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Abstract. This paper studies the possibility of progressive income taxation of
heterogeneous populations. While a result due to Moyes and Shorrocks (1994)
indicates that there does not exist a universally inequality-reducing tax struc-
ture which distinguishes between at least two subpopulations (in the sense of
applying a different tax function to each subclass), it is shown here that
a minimal refinement of the universality of inequality reduction leads one to
a possibility conclusion. Informally stated, we prove the existence of uncoun-
tably many differentiated tax structures which are strictly progressive almost
everywhere.

1. Introduction

It is well-known that if income recipients are assumed to be identical in all
aspects other than taxable income, and if tax functions are assumed to be
non-confiscatory, then the progressiveness of an income tax function is both
necessary and sufficient for the post-tax distribution to Lorenz dominate the
pre-tax income distribution.! Connecting the basic taxation properties of
inequality averse redistribution and progressiveness, this result points out to
a very practical method of evaluating the actual taxation practice. Unfortu-
nately, as noted in Lambert (1993a, p. 357), the insight provided by this result
“has limited applicability in the real-world, for people’s tax liabilities typically

For their very useful comments, the author is grateful to Gary Fields, Tapan Mitra,
Patrick Moyes, Anthony Shorrocks, three anonymous referees, and especially Peter
Lambert. It goes without saying, however, that the responsibility of all the remaining
errors is mine.

! See, for instance, Jakobsson (1976), Fellman (1976), Kakwani (1977) and Eichhorn et
al. (1984). Following Lambert (1993b), we shall refer to this celebrated result shortly as
Jakobsson—Fellman Theorem.



528 E. A. Ok

depend on non-income attributes, such as marital status and home-ownership,
as well as incomes.” Indeed, a crucial assumption behind the so-called Jakob-
sson—Fellman theorem is the treatment of the population as a homogeneous
being in all respects other than income while a typical real-world tax treats the
population rather as a heterogeneous entity. As a matter of fact, the actual
income taxation discourse first partitions the population into subclasses
according to some non-income characteristic, and then applies a different tax
function to each of these subpopulations. It is, therefore, not so surprising that
several economists studied the problem of extending the Jakobsson-Fellman
theorem to the realm of taxation of heterogeneous populations.

The emerging literature on this differentiated taxation problem appears to
provide two apparently conflicting insights. One one hand, Lambert (1993a)
shows that one may be able to obtain a useful heterogencous-population
version of the Jakobsson—Fellman theorem in the presence of some plausible
restrictions on the admissible set of income distributions. In particular, Lam-
bert demonstrates that if every member of one class is richer than any member
of the other, or more plausibly, if income is less concentrated among the poor
in one class than the other, one is able to devise income taxation procedures
which decrease the income inequality unambiguously. On the other hand,
Moyes and Shorrocks (1994) draws a completely different picture by produ-
cing a number of impossibility results to the effect of showing that the
potential theory of progressive taxation in the case of heterogeneous popula-
tions is far from being a straightforward generalization of the standard theory.
A slight modification of their main impossibility result reads as follows:

There does not exist a tax structure which distinguishes between two
subpopulations (in the sense of applying a different tax function to each
class), and which guarantees an overall inequality reduction for any given
pre-tax income distribution.

Consequently, the conjunction of Lambert (1993a) and Moyes and Shorrocks
(1994) seems to indicate that a theory of differentiated progressive taxation
cannot be fully global, one has to postulate some distributional restrictions on
the class of income distributions under consideration. A natural question that
emerges from these studies concerns, therefore, the severity of the distribu-
tional restrictions one has to impose to guarantee the existence of at least one
progressive tax structure which distinguishes between at least two subpopula-
tions. The main purpose of the present note is, in fact, to provide a convincing
answer precisely to this question.

In this paper, we study the robustness of the Moyes—Shorrocks impossibil-
ity theorem with respect to minimal restrictions imposed on the class of
admissible income distributions. Our main result shows that by replacing the
requirement of “inequality reduction for any given pre-tax distribution” with
the requirement of “inequality reduction for any given pre-tax distribution
except some distributions which are never to be observed in real-world
situations,” it is possible to escape the impossibility noted above.? This may

2 Roughly speaking, “by some distributions which are never to be observed in real-
world situations”, we mean the income distributions which are either perfectly egalitar-
ian or ‘very close’ to be perfectly egalitarian.
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indeed be thought of as providing a new and more optimistic perspective of
the problem of income taxation in the case of heterogeneous populations. The
main result of this note, after all, indicates that

there exist uncountably many tax structures which, for any given pre-tax
income distribution except some pathological ones, (i) distinguish between
subpopulations; (ii) reduce subpopulation income inequality; and (iii) decrease
the overall inequality.

Consequently, we conclude that a potential theory of progressive differenti-
ated taxation is not doomed to fail; it seems promising to study possible
extensions of the Jakobsson—Fellman theorem and of the positive results
provided by Lambert (1993a) in future research.

To fix ideas, consider the practice of state personal income taxation
practice in the United States. (This is, of course, an example of taxation of
heterogeneous populations, for each individual is distinguished not only on
the basis of income, but also on the basis of residential status.) The Moyes—
Shorrocks impossibility result indicates that any given State income tax
structure (i.e. any taxation scheme which specifies a tax function for each
State) will fail to reduce overall inequality for at least one pre-tax income
distribution, so long as not all States use identical tax schedules; the distribu-
tional progressiveness arguments in a global sense are bound to fail. Neverthe-
less, the main possibility result outlined informally above ensures the existence
of some State income tax structures which will fail to reduce overall inequality
only when they are applied to some pathological pre-tax distributions ex-
tremely unlikely to be observed in practice. Therefore, such structures are
almost-globally progressive, and there is still hope to revive the Jakobsson—
Fellman theorem in the case of heterogeneous populations.

The organization of the paper is as follows. Section 2 introduces the basic
model to study income taxation of heterogenous populations and some
preliminary terminology. Section 3 briefly summarizes the development given
in Moyes and Shorrocks (1994) and states the impossibility results discussed
above formally. We introduce our main result which establishes a natural way
of escaping these results in Section 4. Section 5 is devoted to concluding
comments and some caveat about the limitations of this possibility result.
A geometric proof of the main theorem appears in the Appendix.

2. The model

The model we will be working with is basically the same model studied in
Atkinson and Bourguignon (1987), Lambert (1993a, 1994), Jenkins and Lam-
bert (1993), and especially with that given in Moyes and Shorrocks (1994),
among others. It is obtained by altering the standard setting of income
inequality measurement theories to account for the non-income attributes of
income recipients (such as marital and/or residential status, household size,
etc.) which are quite relevant when it comes to income taxation. Therefore, we
assume that there are H > 1 possible household types and that an agent
cannot belong to more than one class. Consequently, a given population is
partitioned into H subpopulations, each representing a class identified by
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a non-income characteristic. H > 1 will act as a parameter throughout this

paper.
The set of all possible partitions of a population with m agents is

H
N™(H) = {(nl, ...,ng) € ZH| Y nj= m}
j=1
Since we do not want to restrict the analysis to populations of a given size, we
shall rather take

N (H)y= ) #/™H)=ZH
m>0
as the set of all admissible partitions.
We assume that all incomes are bounded, say by o > 0. Therefore, for any
ne A (H), the set of all admissible income distributions is defined as®

() =(0,0]"x -+ x(0, 0]

Consequently, for any ne A (H), x = (x', ..., x) e Z (n) is the income distri-
bution of a population of

H
[n] = Z ny
h=1

agents with H household types such that x" is the income distribution of the
subpopulation which is composed of type h households. In this model, an
individual is identified by his/her income and household type, and the level of
income of the ith agent of type his denoted by x!,i=1, ... ,nm,, h =1, ..., H.
Consequently, the explicit form of a distribution x € Z'(n), n € A (H), is to be
written as

1 1 H H
X = (xla s xnp > X1, s xn")a
. . J
Y Y
xl xH
where, by definition, 0 < x <o, foralli=1, ... ,n,, h=1, ... ,H*

For any ne A (H), let X represent the illfare ordered permutation of
x € Z (n); that is, X = xP with P being an [n] x [n] dimensional permutation
matrix such that the first component of X is the smallest of all of its compo-
nents, the second component of X is the second smallest of all of its compo-
nents, and so on. We shall write the explicit form of X as (Xy, ... , Xj;). (So, by
definition, X; < -+ < X,

The following definition is well-known:

3 The set of all admissible income distributions is, of course, parametric over o > 0
although, for convenience, we do not use a notation that makes this explicit. From now
on, whenever we make a statement about 2'(n), n € 4" (H), it should be understood that
the statement holds true for any choice of o > 0.

4 We should mention that the assumption of the boundedness of income level is
a departure from the model studied in Moyes and Shorrocks (1994). Yet, it is an
insignificant departure, for we can choose o as large as we want.
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Definition 2.1. The Lorenz dominance relation =, € U,,e vy () x Z(n)) is
defined as

x».y if and only if Z(—ﬁ”—)zi(%)

=1 \Xi=1Xi j=1 i=1Vi
forallr=1, ...,[n] — 1,

for any x, y e Z(n) and n e A" (H). Strict Lorenz dominance, >, and Lorenz
indifference, ~ 1, are defined as the asymmetric and symmetric factors of =,
respectively.

For any n e A" (H), let

1 =<i L)eR["]
"\In] T [n] '

Therefore, given 0 < k < a[n], k1, is the income distribution of perfect equal-
ity (or equivalently, the perfectly egalitarian income distribution) with total
income k. Clearly, for any given k € (0, a[n]], k1,=, x for all x € Z(n), and
conversely, if x =, k1,, then x = k'l,~ k1, for some k' € (0, a[n]].

By a tax function, we mean a function that maps the pre-tax income of an
individual to his/her post-tax income. The class of all admissible tax functions
Z 1is taken as the set of all functions f: (0, o] — (0, o] which are continuous and
increasing.’

A tax function f € # is said to be (strictly) progressive if the average
post-tax rate w— f(w)/w is a (strictly) decreasing mapping. The following
theorem shows how this functional property relates to inequality reducing
redistribution:

Theorem 2.2.° (Jakobsson—Fellman) f € & is progressive if and only if
f(x)=Lx  forallxe ) Z(n).

ne A" (1)

In the case of heterogeneous populations, H > 2, each subpopulation may
be subjected to different tax functions. This leads one to consider tax struc-
tures rather than tax functions. By a tax structure, we mean an H-vector of
tax functions where hth component is the tax function for the hth type of
individuals.

Definition 2.3. A tax structure is any member of %, H > 2, and hence is any
H-vector of tax functions. f = (f, ..., ) € 7" is said to be a differentiated
tax structure if " & f" for some h, k' =1, ..., H.”

3 Notice that the present formulation of an admissible tax schedule is quite general; in
particular, it allows for negative income taxation.

8 A proof of this version of the result can be found in Eichhorn et al. (1984).

7 If the heterogeneity of the population is due to need-based considerations, and if, for
instance, the members of subpopulation / are deemed needier than those of subpopula-
tion h+ 1, then it might be appropriate to call a tax structure need-based if
M) > " Yw)forallwe (0,a] and allh = 1, ..., H — 1. We note that although all of
our results are stated in terms of differentiated tax structures in what follows, they are
proved in terms of need-based tax structures. The possibility of need-based progressive
taxation is really a special case of our main theorem.
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How can we define a progressivity concept for a tax structure? One
obvious way is to declare a tax structure progressive if all of its component tax
functions are progressive. But Lambert (1993a) shows that, with such a defini-
tion, a progressive tax structure need not be inequality reducing. Since our
ultimate objective is to carry the Jakobsson—Fellman theorem to the realm of
heterogeneous populations and tax structures, such a definition then seems
inappropriate. The natural thing at this stage is, therefore, to identify the
progressiveness of a tax structure with the property of overall inequality
reduction:

Definition 2.4.8 Let H > 2. Givenne A" (H), f = (f', ..., f%) e #" is said to
be progressive if

f(x)>=rx for all x e Z(n),

H

and each f" is a progressive tax function. fe Z” is said to be strictly

progressive if
f(x)>.x for all xe Z(n)\{kl,: 0 <k < a[n]},
and each f™ is a strictly progressive tax function.

Remark 2.5. The concept of progressiveness as studied in Moyes and Shor-
rocks (1994) is, in fact, population independent, that is f € #* is considered to
be progressive when

f(x)>=,x forallxe () Z(n).
ne V" (H)
Although our development will mostly be given in a population dependent
context (that is, in terms of an arbitrary but fixed n e A"(H)), we shall later
demonstrate that our main result applies to population independent case to
a great extent. (See Remark 4.3.)

The main query of the present paper relates to the existence of differenti-
ated tax structures which are (strictly) progressive. An immediate application
is in terms of need-based taxation where each subgroup is distinguished from
the other on the basis of “needs.” Our framework is, of course, general enough
to incorporate such an application (see footnote 7). Nevertheless, one should
note that acknowledging differing needs might be taken to say that incomes
are not comparable, and this results in conceptually rejecting the computation
of the overall inequality in terms of Lorenz dominance. Therefore, one might
be more comfortable in viewing such an application from a rather positivist
angle. This does not mean, however, that our study is devoid of any normative
content. Indeed, there are other examples to which the present formulation
applies free of the caveat outlined above. Take the case of the State income

8 Given n € ./"(H), the corresponding definition of Moyes and Shorrocks (1994), “weak
progressiveness,” is slightly different than our definition. However, one can easily show
that our definition is more demanding in the sense that any tax structure that is
progressive according our definition is, in fact, “weakly progressive.” Since our ulti-
mate aim is to prove a possibility result, a more demanding definition seems only more
appropriate.
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taxation in the United States where an individual is identified by his/her
income and residence, for example. Since the array of income tax functions
levied by each State forms a differentiated tax structure in the sense of
Definition 2.3, asking whether or not a progressive and differentiated tax
structure exists amounts to asking whether or not it is possible to reduce the
overall inequality of the United States (only) by State income taxation, for any
given pre-tax income distribution. With such an interpretation in mind, the
individual incomes would be comparable, and thus, the overall inequality
reduction in the sense of Lorenz domination can be justly interpreted with the
usual normative pretensions.
We now turn to the fundamental existence question.

3. The impossibility of a progressive differentiated tax structure

Is there a differentiated tax structure that reduces the overall income inequal-
ity no matter what the initial income distribution is? The answer is no:

Theorem 3.1 (Moyes—Shorrocks). Let ne A (H). If f = (f1~ ,fH) c 7H is
progressive, then f* = ... = 1,

The proof of this theorem is extremely simple. Given any
n=y, ..., ng) e Z ,, for any progressive fe Z,

f(k1,)=.k1, for all ke (0, a[n]],

and this implies that f(k1,) has to be a perfectly egalitarian distribution, that

IS,
1 _ .. = H i or a (= 0 Ll n |

or equivalently, f*(w) = --- = f#(w) for all w € (0, o], and we are done.

In discussing the sensitivity of Theorem 3.1 to potential restrictions on
Z (n), Moyes and Shorrocks (1994) proves that the same conclusion would
hold true if one restricts attention to non-overlapping distributions, i.e. to
the set

Ym)y={xeZ M| >xh h=1,...,H—1}, 1)
for any n e A" (H). More precisely,

Theorem 3.2. (Moyes-Shorrocks) Let ne A" (H) and fe F". If f(x) =, x for
all xe ¥ (n), then f* = ... =1,

These negative results lead one to wonder if the definition of the progress-
iveness of a tax structure is too demanding. Is it, after all, possible to
modify this definition in a way to keep the essence of the desired inequality
reducing property (for both the subpopulations and the total population)
and escape from the anomalies exhibited by Theorems 3.1 and 3.2? In the
next section, we shall formally argue that the answer to this question is
affirmative.
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4. The possibility of a progressive differentiated tax structure
4.1 The case of overlapping distributions

A progressive tax structure, by definition, needs to reduce inequality whatever
the original income distribution is. This property allows one to deduce that,
for a progressive tax structure fe & %,

f(k1,) =.k1, for all ke (0, a[n]],

for a given n € /"(H), and this is the heart and soul of the proof of Theorem
3.1. Therefore, it is only natural to question the robustness of this result to the
elimination of the perfectly egalitarian and almost perfectly egalitarian distri-
butions (to be defined shortly) from the set of admissible income distributions.
After all, assuming that no economy’s actual income distribution is almost
perfectly egalitarian, is, of course, far from taking the realism out of the story.
In this regard, such a refinement of the set of admissible income distributions
appears to be quite minimal.

Let us first clarify what we mean by an almost perfectly egalitarian
distribution. Begin by defining the following subsets of % (n):

Z(n) = {xe%’(n)l i Xj+ ..o+ % xfzk} )

for any 0 < k < a[n] and n € A"(H). The open ball (relative to Z;(n)) around
k1, with a radius of ¢ > 0 will be denoted by B,(k1,), that is

B.(k1,) = {x e Zi(n)| ||x — k1,[| <&}, ne N (H), (3)

where | - | is the standard Euclidean norm. Finally, we define

B(l,)= |J Bk,

0<k <a[n]

and
X(n; &) = X' (n)\B,(1,), 4

for any ¢ > 0 and n e A" (H). It is the elements of B,(1,) that we address as
almost perfectly egalitarian distributions. Indeed, for a given n e A" (H),

limB,(1,)= () | Bukl,) = {k1,]0 <k < a[n]}

£l0 £>0 0<k<oln]

which is nothing but the set of all perfectly egalitarian distributions. Therefore,
lim, o Z(n;e)=2(n)\{k1,]0 <k <a[n]}, and by choosing &> 0 small
enough, restricting Z'(n) to 2 (n; ¢) brings no practical damage to the model
since any real-world income distribution is, in fact, some distance away from
a perfectly equal income distribution.

We are now ready to introduce

Definition 4.1. Let ne A" (H) and ¢ > 0. f=(f1, ..., /M) e # is said to be
e-progressive if

f(x)=.x for all xe Z(n;e),
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and each f" is a progressive tax function. fe Z" is said to be strictly e-
progressive if

f(x)>;.x for all xe Z(n;e),
and each /™ is a strictly progressive tax function.
Our main result reads as

Theorem 4.2. Let ne A (H) and ¢ > 0. There exists a differentiated tax struc-
ture f e F" which is strictly e-progressive.®

Remark 4.3. The following modification of Theorem 4.2 is also true: For any
e>0and my, ..., mge Z, ., there exists f e Z (with each f" being strictly
progressive and distinct) such that

f(x)>;x forallxe ) Z(me),

ne N m(H)

where A, (H) = {ne A/ (H): n, <my, h=1, ..., H}. Consequently, we con-
clude that Theorem 4.2 generalizes to population independent tax structures
for all practical purposes.

The proofs of Theorem 4.2 and Remark 4.3 are relegated to the Appendix,
but the basic idea can be sketched as follows. Once we are given that all of the
admissible pre-tax income distributions are at least a certain distance away
from perfect equality, then the moment we are able to bring post-tax distribu-
tions sufficiently close to a perfectly egalitarian distribution, the property of
overall inequality reduction for any admissible distribution will be satisfied.*®
But note that, since all incomes are bounded, one can always define H many
different strictly progressive tax functions which map any given income
sufficiently close to a fixed level (see Sect. A.2). Therefore, it is possible to
construct a differentiated tax structure which maps any given admissible
pre-tax distribution to a post-tax distribution which is sufficiently close to
perfect equality, and thus, which guarantees a reduction in overall inequality.

By virtue of this result, we learn that the impossibility of a progressive and
differentiated taxation, in essence, comes into being only when the perfectly
egalitarian distributions are included in the admissible set of pre-tax income
distributions. We conclude that, for all practical purposes, it is possible to
design a strictly progressive tax structure for a heterogeneous population of
households; such taxes reduce the overall inequality for any given pre-tax
income distribution except some pathological ones which cannot be observed
in actual discourse.

® We shall, in fact, show that there exist uncountably many such tax structures.

19 This argument is admittedly loose. For example, although it is seemingly intuitive,
whether getting sufficiently close to perfect equality (with respect to Euclidean dis-
tance) entails Lorenz domination over any given admissible pre-tax income distribu-
tion or not, is far from being obvious. The claim, however, is true, and the formal
details are given in the Appendix.
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4.2 The case of non-overlapping distributions

Theorem 4.2 provides one with a trivial way of escaping the impossibility of
differentiated progressive taxation in the case of non-overlapping distribu-
tions. All one has to do is to modify (1) to define

Yne)={xeZ )|} —xp >¢ forsomeh=1, .., H—1},

ne A (H), ¢ > 0. By Theorem 4.2, it follows that there exists a differentiated
fe 7% such that f(x) >, x for all x € % (n; ¢), where each f" is strictly progress-
ive. In fact, a slightly stronger result can easily be demonstrated in the case
non-overlapping distributions.

Proposition 4.4. Let ¢ > 0. There exists a differentiated tax structure f e F!
such that
f(x)>.x forall xe U Z (n; ¢).
ne A" (H)
where
Z(me)={(x", ..., x")eRY X" — % > ¢ forsomeh=1, ... ,H — 1},
for any ne A" (H).

We shall prove this proposition for the case H = 2 for brevity. (It must be
clear, however, that the arguments can readily be generalized for an arbitrary
H >2) Fix ¢ > 0 and take any 0 < a < b < 1. Define

bw, 0<w<ag/b—a)

d fo)= 0.
a(w + ¢), elsewhere and f*(w) =aw, o >

[Hw) = {
(See Fig. 1.) We wish to show that
(fM(uy), .. ,fl(u,,l); 2(y), ... ,fz(unz))>L(u1, e Up S UL, ey V), (5)

for any ny,n,eZ,, and 0 <y < - <di,, <, +e<?d, < -+ <0,,. We
shall need the following

Claim. For any v > u > 0 such that v — u > ¢, we have f*(v) > f*(u).

Proof. Let @ = be/(b — a) and suppose that v < @. In this case, that the claim
is true directly follows from

inf inf (f2() —f'w) = inf  inf (av— bu)

e<v<®d 0<u<v—eg e<v<®d 0<u<v—eg

= inf ((a—b)v+ be)

=(a — b)w + be
=0.
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y 7’
SY=0
bo, o e(0,ae/(b-a)]
,/' r= a(w +¢), ® €lae/(b—a),»)

Fig. 1.

Now suppose v > . If u < @ — ¢, then for any v > @,

inf  (f2(v) —f'w) = inf (av—bu)=av— b(® —¢)

O<u<w—e O<u<w—e
>am — b(w —¢&) = 0.

If, on the other hand, u > & — &, then f2(v) — f*(u) = a((v — u) — &) > 0, and
we are done. []

By virtue of this claim, for any 0<ud; < ... <4, <, +e<70;
< ... <86, wehave 0 <f'(iiy) < ... <f'(,) <f*(B) < ... <f*(5,), ie.
the illfare ranking is preserved under (f*,f?). Moreover, it is clear that the
members of the richer class are all taxed at higher average rates than the other.
Therefore, in effect, we are taxing each individual according to a common
(strictly) progressive tax schedule, and hence, applying the Jakobsson—Fell-
man theorem completes the proof.!!

5. Concluding comments

In this paper, we examined the proposition that there exists no differentiated
tax structure which strictly decreases inequality for any given pre-tax distribu-
tion. This proposition justly points to the fact that taxation of heterogeneous
populations is a far more complicated matter than the taxation of homogene-
ous populations.

We have argued here that a natural way of evaluating such an impossibil-
ity result is to see if it would continue to hold when we restrict our attention to
some interesting subsets of the class of pre-tax distributions. Indeed, this
would weaken what is expected from an “inequality averse” tax structure, and

1 This is an admittedly heuristic proof of (5). A direct verification is not difficult but
rather tedious, and hence we do not give it here. Such a verification is available upon
request.
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hence, could make a difference in the stated conclusions. (This point is, of
course, recognized by Moyes and Shorrocks (1994) and a study pursuing this
idea is promoted in the associated research agenda.) This is the crux of our
inquiry.

Our main result shows that, for all practical purposes, we are, in fact, not
bounded by the impossibility of a differentiated and strictly progressive tax
structure. In particular, we establish the existence of tax structures which
strictly reduce the inequality of both the overall and subpopulation distribu-
tions for any given pre-tax income distribution except the perfectly egalitarian
ones and those which are very “close” to be perfectly egalitarian. Since the
elements of the latter set of distributions is extremely unlikely to be observed
in practice, we conclude that the logical impossibility results stated above give
way to practical possibility conclusions.

One should, however, be careful in interpreting our possibility theorem
(Theorem 4.2). In our view, all there is to be deduced from this result is that it
might be possible to extend Jakobsson—Fellman theorem to the domain of
taxation of heterogeneous populations by replacing the property of inequality
reduction for any pre-tax income distribution by ¢ -progressiveness. However,
it must be noted that the significance of Jakobsson—Fellman theorem comes
from the equivalence it establishes between a schedule property of a tax
function and the conceptual property of inequality reduction for any given
income distribution. The present paper admittedly falls short of establishing
such a strong result in the case of taxation of heterogeneous populations. For
the time being, the important problem of characterizing e-progressiveness by
the functional properties of a tax structure remains open.

6. Appendix

6.1 Preliminary lemmata

Fix ne N(H) and 0 < k <a[n]. Define I'y: Z'(n) = Z(n) (recall (2)) as the
upper contour set of x with respect to =;; that is,

Ii(x)={zeZin)| zz.x} for all x e Z(n).

Two immediate properties of this correspondence is that

M) Tulx) = {kL,}, (6)
xeZ'(n)
and that

Vx,y e Xx(n): x € I'(y) = T'i(x) S Ti(y). (7)

A geometrical characterization of I', can be given as

I(x)=co{xPeZ(n)|PePy,} forall xeZ(n), (8)
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(0,0,k)

(0,k,0) (k.,0,0)

Fig. 2.

where 2, is the set of all [n] x [n] dimensional permutation matrices.? (See
Fig. 2.) This reveals that I';(x) is a convex and compact set for any given
x € Z(n).

The following lemmata are illuminating when compared to (6).

Lemma 6.1. Let ne A (H),0 <k <oa[n],seZ, and x", ..., x*€ Z(m)\{k1,}.
We have (V= [y (x') # {k1,}.

Proof. Define z:Z, . — Z(n) by

171 1 1 1\ 1

Since lim,,, ,,z(m) = kl1,,, we clearly have z(m) =, x/ for allj = 1, ..., s, for any
finite s and for sufficiently large m. []

Lemma 6.2. Letne A (H),0 <k <a[n],se€Z,, and x*, ... ,x* € Zy(n). Let

L) = {(2s .. 2) [0, 171 Y 4;=1).
j=1

If 5=, Ax) + k1, for any (A, ..., L) € L(s), then

N F"(,-_il ;vjxf> +(k1,).

(A1, .., As)EL(s)

12 This important result is due Rado (1952). It also appears as Corollary B.3 in
Marshall and Olkin (1979), p. 23, where a related historical account is given as well. See
also Ok (1996) for a further study of the correspondence I',(-).



540 E. A. Ok

c(y) =c(»,A()

Fig. 3.

Proof. For brevity, we demonstrate the proof for s = 2. (However, the argu-
ments are perfectly general, and the extension to the case of any finite s is
trivial.) Let

A =ixj+(1—2Ax7;, 0<i<lj=1,..,[n],
and n(2) = 01 (A), .. , n(4)). Define

hy(Z) =min{n;(A):j=1, ...,[n]}, 0<i<Ll.

hy is clearly continuous on [0, 1], and hence, by Weierstrass’ theorem,
max;gpo, 1111 (4) exists. Let 4; € argmax o, 1;11(4). Now define

hy(72) = min{n;(A) + n;(A): i,j=1, ...,[n]and i ¥j}, 0<Ai<1
Similarly, max;o, 11h2(4) exists, so let A, € argmax;o,1;h2(4). Continuing
inductively, we determine 4y, A5, ..., Apg—1 € [0, 1] such that
hj(2) = min{n; (A) + ... +n;,(A: 1 <i, <[n]andi, *i,r.qg=1, ...,j},
)
forallj=1, ...,[n] —1and all 1€ [0, 1].

Now, let y € (/27" I'y(n(4))). Then, we have
[n]—1
Vi =hi(Ay), Y1+ Y2 = hy(dy), ..., Z Vi = hy—1(Ap—1)
j=1
so that, in view of (9), y =;n(4)forall A€ [0, 1]. Thus, y € ﬂle[o, 11k (1(4)), and
we conclude that
[n]—1

() TG s () L) = () Llx' + (1= 2)x?).

j=1 2€[0, 1] 4€[0,1]

But, by Lemma 6.1, (/27 'I(n(4))) * {k1,}, and hence the lemma. []J

The following lemma will play a crucial role in the proof of Theorem 4.2.
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Lemma 6.3. Letne A/ (H),0 <k < o[n] and ¢ > 0. There exists a distribution
X € B,(k1,)\{k1,} such that x € I',(y) for all y € X'\ (n)\ By(k1,).">

Proof.'* Choose j € B,(k1,)\{k1,} close enough to k1, so that I',(y) = B,(kl,).
Let

o(p,J) =ikl +(1 =2y, 0<i<l,

for any y € Z(n)\ B,(k1,). Since I',(}) is a convex and compact set, for a given
y € Zx(n)\ B,(k1,), there exists one and only one A(y) €(0,1) such that
a(y, A(y)) € d(I'(y)), where 0( ) is the set function mapping any subset of Z';(n)
to its boundary. Let a(y)=a(y, A(y)) for all ye Z«(n)\Bykl,). By (7),
Ii(a(y)) = Ti(y) so that

N L= () L) = () L) (10)

yed(T(3)) YeZi(m\B.(k1,,) YeZi(m)\B.(k1,)
Now, let I'i(y) have m faces, say F(}), ... , F.(}) (see Berge 1963, p. 169).
Clearly,

m

NN Ly = N L. (11)

Jj=1 yeF;(y) yed(I'(y))

But by definition of a face,

() I'ly) = N Fk<z;“iJ7P{>
yeFj(y) (21, ... s Amj)eL(mj) i=1
where jPi, ..., jPj, are the vertices of Fi(j),j =1, ... ,m, (with P} being
permutation matrices; recall (8)), and L(.) is as defined in Lemma 6.2. Conse-
quently, by Lemma 6.2, there exists x’ # k1, such that X’ € (),cp, [(), j =
1, ..., m. But then, by (7), I'(x) S (Vyer;50 [e(¥),j = 1, ... ,m, so that
NI < () () L) (12)
j=1 J=1 yeF;(»
Applying Lemma 6.1, we have x e ()}= I',(x’) for some X + k1,. Combining
this fact with (12), (11) and (10) completes the proof. []

6.2 Proof of Theorem 4.2

Define, for any 0 < w <o, f, = (%, ..., f¥) where
Mw) =l +1), h=1, .., H,

with aq, ..., ay being all positive and distinct, and ¢:R, ; — (0, o] being
strictly increasing and strictly concave. Also, for any a = (a;, ... , ag) e R |,
let
() aq, ifa1>"'>aH
v(a) = ) .
1, otherwise

13Recall that B,(k1,) denotes the openball (relative to Z'(n)) around k1, with a radius
of e.
14 The basic idea of the proof can be better followed by the help of Fig. 3.
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Notice that
lim f,(x) = (¢1), ..., (1) forallxe () Z(me), (13)
v(a)—0 ne V" (H)

since income levels are bounded from above. Pick any n e ./"(H) and notice
that, by Lemma 6.3, there exists X € B,(a[n]1,)\{a[n]1,} such that

xzpx  forall xe Zpy(n)\ B.(a[n]1,). (14)
Since, for any 0 < k < a[n], 3%~ X is true, (14) implies that
k
x>xpx forall xe I (Z o)\ Be(a[n]1,)), (15)

for some 0 < k < a[n].1° But it is easy to verify that, for any 0 < k < a[n],

k
Xi(n)\ B;(k1,) € Z'(n)\ Byjapm (k1) = an] (Zopn(m)\ B [n]1,)).

Therefore, by (14) and (15),

xzpx  forallxe () (Zin)\Bykl,)).
0 <k <q[n]
But since x + a[n]l,, we have (¢(1), ..., ¢(1))>.x, and thus by (13), we can
choose ay, ..., ay to yield a small enough v(a) to guarantee f,(x)>; X. In view
of (16), this yields

fx)>x forallxe () (Z(n)\Bykl,)
0 <k<a[n]
for a certain choice of a4, ... , ay. But noting that U ke(0.o0n1 1 (X k(1) \ Bo(k1,)) is
a union of disjoint sets, we have

U (@m)\B(k1,)) = Z'(n)\B(1,) = Z (n; ¢)

ke(0,a[n] ]

(recall (4)) so that
f,(x)>,x forall xe Z'(n;¢)

for a certain choice of ay, ..., ay. Finally, notice that, by definition of v(a),
the chosen ay, ...,ay must satisfy a; > --- > ay, and hence, we have
f'> - > (" Furthermore, strict concavity of ¢ guarantees the separate
progressiveness of each /", h =1, ..., H. The proof of Theorem 4.2 is, there-
fore, complete.

6.3 Proof of Remark 4.3
Note that, for any given ne ./ (H), the above argument yields an

a(n) = (a,(n), ..., ag(n)) such that £, (x)>.x for all x e Z(n; ¢). But, for any

13 Here we employ the notation that 74 = {ya: ae 4} for any 4 = R%, se Z_ , and
y > 0.



Progressive tax structures 543

given me Z4 ., N,,(H) is finite so that min, ., anv(a(n)) exists, and for any
choice of

n e argmin v(a(n)),
ne N, (H)

we must have

fm(x)>rx forallxe () Z(ne)

ne N m(H)

as it is sought.
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