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Abstract. This paper extends the work of Gehrlein and Fishburn (1976) and
Gehrlein (1982) by providing a general theorem relating to the analytical
representation of the probability of an event in a given space of pro®les. It
applies to any event characterized by a set of linear inequalities regardless of
whether the coe½cients de®ning the inequalities are integer or fractional
coe½cients. An algorithm for the probability calculation is also suggested.
This suggested methodology is used to provide a complete characterization of
the vulnerability properties of the four scoring rules studied in Lepelley and
Mbih (1994) to manipulation by coalitions in a 3-alternative n-agent society.

1 Introduction

Pioneering research on the analytical representation of the probability of an
event in a given space of pro®les under the Impartial Anonymous Culture
(IAC) condition may be traced to Gehrlein and Fishburn (1976). Focusing on
the issue of transitivity in majority voting in a three-alternative election, they
divided the set of pro®les with a simple majority winner into three subsets
each de®ned by a set of linear inequalities. By an appropriate rearrangement
of the de®ning inequalities, they showed that the number of lattice points in
each of these subsets are easily enumerated and the sum representable as a
polynomial in n, the size of the electorate. As the IAC condition assumes that
each pro®le in the given space is equally likely to be observed, the expected
likelihood of transitivity in majority voting can be obtained by direct sum-
mation of the cardinality of each of these subsets and expressing the resulting
sum as a fraction of the total number of pro®les in the given space. It is clear
this expected likelihood is a ratio of two polynomials in n.



When extending this procedure to analyze the expected likelihood of other
events in the space of pro®les, appropriate re®nements may have to be intro-
duced as is demonstrated in Gehrlein (1982) when he studied the Condorcet
e½ciency of four constant scoring rules. Here, a ®ner partition is required to
facilitate enumeration and to allow polynomial representation of the proba-
bility. The approach of re®ning the partition structure, as is already clear, may
be applied to the calculation of the probability of many di¨erent events in the
space of pro®les. For instance, using Gehrlein's approach, Lepelley and Mbih
(1987, 1994) analyzed the vulnerability of scoring rules to manipulation by
coalitions and Lepelley (1993) discussed the expected likelihood of violation of
the Condorcet loser property. In this latter work, Lepelley was able to show
from his analytical results, that both the plurality rule and the anti-plurality
rule have about a 3% chance of electing the Condorcet loser. More recently,
Lepelley, Chantreuil and Berg (1996) studied the monotonicity properties of
runo¨ elections using the same procedure. How di¨erent voting rules perform
under di¨erent distributional assumptions on pro®les can also be studied as in
the case of Berg and Lepelley (1994) when they compared the performance of
di¨erent voting rules under the IAC condition and the analytical less tractable
IC (Impartial Culture) condition.

It is not a matter of debate that Gehrlein's procedure is an important step
forward in probability calculations of the type considered above. The proce-
dure is however event-speci®c. When the set of linear inequalities describing
the event involves integer coe½cients for the ni variables, where ni refers to
the number of agents with the i-th preference ordering, this event-speci®c
approach presents no special di½culty. However, if non-integer coe½cients
are encountered for one or more of these ni variables, then an analytical so-
lution may not be forthcoming. This is the case encountered in the Lepelley
and Mbih (1994) paper when they studied the vulnerability of the anti-plural-
ity with runo¨ rule to manipulation by coalitions.

This paper generalizes Gehrlein's procedure to cover any event in a given
space of pro®les capable of being described by a ®nite set of linear inequalities,
inclusive of those involving non-integer coe½cients for the ni variables. An
integral aspect of this generalization is a procedure for determining the peri-
odicity of the analytical solution. For this purpose, the paper is organized as
follows. In the ®rst section, two examples, one involving integer coe½cients
and the other, fractional coe½cients for the ni variables are presented. A gen-
eral theorem on the computation of the probability of any event in a given
space of pro®les follows and a suggested algorithm for the probability calcu-
lation is discussed. Finally, the suggested methodology is applied to the study
of the vulnerability properties of the four constant scoring rules to manipula-
tion analyzed in Lepelley and Mbih (1994). A complete characterization of the
analytical results describing the vulnerability properties of these rules to ma-
nipulation by coalitions is detailed supplementing those contained in the
Lepelley-Mbih paper.
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2 Analytical representation of probabilities: Two examples

Before proceeding to the general theorem for the analytical representation of
probabilities, two examples drawn from the preceding literature are presented.
The primary purpose here is to highlight the di½culty associated with the
Gehrlein-Fishburn procedure when the set of pro®les giving rise to an event is
characterized by a set of linear inequalities involving fractional coe½cients in
the de®ning variables.

Let A � f1; 2; . . . ; qg and N � f1; 2; . . . ; ng denote the set of alternatives
with cardinality q and the set of agents with cardinality n respectively and let
L be the set of preference orderings de®ned on A with L restricted to the set of
strong or linear orderings on A. L has cardinality q!. A preference pro®le for
the society may be expressed as a q!-vector P � �n1; n2; . . . ; nq!� with ni agents

having the i-th preference ordering, i � 1; 2; . . . ; q! and
Pq!

i�1

ni � n. Let P n be

the set of all conceivable pro®les given the preference restriction. Then the

cardinality of P n, denoted, jP nj, is
n� q!ÿ 1

q!ÿ 1

� �
. A social choice rule F

maps P n to the set of alternatives A. That is, F : P n ! A.
Given a social choice rule F, let P E be the set of pro®les under which an

event E occurs and let this be described by a set of linear inequalities in the
ni variables. Let jP E j denote the cardinality of this set. Under the IAC

condition, the probability that event E occurs is the ratio
jP E j
jP nj.

Example 1. (Transitivity in social orderings under majority rule): For the pur-
pose of comparison, the following example drawn from Gehrlein and Fishburn
(1976) is presented. Let A � fX ;Y ;Zg, L � fXYZ;XZY ;YXZ;YZX ;ZXY ;
ZYXg, P � �n1; n2; . . . ; n6� and consider the event E where alternative X

emerges as the Condorcet winner. The set of pro®les that gives rise to this
event E may be written as:

P E �
�
�n1; n2; n3; n4; n5; n6� : ni A f0; 1; 2; . . . ; ng;

X6

i�1

ni � n; n3 � n4 � n6 U
nÿ 1

2
; n4 � n5 � n6 U

nÿ 1

2

�
:

It is clear that the event analyzed does not involve non-integer coe½cients in
the ni variables. Computation of the probability of such an event E requires
the enumeration of lattice points contained in the polyhedron de®ned by this
set of linear inequalities. Typically, as the variables are inter-related in the
de®ning inequalities, the set of inequalities has to be transformed into a form
that will facilitate enumeration as is illustrated below.
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jP E j �
������n2; n3; n4; n5; n6� : ni A f0; 1; 2; . . . ; ng;

0U n2 U nÿ n3 ÿ n4 ÿ n5 ÿ n6;

0U n3 UMIN nÿ n5 ÿ n4 ÿ n6;
nÿ 1

2
ÿ n4 ÿ n6

� �

� nÿ 1

2
ÿ n4 ÿ n6;

0U n5 UMIN nÿ n4 ÿ n6;
nÿ 1

2
ÿ n4 ÿ n6

� �

� nÿ 1

2
ÿ n4 ÿ n6;

0U n4 UMIN nÿ n6;
nÿ 1

2
ÿ n6

� �
� nÿ 1

2
ÿ n6;

0U n6 U
nÿ 1

2

�����:
Here, MIN �a; b� refers to the minimum of a and b. As the coe½cients of the
ni variables in these inequalities are integer coe½cients, the number of lattice
points contained in each subset can be readily enumerated and expressed as a
polynomial in n. For n odd, the number of pro®les yielding candidate X as the
Condorcet winner is thus

X�nÿ1�=2

n6�0

X�nÿ1�=2ÿn6

n4�0

X�nÿ1�=2ÿn4ÿn6

n5�0

X�nÿ1�=2ÿn4ÿn6

n3�0

Xnÿn3ÿn5ÿn4ÿn6

n2�0

1

� �n� 1��n� 3�3�n� 5�
384

:

The expected likelihood of a transitive social ordering under majority rule for
the three-alternative case is thus three times the above expression divided by

n� 5

5

� �
.

Example 2. (Vulnerability of the anti-plurality rule with runo¨ to manipulation

by coalitions): Unlike Example 1, the following event analyzed in Lepelley and
Mbih (1994) involves non-integer coe½cients in the ni variables. Let A �
fX ;Y ;Zg, L � fXYZ;XZY ;YXZ;YZX ;ZXY ;ZYXg, P � �n1; n2; . . . ; n6�
and consider the event E whereby a pro®le is vulnerable to manipulation by
coalitions under the anti-plurality with runo¨ rule. One of the polyhedra
describing this event is given by the following set of linear inequalities.
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�
�n1; n2; n3; n4; n5; n6� : n1 � n2 � n3 > n4 � n5 � n6;

n1 � n2 � n5 > n3 � n4 � n6;

n2 � n5 > n4 � n6

n2 � n5 > n1 � n3

n3 � n4 � n6 > n2 � n5

n3 � n4 � n6 > n1

n1 � n3 � n4 > n2 � n5 � n6X6

i�1

ni � n; ni V 0; ni : integers

�
:

To enumerate the number of lattice points contained in this polyhedron, it
su½ces to enumerate the number of lattice points in the following transformed
set.�

�n1; n2; n3; n4; n5� : n1 � n2 � n3 >
n

2

n1 � n2 � n5 >
n

2

n1

2
� n2 � n3

2
� n5 >

n

2

n2 � n5 > n1 � n3

n

2
>

n1

2
� n2 � n5

n

2
> n1 � n2

2
� n5

2

n1 � n3 � n4 >
n

2

0U
X5

i�1

ni U n; ni : integers

�
:

In contrast to that obtained in Example 1, the coe½cients of some of the ni

variables in the describing inequalities are fractional. A perusal of the above
set reveals this to be the case for n1; n2; n3 and n5. When confronted with these
fractional coe½cients, enumerating the cardinality of the set using the Gehr-
lein-Fishburn procedure poses complication and an analytical solution is not
forthcoming. Such is the di½culty encountered in Lepelley and Mbih (1994).
The Gehrlein-Fishburn procedure may however be readily generalized to
cover such cases by a suitable transformation of the variables with fractional
coe½cients. To illustrate, for n1 odd (even), replacing n1 by 2k1 � 1�2k1� will
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give us two subsets involving only integer coe½cients for the transformed
variable k1. Repeating for n2; n3 and n5 yields altogether 16 subsets each
involving only integer coe½cients for the transformed variables and each is
easily enumerated and expressed as a polynomial in n using the Gehrlein-
Fishburn procedure. For purpose of exposition, however, presentation of the
analytical results for this event is di¨ered to the last section of this paper. Instead,
the general theorem motivating this generalization of the Gehrlein-Fishburn
procedure and a suggested algorithm for implementing are presented next.

3 Theorem and algorithm

In this section, it is demonstrated that the probability of any event charac-
terized by a set of linear inequalities in a given space of pro®les may be ana-
lytically represented as the ratio of two polynomials in n. Furthermore, a
general algorithm for computing the polynomials is provided.

Theorem: Let

f �n� �
������x1; x2; . . . ; xm� :

Piÿ1

j�0

aijxj � cin

ei
U xi U

Piÿ1

j�0

bijxj � din

ei
;

i � 1; 2; . . . ;m; x0 � 1; x1; x2; x3; . . . ; xm are integers

�����
and the a 0ijs, b 0ijs, c 0i s, d 0i s, e 0i s are integers with ei > 0 for all i. Let e � e1e2 � � � em

and r be a non-negative integer less than e. Then there exists a set of rational

numbers fp
�r�
m ; p

�r�
mÿ1; p

�r�
mÿ2; . . . ; p

�r�
0 g such that

f �n� � p�r�m nm � p
�r�
mÿ1nmÿ1 � � � � � p

�r�
1 n� p

�r�
0

for n1 r �mod e�.
Proof: Let n1 r �mod e� and e 0i �

Qm
j�i�1

ej. For 0U ri < e 0i , i � 1; 2; . . . ;mÿ 1,
de®ne

g�r1; r2; . . . ; rmÿ1; n�
� f �n j given that x1 1 r1�mod e 01�; . . . ; xmÿ1 1 rmÿ1�mod e 0mÿ1��:

In other words,

g�r1; r2; . . . ; rmÿ1; n�

�
������x1; x2; . . . ; xm� :

Piÿ1

j�0

aijxj � cin

ei
U xi U

Piÿ1

j�0

bijxj � din

ei
;

i � 1; 2; . . . ;m; x0 � 1;

x1 1 r1�mod e 01�; . . . ; xmÿ1 1 rmÿ1�mod e 0mÿ1�; xm are integers

�����
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and

f �n� �
X
R2Y

g�r1; r2; . . . ; rmÿ1; n� where R � �r1; r2; . . . ; rmÿ1�

and

Y � f�r1; r2; . . . ; rmÿ1� j 0U ri < e 0i ; i � 1; 2; . . . ;mÿ 1g:

Now

g�r1; r2; . . . ; rmÿ1; n� �
������y1e 01 � r1; y2e 02 � r2; . . . ; ymÿ1e 0mÿ1 � rmÿ1; xm� :

ai0 �
Piÿ1

j�1

aij�yje
0
j � rj� � ci�nÿ r� � cir

ei
U yie

0
i � ri

U

bi0 �
Piÿ1

j�1

bij�yje
0
j � rj� � di�nÿ r� � dir

ei
;

i � 1; 2; . . . ;mÿ 1 and

am0 �
Pmÿ1

j�1

amj�yie
0
j � rj� � cm�nÿ r� � cmr

em

U xm

U

bm0 �
Pmÿ1

j�1

bmj�yje
0
j � rj� � dm�nÿ r� � dmr

em
;

y1; y2; . . . ; ymÿ1; xm are integers

�����
�
������y1; y2; . . . ; ymÿ1; xm� :

ai0 �
Piÿ1

j�1

aijrj � cirÿ eiri

e 0iÿ1

2666666

3777777
� ai1e2 � � � eiÿ1 y1 � ai2e3 � � � eiÿ1 y2 � � � �

� aiiÿ1 yiÿ1 � ci
e

e 0iÿ1

� �
nÿ r

e

� �
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U yi U

bi0 �
Piÿ1

j�1

bijrj � dirÿ eiri

e 0iÿ1

6666664
7777775� bi1e2 � � � eiÿ1 y1 � bi2e3 � � � eiÿ1 y2

� � � � � biiÿ1 yiÿ1 � di
e

e 0iÿ1

� �
nÿ r

e

� �
;

i � 1; 2; . . . ;mÿ 1

and

am0 �
Pmÿ1

j�1

amjrj � cmr

em

2666666

3777777
� am1e2 � � � emÿ1 y1 � am2e3 � � � emÿ1 y2 � � � �

� ammÿ1 ymÿ1 � cm
e

em

� �
nÿ r

e

� �
U xm

U

bm0 �
Pmÿ1

j�1

bmjrj � dmr

em

6666664
7777775� bm1e2 � � � emÿ1 y1 � bm2e3 � � � emÿ1 y2

� � � � � bmmÿ1 ymÿ1 � dm
e

em

� �
nÿ r

e

� �
;

y1; y2; . . . ; ymÿ1; xm are integers

�����:
(Note: bac is the largest integer less than or equal to a and dae is the smallest
integer greater than or equal to a.)
Thus

g�r1; r2; . . . ; rmÿ1; n�

�
������y1; y2; . . . ; ymÿ1; xm� : uii

nÿ r

e

� �
�
Xiÿ1

j�0

uij yj

U yi U vii
nÿ r

e

� �
�
Xiÿ1

j�0

vij yj ; umm
nÿ r

e

� �
�
Xmÿ1

j�0

umj yj
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U xm U vmm
nÿ r

e

� �
�
Xmÿ1

j�0

vij yj;

y0 � 1; i � 1; 2; . . . ;mÿ 1 and the uij
0s and the vij

0s are integers

�����:
g�r1; r2; . . . ; rmÿ1; n� is therefore representable by a polynomial of degree at

most m in variable
nÿ r

e
. Accordingly, g�r1; r2; . . . ; rmÿ1; n� is representable by

a polynomial of degree at most m in variable n. Since f �n� is the sum of
g�r1; r2; . . . ; rmÿ1; n� over �r1; r2; . . . ; rmÿ1�, f �n� is also a polynomial of degree
at most m in variable n. Q.E.D.

It is implicitly clear from the proof above that the coe½cients of the poly-
nomial f �n� depend on r and e. Furthermore, the periodicity of f �n�, denoted
e�, is at most equal to e where e � e1e2 � � � em and often is a proper factor of e.
In this section, a simple algorithm for identifying the periodicity e� and the
exact coe½cients of the polynomial is provided for the case of jAj � q, jNj � n
and n1 r�mod e��.
Let

f �n� � p�r�m nm � p
�r�
mÿ1nmÿ1 � � � � � � � � �p

�r�
2 n2 � p

�r�
1 n� p

�r�
0 ;

where p
�r�
i , i � 0; 1; 2; . . . ;m are the parameters or coe½cients of the polyno-

mial to be determined. By exploiting the modulo e� property of f �n�, the
exact values of these parameters as well as the value of e�, the periodicity of
the function, may be computed as is demonstrated below.
Let

G�n; e�� �

f �n�
f �n� e��

f �n� 2e��
..
.

f �n�me��

26666664

37777775; V�r� �

p
�r�
m

p
�r�
mÿ1

..

.

p
�r�
2

p
�r�
1

p
�r�
0

266666666664

377777777775
and

H�n; e��

�

nm nmÿ1 nmÿ2 � � � n 1

�n� e��m �n� e��mÿ1 �n� e��mÿ2 � � � �n� e�� 1

�n� 2e��m �n� 2e��mÿ1 �n� 2e��mÿ2 � � � �n� 2e�� 1

�n� 3e��m �n� 3e��mÿ1 �n� 3e��mÿ2 � � � �n� 3e�� 1

..

. ..
. ..

. ..
. ..

. ..
.

�n�me��m �n�me��mÿ1 �n�me��mÿ2 � � � �n�me�� 1

26666666666664

37777777777775
:
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Then G � HV . As H is of full rank, its inverse exists and this inverse may be
algebraically determined. The coe½cients of the polynomial as given by the
vector V may thus be deduced from V � Hÿ1G. Since for a given value of n,
the vector of coe½cients V of the polynomial f �n� and the periodicity e� are
both unknown, the following algorithm is suggested.

Algorithm for identifying e� and V

Step 0: S � 0.
Step 1: S  S � 1, e�S� � S.
Step 2: Compute the exact number of pro®les represented by f �n� for n � 1,

1� e�S�; . . . ; 1� �m� 1�e�S�. This gives two initial sets of values for

vector G : G�1; e�S�� and G�1� e�S�; e�S��.
Let V S

1 � Hÿ1�1; e�S��G�1; e�S�� and V S
2 � Hÿ1�1� e�S�; e�S��

G�1� e�S�; e�S��:
Step 3: If V S

1 � V S
2 , then e� � e�S� and V�1� � V s

1 . Proceed to Step 4.
Otherwise, return to Step 1.

Step 4: Let 1 < rU e� and compute the number of pro®les represented by
f �n� for n � r, r� e�; . . . ; r�me�. Then V�r� � Hÿ1�r; e��G�r; e��.

As has been pointed out, the periodicity of f �n� is at most e �� e1e2 � � � em�
and very often is a proper factor of e. Furthermore, since e is a ®nite number,
the number of iterations required to determine the coe½cients of the polyno-
mial f �n� as well as e� is also ®nite and hence generally computable. It is,
however, imperative to note that f �n� may be readily enumerated by com-
puter for di¨erent values of n when q is small and n is not too large, for
example, q � 3 and n < 100.

4 Complete characterization of the manipulability properties of four scoring
mechanisms

In this section, the algorithm described in the preceding is used to completely
characterize the manipulability properties of the four constant scoring rules
analyzed in Lepelley and Mbih (1994). These are: the plurality rule; the anti-
plurality rule; the plurality with runo¨ rule; and the anti-plurality with runo¨
rule. Brie¯y, the plurality rule picks as social choice the alternative with the
most ®rst-place rankings whereas the anti-plurality rule selects as social choice
the alternative with the least last-place rankings. The plurality rule with runo¨
procedure selects, in the absence of a majority winner, the two top scorers
from the ®rst round for a second round contest. The winner in the second
round is the social choice. In contrast, the anti-plurality with runo¨ rule
sequentially eliminates the alternative with the most last-place rankings, the
social choice being the ultimate survivor of this process. The concept of the
vulnerability of a rule to manipulation by coalitions is that employed in
the Lepelley-Mbih paper.
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Let jAj � 3 and let f �n� denote the cardinality of the set of unstable pro-
®les under scoring mechanism Fs. Then

f �n� � p
�r�
5 n5 � p

�r�
4 n4 � p

�r�
3 n3 � p

�r�
2 n2 � p

�r�
1 n� p

�r�
0 ;

where p
�r�
i , i � 0; 1; 2; . . . ; 5 are the coe½cients of the polynomial to be deter-

mined. In this instance, the dimensions of the two vectors G and V are �6� 1�
and H is a �6� 6� matrix.

Table 1 Coe½cients of the polynomial 120f(n) under plurality rule

N n5 n4 n3 n2 n1 n0

1(mod 6) 7/24 155/48 425/36 325/24 ÿ79/8 ÿ2735/144

2(mod 6) 7/24 155/48 425/36 185/12 7 80/9

3(mod 6) 7/24 155/48 425/36 325/24 ÿ79/8 ÿ375/16

4(mod 6) 7/24 155/48 425/36 185/12 7 40/9

5(mod 6) 7/24 155/48 425/36 325/24 ÿ79/8 ÿ2095/144

6(mod 6) 7/24 155/48 425/36 185/12 7 0

Table 3 Coe½cients of the polynomial 120f(n) under anti-plurality rule

N n5 n4 n3 n2 n1 n0

1(mod 3) 14/27 175/27 260/9 1465/27 926/27 ÿ40/9

2(mod 3) 14/27 175/27 800/27 1625/27 1426/27 440/27

3(mod 3) 14/27 175/27 260/9 55 38 0

Table 2 Coe½cients of the polynomial 120f(n) under plurality rule with
runo¨

N n5 n4 n3 n2 n1 n0

1(mod 6) 1/9 665/432 65/9 785/72 ÿ158/27 ÿ2005/144

2(mod 6) 1/9 665/432 905/108 785/72 677/27 200/27

3(mod 6) 1/9 665/432 65/9 105/8 6 ÿ45/16

4(mod 6) 1/9 665/432 775/108 155/12 187/27 ÿ40/27

5(mod 6) 1/9 665/432 170/27 385/72 ÿ313/27 ÿ5215/432

6(mod 6) 1/9 665/432 775/108 155/12 23/3 0
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Applying the algorithm to the plurality rule, the plurality with runo¨
rule and the anti-plurality with runo¨ procedure for jAj � 3 reveals the same
periodicity of e� � 6 for these scoring mechanisms. The vulnerability of each
of these three mechanisms is thus completely characterized by six sets of
coe½cients as presented in Tables 1, 2 and 4. For the anti-plurality rule, the
periodicity of f �n� is 3. In this instance, three sets of coe½cients su½ce to
completely describe its vulnerability to manipulation. These coe½cients are
presented in Table 3.

The polynomial functions presented in the 3 �mod 6� rows in Tables 1, 2
and 3 are analytically equivalent to that presented at the top of Table 1 in
Lepelley and Mbih (1994). Dividing these polynomials by the polynomial
d�n� � �n� 1��n� 2��n� 3��n� 4��n� 5� gives the required correspond-
ences. For the anti-plurality rule with runo¨ procedure, the exact polynomial
function corresponding to their numerical results is given in the 3(mod 3) row
of Table 4, again after dividing through by d�n�. Quite naturally, the results
coincide with that in Lepelley and Mbih (1994). First, the coe½cient of n5 for
all four scoring rules coincides with their limiting values. Second, the vulner-
ability of all four scoring rules increases monotonically as n increases in mul-
tiples of 12. Without any restriction on the step size, however, it can be readily
veri®ed that the vulnerability of the two runo¨ procedures to manipulation
does not increase monotonically with n. Despite this, the ranking of the four
rules by their vulnerability characteristics remains una¨ected. Of the four
mechanisms considered, the plurality rule with runo¨ is the least vulnerable to
manipulation. Both sequential mechanisms are less vulnerable to manipula-
tion than their non-sequential counterparts but the plurality rule performs
better when compared with the anti-plurality rule with runo¨. By and large,
these results are consistent with the established literature invoking the Impar-
tial Anonymous Culture (IAC) condition.

Table 4 Coe½cients of the polynomial 120f(n) under anti-plurality rule with
runo¨

N n5 n4 n3 n2 n1 n0

1(mod 6) 31/72 685/144 595/36 995/72 ÿ1541/72 ÿ2035/144

2(mod 6) 31/72 685/144 1535/108 55/36 ÿ33 ÿ640/27

3(mod 6) 31/72 685/144 595/36 305/24 ÿ189/8 ÿ315/16

4(mod 6) 31/72 685/144 1535/108 215/36 ÿ77/9 280/27

5(mod 6) 31/72 685/144 595/36 835/72 ÿ2341/72 ÿ4595/144

6(mod 6) 31/72 685/144 1535/108 15/4 ÿ59/3 0
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