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Abstract. Existing proofs of Condorcet's Jury Theorem formulate only suf-
®cient conditions for its validity. This paper provides necessary and su�cient
conditions for Condorcet's Jury Theorem. The framework of the analysis is
the case of heterogeneous decisional competence, but the independence as-
sumption is maintained.

1. Introduction

After the discovery of Condorcet's writings by Black (1958), the Condorcet's
Essay has been recognized and appreciated as an important origin of social
choice (see Urken 1991).

Being an enthusiastic supporter of the democratic regime, Condorcet
believed that a group of individuals facing a binary choice and utilizing a
simple majority rule would be likely to make the correct choice. Moreover,
this likelihood would tend to complete certainty as the number of members
of the group tends to in®nity (see Baker 1976). A Condorcet's Jury Theorem
(hereafter CJT) is a formulation of a su�cient condition (or conditions) that
substantiates this belief. The simplest version of CJT suggests the condition
that each member of the group has a competence p > 1

2 to decide correctly
and individuals vote independently, in the statistical sense. For a discussion
of CJT see Miller (1986), Grofman and Feld (1988) and Young (1988, 1995).

Recently, there have been several attempts to generalize the popular
version of CJT. Berg (1993a,b) and Ladha (1992, 1995) relax the indepen-
dence assumption and allow for correlated votes. Grofman et al. (1983),
Owen et al. (1989) and Paroush (1998) consider distribution-free team
members' competence levels. Austen-Smith et al. (1996) analyze the case of
insincere voting, and Louis et al. (1996) extend the dichotomous setup to a
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polychotomous one. The common denominator of all these studies is that
they formulate only su�cient conditions for the above Condorcet's belief. In
contrast, this paper presents a CJT with necessary and su�cient conditions.
We adopt the dichotomous choice model with independent and sincere
voting, but without any restrictions on the distribution of the decisional
competence of the team members. Within this framework we prove that (in
all practical cases) limn!1��pn ÿ 1

2�
���
n
p � 1 is a necessary and su�cient

condition for limn!1 pn � 1, where �pn is the arithmetic mean of the team
members' decisional abilities and pn is the likelihood that the entire team
(with n members) would reach the correct decision while utilizing a simple
majority rule. This result is signi®cant especially on the background of the
example presented in Paroush (1997) showing that we do not necessarily
have limn!1 pn � 1 even if pn >

1
2 for all n.

Section 2 presents the generalized CJT, Sect. 3 ± the proof (along with a
few more results), and in Sect. 4 we provide some examples.

2. The generalized CJT

Consider a team of n voters (jurors, decision makers) facing a binary choice.
One of the alternatives is assumed to be objectively correct, but the team's
members may have di�erent abilities (competences) to identify this alterna-
tive. Denote the competence of the ith member of the team, namely his
probability to decide correctly, by pi; i � 1; 2; . . . ; n. Throughout the paper
we assume the voters to be independent. Intuitively, if the pi's are ``signi®-
cantly'' larger than 1

2, a decision rule based on the simple majority rule will
``most likely'' lead to the right choice. Moreover, one would like to arrive at
the same conclusion when assuming only that the average correctness
probability

�pn �
1

n

Xn

i�1
pi

is signi®cantly larger than 1
2. In the following we shall make these intuitive

statements more precise. Denote by P �n� the probability of making the right
decision using the majority rule. More precisely, as the simple majority rule is
de®ned only for an odd number n of individuals, we de®ne P �n� as the
probability that (strictly) more than n

2 of the individuals will advocate the
right decision.

Our main concern here is clarifying under what conditions the probability
P �n� becomes close to 1 as n becomes larger and larger. More formally, we
assume that we have an in®nite sequence �pi�1i�1 of probabilities, representing
an in®nite collection of decision makers. The question is whether the prob-
ability of making correct decisions when using the majority rule, taking into
account the opinions of more and more of those decision makers, converges
to 1:

P �n�ÿ!
n!11: �1�
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Obviously, the validity of (1) amounts to CJT. As mentioned already, (1) is
known in the homogeneous case, where all the pi's are identical, if pi � p > 1

2.
Moreover, the same is basically known also in the heterogeneous case, where
the pi's are not necessarily identical, as long as �pn converges to a number
strictly greater than 1

2 (cf. Boland et al. 1989; Boland 1989; Owen et al. 1989).
The main contribution of this paper is showing that (1) may hold even in
situations where pnÿ!

n!1
1
2 (and in particular �pnÿ!n!1

1
2�. On the other hand, we

show that the condition �pn >
1
2, or even pn >

1
2 for each n, is not su�cient to

imply (1).
The formulation of the most general CJT, being cumbersome, will be

postponed to the next section. Here we shall state it under an additional
assumption, which actually holds in any practical situation. To this end, let
us introduce the following de®nition. A sequence �pi�1i�1 of probabilities is
reasonably balanced if for some d; e > 0 the inequality

#�f1 � i � n : d < pi < 1ÿ dg� > en �2�
holds for all su�ciently large n (where #�S� denotes the cardinality of a ®nite
set S). For the correctness probabilities of the team members to satisfy this
condition means, roughly speaking, that some positive proportion of them
consists of people who are neither ``extremely smart'' �pi � 1� nor ``extremely
stupid'' �pi � 0�.
Theorem 1. If the sequence �pi� is reasonably balanced, then (1) is valid if and
only ifPn

i�1 pi ÿ n
2���

n
p ÿ!

n!11:

Evidently, it is hard to imagine an unreasonably balanced sequence of
probabilities in practice, so that Theorem 1 may be viewed as giving the
``real'' condition for CJT.

In fact, Theorem 1 is a corollary of an even more general CJT (Theorem 2
in the sequel), to be stated and proved in the next section.

3. An even more general CJT

We ®rst formulate and prove the most general CJT for independent voters.

Theorem 2. (1) is valid if and only if at least one of the following two conditions
holds:

1) Pn
i�1 pi ÿ n

2�������������������Pn
i�1 piqi

p ÿ!
n!11; �3�

where qi � 1ÿ pi.
2) For every su�ciently large n
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#�fi : 1 � i � n; pi � 1g� > n
2
: �4�

Proof. In both parts of the proof we shall utilize the sequence �Xi�1i�1 of
random variables de®ned by

Xi � 1; the ith individual chooses correctly,
0; otherwise.

�
Then X �Pn

i�1 Xi is the number of individuals voting correctly, and:

E�X � �
Xn

i�1
pi; V �X � �

Xn

i�1
piqi:

We start the proof with the su�ciency part. Obviously, the second condition
of the theorem implies (1). To prove the su�ciency of the ®rst condition we
note that from Chebychev's Inequality it follows readily that

1ÿ P �n� � P X <
n
2

� �
� P X ÿ

Xn

i�1
pi

�����
����� �Xn

i�1
pi ÿ n

2

 !

� V �X �Pn
i�1 pi ÿ n

2

ÿ �2 � Pn
i�1 piqiPn

i�1 pi ÿ n
2

ÿ �2 ÿ!n!1 0;

and consequently

P �n�ÿ!
n!11:

To prove the necessity of the conditions, we distinguish between two
cases. Suppose ®rst thatXn

i�1
piqi � 1: �5�

We claim that (3) is satis®ed. In fact, from (5) it follows that the sequence
�Xi� satis®es Lindeberg's condition, and therefore the central limit theorem.
(See, for instance, Feller (1971), Theorem VIII.4.3.) Suppose (3) does not
hold. Then, for a suitable constant C, we havePn

i�1 pi ÿ n
2�������������������Pn

i�1 piqi
p < C

for in®nitely many integers n. Hence, denoting by U the normal distribution
function, we obtain for an arbitrary ®xed e > 0 and su�ciently large such n:

P �n� � P
Xn

i�1
Xi >

n
2

 !
� P

Xn

i�1
�Xi ÿ pi� > n

2
ÿ
Xn

i�1
pi

 !

� P
Pn

i�1�Xi ÿ pi��������������������Pn
i�1 piqi

p >
n
2ÿ

Pn
i�1 pi�������������������Pn

i�1 piqi
p !

� 1ÿ U�ÿC� � e:

The right hand side may be made less than 1, which contradicts (1).
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We may assume consequently that

X1
i�1

piqi � V <1:

It will be convenient to split this case into two subcases, depending on the
cardinality of the set

E � i :
1

2
� pi < 1

� �
:

If E is ®nite, de®ne a sequence �gi�1i�1 by:

gi � 1; pi � 1,
0; otherwise.

�
Then:

P �fXi � gi; i � 1; 2; . . .g� �
Y
i2E

qi �
Y

pi<1=2

qi:

Now the ®rst term on the right hand side is non-zero due to the ®niteness of
E, while the second is non-zero sinceX

pi<1=2

pi �
X

pi<1=2

pi � 2qi � 2V <1:

Consequently, if (4) is not satis®ed for a certain n, then

P �n� � 1ÿ P �fXi � gi; i � 1; 2; . . . ; ng� � 1ÿ P �fXi � gi; i � 1; 2; . . .g�< 1;

and therefore (4) must hold from some place on.
It remains to deal with the case where E is in®nite. Suppose (3) is not

satis®ed. Then for in®nitely many integers n we haveXn

i�1
pi ÿ n

2
< C; �6�

where C is an appropriate constant. Take i1; i2; . . . ; ir 2 E with
r > 2

������
2V
p � C
ÿ �

. Denote E0 � fi1; i2; . . . ; irg. If n > max1 � j � r ij satis®es (6)
then:

1ÿ P �n� � P
Xn

i�1
Xi � n

2

 !
� P Xi1 � Xi2 � � � � � Xir � 0;

Xn

i�1
Xi � n

2

 !

�
Yr

j�1
qij P

X
1�i�n;i 62E0

Xi � n
2

 !
: �7�

Now:
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P
X

1�i�n;i 62E0
Xi � n

2

 !
� P

X
1�i�n;i 62E0

�Xi ÿ pi� � n
2
ÿ

X
1�i�n;i 62E0

pi

 !

� P
X

1�i�n;i 62E0
�Xi ÿ pi�

�����
����� � n

2
ÿ

X
1�i�n;i 62E0

pi

 !

� 1ÿ
P

1�i�n;i 62E0 piqi

n
2ÿ

P
1�i�n;i 62E0 pi

� �2
� 1ÿ V

2V
� 1

2
:

�8�

Clearly, (7) and (8) are incompatible with (1), which concludes the proof of
the last case. (

As we shall see subsequently (Example 1 in the next section), condition 1
in Theorem 2 is not necessary for CJT to hold in general. However, it is
necessary under ``most'' circumstances. In fact, going carefully over the
proof of Theorem 2, one ®nds that the following is true.

Theorem 3. If in®nitely many of the probabilities �pi�1i�1 belong to the interval
�12 ; 1�, then condition 1 in Theorem 2 is necessary and su�cient for (1) to be
valid.

Now we can conclude the proof of Theorem 1. In fact, on the one hand
we always haveXn

i�1
piqi � n

4
;

so that the su�ciency part of Theorem 1 follows from Theorem 2. On the
other hand, since �pi� is reasonably balanced, we obtainXn

i�1
piqi � d

����������������
e�1ÿ e�

p ���
n
p

(where d; e > 0 are as in (2)). Theorem 2 and its proof now yield easily the
necessity part of Theorem 1 as well.

4. Examples

An immediate consequence of Theorem 2 is the following main result of
Paroush (1998).

Corollary. If pi � 1
2� e for each i, where e > 0 is ®xed, then (1) is valid.

In fact, we have
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Pn
i�1 pi ÿ n

2�������������������Pn
i�1 piqi

p � ne������������������������������
n 1

2� e
ÿ �

1
2ÿ e
ÿ �q � e����������������������������

1
2� e
ÿ �

1
2ÿ e
ÿ �q ���

n
p ÿ!

n!11;

which implies the corollary.
However, the probabilities may be quite closer to 1

2 than required in the
corollary, and even converge to 1

2 with the same conclusion still holding.

Example 1. Let pi � 1
2� 1

ih for su�ciently large i. If h < 1
2 then for an appro-

priate C and su�ciently large nPn
i�1 pi ÿ n

2�������������������Pn
i�1 piqi

p >

Pn
i�1

1
ih � C��

n
4

p > n
1
2ÿh ÿ!

n!1 1;

so that (3) holds.
The following example shows that (3) is not necessary for (1) to hold.

Example 2. Suppose p1 6� 0; 1 is arbitrary, p2 � p3 � p4 � 1; p2iÿ1 � 0 for
i � 3 and p2i � 1 for i � 3. Then, with probability 1, the majority rule

will lead to the correct decision for every n � 3. However, the expressionPn

i�1 piÿn
2���������������Pn

i�1 piqi

p assumes only two values as n varies, and in particular does not

diverge to 1.

References

Austen-Smith D, Banks J (1996) Information, aggregation, rationality and CJT.
Amer Polit Sci Rev 90(1): 34±45

Baker KM (Ed) (1976) Condorcet: Selected writings. The Bobbs-Mervill, Indiapolis
Black D (1958) The Theory of Communities and Elections. Cambridge University

Press, Cambridge
Berg S (1993a) Condorcet's Jury Theorem, Dependence Among Jurers. Soc Choice

Welfare 10: 87±95
Berg S (1993b) Condorcet's Jury Theorem revisited. Eur J Polit Econ 9: 437±446
Boland PJ (1989) Majority systems and the Condorcet Jury Theorem. Statistician 38:

181±189
Boland PJ, Proschan F, Tong YL (1989) Modelling dependence in simple and indirect

majority systems. J Appl Probab 26: 81±88
Condorcet NC de (1785) Essai sur l'application de l'analyse aÁ la probabiliteÂ des

deÂ cisions rendues aÁ la pluraliteÂ des voix. Paris
Feller W (1971) An introduction to probability theory and its applications, Vol. 2,

2nd edn. John Wiley & Sons, New York, London
Grofman B, Feld SL (1988) Rousseau's general will: A Condorcet perspective. Amer

Polit Sci Rev 82: 567±576
Grofman B, Owen G, Feld SL (1983) Thirteen theorems in search of the truth. Theory

Decision 15: 261±278
Ladha KK (1992) The Condorcet Jury Theorem, free speech and correlated votes.

Amer J Polit Sci 36: 617±634
Ladha KK (1995) Information polling through majority rule voting: Condorcet's

Jury Theorem with correlated votes. J Econ Behavior Organizat 26: 353±372

Condorcet's Jury Theorem 487



Louis L, Ching YS (1996) Majority vote of even and odd experts in a polychotomous
choice situation. Theory Decision 41: 13±36

Miller NR (1986) Information, electorates, and democracy: Some extensions and
interpretations of the Condorcet Jury Theorem. In: Grofman B, Owen G (eds)
Information pooling and group decision making. JAI Press, Greenwich, CT

Owen G, Grofman B, Feld SL (1989) Proving a distribution-free generalization of the
Condorcet Jury Theorem. Math Soc Sci 17: 1±16

Paroush J (1998) Stay away from fair coins: A Condorcet's Jury Theorem. Soc Choice
Welfare 15: 15±20

Young HP (1988) Condorcet's Theory of voting. Amer Polit Sci Rev 82: 1231±1244
Young HP (1995) Optimal voting rules. Econ Perspect 9: 51±64

488 D. Berend, J. Paroush


