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Abstract
A common assumption in matching markets is that both sides fully know their pref-
erences. However, when there are many participants this may be neither realistic nor
feasible. Instead, agents may have some partial (perhaps stochastic) information about
alternatives andwill invest time and resources to better understand the inherent benefits
and tradeoffs of different choices. Using the framework of matching medical residents
with hospital programs, we study strategic behaviour by residents in a setting where
hospitals maintain a publicly known master list of residents (i.e., all hospitals have
an identical ranking of all the residents, for example, based on grades) and residents
have to decide with which hospitals to interview, before submitting their preferences
to the matching mechanism. We first show the existence of pure strategy equilibrium
under very general conditions. We then study the setting when residents’ preferences
are drawn from a known Mallows distribution. We prove that assortative equilibrium
(k top residents interview with k top hospitals, etc.) arises only when residents inter-
view with a small number of programs. Surprisingly, such equilibria (or even weaker
notions of assortative interviewing) do not exist when residents can interview with
many hospital programs, even when residents’ preferences are very similar. Simu-
lations on possible outcome equilibrium indicate that some residents will pursue a
reach/safety strategy.

B Omer Lev
omerlev@bgu.ac.il

Allan Borodin
bor@cs.toronto.edu

Joanna Drummond
jdrummond@cs.toronto.edu

Kate Larson
kate.larson@uwaterloo.ca

1 Department of Computer Science, University of Toronto, 10 King’s College Road, Toronto, ON
M5S 3G4, Canada

2 Cheriton School of Computer Science, University of Waterloo, Waterloo N2L 3G1, ON, Canada

3 Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, 1
Ben-Gurion Blvd., Beersheba 8410501, Israel

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00355-024-01541-2&domain=pdf
http://orcid.org/0000-0001-7481-9439


A. Borodin et al.

1 Introduction

Since Gale and Shapley’s groundbreaking work (Gale and Shapley 1962), the use of
stable matching mechanisms has proliferated across numerous domains. Applications
range from matching children to schools to matching refugees to countries (Ander-
sson 2019). A central goal of these mechanisms is to ensure that participants (or
agents) have no incentive to try to manipulate the final outcome of the matching
process by being strategic about the choices they make and actions they take. How-
ever, when deployed in practice, many of the assumptions behind the Gale-Shapley
(deferred-acceptance) algorithm no longer hold. For example, agents may have par-
tial preferences or ties (Drummond and Boutilier 2014; Rastegari et al 2013; Irving
et al 2009), quotas imposed on matching outcomes (Goto et al 2016), distributional
constraints (Kurata et al 2017), and computational constraints, for which compact
representations of preferences are useful (e.g., Gelain et al 2009; Pini et al 2014).

One real-world domain where matching mechanisms are implemented is medical
residencies (Roth 2002). In many countries, such as Canada and the United States,
medical students are assigned to hospital residencies through matching mechanisms.
For example, the National Residency Matching Program (NRMP), an American pro-
gram for matching medical residents to hospitals, in 2023 offered 37,425 positions for
first-year residents for 5487 hospital programs (National Resident Matching Program
2023). In this paper, we focus on a problem that arises in medical residency matching
settings, where the number of options for residents is large. As noted above, in the
NRMP residents need to choose from over 5000 positions, yet they apply to only
eleven on average (Anderson et al 2000). Furthermore, residents are often faced with
significant uncertainty regarding which hospital may be the best match for themselves.
While there are publicly available rankings for hospitals, an individual’s preferences
will also be influenced by specific, personal considerations (e.g., the personal chem-
istrywith the people in the hospital). Oneway to address this uncertainty is to interview
with a set of hospitals; this allows the resident to understand and refine their personal
ranking between the possible hospitals. However, this requires the resident to choose
the set of hospitals they will interview, based on the limited information they have.

The problem of selecting an appropriate interviewing set gives rise to new strate-
gic concerns and widely used mechanisms—which are strategyproof when assuming
every resident initially knows their full ranking of the hospitals—are no longer strat-
egyproof (Haeringer and Klijn 2009; Calsamiglia et al 2010). This observation, that
interview-set selection is a strategic decision, motivates our work. Inspired by themed-
ical residencies matching problem, we analyze the Nash equilibrium strategies that
arise when residents must select interview sets, knowing that a widely used match-
ing mechanism, Resident-Proposing Deferred Acceptance (rp- da), will be used. In
particular, we examine the possibility of assortative equilibria, in which residents are
divided into groups, with each group interviewing in the same sets of hospitals.

We provide an example to help illustrate some of the strategic reasoning which
arises when residents must select interview sets.

Example 1 Suppose we have 4 hospitals—h1, h2, h3, h4, and 4 residents—r1, r2,
r3, r4. All hospitals know the residents’ quality (r1 being the best, followed by r2,
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then r3, and r4 is the worst), and every resident knows their position in the hospitals’
ranking. Suppose residents have two possible rankings of hospitals: with probability
0.5 a resident’s ranking of hospitals is h1 � h2 � h3 � h4, and with probability 0.5,
it is h2 � h1 � h4 � h3. Assume that residents can only interview with at most 2
hospitals.

Residents r1 and r2 can choose to interview at h1 and h2, while residents r3 and r4
can choose to interview at hospitals h3 and h4. Such a choice is both assortative and
stable—both r1 and r2 know they will never prefer h3 and h4 over the hospitals they
interviewwith; and because of this, both r3 and r4 know hospitals h1 and h2 will surely
be taken already by the time it is their turn to interview, so no point in interviewing
there. In this case, there is no other equilibrium.

If the probability of any ordering is as likely as any other, then many other inter-
viewing strategies are stable, including non-assortative ones. For example, r1 and r3
interviewing at h2 and h4 while r2 and r4 interview at h1 and h3.

1.1 Our contributions

Under the assumption that hospitals maintain a common master list over residents
(e.g. GPAs, exam results, etc. (Hafalir 2008; Zhu 2014; Chen and Pereyra 2015; Ajayi
2011)), we explore the structure of Nash equilibrium when residents are required to
select k hospitals with which to interview (and, thus, rank for the matching mecha-
nism). We show the following:

• A pure strategy Nash equilibrium exists for this game.
• Using the Mallow’s model for sampling resident preferences, an assortative equi-
librium exists for very small interviewing sets. This equilibrium is “natural” in
that hospitals and residents are stratified: highly ranked residents interview at
well-regarded hospitals;medium residents interviewatmediumhospitals; and low-
ranked residents interview at low-ranked hospitals. Indeed, we initially believed
this would be the natural equilibria in most cases (as Ajayi 2011 seemed to indi-
cate).

• However, in the Mallow’s model, if residents use larger interview sets, assortative
strategies no longer form an equilibrium. That said, new equilibria appear, where
residents select interview sets that contain both “reach” and “safety” alternatives.

We note that throughout the paperwe use the terminology of hospitals and residents,
but emphasize that this is merely for clarity and consistency. Our results hold for
any setting in which one side cannot provide a full ranking of the other, and must
decide how to focus its attention so as to learn more about particular alternatives. Such
scenarios could include students interviewing at schools, universities, and recruiting
faculty candidates, among others.

2 Related research

While there is a rich literature on matching markets and stability (e.g. Gusfield and
Irving 1989), the importance and impact of interviews in these markets is not as well
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understood. In recent work (Echenique et al 2022), through analysis of the NRMP,
observed thatmost doctorsmatchwith one of theirmost preferred internship programs,
despite having very similar preferences. They argued that this apparent contradiction
is an artifact of the interview process that precedes the match. These findings highlight
the importance of better understanding market interactions, including interviews, that
happen before (and after) the actual market. A similar lesson can be taken fromHarless
and Manjunath (2018) work that studied the impact of the allocation rule (e.g. match-
ingmechanism) on the interviewing process, illustrating how these two steps influence
each other. Indeed, several works on interviewing—using various models with vary-
ing similarity to ours—have examined the equilibria that arises when assuming the
existence of interviews.

One thread of research has studied interviewing policies that aim to minimize the
total number of interviews conducted while also ensuring stability in the final match.
For example, Rastegari et al (2013) showed thatwhile finding theminimal interviewing
policy is NP-hard in general, there are special cases where a polynomial-time algo-
rithm exists, while Drummond and Boutilier (2014) approached the problem using
the framework of minimax regret and proposed heuristic approaches for interview-
ing policies. These papers assume that interview policies are implemented centrally,
ignoring the situation where agents may choose with whom to interview, whereas our
work explicitly studies strategic issues arising from situations where agents choose
their interview strategies.

There is a body of literature that addresses strategic interviewing in matching mar-
kets, but many of the papers ask different questions or make different modelling
assumptions than we do in our work. Manjunath and Morill (2023) studied the prob-
lem of “interview hoarding”where one side of themarket (e.g. residents) can interview
as many candidates as they wish, while the other side (e.g. hospitals) are limited in
the number of interviews they may conduct. The authors show that this leads to prob-
lematic outcomes compared to settings where interviews are limited on both sides. In
particular, no resident that would have been matched in the setting with limited inter-
views is better off in the unlimited setting and many residents are worse off. This is
consistent with Kadam (2015) findings that relaxing residents’ interview constraints
can adversely impact lower-ranked residents. These results support our modelling
choice of restricting the size of agents’ interview sets. We note, however, that research
has also shown that limiting the size of agents’ interview sets may have strategic
implications. For example, in two related papers, Haeringer and Klijn (2009) and
Calsamiglia et al (2010) show that limiting the number of interviews an agent may
partake in can lead to less stability in the market and encourage agents to misreport
their preferences, while He andMagnac (2017) showed, empirically, that imposing an
interviewing cost may lead to decreased match quality. Because of these findings, we
make no claim that we are using “optimal” interview set sizes, and we consider the
question of the size of interview sets to be outside the scope of this paper.

Several other authors have also studied matching markets with limited/fixed inter-
view sets (Immorlica and Mahdian 2005; Beyhaghi et al 2017; Beyhaghi and Tardos
2019). Unlike our work, these papers typically assume uncorrelated preferences
(i.e. every hospital independently ranks residents idiosyncratically), allow for a fixed
probability of selection (Immorlica andMahdian 2005), or uniform preferences within
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subgroups of residents/hospitals (Beyhaghi et al 2017). We believe that these mod-
elling assumptions are overly strong and empirical evidence indicates that preferences
are correlated (e.g. Echenique et al 2022), which we try to capture in our preference
models.

We are particularly interested in what we call “natural” interviewing equilibria.
These equilibria are assortative in that top residents interview with (and are matched
with) top hospitals while bottom-ranked residents interview with (and are matched
with) bottom-ranked hospitals etc. Lee (2017) showed the existence of such equilib-
ria in matching markets. Their results, however, relied on several strong assumptions
including a large market assumption and strong restrictions on the preference models.
We are interested in understanding whether it is possible to support assortative equi-
libria under broader assumptions. Other papers (e.g. Chade and Smith 2006; Chade
et al 2014; Ali and Shorrer 2023), motivated by the college-selection problem, have
also studied the structure of the resulting equilibria. While Chade and Smith (2006)
showed that students would greedily select which colleges to interview with under
the assumption that admissions prospects across colleges were stochastically inde-
pendent, Ali and Shorrer (2023) argued that changes in the underlying model, namely
allowing for correlations, results in equilibrium outcomes where students apply for
both “reach” and “safety” colleges. While the problem we study is very different since
we assume a centralized matching market while these papers study a decentralized
process, we find these papers relevant and informative as they hint at the importance
of correlated preferences for students/residents in whether assortative or “reach and
safety” strategies form equilibria.

Finally, we mention the work of Lee and Schwarz (2017). They studied a multi-
stage worker-firm game where one side of the market (e.g. firms) had to first, at some
fixed cost, select workers with which to interview before proceeding to a centralized
matchingmarket running (firm-proposing) deferred acceptance. Their key finding was
if therewas no coordination, then all firmswere best off each picking k randomworkers
to interview. However, if firms could coordinate then it was best for them to each select
k workers so that there was perfect overlap (forming a set of disconnected complete
bipartite interviewing subgraphs), i.e., an assortative equilibirum. This finding, while
very elegant, relies heavily on the assumption that all firms and workers are ex-ante
homogeneous, with agents’ revealed preferences being idiosyncratic and independent.
In particular, for the results to hold either agents have effectively no information about
their preferences before they interview, or the market must be perfectly decomposable
into homogeneous sub-markets that are known before the interviewing process starts
In this paper, we study a similar, multi-stage game, but we relax these assumptions.
Instead, we assume that agents’ preferences are correlated and make no assumptions
about the decomposability of themarket into sub-markets.1 We are interested in under-
standing and characterizing the resulting equilibriumoutcomes, providing insights into
how sensitive so called “natural” equilibria are to the underlying preference structures
of the agents.

1 Lee and Schwarz (2017) model includes interview costs and variable interviewing sizes, which our model
avoids for simplicity. Adding them is discussed in the conclusion.
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3 An interviewing gamewith limited interviews

Using the resident-hospital matching problem as our basic framework, we assume
there is a set, R = {r1, . . . , rn} of residents and a set, H = {h1, . . . , hn} of hospitals.2
Every hi ∈ H has (strict) preferences over R, and every ri ∈ R has (strict) preferences
over H . These are represented by H� = {�h1, . . . ,�hn } and R� = {�r1, . . . ,�rn }
respectively.

We are interested in one-to-one matchings; residents can only do their residency at
a single hospital, and hospital programs can accept at most one resident. Amatching is
a 1–1 function μ : R ∪ H → R ∪ H , such that ∀r ∈ R, μ(r) ∈ H ∪ {r}, and ∀h ∈ H ,
μ(h) ∈ R ∪ {h}. If μ(r) = r or μ(h) = h then we say that r or h is unmatched. We
assume that residents prefer to be assigned to any hospital over not being matched,
and hospitals prefer to have any resident over not filling the position. A matching μ is
stable if there does not exist some (r , h) ∈ R×H , such that h �r μ(r) and r �h μ(h).

Critically, we assume the existence of a master list, �ML , over residents, which
is shared by all h ∈ H , such that �h=�ML . This assumption implies that all hospi-
tals share identical preferences over residents. This captures scenarios such as when
grades or GPAs are used to rank residents, or when residents are required to write
standardized exams (Irving et al 2008; Chen and Pereyra 2015; Zhu 2014)). Without
loss of generality, ri �ML ri+1, ∀i < n. We further assume that every r ∈ R is aware
of their ranking on this master list.

Residents, on the other hand, have idiosyncratic preferences over hospitals. This
may be based on, for example, location, potential colleagues, career opportunities for
partners, etc. In particular, we assume there is some underlying, commonly known,
preference distribution,D, fromwhich each r ∈ R draws�r independently. If resident
r draws preference ranking η from D, then hi �η h j means that hi is preferred to h j

by r under η.
Critical to our model is the assumption that residents do not initially know their

true preferences, but refine their information by conducting interviews with hospitals.
If a resident was able to interview every hospital in H then they would know their true
preferences. However, this is infeasible and instead, each resident has an interviewing
budget of k < n hospitals. Let I (r) ⊆ H , |I (r)| ≤ k be resident r ’s interview set,
consisting of the set of hospitals r has selected to interview. Once the interviews are
completed, r knows its preferences over h ∈ I (r), though does not necessarily have
any additional information over h′ ∈ H \ I (r).

Once all residents have interviewed with their selected hospitals, they enter into a
matching process, using the preference information obtained through their interviews.
In this paper, we use the standard resident-proposing deferred acceptance (rp- da).
The resulting matching, μ, is guaranteed to be stable, resident-optimal, and hospital-
pessimal (Gale and Shapley 1962). This stable matching is also guaranteed to be
unique, as stablematching problemswithmaster lists have unique stable solutions (Irv-
ing et al 2008). Thus our results directly hold for any mechanism that returns a stable

2 The assumption that there are an equal number of residents and hospitals is without loss of generality. If
there are more residents than hospitals, then the lowest ranked residents will not obtain any interviews and
can therefore be ignored. If there are more hospitals than residents, we can add “dummy” residents having
the lowest ranks and the matching mechanism can ignore the match of any dummy resident.
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matching, including hospital-proposing deferred acceptance and the greedy linear-
time algorithm (Irving et al 2008).

We summarize our model and assumptions for the interviewing game in which
residents engage. We call this game the Interviewing Game with Limited Quotas,
or ILQ .

• Each r ∈ R and h ∈ H is informed of the master list �ML .
• Each resident r ∈ R simultaneously selects an interviewing set I (r) ⊂ H , |I (r)| ≤
k.

• Each resident r ∈ R interviews with hospitals in I (r) and learn their own prefer-
ence, �r |I (r) over members of I (r).

• A central matching system runs resident-proposing deferred acceptance (rp- da)
using �ML as the preference for all h ∈ H , and �r |I (r) for all r ∈ R. Any hospital
h /∈ I (r) is reported to be unacceptable by r .

3.1 Utility functions for the interviewing game

We require a clear specification of the residents’ utility functions, as this supports the
choices theymakewhendecidingwhichhospitals to interview.Thus, in this subsection,
we describe how we derive principled utility functions for the residents, based on their
preferences and the expected match.

We first assume that residents share some common scoring function, v : H ×
H� �→ R such that for any ranking over hospitals, η ∈ H�, hi �η h j if and only if
v(hi , η) > v(h j , η). The existence of such a scoring function is used in other literature
(e.g. Coles and Shorrer 2014) and allows for flexibility in themodelling of the problem.
For now, we merely assume the existence of such a scoring function and will explore
different instantiations later.

Second, we make the critical observation that a resident, r ∈ R, need only be
concerned about other residents that are higher ranked in the master list, �ML . If a
lower ranked resident, r ′, is matching to some h ∈ I (r), then it must be the case the
r is matched to some h′ such that h′ �r h since otherwise the matching would be
unstable.

This greatly simplifies the formulation of the utility function for a resident as we
need only consider the interview sets of higher-ranked residents, its own choice with
whom to interview, and the probabilitywithwhich it has a particular preference ranking
over hospitals.

We introduce notation to help support the development of the utility function for
a resident. Consider some resident, r j , and interview sets, I (r1), . . . , I (r j−1), for all
ri �ML r j . Furthermore, define m = μ|r1,...,r j−1 to be the partial matching that arises
when rp- dc is run. The set of preferences that are consistent with this partial match
is

T (r j ,m) ={ξ ∈ H�|∃I (r j ) s.t. ∀h′ ∈ I (r j ) s.t. h
′ �ξ m(r j ),

∃ra s.t. ra �ML r j ∧ m(ra) = h′}.

Observe that T (r ,m) �= ∅ for all r ∈ R, and that T (r1,m) = H�.
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Given some preference distribution D, the probability that some particular partial
match, m′, arises, given interview sets I (r1), . . . , I (r j−1) is simply the probability
that the residents had preferences consistent with T (r j ,m′) :

P(m′|(I (ri )) j−1
i=1 ) =

j−1∏

i=1

∑

ξ∈T (ri ,m)

P(ξ |D).

Now resident r j must determine the probability with which it will be matched to a
particular hospital, h, since its utility is determined by how it perceives the program
quality. We define

M∗(I (r j ), (I (ri )) j−1
i=1 , η, h) ={m|m(r j ) = h; ∀ri ∈ {r1, . . . , r j−1},m(ri ) ∈ I (ri );

∀x ∈ I (r j ), if x �η h, ∃ri s.t. x ∈ I (ri ) and m(ri )= x}

to be the set of (partial) matches where r j is matched to hospital h, given interview sets
for residents r1, . . . , r j−1, interview set I (r j ) for resident r j with preference ranking
η. Since the preference rankings of residents rl such that r j �ML rl do not change
what hospital r j is matched to, for any complete matching, μ, we have

P(μ(r j ) = h|η, I (r j ), (I (ri ))
j−1
i=1 ) =

∑

m∈M∗(I (r j ),(I (ri )) j−1
i=1 ,η,h)

P(m′|(I (ri )) j−1
i=1 ).

Bringing everything together, the utility function for resident r j , given its interview
set, I (r j ) is

ur j (I (r j )) =
∑

h∈I (r j )

∑

η∈H�
v(h, η)P(η|D)P(μ(r j ) = h|η, I (r j ), (I (ri ))

j−1
i=1 ). (1)

This utility function has an intuitive interpretation: it weights the value of a hospital
by how likely the resident will be matched to it, given the interview-set choices of
“more desirable” residents.

4 Equilibria analysis: general results

We start our analysis by studying the most general form of the ILQ game possible.
Recall that an ILQ game is defined as � = 〈n, k, D, v〉 where n = |R| = |H |, k is
the number of interviews any resident can conduct (also known as the quota), D is the
underlying distribution fromwhich residents’ preferences are being drawn, and v is the
scoring function over hospitals that residents use. We start by placing no restrictions
on the structure of the underlying preference rankings of the residents, nor do we
place any constraints on their utility functions. Furthermore, to simplify notation we
drop n from the ILQ notation unless it influences the results. We start by presenting an
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existence result, namely the existence of a pure strategy equilibrium for this game.3 We
follow this by outlining general conditions under which this equilibrium might take
a particularly appealing form, namely assortative interviewing. We then instantiate
the residents’ preference models using a common probabilistic model for preferences
(the φ-Mallows model) and explore how this class of preference rankings support
assortative interviewing.

Theorem 1 Given any ILQ game � = 〈k, D, v〉 with k > 0, there exists a pure
strategy equilibrium.

Proof Wewish to show that if every resident chooses their expected utility-maximizing
interviewing set, this results in an equilibrium. Given any resident r j who is j th in the
hospitals’ rank- ordered list, r j ’s expected payoff function only depends on residents
r1, . . . , r j−1. As r j knows that each other resident ri is drawing from distribution
D i.i.d., they can calculate r1, . . . , r j−1’s expected utility maximizing interview set,
using Eq.1. Their payoff function depends only on D and I (r1), . . . , I (r j−1), all of
which they now have. They then calculate the expected payoff for each

(n
k

)
potential

interviewing sets, and interview with the one that maximizes their expected utility.
Of course, when there are ties between the expected payoff of different strategies,
multiple equilibria may arise. ��

Theorem 1 is an existence theorem. It does not provide any additional insight into
the equilibrium behavior, nor does it provide any insight as to how this equilibria may
be computed beyond a brute-force approach. This leads us to our next set of questions,
namely under what conditions will a particular class of natural interviewing strate-
gies form an equilibrium. We are particularly interested in assortative interviewing
strategies.

Definition 1 Given ILQ game � = 〈k, D, v〉 with k > 0, an interviewing
strategy profile is assortative if and only if for j = 0, 1, 2, . . . , n

k − 1, each
resident r ∈ {r jk+1, . . . , r jk+k} chooses to interview with the set of k hospitals
{h jk+1, . . . , h jk+k}.4

We view assortative strategies as being “natural” in that hospitals and residents
are stratified: highly-ranked residents on the master list interview at well-regarded
hospitals; mid-ranked residents interview at what they expect to be mid-ranked hospi-
tals; and low-ranked residents interview at low-ranked hospitals. We start by deriving
conditions that ensure assortative interviewing. We show that there exist scenarios in
which one need only focus on the behavior of a single agent, namely rk where k is
the interviewing budget. If assortative interviewing is a best response for resident rk
when all other residents i < k interview assortatively, then assortative interviewing
is a best response for every resident ri (i < k) when all other residents interview
assortatively. In other words, determining if assortative interviewing is a best response

3 Independently, Kadam (2015) provides a proof of a pure equilibrium similar to ours, despite the differing
models, as both proofs rely on the serial structure of the deferred-acceptance algorithm.
4 We are assuming for convenience that k divides n. When k does not divide n, there will be some remaining
k′ < k residents that will interview with the remaining k′ hospitals: h� nk �k+1, . . . , hn .
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for rk is sufficient to show that assortative interviewing is a best response for the first
k residents (and is thus an equilibrium for them in this game).

Theorem 2 Let � = 〈k,D, v〉 be an ILQ game with quota k, preference distribu-
tion D, and resident scoring function, v. Assume residents r1, . . . , rk−1 all interview
assortatively. Then, if resident rk’s best response is to interview assortatively under
this setting, it is a best response for any resident r1, . . . , rk to interview assortatively.
Moreover, this forms a unique best-response for r1, . . . , rk .

Proof We introduce an indicator function to simplify notation for when a hospital is
a resident’s top available choice. For any hospital h and agent i , let b j (h, η) = 1 if
and only if h is available when r j makes their choice (i.e., r1, . . . , r j−1 have not been
allocated h), and is their most-desirable available alternative (i.e., h �η h′ for all other
h′ available); and 0 otherwise. Directly following from Eq.1 the utility of resident r j
when interviewing with hospitals S ⊂ H is:

ur j (S) =
∑

h∈S

∑

η∈H�
v(h, η)P(η,D)b j (h, η)

Since for r1, it is always true that b1(h, η) = 1 for any desired h (since r1 goes first,
no h ∈ H has been allocated by another r ∈ R), suppose it will interview in a set of k
hospitals {h1, . . . , hk} (the numbering according to r1’s choices as determined by the
distribution D). We are concerned with the best response strategy of rk which only
depends on the strategies of ri for i < k. Suppose there is no assortative equilibrium,
and let ri , i < k, be the resident with the lowest index for which it is better off
interviewing in set S′ �= {h1, . . . , hk}. Then bi (h, η) ≥ bk(h, η), with the inequality
being strict for some h ∈ {h1, . . . , hk}. Note that for any h /∈ {h1, . . . , hk}, bi (h, η) =
1.

Hence, ifuri ({h1, . . . , hk}) < uri (S
′), thismeans if all agents r1, . . . , rk−1 are being

assortative (so bk(h, η) = 1 = bi (h, η) for h ∈ S′\{h1, . . . , hk}), urk ({h1, . . . , hk}) <

urk (S
′). That is, if it is not beneficial for ri to be assortative, it would not be beneficial

for rk to be assortative if r1, . . . , rk−1 are assortative.
Note that, as all these players have a strictly dominant strategy, this is a unique

equilibrium for this game. ��

4.1 Interviewing equilibria when preferences are drawn from theMallowsmodel

While Theorems 1 and 2 hold for general preferences, we are interested in understand-
ing the impact that the underlying preference model has on the strategic choices of the
residents. To this end, we investigate the strategic behaviour that arises when residents’
preferences are drawn from the φ-Mallows model (Mallows 1957), a probabilistic
ranking model that is standardly used for modelling preferences and has been used
in previous investigations of preference elicitation schemes for stable matching prob-
lems (Drummond and Boutilier 2013, 2014; Brilliantova and Hosseini 2022; Freeman
et al 2021). Its particular relevance in our setting is that residents often have a vague
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ranking of hospitals, based on a common list (e.g., US News Ranking of hospitals)—
the Mallows reference ranking—but in practice, their personal preferences may be a
noisy variant of it.

4.1.1 The Mallows model

The φ-Mallows model (or just Mallows model Mallows (1957)), Dφ,σ , is a distance-
based probabilistic ranking model, characterized by a reference ranking σ , and a
dispersion parameter φ ∈ (0, 1]. Given the parameters, σ and φ, the probability of
any given ranking η is:

P(η|Dφ,σ ) = φd(η,σ )

Z

where d(η, σ ) is the Kendall-τ distance metric that counts the number of pairwise
disagreements between the two rankings, η and φ, and Z is a normalization factor;
Z = ∑

η∈A� φd(η,σ ) = (1)(1 + φ)(1 + φ + φ2) . . . (1 + · · · + φ|A|−1) (Lu and
Boutilier 2011). The parameter φ controls the likelihood of drawing a ranking that
is significantly different from the reference ranking, σ . As φ → 0, the probability
of drawing the reference ranking approaches 1.0, while as φ → 1, the Mallows
distribution is equivalent to drawing a ranking from the uniform distribution.

One interpretation of the Mallows model has rankings being generated by inserting
alternatives into a ranking, where the insertion point is a function of φ. Because of this,
when comparing only a small subset of alternatives in the ranking, the probability that
any two of the alternatives of interest are in a specific order may not depend on the total
number of alternatives. Furthermore, it is possible to determine the probability that
any given alternative will be inserted in a particular position in a ranking simply by
computing the probability it will be inserted in that position after all other alternatives
have been ranked. We will use these properties in our analysis and so state them here
and include the proofs in Appendix A for completeness.

Lemma 1 Given some Mallows model Dφ,σ with a fixed dispersion parameter φ and
reference ranking σ ordering n agents, in which ai � a j (1 ≤ i, j ≤ n), the
probability that a ranking η is drawn from Dφ,σ such that ai �η a j is equal to
drawing from some distribution Dφ,σ ′

where σ is a suffix or prefix of σ ′ (that is, there
is σ , an ordering of n agents, and σ ′, an ordering of n′ agents (n′ > n), and σ ′ can be
divided into σ , an ordering of the first/last n agents, and an ordering of the last/first
n′ − n agents).

Corollary 1 Given any reference ranking σ and two adjacent alternatives in σ :
ai , ai+1,

P(ai � ai+1|Dφ,σ ) = 1

1 + φ
.

We extend Corollary 1 to include three consecutive items.
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Corollary 2 Given any reference ranking σ and alternatives ai , ai+1, ai+2 and some
η ∈ {ai , ai+1, ai+2}�, the probability that some ranking β is drawn from Dφ,σ that
is consistent with η is:

P(β|Dφ,σ ) = φd(η,ai�ai+1�ai+2)

(1 + φ)(1 + φ + φ2)

It is useful to know the probability that any one alternative will be in any particular
position in a rank ordered list.We show that this is effectively equivalent to ordering all
other alternatives, and then calculating the probability that we can put the alternative
in question in its desired slot.

Lemma 2 The probability that a1 will be ranked in place j is φ j−1

1+φ+···+φn−1 . Further-

more, the probability that an will be ranked in place j is φn− j

1+φ+···+φn−1 . Similarly, the

probability a j will be ranked in first place is φ j−1

1+φ+···+φn−1 .

It is possible to bound the probability that any two alternatives will be “out of order”
in any given ranking;

Lemma 3 Let η ∈ Dφ,σ be such that a j �η ai for some i < j , then P(η) <
φ j−i

Z .

Finally, we include an observation that follows from the definition of the Mallows’
model:

Observation 1 If | j−i | > | j−i ′|, probability ai is in place j is smaller thanprobability
ai ′ is in place j . Similarly, probability a j is in place i is smaller than probability a j

is in place i ′.

4.1.2 Equilibrium analysis

We now study the equilibria that arise in the interviewing game when residents’
preferences are drawn from some underlying φ-Mallows model. This allows us to
control and, thus, better understand, how diversity of residents’ preferences influ-
ences the structure of the underlying interviewing equilibrium. For ease of notation,
let � = 〈k, φ, v〉 be an instance of an ILQ game with interview quota k, a Mallows
model with dispersion parameter φ, and a scoring function v.

We start by considering the class of games where φ = 0.0, namely� = 〈k, 0.0, v〉.
Recall that as φ → 0, the probability of drawing the reference ranking σ goes to 1.
This means that all residents have common preferences, namely the reference ranking
which we define as σ such that hi � hi+1 for all 1 ≤ i < n. It is straightforward to see
that any strategy profile such that each resident ri interviews with hospital hi forms
an equilibrium. Thus, trivially, assortative interviewing is an equilibrium as well.

We now consider the general case, � = 〈k, φ, v〉, where no restrictions are placed
on any of the three parameters. We observe that if resident rk can not improve its
expected utility by interviewing with hospital hk+1 instead of any of the hospitals
in {h1, . . . , hk}, then in general the best thing resident rk can do is set its interview
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set to be I (rk) = {h1, . . . , hk}. We formalize this in Lemma 4 and defer the proof
to Appendix B. Note that this result greatly simplifies the equilibrium analysis going
forward:we need only consider k possible interviewing sets, instead of

(n
k

)
to determine

if assortative interviewing is the best strategy for rk .

Lemma 4 Given ILQ game � = 〈k, φ, v〉, if resident rk’s expected payoff from inter-
viewing with hospitals {h1, . . . , hk} (when residents r1, . . . , rk−1 have interviewed
with them as well) is higher than their expected payoff from interviewing with hospi-
tals {h1, . . . , hk+1}\{h j } for all j ∈ {h1, . . . , hk}, then resident rk’s best response is
to interview with {h1, . . . , hk} (i.e., assortatively).

We now provide a necessary and sufficient condition for assortative interviewing
to hold for ILQ game � = 〈k, φ, v〉. Let P(hi ) denote the probability that hospital
hi is available for resident rk (i.e., residents r1, . . . , rk−1 are all matched to different
alternatives).

Lemma 5 Given ILQ game � = 〈k, φ, v〉, if residents r1, . . . , rk−1 all interview
assortatively (i.e., with hospital set S = {h1, . . . , hk}), then assortative interviewing
is a best response for resident rk if and only if the following inequality is satisfied for
all h j ∈ {h1, . . . , hk} when S′ = S\{h j } ∪ {hk+1}:

P(h j )E(v(h j )|Dφ,σ ) ≥ P(h j )E(v(hk+1)|Dφ,σ )

+
∑

η∈H�
P(η|Dφ,σ ) · [ ∑

hi∈S′
P(hi )1hk+1�ηhi v(hk+1, η)

]

where

1hi�ηh j =
{
1, if hi �η h j

0, otherwise

Wenowpresent our key result for this section.We provide a necessary and sufficient
condition for assortative interviewing to form an equilibrium for a given ILQ game,
� = 〈k, φ, v〉. Furthermore, this condition can be checked efficiently since it only
involves checking k possible interview sets for a single resident, rk .

Theorem 3 Given ILQ game � = 〈k, φ, v〉, then satisfying the inequality found in
Lemma 5 for all h j ∈ {h1, . . . , hk} is both sufficient and necessary to show that all
residents interviewing assortatively form an equilibrium for this game.

Proof For the first k residents, this follows directly from combining Theorem 2 and
Lemma 5. The theoremwould be correct if we could apply this proposition and lemma
iteratively, one group of k hospitals and residents at a time. Thanks to the Mallows
distribution’s properties, we can: If rk’s best response was assortative, we know that
all the residents r1, . . . , rk interviewed assortatively, thus all hospitals h1, . . . , hk are
taken. This means that the same equations that told us that rk’s best response (to
r1, . . . , rk−1) was assortative tell us that r2k’s best response (to rk+1, . . . , r2k−1) is
assortative: Since a switch between h1 and h2 has the same probability as switching
between hk+1 and hk+2, if Theorem 2 and Lemma 5 can be applied once on hospitals
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and residents 1, . . . , k, they can be applied again for k + 1, . . . , 2k, as all equations
remain the same, due to the practical “disappearance” of the hospitals h1, . . . , hk for
agents rk+1, . . . , r2k (thus their order can be ignored). Now that we have shown that the
first two groups of k residents interview assortatively, we can use the same argument
iteratively for the next k residents, and so on. ��

To conclude this section we note that while we focussed on assortative equilibria
since they are elegant and simplifies the problem of determining equilibrium strategies
for the residents, other equilibriamay also exist. For example, consider the special case
where � = 〈k, 1.0, v〉. When φ = 1.0 the resulting Mallows distribution is uniform.
As first noted by Lee and Schwarz (2017) under a different model, when residents
and hospitals are divided into n/k subsets and matched inside these subsets, this also
forms an equilibrium.

5 Assortativity, utility function structure, and quotas

We now focus our attention on understanding the interplay between the number of
interviews residents may conduct and the structure of the underlying utility functions.
We continue to be interested in characterizing the conditions in which “natural” or
assortative interviewing equilibria exist.

To ground the work we continue to assume that residents’ preferences are drawn
from some underlying ranking distribution generated by the φ-Mallows model, and
then we instantiate the residents’ utility functions in three different ways, drawing
inspiration from both the social choice literature (Brandt et al 2016; Loewenstein et al
1989; Messick and Sentis 1985) and the matching literature (e.g. Coles and Shorrer
2014; Calsamiglia et al 2020). Let hi be the i th ranked hospital in a resident’s ranking
η.

Plurality-based: A utility function is plurality-based if

v(hi ) =
{
1, if i = 1

0, i > 1

Borda-based: A utility function is Borda-based if for any hi ,

v(hi ) = n − i + 1

where n is the number of alternatives (hospitals) in the market. This is equivalent,
in a sense, to the expected rank, though the values are inverted—themost preferred
choice has a maximal Borda score, but the expected rank value is minimal (1).

Exponential: A utility function is exponential if

v(hi ) =
(ε

2

)i−1
, for 0 < ε < 1.
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These three functions capture a wide range of residents’ preferences. If best mod-
elled using plurality-based utility functions, residents care only about beingmatched to
their top choice. Borda-based, on the other hand, provides a linear utility function that
decreases as a resident is matched to a less preferred hospital. The class of exponential
utility functions forms a bridge between plurality and Borda.

Our first result identifies a condition under which residents with plurality-based
utility functions will interview assortatively in equilibrium. The proofs are provided
in Appendix D.

Lemma 6 Given ILQ game � = 〈k, φ, v〉 where v is the plurality-based utility
function, a necessary and sufficient condition for assortative interviewing to be an
equilibrium is

P(h j ) ≥ φk− j+1

where P(h j ) is the probability that hospital h j is available for resident rk .

There is a strong relationship between the conditions under which assortative inter-
viewing is an equilibrium when residents have plurality-based utility functions and
when they have exponential utility functions.

Lemma 7 Given ILQ game � = 〈k, φ, v〉, if

P(h j ) ≥ φk− j+1

when v are plurality-based utility functions, then there exists exponential utility func-
tions that also result in assortative interviewing being in equilibria.

One can immediately develop some intuition from these Lemmas by considering
the extreme values for the φ-parameter. For example, if φ = 1.0, then the distribution
from which residents’ preferences are drawn is uniform.5 In this case, assortative
interviewingwill only be supported in equilibrium if resident rk is certain to bematched
with h1. This is clearly very strong and unlikely to hold inmany real-world settings. On
the other hand, ifφ is close to zero, meaning that residents’ true rankings over hospitals
are likely to be similar to each other, then assortative interviewing is supported as long
as there is some (possibly fairly small) chance that h1 will be available to be matched
to rk . We will leverage Lemmas 6 and 7 in the rest of this section to gain a clearer
picture of the characteristics of assortative equilibria.

5.1 Assortative equilibria when k = 2

If residents are only allowed to interview with two hospitals, then assortative inter-
viewing forms an equilibrium under certain conditions. In particular, the existence of
assortative interviewing depends on both the structure of the residents’ utility functions
and the dispersion parameter, φ, of the underlying Mallows model.

5 This is also known as Impartial Culture, a term introduced in Garman and Kamien (1968).
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Theorem 4 Given ILQ game � = 〈k, φ, v〉 with k = 2 and v being plurality-based
utility functions, assortative interviewing forms an equilibriumwhen 0 < φ ≤ 0.6180.

A direct consequence of Theorem 4 and Lemma 7 is that for exponential scoring
functions, when 0 < φ < 0.6180, there exists an ε such that if residents’ scoring
function is an exponential function dominated by ( ε

2 )
(i−1) with ε > 0, assortative

interviewing is an equilibrium for that φ.
We are also able to show a similar result when the utility functions of residents

are Borda-based, though assortative interviewing is in equilibrium for a significantly
smaller range of φ, meaning that the preferences of the residents are much less diverse.
This illustrates the strong connection and interplay between the structure of the utility
functions of the residents, the underlying preference distribution, and the number of
interviews residents may participate in.

Theorem 5 Given ILQgame� = 〈k, φ, v〉with k = 2andv beingBorda-basedutility
functions, assortative interviewing forms an equilibrium when 0 < φ ≤ 0.265074.

5.2 Assortative equilibria when k = 3

Interestingly, when residents can interviewwith up to three hospitals, assortative inter-
viewing continues to be an equilibrium for plurality-based and exponential utility
functions but is no longer an equilibrium if residents have Borda-based utility func-
tions. We begin with the negative result for Borda-based utility functions.

Theorem 6 Given ILQ game � = 〈k, φ, v〉 with k = 3 and v being Borda-based
utility functions, then assortative interviewing may not form an equilibrium or any
0 < φ ≤ 1.

Alternatively, for plurality and exponential-based utility functions, assortative inter-
viewing still forms an equilibrium for certain ranges of φ in the Mallows model. We
observe, however, that the range of φ is smaller than in the case where k = 2, indi-
cating again the sensitivity of residents’ strategic decisions on all aspects of the ILQ
game.

Theorem 7 Given ILQ game � = 〈k, φ, v〉 with k = 3 and v being plurality-based
utility functions, assortative interviewing forms an equilibriumwhen 0 < φ ≤ 0.4655.

The existence of assortative interviewing, when v are exponential-based, is an
immediate consequence of Theorem 7 and Lemma 7.

5.3 Assortative equilibria when k ≥ 4

We finally consider the setting where residents can interview with more than three
hospitals. Unfortunately, our results are negative; we show there are settings, charac-
terized by k and φ, such that assortative interviewing is not an equilibrium, irrespective
of the underlying utility function. We begin by showing that when there is a setting for
which there is no assortative equilibria for plurality, then there is no scoring function

123



Natural interviewing equilibria in matching settings

with assortative equilibria. We use this result to show that, for sufficiently small dis-
persion parameter φ and for k > 3 interviews, assortative interviewing cannot be an
equilibrium under any scoring function. We then provide a specific counterexample
for all φ when k = 4 for plurality, implying there is no assortative equilibrium for any
scoring function. This suggests that, for a wide category of resident valuation func-
tions under a Mallows distribution, contrary to some real-world behaviour, assortative
interviewing is not an equilibrium.

Theorem 8 Given ILQ game � = 〈k, φ, v〉 with k ≥ 4 and v being plurality-based,
if hospital h1 causes the condition in Lemma 5 to be falsified (i.e., {h2, . . . , hk+1}
has a better expected payoff than {h1, . . . , hk}), then for k ≥ 4 and φ, assortative
interviewing is not an equilibrium for any valuation function.

Intuitively, there is a tradeoff between the likelihood that a hospital will be available
for resident rk by the time it is their turn to be matched and the expected value of that
hospital. Both are strongly tied to the dispersion parameter φ of the Mallows model:
as the dispersion parameter approaches 1.0, the difference in the expected value of
any given hospital goes to 0. As the dispersion parameter approaches 0.0, the expected
value of any hospital hi goes to the value of its slot in expectation, v(si ). However,
the likelihood it is taken by some higher ranked r j (i.e., with j < i) also approaches
1. The following theorem addresses the latter case: for sufficiently small dispersion,
even though the expected value of a hospital is high, the likelihood it will be available
is so low that residents are disincentivized from choosing to interview with it.

Theorem 9 Given ILQ game � = 〈k, φ, v〉 with k > 4, there exists 0 < ε < 1 such
that for any scoring function v no assortative interviewing forms an equilibrium for
dispersion parameter 0 < φ < ε.

We now show that for k = 4, assortative interviewing is not an equilibrium for any
φ < 1 and any scoring rule. We then continue to show that for k > 4 and φ sufficiently
small, assortative interviewing is not an equilibrium.

Theorem 10 Given ILQ game � = 〈k, φ, v〉 with k = 4 and any scoring function v,
assortative interviewing is not an equilibrium for any dispersion parameter 0<φ<1.

It seems unlikely that for k > 4, assortative interviewing is an equilibrium. Intu-
itively, if it is an equilibrium it should be for low φ: this is when the expected value
of hospital hi is very close to v(si ). However, this is also when residents r1, . . . , rk−1
are all most likely to be matched with hospitals h1, . . . , hk−1. We leave open the pos-
sibility that there may exist some δ such that when 0 < ε < φ < δ ≤ 1, assortative
interviewing is an equilibrium for plurality.

6 Beyond assortative interviewing

The results in the previous sections are mixed. While we believe that assortative
interviewing is an interesting phenomenon and is “natural” as it provides an intuitive
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strategy for residents, we have also shown that such equilibria are only guaranteed to
exist when residents have a limited number of interviewing options.

This inspires us to do two things. First, we observe that our definition of assortative
interviewing is strong. Thus, we explore the ramifications of weakening the definition.
As wewill show, interestingly, our weaker definition does not help and instead can add
further complications to the problem. This motivates us to expand the class of what
we consider “natural” outcomes and initiate an investigation into the class of reach
and safety strategies.

6.1 The weakness of weak assortative strategies

Our definition of assortative interviewing was very strong. Definition 1 imposed two
key restrictions. First, it assumed that each resident, with an interview budget of size k,
interviews with k consecutive hospitals (according to the reference ranking). Second,
the definition assumed that the top k residents interviewed with the top k hospitals, the
following k residents (ranked from k + 1 to 2k) interviewed with the next k hospitals,
etc.We consider two relaxations of this definition: pseudo-strong assortative andweak
assortative interviewing.

Definition 2 Given ILQ game with quota k > 0, an interviewing strategy profile is
pseudo-strong assortative if given j = 0, 1, 2, . . . , n

k −1, for each group of k hospitals
such that Hj = {h1+k j , h2+k j , . . . , hk( j+1)}, there exists a subset of residents, R j ⊂ R,
|R j | = k such that all residents in R j interview with Hj .6

Note that this definition relaxes the assumption that consecutive residents interview
with the same hospitals. For example, if there was an outcome such that resident r1, r3
and r5 interview at h1, h2 and h3, while residents r2, r4 and r6 interview at hospitals
h4, h5 and h6, this would be pseudo-strong but not strongly assortative.

Definition 3 Given ILQ game with quota k > 0, we say that an interviewing strategy
profile is weakly assortative iff for all ri ∈ R, I (ri ) = {h j , h j+1, . . . , h j+k−1} for
some j .

Weak assortative interviewing has that each resident selects k consecutive hospitals
to interview and places no other restrictions on the residents’ strategies. That is, it is
conceivable that almost every resident is targeting a different part of the hospital list.

Strong and pseudo-strong strategies result in a similar structure of resident and
hospital interviews: hospitals are divided into consecutive sets (the top-k hospitals,
the 2nd-k hospitals, etc.), and each resident interviews in one of those sets. Since a
resident only interviewswith one of those sets (e.g., a resident cannot interview in some
of the top-k and some of the 2nd-k), such a structure may happen when the difference
between the expected value of each hospital is so small that the mere interview of a
resident in a hospital (which decreases the probability of another resident getting it)
reduces the expected value in a way that another agent prefers to avoid it completely.

6 The ordering of the hospitals is the residents’ expected ordering. This would, for example, coincide with
the reference ranking in the Mallows model.
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Fig. 1 Interviewing sets when
|R| = 4, k = 2, and we require
weak assortative strategies.

This can happen when φ is very close to 1, in which case all hospitals are almost
equivalent to resident preferences. It can also occur when the valuation function is
such that the value of each hospital is very close, regardless of their ranking.

Since residents do not interview with different sets of hospitals (top-k, 2nd-k, etc.),
this also means that if r1 and r2 interview in the same hospitals in equilibrium, this
indicates r2 sees some value in these hospitals, even if r1 interviews there, which
means that r3 would consider these hospitals as well (assuming k > 2, of course), so
while r3 may gradually change the interview set, they will not completely avoid r1
and r2’s hospitals (resulting in an equilibrium that is not strong or pseudo-strong).

The above argument, however, does not answer what happens when we consider
weakly assortative interviewing that is neither strong nor pseudo-strong. Surprisingly,
weak assortative interviewing turns out to bemore problematic than strong (or pseudo-
strong) assortative interviewing.

Theorem 11 Given ILQ game � = 〈k, φ, v〉 where all residents employ a weakly
assortative interviewing strategy (that is, at least one resident is not strong or pseudo-
strong). Then there is a non-zero probability that some resident will be unmatched.

Note that such a situation cannot happenwith strongly (or pseudo-strong) assortative
strategies—sets of k residents all interview at the same k hospitals, meaning they are
guaranteed to be matched.

While Theorem 11 is an inherently negative result, it is not the only negative aspect
that arises when one considers weakening strong assortativity.

Theorem 12 Given ILQ game � = 〈k, ψ, v〉 with k = 2, φ < 1, and |R| = |H | = 4,
then there does not exist a Nash equilibrium in which residents have weak-assortative
strategies.

The proof of Theorem 12 (found in the appendix) illustrates a cascading effect
where residents (particularly the bottom-ranked resident) have incentives to break the
sequential structure of hospitals when selecting their interview sets. This is illustrated
in Fig. 1. This is further exacerbated as the number of residents (|R|) increases. With
a larger k, a similar process would occur, and as also intuited in Theorem 11, creating
more than k residents interviewing at the same hospital means the probability of a
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resident being left without a hospital grows. While we hypothesize that for k > 2
and n > k, there is no Nash equilibrium at all with only weakly assortative strategies
(in cases without tie-breaking), it is clear that if there is a sufficiently negative cost
to being left without a hospital (as there is in the real world), weakly assortative
interviewing cannot happen, as weakly assortative strategies result in hospitals with
over k interviewees (and thus residents without hospitals). These residents would
instead seek to reduce this probability by interviewing at the hospitals with highest
availability probability, which means they would not interview in a hospital with more
than k interviewees.

6.2 Reach and safety strategies for a small interviewing quota

While the example shown in Fig. 1 lacked the assortativity structure we have been
interested in, it still illustrated an interesting phenomenon, reach-and-safety strategic
behaviour.We investigate such behaviour empirically and relate the emergence of such
behaviour to the underlying preference models of the residents. We focus on small
ILQ games as we concentrate on exact computation of the underlying equilibrium,
but we hypothesize that our findings generalize to larger settings.

Consider the case for k = 2 interviews where (for the Borda scoring rule) we only
guarantee assortative interviewing for some sufficiently small dispersion parameter φ.
To gain better insight into the strategic behaviour of the residents as a function of φ,
we calculated the exact values of φ where the interviewing equilibria changes in small
markets. In doing so, we see that the structure of the interviewing equilibria contain
both “reach” and “safety” schools, where participants diversify their interviewing
portfolio to get both the benefit of a desirable, unlikely option, and a likely, but less
desirable option.

Figure 2 depicts a market with 4 hospitals, 4 residents, and 2 interviews (n = 4,
k = 2). The figure shows what sets are being chosen by the different residents for any
dispersionφ. Asφ increases, we explicitly see the trade-off between a safer choice, and
a better expected-payoff value for individual alternatives. For smallφ, as the theoretical
results showed, assortative interviewing is optimal, and r2 chooses {h1, h2}, while r3
and r4 choose {h3, h4}. Interestingly, for φ ∈ [0.5, 0.62], r2’s best option is to split
the difference, and interview with one hospital (h3) they are guaranteed to get and one
hospital (h2) that will be available with sufficiently high probability, and has a higher
expected value. This choice available to r2 further results in some of the “reach” vs.
safe behaviour we see in college admissions markets; namely, r3’s best response now
is to interview with h1, h4 (i.e., a “reach” choice, and a “safe” bet), while r4, being
left without any truly “safe” option, aims slightly higher than its rank. As φ grows
and approaches 1, any ordering of hospitals is as likely as another, making r2’s choice
{h3, h4}, which are as likely as any to be highly ranked, and are available. The desire
to avoid interviewing hospitals that are already chosen by many other residents also
drives r3 and r4 to {h2, h3} and {h1, h4}, respectively; that is, they both want to avoid
competing with r1 and r2.

We expand on these results and now consider the case of n = 6 residents with
k = 2, 3 and 4 interviews per resident. Here we see in Figs. 3, 4, and 5, similar
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Fig. 2 Interviewing sets of residents as a function of φ when using the Borda scoring function, with 4
participants, and interview set size of 2.

Fig. 3 Interviewing sets of residents as a function of φ when using the Borda scoring function, with 6
participants, and interview set size of 2.
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Fig. 4 Interviewing sets of residents as a function of φ when using the Borda scoring function, with 6
participants, and interview set size of 3.

Fig. 5 Interviewing sets of residents as a function of φ when using the Borda scoring function, with 6
participants, and interview set size of 4.
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equilibrium strategies as for the n = 4, k = 2 case. For k = 2, and φ ≤ 0.4, we again
see that assortative interviewing is an equilibrium. When φ = 0.5, we observe that
the second resident departs from strict assortative interviewing in favour of a weak
version of assortative interviewing and this, in turn, affects the other players, as, for
example, the third resident applies what is a safety move (hospital 4, which is theirs
if they want it) with a reach move (hospital 1, the top choice). Of some interest, for
φ ≥ 0.7, all residents except r1 use a weak assortative strategy, that is, they interview
in sets of hospitals which are adjacent in rank, rather than splitting their interviews
between radically different ranked hospitals.

Turning to k = 3 interviews per resident, we see as Theorem6 claimed, that the third
resident does not interview assortatively.While residents 3, 4, and 5 are mostly weakly
assortative (except the third resident and φ = 0.8, where it tries a small reach choice),
the sixth resident goes consistently for a reach and safety strategy, as it interviews in
the top hospital as well. The resident’s behaviour only changes when φ is large enough
(φ > 0.6) when the chance of the true ranking being different from the ground truth is
much higher. Of interest, when φ = 0.9, the second resident chooses hospitals 4, 5, 6
(even knowing that at least two of the hospitals in {1,2,3} will be available. But when
φ is sufficiently close to 1, the distribution is approaching the uniform distribution so
that this resident might as well choose hospital 4, 5, 6 as they might very well be as
desirable as 1, 2, 3 where the residents’ top choices might be taken.

Finally, for k = 4, we see that resident 1 (as we know must happen) interviews
assortatively for all settings of φ while other residents are much more willing to
experiment. Not included in Fig. 5 are further results, showing that even for some very
small φ (0.1 > φ ≥ 10−20), there are residents which are not even weakly assortative.
We hypothesize that this “reach” and “safety” behaviour is present in markets with
larger interviewing quotas.

7 Conclusions and future directions

We investigated equilibria in ILQgames, inspired by thematching ofmedical residents
to hospital programs. A key feature of this game is that residents must interview with
hospitals to discover their true preferences, but are limited in the number of interviews
they may conduct. This introduces a new level of complication as residents need to
carefully consider how to optimize their interviewing strategies given the interviews
choices of other residents. While we showed the existence of a pure-strategy Nash
equilibria for this game, we where particularly interested in understanding under what
circumstances assortative interviewing forms an equilibrium, as such strategies are
“easy” for residents to execute, result in stable outcomes where everyone is matched,
and which earlier work had suggested might exist (Lee 2017).

We summarize our findings into a few key take-aways that may provide useful
guidelines for market designers:

• Assortative interviewing is supported in equilibrium, but its existence depends
critically on how correlated residents’ preferences are, the limit on the number of
interviews, and the structure on the underlying value functions for alternatives.
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• If the underlying value function is Borda-based, then assortative interviewing only
forms an equilibriumwhen preferences of residents are closely correlated (as mea-
sured by the φ parameter in the underlying φ−Mallows model). If the underlying
value function is plurality-based or exponential then assortative interviewing is
more broadly supported.

• Limiting the number of interviews residents can undertake is critical if assortative
interviewing it to be supported. If residents are allowed to interviewwith 4 or more
hospitals then assortativity might not be supported in equilibrium.

• Relaxing the definition of assortativity (to weak-assortativity) does not help.

There aremany research questions raised by our results, towhich at least someof out
technical results and techniques may also contribute. Most concretely, we hypothesize
Theorem 9 could be replaced by extending Theorem 10 for all k ≥ 4. Second, while
we believe that the space of scoring functions used in this paper was broad in its
scope, we always assumed that residents’ underlying ranked preferences were drawn
from a distribution generated by the φ-Mallows model. While the φ-Mallows model
is standard in the literature, it is possible that other preference distributions (e.g.,
Plackett-Luce) may better support assortative interviewing. Second, the analysis relies
on the assumption that one side of the market maintained a master list. While master-
lists do occur in real-world matching markets, lifting this assumption will obviously
generalize the setting, and may invalidate our results. More specifically, the removal
of the master-list assumption would complicate the analysis significantly, increasing
the complexity of the payoff function formulation.

Furthermore, we could consider modifying our definition of an interview set. Cur-
rently we assume that residents could interview up to k hospitals for free, but an
alternative model to consider would be to allow each resident r to have a “budget” br ,
and incur a cost, cr (h), when interviewing hospital h, with the constraint that if S is the
set of hospitals interviewed by resident r , then

∑
h∈S cr (h) ≤ br . Such a budget, even

if the cost is equal for all hospitals, will change the equilibrium in a variety of ways,
including bymaking it no longer always a dominating strategy to interview at all k hos-
pitals, as sometime—particularly for very high/low ranked residents—interviewing at
some hospitals might not offer enough expected utility. It may also give rise to a setting
equivalent to the hospitals having a limited number of potential interview slots, which
would make the hospitals strategic players as well, as they wish to find the candidates
which are both highly ranked and that will also choose them.7 A similar form of either
assortative or “reach”/“safety” may happen, this time by the hospitals, though that is
outside the scope of this paper.

A long-term research goal is to better understand the extent to which “natural
equilibria” exist inmatching games, and how such equilibria correspondwith observed
behaviour in actual markets. One such possibility is for interviewing to be assortative
for “safety” programs while allowing for one or a few “reach” programs. (See for
example the strategy of resident 6 for small values of the Mallows’ parameter in
Fig. 4.) Furthermore, we are interested in techniques that could reduce the cognitive
burden placed on participants in matching markets, while also reducing inefficiencies.

7 Though note that in an equilibrium, the number of interviews in each hospital will still be k, for the
reasons outlined following Theorem 12 when the cost for residents of being left without a hospital is high.
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For example, there may be ways to leverage research on preference elicitation for
matching markets (e.g., Drummond and Boutilier 2014) with matching market design
so as to guide participants to interview with the appropriate programs so as to improve
the overall quality of the match.
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Appendix A Proofs from Sect. 4.1.1

In this appendix we provide the proofs of the results that were presented in Sect. 4.1.1.

Proof (Lemma 1) Suppose σ is a prefix of σ ′. Then, let σ be some ranking with p
elements, including elements ai and a j . Let σ ′ be a ranking of p + 1 elements with σ

as its prefix, and an additional element ap added at the end. We prove this by starting
from the definition of P(ai � a j |Dφ,σ ′

), and using algebraic manipulations to show
this is equivalent to the definition of P(ai � a j |Dφ,σ ).

P(ai � a j |Dφ,σ ′
) =

∑
η′∈{a0,...,ap−1,ap}ai�a j�

φd(η′,σ ′)

1(1 + φ) . . . (1 + · · · + φ p−1 + φ p)
(2)

However, because ai , a j are in ranking σ , the only difference between summing
over the set of all rankings in {a0, . . . , ap}ai�a j� and {a0, . . . , ap−1}ai�a j� is that there
for each permutation generated by {a0, . . . , ap−1}�, there are p permutations in
{a0, . . . , ap}�, each one with ap in a different place (and thus a different Kendall-
τ distance). Fixing some η ∈ {a0, . . . , ap−1}�, if ap is in the last rank position (as
it is in σ ′), the distance is simply d(η, σ ). If ap is in the second-to-last position, we
have now added in an additional discordant pair, so the distance is d(η, σ ) + 1. Using
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this, we generate the following:

P(ai � a j |Dφ,σ ′
) =

∑
η∈{a0,...,ap−1}ai�a j�

∑p
l=0 φd(η,σ )+l

1(1 + φ) . . . (1 + . . . + φ p)

=
[∑

η∈{a0,...,ap−1}ai�a j�
φd(η,σ )

][ ∑p
l=0 φl

]

1(1 + φ) . . . (1 + · · · + φ p)

=
[ ∑

η∈{a0,...,ap−1}ai�a j�
φd(η,σ )

]
(1 + . . . + φ p)

1(1 + φ) . . . (1 + · · · + φ p−1)(1 + · · · + φ p)

=
∑

η∈{a0,...,ap−1}ai�a j�
φd(η,σ )

1(1 + φ) . . . (1 + · · · + φ p−1)

= P(ai � a j |Dφ,σ )

By symmetry, this also holds when σ is a suffix of σ ′. ��
Proof (Corollary 1) Consider σ = ai � ai+1, a reference ranking with only our two
elements in it. Then, the set of all potential rankings such that ai � ai+1 under Dφ,σ

is solely the ranking ai � ai+1. By the definition of the Mallows model, this ranking
has probability 1

1+φ
. We add some arbitrary prefix σ ′ to σ and some arbitrary suffix

σ ′′ to σ to create a new reference ranking γ . By Lemma 1, the probability that some
η is drawn from Dφ,γ such that ai �η ai+1 is 1

1+φ
as required. ��

Proof (Corollary 2) Consider σ ∗ = ai � ai+1 � ai+2, a reference ranking with three
elements in it. The set of all potential rankings underDφ,σ ∗

such that ai � ai+1 � ai+2
is solely that ranking. Using the same argument as in Lemma 1, we note that creating
some new reference ranking γ = σ ′ � σ ∗ � σ ′′ and drawing from Dφ,γ does not
change the likelihood that we draw a ranking consistent with ai � ai+1 � ai+2.

Therefore, the probability that we draw a ranking β consistent with some permu-
tation η of ai , ai+1, ai+2 under the distribution Dφ,γ is simply the probability that we

drew η under the distribution Dφ,σ ∗
, which is φd(η,σ∗)

(1+φ)(1+φ+φ2)
. ��

Proof (Lemma 2) This is equivalent to generating the set of all (n − 1)! possible
rankings excluding alternative a1 (an), and then adding a1 (an) in place j . Whatever
the ranking, adding a1 (an) in place j adds j − 1 (n − j) to each possible ranking’s
Kendall’s τ distance from σ \ {a1} (σ \ {an}), making the distance from σ grow by
exactly j − 1 (n − j). Similarly, adding a j in first place adds j − 1 to the distance
from σ \ {a j }, increasing the distance from σ by j − 1.

However, we also added in an additional element to the ranking (growing from
n − 1 to n), and must include that in the normalization factor Z . The normalization
factor for n−1 alternatives is (1+φ)(1+φ2) . . . (1+· · ·+φn−2). The normalization
factor for n elements is identical, but multiplied by 1 + · · · + φn−1. ��
Proof (Lemma 3) For any a�, i > � > j : if a� �η ai , this adds at least 1 to the
Kendall-τ distance of η from σ (due to ai �σ a�). But if ai �η a�, this means that
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a j �η a�, again adding 1 to the Kendall-τ distance of η from σ . So the Kendall-τ

distance of η from σ is at least
∑ j−1

�=i 1 = j − i , and therefore, P(η) <
φ j−i

Z . ��

Appendix B Proofs from Sect. 4.1.2

Proof (Lemma 4) The idea behind the proof is that if there is a set of hospitals that
are better than interviewing assortatively, since no other resident prior to rk interviews
there, the hospitals in this set that are outside of {h1, . . . , hk} have an ordering. That
is, the expected utility from adding hk+1 is larger than that of adding hk+2, since, in
expectation hk+1 is likely to be ranked higher by the resident than hk+2. Therefore,
taking out the hospital with the least expected utility from {h1, . . . , hk} and adding
hk+1 in its stead should already be beneficial, since any other hospital added to the
interviewing set will remove a hospital with a higher utility (than the one removed for
hk+1), and replace it with lesser utility hospital (since an hospital from hk+2, . . . , hn
has smaller expected utility). Therefore, if there is a set that is better than assortative,
it should show up already when replacing some hospital in {h1, . . . , hk} by hk+1.

For any hospital h, let b(h, η) = 1 iff h is available for rk , and h �η h j for all
other h j available; and 0 otherwise. Directly following from the utility function, the
utility of resident rk when interviewing with some set of hospitals S = {h1, . . . , hk}
can thus be written as:

urk (S) =
∑

h∈S

∑

η∈H�
v(h, η)P(η,Dφ,σ )b(h, η)

As we assume knowledge of the strategies for residents r1, . . . , rk−1, we can cal-
culate the probability that any given hospital is available. We thus can calculate the
contribution of each hospital interview to the total utility, as P(η,Dφ,σ ) and v(h, η)

are known a priori. Moreover, when r1, . . . , rk all interview with the same k hospitals,
b(h, η) is equivalent to the probability that hospital h is available for rk (which we
denote by P(h)): resident rk gets whatever hospital r1, . . . , rk−1 do not take.

Now, assume there is in equilibrium some set S′ of hospitals such that urk (S
′) >

urk (S). Define S̄ = S\S′; denote the members of S̄ as h′
1, . . . , h

′
l . Also, note that hk+1

must be in S′ \S, as S̄ �= S and hk+1 dominates all alternatives in {hk+1, . . . , hn}: hk+1
is available for rk with probability 1 (as are all other alternatives not in S), and has
higher expected value than any other h j s.t. hk+1 �σ h j .Without loss of generality, let
h′
1 be the hospital in S̄ that minimizes the benefit gained from swapping some element

in S̄ with one of the more “desirable” elements in S′. More formally, h′
1 is the hospital

in S̄ that minimizes

y1 =
∑

η∈H�
P(η|Dφ,σ )b(h′

1, η)
[
v(h′

1, η) − v(hk+1, η)
]

y1 is the value that is lost when h′
1 is the only available hospital from h1, . . . , hk ,

and hk+1 must be chosen instead. The value added by interviewing in hk+1 instead
of h′

1 is formally: z1 = ∑
η∈H� P(η|Dφ,σ )b(hk+1, η)v(hk+1, η). Then, urk (S ∪
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{hk+1}\{h′
1}) = urk (S) − y1 + z1. If y1 ≤ z1, the lemma is proven; Otherwise,

we assume z1 − y1 < 0 and establish a contradiction.
Without loss of generality, let h′

2 be the hospital in S̄ \ {h′
1} that minimizes

y2 =
∑

η∈H�
P(η|Dφ,σ )b(h′

2, η)
[
v(h′

2, η) − max(v(hk+1, η), v(hk+2, η))
]

=
∑

η∈H�|hk+1�hk+2

P(η|Dφ,σ )b(h′
2, η)

[
v(h′

2, η) − v(hk+1, η)
]

+
∑

η∈H�|hk+2�hk+1

P(η|Dφ,σ )b(h′
2, η)

[
v(h′

2, η) − v(hk+2, η)
]

Again, y2 is the benefit we get from h′
2, the alternative we are swapping out for hk+2.

The value added from hk+2 is z2 = ∑
η∈H� P(η|Dφ,σ )b(hk+2, η)v(hk+2). Since

hk+1 and hk+2 have the same probability of being available, but the expected value of
v(hk+1) is more than that of v(hk+2), we know z2 < z1. Thanks to Corollary 1:

∑

η∈H�|hk+1�hk+2

P(η|Dφ,σ )b(h′
2, η)

[
v(h′

2, η) − v(hk+1, η)
] = 1

1 + φ
y2

Looking at the equivalent section of y1:

∑

η∈H�|hk+1�hk+2

P(η|Dφ,σ )b(h′
1, η)

[
v(h′

1, η) − v(hk+1, η)
]

>
1

1 + φ
y1

but thanks to y1 minimality:

∑

η∈H�|hk+1�hk+2

P(η|Dφ,σ )b(h′
2, η)

[
v(h′

2, η) − v(hk+1, η)
]

>
∑

η∈H�|hk+1�hk+2

P(η|Dφ,σ )b(h′
1, η)

[
v(h′

1, η) − v(hk+1, η)
]

and therefore y2 > y1. Thus:

urk (S \ {h′
1, h

′
2} ∪ {hk+1, hk+2}) = urk (S) − y1 + z1 − y2 + z2

< urk (S) − 2y1 + 2z1
< urk (S)

Note that due to similar considerations, all other alternatives in S \ S′ must also
have yi such that yi > y1 and zi < z1, by the construction of y1 and z1. Let l = |S̄|.
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Thus:

urk (S
′) = urk (S \ S̄) +

l∑

i=1

zi − yi < urk (S) − ly1 + lz1 < urk (S)

This contradicts our assumption that urk (S
′) > urk (S); thus, if such an S′ exists,

y1 ≥ z1, and showing that S dominates S\{h j } ∪ {hk+1} is sufficient for all h j ∈ S. ��

Proof (Lemma 5) By Lemma 4, showing that the marginal contribution from h j is
bigger than the marginal contribution from hk+1 is sufficient to show that S dominates
any other interviewing set. Using the payoff function in Sect. 3.1, this means that we
want to find conditions such that the utility to rk provided by h j is larger than that of
hk+1:

∑

η∈H�
v(h j , η)P(μ(h j ) = rk |S, η,Dφ,σ )P(η|Dφ,σ ) ≥

∑

η∈H�
v(hk+1, η)P(μ(hk+1) = rk |S′, η,Dφ,σ )P(η|Dφ,σ )

(3)

Note that, when interviewing with set S, the probability μ(h j ) = rk is simply the
probability that no resident in r1, . . . , rk−1 chooses h j . Thus, the left hand side of
Eq.3 simplifies to:

∑

η∈H�
v(h j , η)P(μ(h j ) = rk |S, η,Dφ,σ )P(η|Dφ,σ )

= P(h j )
∑

η∈H�
v(h j , η)P(η|Dφ,σ )

= P(h j )E(v(h j )|Dφ,σ ) (4)

We now also wish to simplify the right hand side. Note that there are two cases in
which resident rk is matched with hk+1 when interviewing with set S′: either h j is the
only hospital available (i.e., r1, . . . , rk−1 have all been matched with {h1, . . . , hk} \
{h j }), or for some hi ∈ {h1, . . . , hk}\{h j }, hi is available and under the ranking η in
consideration, hk+1 �η hi . Again, 1(y) denote an indicator function, where 1(y) = 1
iff y is true, and 0 otherwise. More formally, we express the RHS of the condition in
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Eq.3 using the indicator function, and simplify:

∑

η∈H�
P(η|Dφ,σ ) · [

v(hk+1, η)P(h j )+
∑

hi∈S′
P(hi )1(hk+1 �η hi )v(hk+1, η)

] =

= P(h j )E(v(hk+1)|Dφ,σ )

+
∑

η∈H�
P(η|Dφ,σ ) · [ ∑

hi∈S′
P(hi )1(hk+1 �η hi )v(hk+1, η)

]
(5)

Combining the simplifications provided in Eqs. 4 and 5 completes the proof. ��

Appendix C Sufficient inequality for checking assortativity

We provide a simplified condition for assortative interviewing that is sufficient though
not necessary. This condition is easier to compute than the condition in Lemma 5, and
thus will be valuable later on, when verifying whether specific valuation functions
admit assortative interviewing equilibria.

Lemma 8 Given an interviewing quota of k interviews, a dispersion parameter φ,
and a scoring function v, if residents r1, . . . , rk−1 all interview assortatively (i.e.,
with hospital set S = {h1, . . . , hk}), then satisfying the following inequality for all
h j ∈ {h1, . . . , hk} when S′ = S \ {h j } ∪ {hk+1} is sufficient to show that assortative
interviewing is a best response for resident rk:

P(h j )E(v(h j )|Dφ,σ ) ≥ P(h j )E(v(hk+1)|Dφ,σ )

+
∑

hi∈S′
P(hi )E(v(h′

k)|Dφ,σ ′
)

φ

Z(1 − φ)

where σ ′ is equivalent to the reference ranking σ with one element hi s.t. h j �σ hi
removed, and h′

k is the kth item in σ ′.

Proof We begin from the sufficient and necessary condition stated in Lemma 5. Note
that we can generate any ranking such that hk+1 � hi (for some given i) by iterating
over all permutations of H \ {hi }, and for each permutation, placing hi in every slot
below hk+1. There are at most n − 1 slots that hi could be placed in.

Let σ ′ be identical to the reference ranking σ , except with hi removed. Rename
every element after hi such that it corresponds to its current index: in other words,
h′
j = h j+1 for all j ≥ i . Let η′ be some arbitrary ranking drawn from Dφ,σ ′

. Let
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H ′ = H \ {hi }. Remember, S′ = {h1, . . . , hk+1}\{h j }. Thus, we note that:

∑

η∈H�

∑

hi∈S′
P(hi )1(hk+1 �η hi )v(hk+1, η)P(η|Dφ,σ )

≤
∑

hi∈S′

⎡

⎣P(hi )

⎛

⎝
∑

η′∈H ′�

v(h′
k, η

′)P
(
η′|Dφ,σ ′)

(
n∑

l=1

φl

Z

)⎞

⎠

⎤

⎦

However, note that φl is a geometric series. We let n → ∞, giving us:

∑

hi∈S′

[
P(hi )E

(
v(h′

k

) |Dφ,σ ′
)

n∑

l=1

φl

Z

]
≤

∑

hi∈S′
P(hi )E(v(h′

k)|Dφ,σ ′
)

φ

Z(1 − φ)
(6)

Thus, because Eq.6 is an upper bound, it is sufficient to show the following, as
required:

P(h j )E
(
v(h j )|Dφ,σ

) ≥ P(h j )E
(
v(hk+1)|Dφ,σ

)

+
∑

hi∈S′
P(hi )E

(
v

(
h′
k

) |Dφ,σ ′) φ

Z(1 − φ)

��

Appendix D Proofs from Sect. 5

Before proving the results in this section we introduce some notation. Given some
resident with ranking η over hospitals, define si to be the i’th ranked hospital in
this list. While in general we hesitate to introduce new notation, it is important to
distinguish between some hospital in H and the i’th ranked one from a resident’s
perspective.

Proof (Lemma 6) We begin with the condition in Lemma 5:

P(h j )E
(
v(h j )|Dφ,σ

)
> P(h j )E

(
v(hk+1)|Dφ,σ

) +
∑

η∈H�
P(η|Dφ,σ ) ·

⎡

⎣
∑

hi∈S′
P(hi )1(hk+1 �η hi )v(hk+1, η)

⎤

⎦
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We instantiate this condition for the plurality function, noting that v(h, η) > 0 iff
h is top-ranked in η.

P(h j )E
(
v(hk+1)|Dφ,σ

) +
j−1∑

i=1

P(hi )E
(
v(hk+1)|Dφ,σ

)

+
k∑

i= j+1

P(hi )E
(
v(hk+1)|Dφ,σ

) =
k∑

i=1

P(hi )E
(
v(hk+1)|Dφ,σ

)

But, again, as the expected value for any hospital h is simply the probability that h
is s1 this further simplifies to:

P(hk+1 = s1)
k∑

i=1

P(hi ) = P(hk+1 = s1)

Note that
∑k

i=1 P(hi ) = 1 as all residents r1, . . . , rk−1 have been matched with
exactly k−1 hospitals in h1, . . . , hk , leaving exactly one hospital left with probability
1.

Applying Lemma 2 to both sides of the inequality (recall that E(v(h j )|Dφ,σ ) is
simply P(h j = s1)):

P(h j )
φ j−1

1 + · · · + φn−1 ≥ φk

1 + · · · + φn−1

P(h j ) ≥φk− j+1

��

Proof (Lemma 7) Looking at the condition of Lemma 5

P(h j )E(v(h j )|Dφ,σ ) ≥ P(h j )E
(
v(hk+1)|Dφ,σ

) +
∑

η∈H�
P

(
η|Dφ,σ

)
⎡

⎣
∑

hi∈S′
P(hi )1(hk+1 �η hi )v(hk+1, η)

⎤

⎦
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We will first expand the value expectation (E):

P(h j )

n∑

i=1

P(h j = si )v(si ) ≥ P(h j )

n∑

i=1

P(hk+1 = si )v(si )

+
∑

η∈H�|
hk+1=s1

P(η|Dφ,σ )
∑

hi∈S′
P(hi )1(hk+1 �η hi )v(s1)

+ · · · +
∑

η∈H�|
hk+1=sn−1

P(η|Dφ,σ )
∑

hi∈S′
P(hi )1(hk+1 �η hi )v(sn−1)

Note that for any 1 ≤ � ≤ n,

v(s�) > P(h j )P(h j = s�)v(s�)+
∑

η∈H�|
hk+1=s�

P(η|Dφ,σ )
∑

hi∈S′
P(hi )1(hk+1 �η hi )v(s�)

Thus, combining these and Lemma 5, it is sufficient to show the following holds
whenever plurality admits an assortative interviewing equilibrium:

P(h j )P(h j = s1)v(s1) ≥ P(h j )P(hk+1 = s1)v(s1) +
n∑

�=2

v(s�) (7)

We assume that for plurality valuation, the condition has a strict inequality. In other
words:

P(h j )P(h j = s1) > P(h j )P(hk+1 = s1)

Hence, there is an ε̄ ≤ 1 such that for all 1 ≤ j ≤ k,

P(h j )P(h j in s1) − ε̄ > P(h j )P(hk+1 in s1)

Now, for ε < ε̄
2 , examine the valuation function v(s�) = ε�−1. Note that

∑n
�=2 ε�−1 ≤∑∞

�=1 ε� = ε
1−ε

≤ 2ε. This simplifies such that it satisfies Eq.7, as required:

P(h j )P(h j = s1) > P(h j )P(hk+1 = s1) + 2ε

≥ P(h j )P(hk+1 = s1) +
n∑

�=2

v(s�)

��
Proof (Theorem 4) We begin by using the condition from Lemma 6 for h1. We thus
wish to show conditions on φ s.t. P(h1) ≥ φ2, when resident r2 chooses their
interview set. For r2, h1 is available iff r1 happened to draw a ranking over their
preferences s.t. h2 � h1. Then, by Corollary 1, P(h1) = φ

1+φ
, implying we need to

123



A. Borodin et al.

satisfy the equation φ
1+φ

≥ φ2, which is true whenever 0 < φ ≤ 0.6180. Doing the
same for h2 provides a bound of 0 < φ ≤ 0.7549, so we take the tighter bound of
0.618. ��

Proof (Theorem 5) We begin by noting that, because of Lemma 8, we only need to
show that assortative interviewing is an equilibrium when 0 < φ ≤ 0.265074 for
resident r2, and it will hold for all ri . Furthermore, by Lemma 4, we only need to
prove that {h1, h2} dominates both {h1, h3} and {h2, h3} to show that it dominates all
other possible interviewing sets of size 2.

We prove that choosing {h1, h2} is better than choosing {h2, h3}, for all values of φ

such that 0 < φ ≤ 0.265074. We prove this by summing over all possible preference
rankings that induce a specific permutation of the alternatives h1, h2, h3. We then pair
these summed permutations in such a manner that makes it easy to find a lower bound
for ur2({h1, h2}) − ur2({h2, h3}). This lower bound is entirely in terms of φ, meaning
that for any φ such that this bound is above 0, it will be above 0 for any market size n.

We look at three cases, pairing all possible permutations of h1, h2, h3 as follows:
Case 1: all rankings η consistent with h2 � h1 � h3 or η′ consistent with h2 � h3 �
h1;
Case 2: all rankings η consistent with h1 � h2 � h3 or η′ consistent with h3 � h2 �
h1;
Case 3: all rankings η consistent with h1 � h3 � h2 or η′ consistent with h3 � h1 �
h2.

Note that as we have enumerated all possible permutations of h1, h2, h3, these three
cases generate every ranking in H�. Furthermore, for any one of the three cases, we
can iterate only over all possible rankings η that are consistent with the first member
of the pair, and generate the ranking η′ consistent with the second member of the
pair by simply swapping two alternatives in the rank. Moreover, given some η, the
number of discordant pairs in η′ is simply the number of discordant pairs in η, plus
the number of additional discordant pairs between h1, h2, h3 caused by swapping the
two alternatives.

For clarity, let ur2({h1, h2}) − ur2({h2, h3}) = U1 + U2 + U3, where U1,U2,U3
correspond to our three cases. We also introduce the notation Pμ(ri )(h) to denote the
probability that ri is matched to hospital h under matching μ. That is, Pμ(ri )(h) =
P(μ(ri ) = h).

Case 1. Because we have fixed h2 � h1 � h3 or h2 � h3 � h1, we know
exactly what r2’s match will be. As we know r1’s interviewing set ({h1, h2}), and the
distribution r1’s preferences are drawn i.i.d., we know the likelihood that either h1
or h2 is available; by Lemma 1, P(μ(r1) = h1) = 1

1+φ
. Using this information, the

payoff function, and the definition of η, η′, we find a lower bound:

U1 =
∑

η∈P(H)h2�h1�h3

Pμ(r1)(h2)
[
(v(h1, η) − v(h3, η))P(η|Dφ,σ ) + (v(h1, η

′) − v(h3, η
′))P(η′|Dφ,σ )

]

U1 ≥ Pμ(r1)(h2)(1)(1 − φ)P(h2 � h1 � h3) =
(

φ

1 + φ

)(
φ

(1 + φ)(1 + φ + φ2)

)
(1 − φ) (8)
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Case 2. We fix h1 � h2 � h3 or h3 � h2 � h1. This case is analogous to Case 1:

U2 =
∑

η∈P(H)h1�h2�h3

Pμ(r1)(h1)
[
(0)P(η|Dφ,σ ) + (v(h2, η

′) − v(h3, η
′))P(η′|Dφ,σ )

]

+ Pμ(r1)(h2)
[
(v(h1, η) − v(h3, η))P(η|Dφ,σ ) + (v(h1, η

′) − v(h3, η
′))P(η′|Dφ,σ )

]

U2 ≥ P(h1 � h2 � h3)
2

1 + φ
(φ − φ3 − φ4) (9)

Case 3. We fix h1 � h3 � h2 or h3 � h1 � h2. Again, we look at pairs of rankings
η, η′, where η is consistent with h1 � h3 � h2, and η′ is identical to η, except
rank(h1, η) = rank(h3, η′), and rank(h3, η) = rank(h1, η′).

Then, as before, we sum over all possible rankings consistent with h1 � h3 � h2,
but we break this into two subcases, so that U3 = U3a +U3b:

U3a =
∑

η∈H�|h1�h3�h2

Pμ(r1)(h1)[(v(h2, η) − v(h3, η))P(η|Dφ,σ ) + (v(h2, η
′) − v(h3, η

′))P(η′|Dφ,σ )]

U3b =
∑

η∈H�|h1�h3�h2

Pμ(r1)(h2)[(v(h1, η) − v(h3, η))P(η|Dφ,σ ) + (v(h1, η
′) − v(h3, η

′))P(η′|Dφ,σ )]

Case U3b is similar to Cases 1 and 2:

U3b =
∑

η∈P(H)h1�h3�h2

Pμ(r1)(h2)[(v(h1, η) − v(h3, η))
φd(η,σ )

Z
+ (v(h3, η) − v(h1, η))

φd(η,σ )+1

Z

U3b ≥ φ

φ + 1
(1 − φ)P(h1 � h3 � h2) (10)

CaseU3a , however, is different from all other cases, in that all terms are negative. We
note that U3a as above is a monotonically decreasing function in terms of n. Thus, if
U3a converges as n → ∞, we have found a lower bound for all n. Using this technique,
we show the following bound holds:

U3a ≥ Pμ(r1)(h1)
−φ

(1 + φ)(1 + φ + φ2)

( φ

(1 − φ)4
+ 1

3(1 − φ)3
+ 2

3

)
(1 + φ) (11)

We have considered all cases, and can now combine them together. We add the
bounds for U1 (Eq.8), U2 (Eq.9), U3a (Eq. 11), and U3b (Eq. 10). We simplify using
Corollaries 1 and 2, giving us:

ur2({h1, h2}) − ur2({h2, h3})

≥ φ2

(1 + φ)(1 + φ)(1 + φ + φ2)
(1 − φ) + 2(φ − φ3 − φ4)

(1 + φ)(1 + φ)(1 + φ + φ2)

− φ

(1 + φ)(1 + φ)(1 + φ + φ2)

( φ

(1 − φ)4
+ 1

3(1 − φ)3
+ 2

3

)
(1 + φ)

+ φ2

(1 + φ)(1 + φ)(1 + φ + φ2)
(1 − φ) (12)

123



A. Borodin et al.

Thus, Eq.12 gives us a lower bound for the difference in expected utility between
{h1, h2} and {h2, h3} for resident r2, for all n. Using numericalmethods to approximate
the roots of Eq.12, we get that there is a root at 0, and a root at φ ≈ 0.265074.

As the calculations are analogous, we omit the discussion of their derivation, but it
can be shown that:

ur2({h1, h2}) − ur2({h1, h3}) ≥ 1

(1 + φ)(1 + φ + φ2)

× [
1 + φ − 2φ2 − 2φ3 − 2φ3( φ

(1 − φ)4
+ 1

3(1 − φ)3
+ 2

3

)]
(13)

Using numerical methods, it can be shown that this is positive for 0 < φ <

0.413633.
Thus, for the interval 0 < φ ≤ 0.265074, we have shown that r2’s best move in

this interval is to interview with {h1, h2}. Then, by Lemma 8, this is an equilibrium
for all ri as required. ��
Proof (Theorem 6)We provide a counterexample for n = 4, k = 3. Suppose residents
r1 and r2 interview assortatively, both interviewing with S = {h1, h2, h3}. We show
that for resident r3, interviewing with interviewing set S′ = {h2, h3, h4} dominates
interviewing with S = {h1, h2, h3} for all φ.

By Lemma 4, it is sufficient to show that if the marginal value in interviewing with
h4 dominates the marginal value in interviewing with h1 (as these two sets only differ
by these two items), then interviewing with {h2, h3, h4} dominates {h1, h2, h3}. We
thus instantiate Eq.3 for n = 4, k = 3, S, and S′ as above for resident r3. Note that
Z = (1+φ)(1+φ +φ2)(1+φ +φ3). Let E(u(hi , S)) denote the expected marginal
value in interviewing alternative hi in set S; remember v(si ) = 5 − i .

E(u(h1, S)) =
∑

η∈H�
v(h1, η)P(μ(h1) = r3|S, η,Dφ,σ )P(η|Dφ,σ ) (14)

E(u(h4, S
′)) =

∑

η∈H�
v(h4, η)P(μ(h4) = r3|S′, η,Dφ,σ )P(η|Dφ,σ ) (15)

As before, Eq.14 is simply the probability that h1 is available times the
expected value of h1. As noted, E(v(h1)|Dφ,σ ) = ∑4

i=1 P(h1 in si ) · v(si ) =∑4
i=1 P(h1 in si ) · (5 − i). However, using Lemma 2, we know that P(h1 in si ) =
φi−1

1+φ+φ2+φ3 , giving:

E(u(h1, S)) = P(h1)E(v(h1)|Dφ,σ ) = P(h1)
4 + 3φ + 2φ2 + φ3

1 + φ + φ2 + φ3 (16)

Let P(hi taken) denote the probability that either r1 is matched to hi , or r2 is
matched to hi (i.e., hi is taken by the time we get to resident r3). Also let P(μ(r3) =
h4|h4 in si ) denote the probability that r3 is matched to h4 if h4 is in slot si in r3’s
ranking. This is easily calculable by enumerating over the subset of possible rankings
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such that this occurs, given that r1 and r2 have already taken certain alternatives. Then,
using Lemma 2 again and an analogous approach as above, we adapt Eq.15:

E(u(h4, S
′)) =

4∑

i=1

v(si )P(h4 in si )P(μ(r3) = h4|h4 in si )

= 4φ3

1 + φ + φ2 + φ3

+ 3

Z

(
φ2 + φ3 + P(h2 taken)(φ

3 + φ4) + P(h3 taken)(φ
4 + φ5)

)

+ 2

Z

(
P(h2 taken)(φ+φ2)+P(h3 taken)(φ

2+φ3)+P(h1)(φ
3+φ4)

)

+ P(h1)

1 + φ + φ2 + φ3 (17)

As we assume that residents r1 and r2 both interview with S, the probability that
h1 is available, or h2 (resp. h3) is taken is the same across both E(u(h1, S)) and
E(u(h4, S′)). We instantiate these as follows, by determining the probability that r1
is matched to some hospital h j other than h∗, and enumerate the probabilities of all
rankings such that r2 is matched to some hospital h′

j �= h∗ given that r1 is matched to
h j :

P(h1)=P(μ(r1)=h2|S,Dφ,σ )(
φ2

1+φ+φ2+φ3
+ φ2+φ3+φ4+2φ5+φ6

Z )

+P(μ(r1)=h3|S,Dφ,σ )(
φ

1+φ+φ2+φ3
+ φ3+2φ4+2φ5+φ6

Z )

P(h2 taken)=P(μ(r1)=h2|S,Dφ,σ )+P(μ(r1)=h3|S,Dφ,σ )(
φ

1+φ+φ2+φ3
+ φ3+2φ4+2φ5+φ6

Z )

+P(μ(r1)=h1|S,Dφ,σ )(
φ

1+φ+φ2+φ3
+ 1+φ+φ2+φ3+φ4+φ5

Z )

P(h3 taken)=P(μ(r1)=h3|S,Dφ,σ )+P(μ(r1)=h2)(
φ2

1+φ+φ2+φ3
+ φ2+φ3+φ4+2φ5+φ6

Z )

+P(μ(r1)=h1|S,Dφ,σ )(
φ2

1+φ+φ2+φ3
+ 1+φ+φ2+φ3+φ4+φ5+φ6

Z )

It is also possible to calculate exact values for the probability that r1 is matched
to h1, h2, h3. We do this by calculating the probability that alternative is first, or the
probability that alternative is second, and h4 is first:

P(μ(r1) = h1|S,Dφ,σ ) = P(h1 in s1) + P(h1 in s2 and h4 in s1)

= 1

1 + φ + φ2 + φ3 + φ3 + φ4

Z

P(μ(r1) = h2|S,Dφ,σ ) = P(h2 in s1) + P(h2 in s2 and h4 in s1)

= φ

1 + φ + φ2 + φ3 + φ4 + φ5

Z

P(μ(r1) = h3|S,Dφ,σ ) = P(h3 in s1) + P(h3 in s2 and h4 in s1)

= φ2

1 + φ + φ2 + φ3 + φ5 + φ6

Z
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By combining the equations for the probabilities we are left with two equations
depending only on φ. Moreover, after instantiating E(u(h1, S)) and
E(u(h4, S′) above, we note that both functions are continuous on the interval (0, 1].
Using numerical techniques, it can be shown that there are no zeros for the function
E(u(h1, S)) − E(u(h4, S′)) on the interval (0, 1], and the function is negative on the
interval (0, 1] providing the counterexample as required. ��
Proof (Theorem 7) For k = 3, we simply check the constraint

P(h j ) ≥ φk− j+1

from Lemma 6 with h j = h1, h2, h3. We find that the marginal contribution from h1
is less than the marginal contribution of h2 or h3, and thus only present the calculation
for h1. We directly compute P(h1), by multiplying the probability that r1 did not take
h1, and multiplying it by the probability that r2 did not take h1, given that r1 also did
not take h1. To calculate this we enumerate the probabilities of any possible rankings:

P(h1) = P(μ(r1) �= h1)P(μ(r2) �= h1|μ(r1) �= h1)

P(h1) = (
φ + 2φ2 + φ3

(1 + φ)(1 + φ + φ2)
)(

φ2 + 2φ3

(1 + φ + φ2)
)

The first parenthesis is using Corollary 2, and the second the probability h3 is preferred
over h2 using Corollary 1. Using numerical methods to find the roots of P(h1) − φ3,
we can show that above constraint holds when 0 < φ ≤ 0.5462. ��

D.1 Assortative equilibria when k ≥ 4

We start by providing an additional lemma regarding a bound on the availability of
any given alternative hi at the time resident rk is being matched by the mechanism to
their favourite remaining hospital. This probability is dependent on φ: for any hospital
hi such that i < k, as φ → 1, the probability hi is available goes to 1

k ; as φ → 0,
this probability goes to 0. Instead of looking at the probability directly, we look at the
probability that a preference profile will admit a stable match such that hi is available,
and bound that.

Lemma 9 Given aMallowsmodel with dispersion parameter φ, assortative interview-
ing for residents r1, . . . ., rk−1, and a hospital hi ∈ {h1, . . . , hk} (i.e., the residents’
interview set), then any profile η1, . . . , ηk−1 ∈ Dφ,σ of k − 1 preferences (for
r1, . . . , rk−1) such that hi is available for rk has probability P(r1 = η1, r2 =
η2, . . . , rk−1 = ηk−1) ≥ φγ

Zk−1 , where γ = ∑k−i
j=1 j and Z is the normalizing fac-

tor for a Mallows model.

Proof In order for hi to be available, there need to be r ′
i+1, . . . , r

′
k with preference

orders ηi+1, . . . , ηk ∈ Dφ,σ such that they were assigned hospitals hi+1, . . . , hk .
Hence, at the very least, hi+1 �ηi+1 hi , . . . , hk �ηk hi . According to Lemma 3, the

probability for each of these events is at most φ
Z , . . . ,

φk−i

Z (respectively). Since they
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are independent of each other, and since the maximum probability for any particular
η ∈ Dφ,σ is 1

Z , the probability of a particular preference set occurring in which hi is

available is at least φγ

Zk−1 . ��
Proof (Theorem8)Looking at the conditionofLemma5 (recall S′ ={h1, . . . , hk}\{h j }
∪ {hk+1} for any h j ∈ {h1, . . . , hk})

P(h j )E(v(h j )|Dφ,σ ) ≥ P(h j )E(v(hk+1)|Dφ,σ )

+
∑

η∈H�
P(η|Dφ,σ )

[ ∑

hi∈S′
P(hi )1(hk+1 �η hi )v(hk+1, η)

]

We again begin by expanding the value expectation (E). This can be divided into n
different inequalities:

P(h j )P(h j in s1)v(s1) ≥v(s1)

[
P(h j )P(hk+1 in s1)

+
∑

η∈H�|
hk+1 in s1

P(η|Dφ,σ )
∑

hi∈S′
P(hi )1(hk+1 �η hi )

]

...

P(h j )P(h j in sn−1)v(sn−1) ≥v(sn−1)

[
P(h j )P(hk+1 in sn−1)

+
∑

η∈H�|
hk+1 in sn−1

P(η|Dφ,σ )
∑

hi∈S′
P(hi )1(hk+1 �η hi )

]

P(h j )P(h j in sn)v(sn) ≥v(sn)P(h j )P(hk+1 in sn)

We shall show that under the theorem’s assumptions, none of these inequalities
hold for h1, and therefore the general inequality (Lemma 5) does not hold.

Note that for each inequality we can simply ignore v(s�) (1 ≤ � ≤ n), since they
appear on both sides of the inequality. The assumption of the theorem, since we are
using plurality, is that the first inequality does not hold, i.e.,

P(h1)P(h1 in s1) < P(h1)P(hk+1 in s1)

+
∑

η∈H�|
hk+1 in s1

P(η|Dφ,σ )
∑

hi∈S′
P(hi )1(hk+1 �η hi )

As noted in Observation 1 (end of Sect. 3), for any 1 < � ≤ k the probability of
h1 being in any spot s� is monotonically decreasing with �, while the probability of
hk+1 being in spot s� is monotonically increasing with �. Hence, P(h1)P(h1 in s1) >

P(h1)P(h1 in s�).
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Similarly, P(h1)P(hk+1 in s1) < P(h1)P(hk+1 in s�). We analogously see that:

∑

η∈H�|
hk+1 in s1

P(η|Dφ,σ )
∑

hi∈S′
P(hi )1(hk+1 �η hi ) <

∑

η∈H�|
hk+1 in s�

P(η|Dφ,σ )
∑

hi∈S′
P(hi )1(hk+1 �η hi )

Simply put, the LHS gets smaller, while the RHS increases. Hence, for 1 ≤ � ≤ k:

P(h1)P(h1 in s�) < P(h1)P(hk+1 in s�)

+
∑

η∈H�|
hk+1 in s�

P(η|Dφ,σ )
∑

hi∈S′
P(hi )1(hk+1 �η hi )

By Observation 1, for any � > k, P(h1 in s�) < P(hk+1 in s�) which gives us:

P(h1)P(h1 in s�) < P(h1)P(hk+1 in s�) �⇒
P(h1)P(h1 in s�) < P(h1)P(hk+1 in s�)+

+
∑

η∈H�|
hk+1 in s�

P(η|Dφ,σ )
∑

hi∈S′
P(hi )1(hk+1 �η hi )

Startingwith the assumption that assortative interviewingdoes not hold for plurality,
we show that none of the inequalities above hold for any slot s�, and therefore that the
condition in Lemma 5 does not hold for j = h1 for any valuation function. ��
Proof (Theorem 10) By Theorem 8, if assortative interviewing is not an equilibrium
for plurality due to h1, it is never an equilibrium for any scoring rule. If we compute
the marginal contribution from some h∗ ∈ {h1, h2, h3, h4}, and the contribution from
h∗ is strictly less than the contribution from h5 for any φ, assortative interviewing is
not an equilibrium for k = 4 and plurality. We find that the contribution from h1 is
less than the marginal contribution from h5.

To calculate P(h1), we simply iterate over all six possible allocations for r1, r2, r3
such that h1 is not taken, and directly calculate the probabilities of each ranking profile
for r1, r2, r3 that allows that to happen. In the interest of clarity, we only provide a
symbolic representation. Let a permutation of h2, h3, h4 be denoted as (a1, a2, a3),
and let A be the set of all such permutations (i.e., (a1, a2, a3) ∈ A is a particular
permutation of h2, h3, h4).

P(h1) =
∑

(a1,a2,a3)∈A

P(μ(r1) = a1)P(μ(r2) = a2|μ(r1) = a1)P(μ(r3) = a3|μ(r1) = a1, μ(r2) = a2)

We instantiate the above equation using the probabilities of each potential match,
and use numerical methods to show the function P(h1) − φ4 is negative for any φ in
0 < φ < 1. ��
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Proof (Theorem 9)
Due to Theorem 8, it is enough to show there is no assortative equilibrium under

plurality (and that h1 violates Lemma 5’s condition). We use the simplification from
Lemma6: P(h j ) ≥ φk− j+1, andwewill show it does not hold.Appealing toLemma9,
we know P(h j ) is of the form:

P(h j ) = X(k)

Zk−1
φ

k− j∑

i=1
i
+ X1(k)

Zk−1
φ
1+

k− j∑

i=1
i
+ · · · + X�(k)

Zk−1
φ

(k
k− j∑

i=1
i)−1

+ 1

Zk−1
φ
k
k− j∑

i=1
i

(18)

(X(k), X1(k), . . . , X�(k) are functions that calculate the number of different sets of
possible preference orders for r1, . . . , rk , with each set being a particular distance from

the ground truth σ , thus having the probability φ
∑k− j

i=1 i for X(k), φ1+∑k− j
i=1 i for X1(k),

etc.)

When φ → 0, Zk−1 → 1, Eq.18 becomes P(h j ) → X(k)φ
∑k− j

i=1 i . In particular,

there is ε′, such that P(h1) < X(k)φ(
∑k− j

i=1 i)−1, and there is ε = min(ε′, 1
X(k) ) such

that for φ < ε, for k > 3:

φk− j+1 ≥ φk ≥ φ

⎛

⎜⎝

k− j∑

i=1

i

⎞

⎟⎠−2

> X(k)φ

⎛

⎜⎝

k− j∑

i=1

i

⎞

⎟⎠−1

> P(h1)

This contradicts the condition stated in Lemma 6. ��

Appendix E Proofs from Sect. 6

Proof (Theorem 11) We look at the top k hospitals—h1, . . . , hk . If the same k resi-
dents interview in all of them (and none others do), these are strongly/pseudo-strongly
assortative, and all the top k hospitals are taken, and we can move on and ignore
these k hospitals (and the k residents interviewing there) until we find the first set of k
hospitals that do not all interview strongly/pseudo-strongly assortative. For notational
simplicity, let us assume that r1, . . . , rk are not strongly assortative with hospitals
h1, . . . , hk . Hence, at least one of r1, . . . , rk interviews at {h j , h j+1, . . . , h j+k−1} for
some 2 ≤ j ≤ n − k + 1. Thus, the number of residents from r1, . . . , rk interviewing
at h1 is smaller than k.

• If the number of interviewees at h1 is > k, this means more than k residents are
interviewing at the top k hospitals—h1, . . . , hk—so at least one of these residents
will not get a hospital.

• If the number of interviewees at h1 is exactly k, recall that for this to be a weak
assortative equilibrium there is a resident in r1, . . . , rk that is not interviewing
at h1 but rather interviews at h j , . . . , h j+k−1 for 2 ≤ j ≤ k. Thus, there is a
positive probability that this resident will prefer hospitals from the top k hospitals,
and will get one of them. However, since k residents are interviewing at h1, we
know that in addition to the resident that does not interview there, there are k
residents interviewing at h1, i.e,. at the top k hospitals (since this an assortative
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strategy, anyone interviewing at h1 interviews at h1, . . . , hk). Since one of the top
k hospitals is taken by the resident not interviewing at h1, there are not enough
hospitals for the k residents interviewing at h1, . . . , hk , leaving at least onewithout
a hospital.

• If the number of interviewees at h1 is < k but larger than 1, let us examine the
resident with the highest index that interviews at h1, which we shall denote r̄ . We
examine this resident’s choices:

– If there is no positive probability that any hospital h1, h2, . . . , hk is available,
r̄ will be left without any hospital.

– If there is a positive probability that h1 and some other hospital hi (2 ≤ i ≤ k)
are both available to r̄ , there is a possibility r̄ prefers hi , and thus there is
positive probability h1 will have no resident that choses to go there. Since
we have n residents and n hospitals, if h1 has no resident, there is a resident
without a hospital.

– If there is only a positive probability that h1 is available and no hi (2 ≤ i ≤ k)
has any positive probability of being available, it means that even if theweakly-
assortative resident in r1, . . . , rk that does not interview at h1 chooses to go to
some h j , j > k, there is still no alternative hospital that will be available for
r̄ to choose from if h1 is available. But this means that there is a choice for
each resident before the one we analyze that gets a hospital, leaving only h1
available, i.e., a previous resident interviewing at h1 chose some hospital h j ′ ∈
{h2, . . . , hk}. Therefore, there is a probability that the residents’ preferences
are such that the previous agent interviewing at h1 chose h1, and the weakly-
assortative resident that chose h j can chose h j ′ , and no other residents’ choices
change, leaving our resident without any available hospital.

• If the number of interviewees at h1 is exactly 1, if this resident does not choose
h1 but some other hospital, we have n − 1 residents (everyone except the one
interviewing at h1) interviewing at n − 2 hospitals (all hospitals except h1, which
they didn’t interview at, and the one our resident chose), ensuring some will not
find a hospital. If we assume the only resident interviewing at h1 chose h1, we can
simply ignore this resident and the hospital h1 and repeat this proof with n − 1
agents and hospitals.

��

Proof (Theorem12)Recall that agentswish tomaximize their expected utility. Beyond
the probability of ranking each hospital over another (which depends on the ground
truth σ and φ), this utility also depends on each hospital’s availability based on the
previous residents’ choices. For example, when interviewing in a set of hospitals
only one of which is free (e.g., when r1 interviews at h1 and h2, if r2 interviews
at h1 and h2, r2 will get the hospital r1 did not choose), the resident’s utility when
interviewing at set S of hospitals is

∑
h∈S P(h)E(v(h)). Therefore, we need to keep

in mind the probability of hospitals being available, which changes following each
resident’s interviews, while the expected value from each hospital is the same for every
resident (as they are sampled from the same distribution).

123



Natural interviewing equilibria in matching settings

Resident r1 will always bid on h1 and h2. If r2 does as well, then we have a strong
assortative equilibrium. Similarly, if r2 interviews h3 and h4, r3 would interview at h1
and h2 (since φ < 1, h1 and h2 are preferable to h3 and h4 as well as to h2 and h3),
hence r4 would interview at h3 and h4 resulting in a pseudo-strong equilibrium.Hence,
in order to have at least one resident with a weak assortative strategy, r2 interviews at
h2 and h3. Before starting the analysis of r3 let us note the probability of each hospital
being available after r1 and r2 have chosen their interviews.

h1:
φ

1+φ
(i.e., r1 choosing h2).

h2: 1
1+φ

φ
1+φ

= φ

(1+φ)2
(i.e., r1 choosing h1 and r2 choosing h3).

h3: 1
1+φ

1
1+φ

= 1
(1+φ)2

(i.e., r1 choosing h1 and r2 choosing h2).
h4: 1 (since neither r1 or r2 interview there, h4 will not be taken by them).

The third resident, r3 may interview in h1 and h2, h2 and h3 or h3 and h4. We first
show that r3 will not interview in h1 and h2. We have:

ur3(h1, h2) = 1

1 + φ

φ

1 + φ
E(v(h2)) + φ

1 + φ
E(v(h1))

This is because r3 will get h2 if r1 chooses h1 and r2 chooses h3, while r3 will get h1
if r1 goes for h2.

Interviewing in h1 and h3 (which is not weakly assortative) has the utility:

ur3(h1, h3) = 1

1 + φ

1

1 + φ
E(v(h3)) + φ

1 + φ
E(v(h1))

If interviewing in h1 and h2 is preferable, these equations imply E(v(h3)) <

φE(v(h2)). However, simple analysis shows that this is impossible: the ratio of
expected values of consecutive hospitals cannot be less than φ (the ratio E(v(h3))

E(v(h2))
is exactly φ when the scoring function is plurality; anything that gives non-zero values
to hospitals not in first place will make the ratio higher than φ). So interviewing in
h1 and h2 cannot be a strategy in an equilibrium. Furthermore, as is clear from the
availability probabilities, since the probability of h1 being available is higher than that
of h2, it makes no sense to interview in h2 and h3 and not in h1 and h3 (the resident
increases their chance of getting a better hospital than h3 by interviewing in h1).

If all agents are weakly assortative, this leaves the case of r3 interviewing in h3 and
h4.8 Once again, let us look at the probability each hospital is available for r4:

Before starting the analysis of r3 let us note the probability of each hospital being
available:

h1:
φ

1+φ
(i.e., r1 choosing h2).

h2: 1
1+φ

φ
1+φ

= φ

(1+φ)2
(i.e., r1 choosing h1 and r2 choosing h3).

h3: 1
1+φ

1
1+φ

φ
1+φ

= φ

(1+φ)3
(i.e., r1 choosing h1, r2 choosing h2, and r3 choosing h4).

8 Since h1 and h4 were not chosen, we know the probability of availability of h1 must be lower than that

of h3, so
1

1+φ
< 1

(1+φ)2
⇒ φ <

√
5−1
2 .
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h4: 1
1+φ

1
1+φ

1
1+φ

= 1
(1+φ)3

(i.e., r1 choosing h1, r2 choosing h2, and r3 choosing h3).

This situation can be viewed graphically in Fig. 1. The availability of h1 is better
than that of h2 and h3 for any φ, and therefore, it will always make sense interviewing
at h1 over h2 and h3. So if any interview set is chosen that does not include h1, it
is beneficial to swap one of those for h1. We now need to show that r4 interviewing
with h1 and h2 (which is the only weakly assortative strategy that includes h1) is not
optimal.9

It is clear that if E(v(h2)) is close in value to E(v(h4)) then h1 and h4 have a higher
expected utility than h1 and h2, thanks to h4’s greater probability of being available.
Notice that r4’s utility from h1 and h2 is the same as that of r3 with those same
hospitals, and r3’s strategy indicates that it is preferable to chose h4 and not interview
at h1 or h2 at all. If E(v(h4)) was small compared to E(v(h2)) (and thus compared to
E(v(h1)) as well), r3’s choice of h4 would not have happened. Analytical tools can
be used to verify that r4’s choice is either h1 and h4 (so not weakly assortiative), or r3
would not have interviewed at h3 and h4 (leading to the problems detailed above for
r3, and hence not be weakly assortiative). ��
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