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Abstract. In this paper we present a constructive, behavioural and axiomatic
approach to the notion of a stable set as a model of the standard of behaviour
of a social organisation. The socially stable set we introduce is a generalisation
of the von Neumann-Morgenstern stable set. In contrast with the original
version, our stability concept is always solvable. The standard of behaviour,
reflecting the established conceptual order of a society or organisation,
emerges from a dominance relation on alternative conceptions that are rele-
vant with regard to a certain issue. This common social choice phenomenon,
that permeates our societies and organisations, we have tried to clarify. Two
axiomatic characterisations as well as a construction algorithm for socially
stable sets are presented. These characterisations are based on behavioural
postulates regarding the individual or collective strategic behaviour of effec-
tive sets. Relations between socially stable sets and other notions of stability
are discussed.

1 Introduction

In Sect. 4.5.3 of the Theory of Games and Economic Behaviour, von Neu-
mann and Morgenstern define the vN-M stable set. This abstract notion for-
malises their idea of a standard of behaviour of a social economy. While the
authors describe this economy as a game of n participants with payoffs in the
form of imputations, incidentally, they also refer to a more general setting for
their stable sets. In Sects. 4.4.3 and 4.6.1, this more general setting appears to
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be a theory of social phenomena based on effective preferences between vari-
ous states of society or a organisation.

We follow this direction and primarily view the standard of behaviour as
an established conceptual order of an organisation or society. Such a standard
of behaviour often functions as the frame of reference for the collective decision
making. In a public or private organisation, the mission statement and policy
alternatives to realise it are subject to scrutiny from the perspective of the
standard of behaviour. In a society, the standard of behaviour reflects the de-
gree of civilisation. It is used to select policies and constitutes the normative
base for the political correctness of opinions and public statements and the like.

The structure from which the standard of behaviour emerges are alter-
natives and dominations between certain pairs of these alternatives. The alter-
natives we think of are strategic options, economic doctrines, various possible
organisational designs or other lasting intellectual conceptions with regard
to a certain issue. A domination between a pair of alternatives is assumed to
be generated by at least one effective coalition. Such a coalition consists of
members of the organisation who are together capable of enforcing their
preference of the one alternative over the other, if only these two were con-
sidered.

An effective coalition will be inclined to apply its binary dominance, but,
in the larger context of the dominance relation, it may have strategic reasons
for not exercising its power. Hence, the existence of a domination between two
alternatives does not imply that it is enforced. In our approach, this phenom-
enon of non-enforcement occurs in two instances. A dominance will be not
enforced by any of its effective coalitions if the preferred alternative is already
suppressed by at least one other effective coalition which does enforce its
preference. Such a suppressed alternative we call subdued. Situationally, it can
not serve as a viable alternative because it could at once be overturned or it
might even be generally considered as discredited. The other reason for non-
enforcement is equalisation of dominations along circular patterns within the
standard of behaviour. Here the effective coalitions involved may be moti-
vated by mutual interest. This conditional behaviour of effective sets we call
the non-enforcement principle. We consider it to be part of the organisational
or societal culture.

Let the set of alternatives be denoted by X and let A be the set of agents or
members of the organisation or society. R is the dominance relation on X that
is generated by the effective coalitions: If there is at least one effective coali-
tion generating a domination of x over y, then (x,y) € R. The collection of
effective coalitions corresponding to an elementary dominance (x,y) € R is
E., < 24\ & while &, y € Ex ,, denotes a specific effective coalition for (x,y) €
R. A pair of alternatives {x, y} between which no effective coalitions exist is
mutually independent. In case of opposing effective coalitions, (x,y) € R and
(y,x) € R, the two alternatives are discordant. If (x,y) € R and (y,x) ¢ R,
then (x,y) is asymmetric. If R contains no discordant pairs of alternatives,
then R is asymmetric. We will also refer to the elements of X as nodes and to
(x,») € R as an arc from x to y.
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Indeed, the structure of R is that of a directed graph on X. It contains
neither loops nor multiple arcs?, although cycles, including discordant pairs
configurations, are allowed. We assume R to be irreflexive and X to be finite.

A distinguishing feature of our theory is that no assumptions involving
value functions of the agents over X or individual rational behaviour are
made. Another point to notice is that we use the effective sets only to intro-
duce our behavioural postulates, and for interpreting our stability concept and
the theory. The formal development of our theory is based only on a given
dominance relation R, which may represent different social situations.

Also the vN-M stable set has this special nature. For S < X to be a vN-M
stable set, only two properties are required. Firstly, inner stability: No y con-
tained in S is dominated by an x contained in S. Secondly, external stability:
Every y not contained in S is dominated by some x contained in S, (von
Neumann and Morgenstern, Sect. 4.5.3).

The vN-M stable set has been criticised on various grounds. Often men-
tioned are the possibility of non-existence and that solutions may not be
unique. For example, in an odd cyclic pattern of dominations, the vN-M
stable set does not exist, while in case of an even cycle there are two solu-
tions. For these and other reasons attempts were made to generalise or alter
the definition of a stable set.

Some authors have, in stead of R, used the transitive closure R in their
definition of either inner- or external stability or both?. Vickrey (1959) intro-
duces the policing property by looking at R for the inner stability. Kreinovich
and Kosheleva (1990) introduce hierarchically stable sets by using R for the
external stability. Van Deemen (1991) introduces his generalised stable sets,
requiring both inner and external stability with respect to R°\. The notions of
stability of Vickrey and of van Deemen both exclude many classical vN-M
stable sets.

Another modification, the largest consistent set, was introduced by Chwe
(1994). Besides existence and uniqueness, this concept also solves an other
perceived problem of the theory of stability, that of myopia. Largest consis-
tent sets apply to dominance relations where the alternatives are economic
imputations. A difference with our and earlier notions of stability is that with
the same dominance relation the solution may depend on the specific impu-
tations. In the largest consistent set the central role is played by the notion of
deterrence of deviations from the solution. The idea is that any deviation from
a stable imputation is deterred because, by an uncontrollable sequence of
deviations, some stable imputation might be reached that, by the first deviat-
ing coalition, is less preferred than the original stable imputation. Deterrence
is based on risk aversion. It may be understood as an extremely farsighted
conservative mental disposition of the effective sets.

2 Arcs of the form (x, x) or more than one copy of an arc (x, y).
3 (x,») € R if there is a finite sequence of nodes x = xg, X1, ...,X, = y,m > 1, such
that (xz,x¢+1) € R,k=0,...,m— 1.
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Our non-enforcement principle reflects a different attitude. By way of
introduction to our notion of socially stable sets and to further illustrate the
role of effective coalitions, we first look at two simple examples. A more
elaborate application of these ideas is Example 3 in Sect. 2. In Example 1 we
particularly demonstrate how in that case non-enforcement makes sense of the
concept of a stable set of von Neumann and Morgenstern.

Example 1. Let X = {x,y,z} and R = {(x,y), (»,z)}. Then the vN-M stable
set {x,z} exists thanks to the effective sets in E, . not exercising their power to
discredit alternative z.

Why would these coalitions behave so obligingly? We suggest the following
explanation: The element x is undominated. Therefore an effective coalition
&xy € E , will feel no restraint in propagandising x to the detriment of y. This
unrestrained manifestation of the effective coalitions ¢ ,, subdues y. Hence the
effective coalitions in E,, . will not enforce, thus leaving room for alternative z.

In Theorem 5 we prove that the essential elements in this reasoning charac-
terise the vIN-M solution for acyclic dominance relations. The above example
makes plausible that the direct external domination by R, as was originally
required, should not be weakened. This conjecture is further supported by our
axiomatic Lemma 4 in Sect. 3. In our next example we give a first indication
towards the plausibility that cyclic patterns in a stable set should be allowed.

Example 2. Let X ={a,b,c,d} and R = {(a,b),(b,c),(c,a),(a,d),(b,d),
(¢,d)}. This dominance relation admits no vN-M stable set. However, the
effective sets along the cycle neutralise each other, because, by showing re-
straint, these effective sets can realise the inner stability of {a, b, c}. Since the
external stability is satisfied {a, b, ¢} then in effect becomes a vIN-M stable set.
This we consider to be sufficient motivation for the effective sets along the
cycle not to enforce their dominations.

From Example 2 and our axiomatic treatment in Proposition 6 and Theorem
7 of Sect. 3, it appears that the notion of inner stability can be relaxed to
generalised inner stability: a(R‘S)Cl = f, where a(R‘S)Cl is the asymmetric
part* of the transitive closure of Ris®. This means that for {x,y} =S, we
allow x to dominate y if y dominates x directly or indirectly within Rjg. Our
generalised notion of stability, introduced in Monsuur (1994), depends on
these two observations.

Definition 1. A socially stable set is a subset S of X such that: (i) 01(R|S)°l
and (ii) If y ¢ S, then there is an x € S, such that (x,y) € R.

1%}

A VvN-M stable set also is a solution of Definition 1, but, where this first
notion may not be solvable, a socially stable set always exists. A detailed

4 For an arbitrary relation R: (x,y) € aR if (x,y) € R and (y,x) ¢ R.
> Rs={(x,y)eR:{x,y} =S}
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description of the way in which the non-enforcement principle works as well
as a construction algorithm for socially stable sets, reflecting this principle, is
found in Sect. 2. In Sects. 3 and 4 we introduce and explain behavioural pos-
tulates and investigate various of their consequences. Our Theorems 8 and 10
are characterisations of socially stable sets by these postulates. While the first
of these two characterisations depends more on the behaviour of individual
effective sets, the second reflects the collective power of the effective sets that
support an established standard of behaviour. In Sect. 5 we make various
concluding remarks and suggest lines for further research.

Our research connects with the axiomatic program for the social sciences
that has originated with the work of J. F. Nash, (1950). Other contributions to
this program may be found in Barnett et al. (1995), see for example Thomson
(1995).

2 Non-enforcement

Any concept of stable sets derives its stability from the restraint that certain
effective coalitions can summon in exercising their existing binary domin-
ations. Whether or not this restraint applies to a specific dominance depends
on the position of it in the dominance relation R, the structure of R and the
actual standard of behaviour that has emerged.

A dominance (x,y) € R is non-enforced if no ¢, , € E. , exercises its binary
domination of x over y. An alternative y in X is in primary position if all
(x,y) € R are non-enforced or if no incoming arcs exist. It is subdued if some
&x,y € Ey, does exercise its binary dominance. In our view, there are two
instances where (x, y) € R will be non-enforced. The first case is that (x, y) lies
on a cycle in the stable set. Then we say that (x, y) is equalised. The other case
is where x is subdued. Unless (x, y) is equalised, (x,y) € R not only means that
x subdues y if x is in primary position, but also that then, for any (y,z) € R,
no ¢, - € E, . will use y to subdue z.

Definition 2. The non-enforcement principle is the general attitude of effective
coalitions e, , to refrain from enforcing (x,y) if x is subdued or if x and y lie on
a cycle in the stable set.

In general, given S = X, we may distinguish four types of binary domi-
nations. (1) Internal dominations (x,y) € R, with {x,y} = S. (2) Outgoing
dominations (x,y) € R, with x€ S and y € X\S. (3) Incoming dominations
(x,y) € R, with x € X\S and y € S. (4) External dominations (x,y) € R, with
{x,y} = X\S.

In case of the vIN-M stable set internal dominations do not exist, all out-
going dominations are enforced, while all incoming and external dominations
are non-enforced.

With our socially stable sets all outgoing dominations are enforced, in-
coming and external dominations are non-enforced. Cyclic internal domin-
ations we assume to be equalised. As in Example 2, an explanation that often
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applies is that effective sets involved in cyclic patterns realise that by collec-
tively not enforcing their dominations their favourite alternatives will end up
in a vN-M stable set. An axiomatic rationalisation of equalising cycles in the
stable set is given by Proposition 6 and Theorem 7 of Sect. 3.

Definition 3. Let R be a dominance relation on X. Then the core of R is defined
as C(R) = {x € X : there exists no y € X such that (y,x) € R}. Further, the set
of top elements of R, T(R), is defined as C(a(R%)).

According to this definition, x € T(R) if (y,x) € R® implies that (x,y) € R.
To further explicate the set of top elements, we firstly observe that the R-
connected component® of x € T(R) is entirely contained in T(R). Secondly,
we note that if xe T(R) and (y,x) € R, then also y € T(R), meaning that
T(R) has no incoming arcs. So T(R) consists of R-connected components
without incoming arcs.

Given a subset S of X, we may divide X into S, the S-dominated set D(S)
and the S-undominated set U(S): D(S) = {x € X\S: there is a node s € S
such that (s,x) € R}, U(S) = X\(Su D(S)). Note that the pairwise inter-
sections of these sets are empty. Further, we define N(S) by {(y,z)eR:y€
D(S)}. Assuming that outgoing dominations are enforced, N(S) consists of
non-enforced external and incoming dominations. We may now construct all
socially stable sets of X with a given dominance relation R. The algorithm
precisely reflects the non-enforcement idea of Definition 2 and is illustrated in
Example 3.

Construction algorithm

Initial step. Determine a socially stable set S for T(R).

Step 1. If S is externally stable for X, then go to the final step, else go to
Step 2.
Step 2. Extend S with S’ in such a way that S U S’ is a socially stable set

Jor T(R\N(S)). Replace Sby Su S’ and return to Step 1.
Final Step.  Observe that S is a socially stable set for X.

Theorem 1. Each run of the construction algorithm gives a socially stable set.

Proof. Let R be an arbitrary dominance relation on X. We show that each step
of the construction algorithm is practicable. Moreover, we show that before
(and after) each cycle of Steps 1 and 2 we have («) : S is generalised inner
stable and (ff) : U(S) has no arcs to S (there are no arcs (u,s) € R with u €
U(S),seS).

At the initial step, we may take S = T'(R) as a socially stable set for T'(R).
Any choice of socially stable set for T'(R) at this step gives a generalised inner
stable set. Furthermore, U(S) = X\T(R) because S is externally stable for
T(R). So U(S) has no arcs to S = T(R). We now have («) and ().

® A node y is in the R-connected component of x if y = x or if (,x) and (x,y) € R
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Suppose that at some Step 1, we observe that S is not externally stable for
X. Since there are no arcs from S to U(S) and vice versa, we have the fol-
lowing equality:

R\N(S) = Rs U Ry v{(x,1)e R:te D(S),xe S or U(S)}.

This implies that T(R\N(S)) = T(R|s) U T(Ry(s)), and since S is generalised
inner stable, we obtain T(R\N(S)) = S U T(Rjy(s)). Altogether, this shows
that S U S’, where S’ is any socially stable set for T'(R|y(s)), is socially stable
for T(R\N(S)). Notice that we may always take S’ = T(R|y(s)). Further-
more, S U S’ is generalised inner stable, showing (). We finally prove that
U(SuS’) has no arcs to Su S’, so Su S’ also satisfies (f). To this end,
suppose that there would exist (u,s) € R with ue U(Su S’) and se SU S’.
Since u ¢ D(S), we have (u,s) € R\N(S). Since s € T(R\N(S)), we obtain
that u also is in T(R\N(S)). But then, by the external stability of Su S’
for T(R\N(S)), there is a node ze SuU .S’ with (z,u) € R, contradicting
ueU(SuS).

This shows that all the steps are practicable. Moreover, S is extended each
time we observe that it is not externally stable. Since X is finite, we
eventually detect external stability at Step 1. Then, because of (a), S is socially
stable. []

To prove Theorem 3, we need the following lemma.

Lemma 2. Let R be a dominance relation and let M be a socially stable set for a
set of alternatives X. Then (1) S = M n T(R) is socially stable for T(R) and (ii)
M\S < U(S).

Proof. (i) To prove the external stability of M n T'(R), let xe T(R)\M. As
M is externally stable, there exists a node s € M such that (s, x) € R. Because
x € T(R), we have s € T(R), so s € M n T(R). Next consider the generalised
inner stability. Suppose (x,y) € R for x,y € M n T(R). Then, M being soci-
ally stable, x and y are on a cycle in Ryy;. This cycle is part of the R-connected
component of x (and y) and since x € T(R), it is a subset of T(R). So this
cycle is also in M n T(R). (ii) Suppose there would exist a node me M N
D(S). So there is a node se S with (s,m) e R. By the generalised inner
stability of M, we have (m, s) € (Rjy)®. Because s € T(R), we have m € T(R),
some T(R) "M = S, contradicting m € D(S). [

Theorem 3. The construction algorithm produces all socially stable sets.

Proof. Let M be a socially stable set. We show that we may reconstruct M by
a series of Steps 1 and 2. As follows from Lemma 2, we may take M n T(R)
at the initial step of the construction algorithm. Next, suppose that at some
Step 1, the set S < M constructed so far, is not externally stable. As follows
from the proof of Theorem 1, S has to be extended with a socially stable set
S" for T(Ry(s)). We therefore show that S’ = (M\S) N T(Rjys)) = M is
socially stable for T'(R|ys)), so it can be used at Step 2 of the algorithm.
Using Lemma 2(i), we only have to prove that M\S is socially stable for
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U(S). To this end, we show that before each cycle of Steps 1 and 2 we have
(y) : M\S < U(S). Since M is socially stable for X, (y) then implies that M\S
is socially stable for U(S).

As follows from Lemma 2, the choice above at the initial step gives (),
thus making possible our choice of S’. To prove that (y) still holds for S U .S’
constructed at some Step 2, observe that M\S is socially stable for U(S). So,
by making use of Lemma 2(ii), we deduce that the set M\ (S U S’) = (M\S)\
S’ is included in U(S’). Since we already have M\(Su S’) = M\S < U(S),
we obtain (y).

Finally, note that (y), together with S = M, shows that if at Step 1 we
observe that S is externally stable, we have S = M. [

We conclude this section with an example.

Example 3. Let X ={a,b,c,d,e,f,g} and R ={(a,c),(b,a),(c,d),(d,b),
(dye), (e, 9),(9,.f),(f,e)}. We observe that there are three socially stable sets:
S1={a,d,g}, S ={b,c,e.f,g} and S3 = {a,b,c,d,g}. We first discuss Sj,
which also is vN-M-stable. Due to the positive feedback in the cycle {«a, ¢,d, b}
= T'(R), once established, the solution S = {a, d} for this cycle, created at the
initial step of the construction algorithm, may easily stabilise: the dominations
(a,c), (d,b) and (d,e) are enforced, therefore (c,d), (b,a) and (e, g) are non-
enforced. Removing these non-enforced arcs at Step 2, g comes in primary
position: g € T(R\N(S)) = {a,d, g}. Next (g,f) is also enforced and (f,e)
therefore is non-enforced. Altogether (a,c), (d,b), (d,e) and (g,f) are
enforced, while (¢,d), (b,a), (e,g) and (f,e) are non-enforced. The set S, is
constructed similarly. In this case, the solution {b, ¢} for T(R) gives rise to a
cycle in the lower part of the solution. The socially stable set S3 was con-
structed by choosing S = T'(R) at the initial step. In Step 2, we remove the
non-enforced domination (e, g) and obtain the node g as a new core element.

1. vN-M Stable Set 2. Socially Stable Set 3. Socially Stable Set

NN N
NN N

| | |

The socially stable sets of X. Elements of S are in bold, x — y denotes
(x,y) € R.
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3 Behavioural characterisation of the socially stable set

In this section we introduce some behavioural postulates and show that these
elementary properties characterise the vIN-M stable set for acyclic relations. If
we want universal domain, we show that it is unavoidable to allow for cyclic
patterns of domination within the stable set. Thus we argue that socially stable
sets are a natural extension of the vIN-M stable set. Further, we present our
first characterisation of socially stable sets.

Let @ be a solution concept assigning to relations R on X in its domain a
subset of 2%\ &, where 2% denotes the set of subsets of X. The elements of
@(R) are to be interpreted as stable sets. Examples are ®@yN-Mm, determining
the classical vN-M stable sets, @, assigning to R its core C(R) and Py,
giving the socially stable sets: @go(R) = {S : S is a socially stable set for R}.

Neither @yn-m(R) nor @¢(R) are defined for all relations on X. Von
Neumann and Morgenstern already remark that, as regards existence, no
concessions can be made, (1944) 4.6.3. The concept of socially stable sets sat-
isfies this universal domain requirement as is shown in Theorem 1 of Sect. 2.

As we will show next, socially stable sets may be axiomatically charac-
terised by four behavioural postulates. Each of these we will first introduce
and try to elucidate. The elements of C(R) are undominated. Therefore, for
each x € C(R) and (x,y) € R, the effective coalitions ¢, , € E, , will feel no
restraint in propagandising x to the detriment of y. We therefore require both
core primacy:

If Se ®(R), then C(R) = S (1)
and core subduction:

If Se ®(R),xe C(R) and (x,y) € R, then y ¢ S (2)
We consider it undesirable if a stable set .S would change when the effective

coalitions in E, ,, finding that the alternative x they propagandise does not lie

in S, give up or dissolve. This property we call independence of non-enforced
dominations:

If Se ®(R) and (x,y) € R,x ¢ S then S € ®(R’),
where R' = R\{(x,7)} 3)

For completeness we remark that we assume the domain of @ to be closed
under to the transformation of R into R’. Also in what follows, when intro-
ducing independence conditions, we will implicitly assume that the domain is
closed under its operations.

In fact, for the purpose of Lemma 4, we use a weaker version: indepen-
dence of non-enforced external dominations

If Se ®(R)and (x,y) e R,x¢ S,y ¢ S then S € &(R'),
where R' = R\{(x,y)} (4)

The following lemma is our formal argument for not weakening the direct
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external domination of the vIN-M stable set. Modifications of the vN-M stable
set, such as those of van Deemen and Kreinovich and Kosheleva, that use the
transitive closure in the definition of external domination, do not simulta-
neously satisfy fairly minimal properties as core primacy and independence of
non-enforced dominations.

Lemma 4. Let @ satisfy core primacy and independence of non-enforced ex-
ternal dominations. Then for all relations R in its domain, all S € ®(R) and all
x € X\S, there isanse S : (s,x) € R.

Proof. Assume there exists S € @(R) and x € X\S, such that for all s€ S:
(s,x) ¢ R. Then we get a contradiction. Consider R’ = R\{(y, x) : (y,x) € R},
where we remove all non-enforced external dominations involving x. By re-
peated application of the independence of non-enforced external domina-
tions, we have S € @(R’). But x € C(R’), so by core primacy we have x € S/,
for all S” € @(R’). So x € S, contradicting x € X\S. [

If R is acyclic, then there is a unique vN-M stable set @,n-m(R), see Sect. 5.
The following theorem characterises @,n-Mm for acyclic relations.

Theorem 5. Let the domain of a solution concept @ be the set of acyclical
relations. Then @ satisfies core primacy, core subduction and independence of
non-enforced dominations, if and only if ®(R) = @ Nn-m(R) for all acyclical
relations R.

Proof. The ‘if-part’ being a straightforward verification of the three postulates,
we only prove the ‘only if’-part. By Lemma 4, S € @(R) directly dominates
X\S: every y not contained in S is dominated by some x in S. If there exists
{a,b} = S with (a,b) € R then we may derive a contradiction. Since (a,b) €
R|s and Rys is acyclic then, by going in opposite direction along arcs of R,
we deduce that there exist nodes {x, y} = S with (x,y) € Rigand x € C(R5) =
{v € S: there is no u € S such that (u,v) € R}. Let R’ be obtained from R by
deleting all non-enforced arcs, amongst them all (z,x) € R,z € X\S. Then x €
C(R’) and by independence of non-enforced dominations we have S € @(R’).
But now, by core subduction, we obtain y ¢ S contradicting {x,y} = S.
Summarising, we have shown that {S} = ®yn-m(R). O

As the following proposition regarding the cyclic triple shows, if we want
universal domain, it is unavoidable to allow for the possibility of cyclic dom-
inations in the stable set.

Proposition 6. Let # X = 3. Let the domain of @ contain all asymmetric rela-
tions on X. If @ satisfies core primacy, core subduction and independence of
non-enforced dominations, then @(R) = Dyoc(R) for all asymmetric dominance
relations R on X.

Proof. Let X = {a,b,c}. If R is an acyclic asymmetric relation, it is straight-
forward to verify that @ = @g,.. Now consider a cycle. Without loss of gen-
erality, we may assume that this cycle is R = {(a,b), (b,¢),(¢,a)} in which
case Dgoc(R) = X. Since S # J for each S e @(R), we only need to show
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that #S =1 or 2 are impossible. The case #S = 1 is impossible because of
the direct external domination, as follows from Lemma 4. Now consider for
example S = {a,b}. Then (c¢,a) € R is non-enforced and by independence of
non-enforced dominations S € @(R’), where R’ = R\{(c,a)}. But by core
subduction and a € C(R’) we deduce that b ¢ S, a contradiction. []

In socially stable sets we allowed for the possibility of cyclic patterns of dom-
ination in S. To present a more formal support of this notion of equalisation
then was given in Sect. 2, in Theorem 7 we show that the socially stable set is a
natural generalisation of the vIN-M stable set. To prepare this result we in-
troduce the S-equalised dominance relation, which we denote by Rgs.

Rgs = {(x,y) € R: (x,y) does not lie on a cycle of Rs} (5)

Theorem 7. Let R be in the domain of a solution concept @. (i) Suppose that
S € ®(R) implies S € Dyn-m(Rgs). Then S € Pgoc(R). (ii) Suppose that S e
@(R) if and only if S € Dyn-m(Rgs). Then @(R) = Dyoc(R).

Proof. (i) To show the direct external domination by S, let x € X\ S. Since S
is a VN-M stable set for Rgyg, there is an element s € S with (s,x) € Rgs <
R. To establish the generalised inner stability, let (x,y) € R and {x,y} = S.
The solution S being a vN-M stable set of Rgy, it follows that (x,y) ¢ Rgs,
showing that (y,x) € (R s)%. (i) Because of part (i), we only show that
Dsoc(R) = D(R). If S € Dy (R) then S € Dyn-m(Rgs), so S € P(R). [

In line with Theorem 7, we introduce our fourth behavioural postulate, the
independence of stable cycles:

If Se @(R), then S € P(Rgs) (6)

Our characterisation of socially stable sets in terms of the above properties is
as follows:

Theorem 8. (i) D, satisfies core primacy, core subduction, independence of
non-enforced dominations and independence of stable cycles. (i) If a solution
concept @ satisfies these same four postulates, then ®(R) = Do (R), for all R in
the domain of ®.

Proof. Part (i) being straightforward, we only prove (ii). In Lemma 4, we
showed that for all S e @(R) and all x € X\S, there is an s€ S: (s,x) € R.
This property is direct external domination. Next suppose there would exist
nodes {x,y} = S with (x,y) € Rgs, contradicting the generalised inner sta-
bility. Then let R’ be obtained from R by deleting all arcs (u,v) with u ¢
S. Using independence of non-enforced dominations, we obtain S € @(R’).
Next, by independence of stable cycles, S € @(Rg ), where Ry ¢ is an acyclic
relation. By repeating the ‘only if’-part of the proof of Theorem 5, we deduce
that S = @yn-m(Rfs). But we also have (x,y) € Rgg with {x,y} = S, con-
tradicting the inner stability of this vN-M stable set for Rgg. [

Below we show that the postulates (1), (2), (3) and (6) are logically indepen-
dent, where we only consider @ defined on the set of all asymmetric relations.
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In each example three postulates are satisfied while the fourth is violated.
Moreover, in each case @ ¢ @y, showing non-redundancy of each postulate
with respect to the other three. Let X = {a, b, c}.

(1). Let @({(a,b),(b,c)}) = ®({(a,b)}) = {{a}}. For the other relations
R on X (not being isomorphic to a previous relation R) we take @(R) =
Dy (R). Then @ does not satisfy core primacy since @({(a,b)}) # {{a,c}}.
(2). Let @(R) = {X} for all R. Then @ does not satisfy core subduction. (3).
Let @({(a,b), (b,c)}) = {{a}} while for other relations R (not being isomor-
phic to a previous relation R), let @(R) = Doc(R). Then @ is not independent
of non-enforced dominations: @({(a,b), (b,¢)}) = {{a}} while ®({(a,b)}) =
{{a,c}}. 4). Let X ={a,b,c,d}; ®({(a,b),(b,c),(c,a),(a,d),(b,d),(c,d)})
={{a,b,c,d}}. For other relations R we let @(R) = Pgoc(R). Then @ is
not independent of stable cycles since {a, b, c,d} ¢ ®({(a,d), (b,d),(c,d)}) =
{{a,b,c}}.

4 Collective power and non-frontal opposition

In this section we examine the collective power of the effective coalitions sup-
porting a standard of behaviour. This approach leads to an alternative axio-
matic treatment of socially stable sets. We also present additional results on
the extension of the classical vN-M solution concept. The main result of this
section is the characterisation by inclusion of @y, in Theorem 10. In Theorem
12, we also obtain an equality characterisation of @g..

Let the effective inner grand coalition Is of S € @ (R) be defined by Is =
UXG S.ye s(ex,y). Analogously, the effective external grand coalition is given
by Es =, Syex s(&x,y). The corresponding effective grand coalition Gs we
define by Gs = Es u Is. While the effective inner grand coalition of a socially
stable set maintains the inner stability, the effective grand external coalition
affirms the external stability.

An effective external grand coalition may assert its external stability by
enforcing out-going dominations, while ignoring incoming arcs. External stab-
ility may even be maintained if incoming arcs from subdued alternatives are
added. A socially stable set may only be upset by the elimination or reversion
of one or more of its outgoing arcs.

To make the situation regarding additional incoming arcs more precise, we
introduce the property of independence of non-frontal opposition:

If Se ®(R),se Sand x ¢ S, then S e ®(RuU{(x,s)}) (7)

It is easy to verify that @y, and @,Nn-M satisfy this axiom. We also have the
following characterisation of @yN-p.

Theorem 9. Let @ satisfy core subduction and independence of non-frontal
opposition. If the domain of @ contains that of ®yn-m, then Pyn-m(R) =
®(R).
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Proof. We first show that core primacy is implied by core subduction and in-
dependence of non-frontal opposition. To this end we let S € @(R) and x €
C(R). Suppose it is possible that x ¢ S. Using the independence of non-frontal
opposition, S € @(R U {(x,s)}), where s is taken from S. But, since x € C(R v
{(x,s)}) and (x,s) e Ru{(x,s)}, core subduction forces s to be member of
X\S, a contradiction. Now let R be a relation in the domain of ®,N-m. We
prove that S e @(R) if S € dyn-m(R). Remove all incoming arcs (x,s) € R,
x ¢S, se S, resulting in R'. Since S is a vN-M stable set of R, we have S =
C(R’). By core primacy and core subduction, S = @(R’). Next we add the
original arcs (x,s). By independence of non-frontal opposition we obtain S €

®(R). 0O

Theorem 9 is essential for the observation that @,n-p 1S the smallest solution
concept, with respect to inclusion, satisfying core subduction and indepen-
dence of non-frontal opposition.

In the proof of Theorem 9, we showed that core primacy is implied by core
subduction and independence of non-frontal opposition. So, our next charac-
terisation of socially stable sets is a corollary of Theorem 8.

Theorem 10. (i) Dy, satisfies independence of non-frontal opposition. (ii) If @
satisfies core subduction, independence of non-enforced dominations, indepen-
dence of non-frontal opposition and independence of stable cycles, then
D(R) = Dsoc(R), for all R in the domain of ®. [

Below, we prove the independence of the axioms of Theorem 10 and show the
non-redundancy of each postulate with respect to the other three. Again we
take as domain the set of all asymmetric relations. Let X = {a, b, c}.

(1). Let @(R) = {X} for all R. Then @ does not satisfy core subduction.
(2). If R is strongly connected, ®(R) = {{a}, {b},{c}}. For other relations,
let @(R) = D4oc(R). Then @ does not satisfy independence of non-enforced
dominations: if R is a 3-cycle, then {a} € ®(R), so (b,c) is non-enforced.
However, {{¢,b}} = ®(R\{(6,)}). (3). Let &({(a.b), (b,)}) = {{a}}, B(R)
= Dyoc(R) for other R. Then @ is not independent of non-frontal oppositions,
because {a} ¢ @({(a,b),(b,c),(c,a)}). (4). Let X ={a,b,c,d}; ®({(a,b),
(b,c),(¢c,a),(a,d),(b,d),(c,d)}) ={{a,b,c,d}}. For other relations R, let
@(R) = Dyoc(R). Then @ is not independent of stable cycles: {a,b,c,d} ¢
o({(a,d), (b,d), (¢.d)}).

Combining Theorems 9 and 10 we obtain a more accurate position of @
with respect to @yn-m and Dy,

Corollary 11. Let @ satisfy core subduction, independence of non-enforced
dominations, independence of non-frontal opposition and independence of
stable cycles. If we assume that the domain of @ contains that of ®yn-m, then
Dyn-M(R) € D(R) € Dyoc(R). [T

If in addition @ satisfies the wuniversal domain requirement, the first inclu-
sion is strict: there are relations R with @,n-m(R) # @(R). We prove this by
showing that there is no solution concept @ < @, with universal domain and
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& = @yN-m on the domain of @yN-y, that satisfies the independence of non-
frontal opposition. To this end let X = {a,b,c,d,e,f,g}, R = {(a,b), (b,c),
(c,a),(b,d),(d,e),(e.f),(f,9),(g,d)} and R" = Ru{(d,c)}. Since ® = Dy,
we have @(R) = {a,b, c,e, g}, the unique socially stable set. Further, if @ =
®yn-m on the domain of @yn-m, we obtain @(R') = {a,d,f}. This shows that
@ is not independent of non-frontal oppositions since (d, ¢) is a non-frontal
opposition for @(R).

A solution concept @, giving a unique stable set, may be constructed
by taking S = T'(R) at the initial step and S’ = T'(Rjy(s)) at each Step 2 of
the construction algorithm. This solution concept does not satisfy the inde-
pendence of non-frontal opposition. To show this let X = {a,b,c,d} and
R ={(a,b),(b,c),(c,d)}. Then Pp(R) = {a,c}. If we add (d,a) we have
Dnax(RU{(d,a)}) = {a,b,c,d}, showing that &, does not satisfy this in-
dependence condition. If we try to extend @y, in order to attain a concept @
that fulfils this postulate, this example shows that we have to demand that
{{a,c},{a,b,c,d}} =« ®(Ru{(d,a)}). In fact we have:

Theorem 12. Let a solution concept @ have universal domain. (i) If @ satisfies
independence of non-frontal opposition and, in addition, extends ®p,x, then
Dsoc(R) = D(R) for all R. (i) If @ also satisfies core subduction, independence
of non-enforced dominations and independence of stable cycles, we have @ =
Dyoc.

Proof. (i) We use induction to the number of dominations, # R, to show that
all socially stable sets S are in @(R). If # R = 0, then obviously there is just
one socially stable set: S = @, (R) which is supposed to be element of @(R).
Now suppose the assertion is true for # R =k, we prove it also holds for
# R =k + 1. Take a socially stable set S for R with # R =k + 1. If S does
not have incoming dominations, then the socially stable set S equals @pax(R)
showing that S € @(R). Now suppose that (x, s) is an incoming arc: x ¢ .S and
s € S. Then S is a socially stable set for R\{(x,s)}. Using the induction step
we obtain S € @(R\{(x,s)}). But, since (x,s) is a non-frontal opposition, we
obtain S € @(R), proving the theorem. (ii) Combine theorem 10 and (i)
above. []

This theorem shows that in the class of concepts @ satisfying the independence
of non-frontal opposition, @ is a minimal extension of @,,,,. Also requiring
@ to satisfy the other postulates, we finally obtain @ = @g,.

5 Concluding remarks

Various lines of research on domination have originated from von Neumann
and Morgenstern’s Theory of Games and Economic Behaviour. Studies in
economic and co-operative game theory often presuppose that the numerical
value of each coalition is known so that the characteristic function is defined.
In this paper, such detailed assumptions are not made. Our results may how-
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ever apply to the case of a social economy with a finite number of imputa-
tions, where there is social interaction between the effective coalitions. For an
example see Delver and Monsuur (1997).

In political theory, generally, the dominance relation is the point of de-
parture. An example of this approach is the bipartisan set of a majority tour-
nament, see Laffond et al. (1993).

Another line of research dating back to the Theory of Games and Eco-
nomic Behaviour concentrating on structural conditions for the existence of
von Neumann Morgenstern stable sets, leads into graph theory. Here the ob-
ject of study often is the reversal R~ of a dominance relation R. A vN-M
stable set of R is a kernel of R™! and conversely.” According to C. Berge and
P. Duchet, (1990), the main question in graph theory is: Which structural
properties of a graph imply the existence of a kernel? A graph such that all it
subgraphs have kernels is said to be kernel perfect. Von Neumann showed that
a graph without circuits is kernel perfect and has a unique kernel, von Neu-
mann and Morgenstern (1944). Richardson extended this result, requiring
only the non-existence of odd circuits, see Richardson (1946) or Ghoshal et al.
(1998).

A graph theoretic generalisation of the vIN-M stable set, on the reversal of
R, satisfying the universal domain requirement is the semikernel. Let d be the
distance function in R between subsets or elements of X. Then S < X is a
semikernel or (2,2) kernel if for any distinct pair {x,y} =S it is true that
d(x,y) = 2, while for any x € X\S, d(x,S) < 2. Further generalisations of
this idea are (k,/) kernels. References and a discussion may be found in
Ghoshal et al. (1998).

There are two fashionable notions in public policy discussions for which
socially stable sets may provide a theoretical foundation. In a society, public
and private statements are tested against the established standard of behav-
iour. As mentioned briefly in the introduction, this verification functions as an
often immediate trial on the political correctness of any proclamation or re-
mark. The other notion is repressive tolerance. Its meaning comes close to the
way in which, in Sect. 4, the effective grand inner coalition is able to keep up
the external stability.

Socially stable sets are a model for situations where the combination
of characterising postulates of one of our theorems is valid. In for example
majority graphs for large elections and many imputations based economic
applications these conditions may easily be not fulfilled. In particular the non-
enforcement principle will in such circumstances probably not apply. On the
other hand, in situations where the effective coalitions interact, such as in the
political debate, the selection of alternatives in an organisation or society at
large and decision making in small committees our behavioural assumptions
and characterisations may provide useful insights in both the underlying social
processes and the emerging standard of behaviour.

7 R~! has the same vertices as X while (x,y) € R~ if and only if (y, x) € R.
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