a utility function on A0, which is
linearly independent of both u and v and it is easily shown that equation (47)
holds for both u and v with w.

Thus we can ®x v non-constant, at �v and we de®ne a function H�P �
� t�P ; �v�; 8P : Hence we have:

t�P ; u�
H�P � �

t�Q; u�
H�Q� 8u and 8P ;Q on A0 �48�

This ratio is therefore independent of P and we can de®ne G�u� � t� �Q;u�
H�Q� , for

any ®xed set �Q on A0. Hence,

k�uP � � G�u�H�P� 8P 2 DA0 and 8u
Moreover, the function H�P� is constant (since H�P � � bH�Q� 8P ;Q�. Thus
for all non-constant u;H�P � is constant and therefore k�uP � is independent of
P .

Claim 3 For u 2 S�.

k�u� � 1

p�u�

Step 1. Let u; u0 be two utility functions on A, and Cu represent the closed
interval �max�a2A� u�a�;min�a2A� u�a��.

k�u� � k�u0�
whenever Cu � Cu0 .

Proof: If Cu � Cu0 , observe that the maxima and minima of u and u0 are
equal. However they could be reached at di�erent alternatives, say a1; a2 for
u and a3; a4 for u0. Consider A0 � fa1; a2g for u. Construct u1 such that
u1�a� � u�a� 8a 6� a3; and set u1�a3� � u�a1�: By Claim 2, k�u� � k�u0�: Next
construct u2 such that u2�a� � u1�a� 8a 6� a4 and set u2�a4� � u1�a2�. Con-
sider A0 � fa1; a2g; by Claim 2, k�u1� � k�u2�: Now, consider A0 � fa3; a4g,
from Claim 2, we have that k�u0� � k�u2� � k�u1� � k�u�:
Step 2. This implies that k�u� depends only on maxa2A u�a�;mina2A u�a�.
Translation Invariance of k�u� then implies the result. h
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4.2 Necessity of the Axioms

Extended Pareto. Since Extended Pareto implies Monotonicity (Mertens and
Dhillon, [6]), the e.g. used here is the same as for Monotonicity, i.e. take the
gradient of the Nash product for the non-dummy players at the maximising
point (in the closure of C�u��, when �mina2A u�n�jn 2 N � is taken as the dis-
agreement point. The weight of the dummy players is arbitrary.

Anonymity. Otherwise use
P

n kn
un

p�un� ± with kn > 0 ± as social utility.

Neutrality. Otherwise use
P

n
un

q�un� ; where ln �
P

a2A w�a�un�a�; and q�un� ��������������������������������������������P
a w�a��un�a� ÿ ln�2

q
(if not zero) ± with w�a� > 0;

P
a w�a� � 1:

If one chooses all w�a� equal, one obtains an example satisfying in ad-
dition neutrality, but not Weak I.I.A.

5 Conclusion

This paper introduced the Extended Pareto axiom in a framework of pref-
erences over lotteries. It was shown that if the von-Neumann-Morgenstern
axioms on preferences are satis®ed by individuals and by society then this
axiom implies that the SWF is a weighted sum of utilities where the weights
for each individual depend only on his utility function in the pro®le. The
axiom thus implies additive separability in the SWF in this sense3. The axiom
may be viewed as an analog (in the context of ordinal preferences) of the
separability condition [Fleming [7], Arrow[2], and discussed by d'Aspremont
[5]) which is imposed in the context of cardinal and fully comparable pref-
erences, except that in addition it embodies Pareto. With two additional
axioms, Anonymity and Weak IIA a SWF, Relative Utilitarianism, was
characterized for all pro®les of preferences where the corresponding utility
vectors were of dimension two at least. The Anonymity axiom is standard
while Weak IIA was motivated by Arrow's IIA applied to a framework of
preferences over lotteries.

The results used quite strongly the mathematical structure imposed by the
vN-M axioms. In principle, these results can be extended to the case where
we do not directly use the vN-M axioms. Harsanyi's theorem e.g. has been
extended in this way by Coulhon and Mongin [4], and in Mongin [13] using
the more general notion of mixture sets. Mongin [4] has a section on Alge-
braic Preliminaries which would be directly relevant if we do not restrict
ourselves only to lotteries over a set of A, but are concerned with (more
generally) convex subsets of vector spaces, and a�ne functions on these.

3Note however that it does not imply the usual form of additive separability since the
weights for each alternative are not separable; indeed they depend on the utility
function.
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