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Abstract
The role of patent pools—one-stop systems that gather patents from multiple patent
holders and offer them to users as a package—is gaining research attention. To bolster
the scarce stream of the literature that has addressed how a patent pool agent distributes
royalty revenues among patent holders, we conduct an axiomatic analysis of sharing
rules for royalty revenue derived from patents managed by a patent pool agent. In our
framework, the patent pool agent organizes the patents into some packages, which we
call a package structure. By using the hypergraph formulation developed by van den
Nouweland et al. (Int J GameTheory 20:255–268, 1992), we analyze sharing rules that
consider the package structure. In our study, we propose a sharing rule and show that
it is the unique rule that satisfies efficiency, fairness, and independence requirements.
In addition, we analyze sharing rules that enable a patent pool agent to organize a
revenue-maximizing and objection-free profile.

1 Introduction

Against the background of the rapid increase in the number of patents, the role of
patent pools—one-stop systems that gather patents from multiple patent holders and
offer them to users as a package—is gaining research attention, as the fragmentation of
patent ownership increases the costs of negotiation between patent owners and users.
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Shapiro (2001) and Lerner and Tirole (2004) showed that by forming patent pools
and collectively determining license fees, patent holders can achieve lower prices
compared with setting competitive license fees individually.

Most economics research on patent pools has focused on their impact on economic
efficiency and relationship with competition policy (Layne-Farrar and Lerner 2011).
By contrast, few studies have addressed how a patent pool agent distributes royalty
revenues among patent holders. Among the studies conducted on sharing rules,

Aoki and Nagaoka (2004) analyzed patent pool participation by assuming that
patent holders share pool revenues equally.

Kim (2004) examined the impact of vertically integrated firms that act as licensors
upstream and licensees downstream. The author assumed that pool members aim to
maximize the pool’s revenue and agree on an (unspecified) sharing rule.1 Specifically,
the research focused on the economic effects such as the final product price resulting
from the presence of integrated firms in patent pools.

Layne-Farrar and Lerner (2011) empirically investigated the relationship between
sharing rules and participation in nine large patent pools such asMPEG and Bluetooth.
They found that these nine pools adopted one of the following three sharing rules: the
numeric proportional sharing rule, the value-based sharing rule, and royalty-free. They
showed that pools with numeric proportional sharing rules attract fewer joiners and
that patent holders with higher “values” are less likely to accept numeric proportional
sharing rules. They also found that none of the nine pools adopted the equal sharing
rule assumed by Aoki and Nagaoka (2004).

Tesoriere (2019) theoretically studied whether a sharing rule is stable against arbi-
trage, meaning that pool members have no incentive to trade their patents. The study
showed that the numeric proportional sharing rule is the only such rule that achieves
the stability concept and that it induces a firm with few patents to stay outside the
patent pool.

In our study, we conduct an axiomatic analysis of sharing rules, with a focus on the
common practice of patent pool agents offering their patents in the form of multiple
packages. One example from Japan is ULDAGE, a patent pool agent thatmanages over
800 patents necessary for television broadcasting. These 800 patents are organized into
five patent packages: ARIB (for receivers of 2 K digital broadcasting), CATV (for 2 K
digital cable television), Satellite-UHDTV (for 4 K/8 K), CATV-UHDTV (for cable 4
K/8 K), and IPTV (for optical fiber cable IP broadcasting). Since certain core patents
have multiple technological purposes, some of these 800 patents belong to two or
more packages. In addition to this agent, other prominent patent pool agents organize
their patents into multiple packages. For example, Via LA (a merger of Via Licensing
andMPEGLA) offers packages necessary for electronic and information technologies
such as AAC, MPEG-4, and Display Port, while SISVEL provides packages such as
Wi-Fi 6 and Cellular IoT. In our study, we call such a profile of packages offered by
a patent pool agent a package structure and examine sharing rules that address the
complexities arising from such package structures.

1 See Subsection 4.2 of Kim (2004) for the details. In the conclusion (Kim 2004), the author also mentioned
the importance of exogenously specified sharing rules.
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Table 1 An example of a package structure

Package A Package B Package C Package D

Patent 1 + +

Patent 2 +

Patent 3 + +

Patent 4 +

Patent 5 +

Patent 6 +

Patent 7 +

Fig. 1 A hypergraph
{{1, 2}, {3, 4}, {1, 3, 5}, {6, 7}}

A package structure defines the assignment of patents to specific packages. Table
1 provides an example of a package structure, demonstrating how seven patents are
organized into four packages by a (hypothetical) patent pool agent. For instance, patent
1 is contained in packages A and C. A package structure can also be formulated as
a hypergraph, which is an extension of the concept of network structures. Figure1
illustrates the package structure in Table 1 as a hypergraph. By formulating a pack-
age structure as a hypergraph, we can leverage existing research on allocation rules
involving hypergraphs in the field of cooperative game theory. This allows us to apply
these studies to analyze sharing rules that consider package structures.

van den Nouweland et al. (1992) introduced hypergraphs to model communication
structures among individuals and studied sharing rules for the profits generated by
coalitions of individuals. They generalized the Myerson value (Myerson 1977), a
sharing rule for cooperative games with network structures, to the class of games with
hypergraph structures.2

Our objective is to provide axiomatic foundations for the numerical proportional
rule among the sharing rules empirically investigated by Layne-Farrar and Lerner
(2011). While Tesoriere (2019) characterized the numerical proportional rule based
on its robustness against patent exchanges among patent holders, we are motivated to
demonstrate that the numerical proportional rule can be characterized by changes in
the structure of patent packages and their corresponding worth through the framework
of cooperative games. Specifically, we adapt the framework developed by van den

2 The Myerson value is an extension of the Shapley value (Shapley 1953). Myerson (1980) extended the
Myerson value (for games with network structures) to the class of NTU-games with hypergraph structures.
van den Nouweland et al. (1992) generalized the Myerson value to the class of TU-games with hypergraph
structures.
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Nouweland et al. (1992) by replacing individuals with patents and communication
structures with package structures. However, directly applying the approach of van
den Nouweland et al. (1992) to our framework poses certain challenges, as the inter-
pretation of a “pie” to be distributed among members differs between their framework
and ours. To illustrate this gap, consider the following distributions of payoffs among
elements 1–7 in the example shown in Fig. 1.

In the framework of van den Nouweland et al. (1992), the seven elements represent
individuals, and the hypergraph structure specifies the communication relationships
between them. To understand their discussion, we denote the profit generated by the
members of S as v(S) and the share assigned to an individual i asψi . As shown inFig. 1,
individuals 1 to 5 collectively generate their profit v({1, 2, 3, 4, 5}), and individuals 6
and 7 yield v({6, 7}). In this sense, a sharing rule, ψ , is assumed to satisfy

ψ1 + ψ2 + ψ3 + ψ4 + ψ5 = v({1, 2, 3, 4, 5}), ψ6 + ψ7 = v({6, 7}).

However, in our framework, the hypergraph structure represents a set of patent pack-
ages, indicating that patents 1 to 5 belong to three packages: {1, 2}, {3, 4}, and {1, 3, 5}.
These packages generate royalty revenue v({1, 2}) + v({3, 4}) + v({1, 3, 5}). Simi-
larly, patents 6 and 7 yield v({6, 7}). In this context, ψi represents the share assigned
to a patent i . Therefore, in our framework, a sharing rule ψ is required to satisfy

ψ1+ψ2 +ψ3+ψ4+ψ5+ψ6+ψ7 = v({1, 2})+v({3, 4})+v({1, 3, 5})+v({6, 7}).

We propose sharing rules that satisfy this requirement and proceed to axiomatically
characterize them.

Furthermore, we address substitutability among packages. In the aforementioned
example, the value, or royalty revenue, generated from a package depends only on the
patents included in that package. However, when a patent pool agent introduces a new
package that implements a technology related to an existing package, the introduction
of the new package may impact the revenue of the existing package. Therefore, by
extending the aforementioned model, we also introduce a model in which the value
of each package is not only determined by its constituent patents but also influenced
by the structure of the other packages offered by the agent.

As shown in the subsequent sections, when substitutability is considered, selecting
a package profile that maximizes overall revenue may result in reduced earnings for
some packages. This could lead to objections from patent holders whose patents are
included in the affected packages. In this paper, we show that the sharing rule that
equally divides the total revenue may serve as an option for patent pool agents to
organize a package profile thatmaximizes the total revenue and prevents patent holders
from deviating from the pool.

The remainder of this paper is organized as follows. Section2 introduces the model
and proposes our sharing rule. Section3 introduces and analyzes the sharing rule that
reconciles revenue maximization and objection-freeness. Section4 provides a sum-
mary and additional remarks. Section5 provides all the proofs and counterexamples
for the independence of the axioms.
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2 Model and sharing rule

2.1 Preliminary

Let N = {1, . . . , n} be the set of all patents gathered by a patent pool agent, where
the agent may represent an organization, manager, or administrator handling a set of
patents. We call each S ⊆ N a package. For every S ⊆ N , let v(S) denote the worth
of package S, where v(∅) = 0. We suppose that the worth of a package represents the
royalty revenue earned by the package. We assume that v(S) ≥ 0 for every S ⊆ N .

The patent pool agent selects which packages to offer for sale from the set of
all possible packages 2N\{∅}. We use H ⊆ 2N\{∅} to denote the set of packages
S selected by the patent pool agent. We call H a package structure or a profile of
packages. For a given N , we call (v,H) a patent package game, and let PP(N ) denote
the set of all patent package games for patent set N .

Moreover, for every S ⊆ N and H ⊆ 2N\{∅}, let H(S) = {T ∈ H|T ⊆ S}.
Let N∗

H ⊆ N denote the set of patents that belong to at least one package in H, i.e.,
N∗
H = ∪T∈HT .
Let ψ : PP(N ) → R

N+ denote a sharing rule, where ψi (v,H) represents the share
assigned to patent i ,3 Therefore, a sharing rule is required to divide the total revenue∑

T∈H v(T ) earned by profile H.

Axiom 1 A sharing rule ψ satisfies pool efficiency (PE) if for every (v,H) ∈ PP(N ),

∑

j∈N
ψ j (v,H) =

∑

T∈H
v(T ).

Next, we introduce the fairness requirement, which was initially proposed byMyer-
son (1980) for gameswith network structures and later extendedbyvandenNouweland
et al. (1992) to games with communication structures. Although the term “fairness”
generally carries a wide range of meanings, we use this term for the sake of termino-
logical consistency.

Axiom 2 A sharing rule ψ satisfies fairness (F) if for every (v,H) ∈ PP(N ), T ∈ H,
and i, j ∈ T ,

ψi (v,H) − ψi (v,H\{T }) = ψ j (v,H) − ψ j (v,H\{T }).

The fairness requirement states that all patents in a package T gain or lose the
same amount if T is removed from profileH. More specifically, this axiom stipulates
that patents forming a package, especially when indispensable to its functionality,
be treated with equal weight. This is because each patent holds veto power over the
formation of the package. Moreover, even in cases where the patents may not be
essential, the axiom requires a sharing rule to treat them equally within the package if

3 A sharing rule assigns a share to each patent and a patent holder who contributes some patents to the agent
receives the sum of the shares assigned to the patents. Moreover, an international agent usually calculates
royalty revenue by country. Therefore, in this study, we focus on revenue sharing within one country.
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exogenous values, such as the number of citations and remaining years of validity, are
not considered. Note that the absence of external values is also assumed by Tesoriere
(2019) and Aoki and Nagaoka (2004). Layne-Farrar and Lerner (2011) discovered
that two DVD pools implemented value-based sharing rules, while six pools utilized
sharing rules unaffected by external value weights.

The following axiom requires the share of patent i to be independent of the packages
that do not involve i .

Axiom 3 A sharing rule ψ satisfies package independence (PI) if for every (v,H) ∈
PP(N ), T ∈ H, and i ∈ N\T ,

ψi (v,H) = ψi (v,H\{T }).

This axiom requires that the share allocated to patent i depends only on the packages
in which i is included as an element. This stipulation asserts that if the contribution
of i to the profile H remains unchanged (with v remaining constant), then the share
received by i should not change. In other words, it ensures that if neither v nor the
collection of packages containing i is affected by the change in profile H, the agent
does not have to recalculate the allocation to each patent i . The package independence
requirement can be seen as a complementary counterpart of the fairness requirement.
A sharing rule that incorporates exogenous value weights, such as those employed
by the DVD pools, may not necessarily adhere to this requirement because of the
exogenous weights.

The following result shows that our sharing rule is the unique rule that satisfies PI
along with PE and F.

Proposition 2.1 A sharing rule ψ satisfies PE, PI, and F if and only if ψi (v,H) =∑
T :i∈T∈H

v(T )
|T | for every i ∈ N.

We call this sharing rule the package-wise equal sharing rule. In addition to this
characterization, by applying Theorem 2.3 of van den Nouweland et al. (1992),
which characterizes the Myerson value, we can associate the package-wise equal
sharing rule with the Shapley value4 For every (v,H) ∈ PP(N ) and i ∈ N ,
Shi (vH) = ∑

T :i∈T∈H
v(T )
|T | , where for every (v,H) ∈ PP(N ) and S ⊆ N , let

vH(S) = ∑
T∈H(S) v(T ) denote the total revenue obtained from the packages in

H that consist only of patents in S. This equivalence with the Shapley value suggests
that the package-wise equal sharing rule assigns to patent i the expected value of the
marginal contributions of patent i .

4 Specifically, van den Nouweland et al. (1992) used component efficiency: for communication situations.
The component efficiency requires an allocation to be efficient for every component (see van denNouweland
et al. (1992) for details). Moreover, the Shapley value (Shapley 1953) is defined as follows. For every i ∈ N ,

Shi (v) = ∑
S:i∈S⊆N

(|S|−1)!(|N |−|S|)!
|N |! (v(S) − v(S\{i})). For every S with i ∈ S ⊆ N , v(S) − v(S\{i})

represents the marginal contribution of i to S. Therefore, the Shapley value can be seen as the expected
value of the marginal contributions of i .
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Table 2 ψ violates F and PI

H v({1},H) v({2},H) v({1, 2},H) (ψ1, ψ2)

H1 {{1}, {2}} 1 2 − (1, 2)

H2 {{1}, {1, 2}} 2 − 4 (4, 2)

H3 {{1}, {2}, {1, 2}} 1 1 4 (3, 3)

2.2 Sharing rule and substitutability among packages

We introduce substitutability among packages.When the agent opts to introduce a new
package T along with the current packages S in H, the addition of the new package
may influence the revenue of the existing ones in the presence of substitutability among
packages. In other words, the revenue of package S inH can be different from that of
S inH ∪ {T }.

Therefore, we now use v(S,H), instead of v(S), to denote the worth of package
S ∈ H. This notation states that the revenue of package S may depend not only on
package S but also on entire package structureH. For everyH ⊆ 2N\{∅} and S ∈ H,
we call (S,H) an embedded package.5 Let EMN be the set of all embedded packages
and v : EMN → R+. Moreover, let PP∗(N ) denote the set of all patent package games
(v,H) with substitutability.6 Let ψ : PP∗(N ) → R

N+ denote a sharing rule.
By replacing v(T ) with v(T ,H), we can immediately generalize the package-wise

equal sharing rule:

ψi (v,H) =
∑

T :i∈T∈H

v(T ,H)

|T | .

Moreover, by setting vH∗ as follows, the equivalence with the Shapley value also
holds: For every H ⊆ 2N\{∅} and S ⊆ N , vH∗ (S) = ∑

T∈H(S) v(T ,H); For every

(v,H) ∈ PP∗(N ) and i ∈ N , Shi (vH∗ ) = ∑
T :i∈T∈H

v(T ,H)
|T | .

In view of these generalizations, one may conjecture that the preceding preliminary
result could also be smoothly generalized to the class with substitutability. However,
the following example demonstrates that the sharing rule no longer satisfies F and PI
(redefined by replacing PP(N ) with PP∗(N )) in the presence of substitutability. Let
N = {1, 2} and consider v satisfying Table 2, where for simplicity let v(S,H′) = 0
for every H′ ⊆ 2N\{∅} withH′ /∈ {H1,H2,H3} and every S ∈ H′.7

5 The original form of this concept was introduced by Thrall (1962) and Thrall and Lucas (1963) to describe
externalities among coalitions and later called an embedded coalition in the class of partition function form
games. We extend this concept to our framework.
6 This framework can be generated from the demand side for patent packages à la the Shapiro–Cournot
model (Shapiro (2001)). Let H = {S1, . . . , Sm } be a package structure. For every S ∈ H, consider the
demand DH

S (rS1 , . . . , rSm ) for package S, where r = (rS)S∈H represents a profile of the license fees
rS for packages S ∈ H. Assuming the patent pool agent maximizes the total revenue obtained from H,
let r∗ = (r∗

S )S∈H = argmaxr
∑

S∈H rS D
H
S (r) subject to 0 ≤ rS ≤ r̄S for every S ∈ H. We set

v(S,H) = r∗
S D

H
S (r∗) for every S ∈ H.

7 No problem arises by assigning an arbitrary value to v(S,H′) for every H′ ⊆ 2N \{∅} with H′ /∈
{H1,H2,H3} and every S ∈ H′
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The rightmost column of the table describes the shares ψi = ∑
T :i∈T∈H

v(T ,H)
|T | . If

ψ satisfied F, thenwewould obtainψ1(v,H3)−ψ1(v,H1) = ψ2(v,H3)−ψ2(v,H1).
However, we have 3 − 1 �= 3 − 2. Moreover, if ψ satisfied PI, then we would have
ψ1(v,H3) = ψ1(v,H2). However, we have 3 �= 4.

Therefore, Proposition 2.1 does not hold in the presence of substitutability. This
gap arises because onceH changes toH′, the worth of each package S ∈ H∩H′ may
also change. However, by extending F and PI in a way that they restrict a sharing rule
for changes of the worth v of packages, instead of the structures H of packages, we
can overcome this gap.

Axiom 4 A sharing rule ψ satisfies fairness for worth (FW) if for everyH ⊆ 2N\{∅},
T ∈ H, and v, v′ with v′(T ,H) > v(T ,H) and v′(S,M) = v(S,M) for every
(S,M) ∈ EMN\{(T ,H)}, we have

ψi (v
′,H) − ψi (v,H) = ψ j (v

′,H) − ψ j (v,H).

for every i, j ∈ T .

FW requires that if the worth of package T in H changes with keeping the worth
of the other packages unchanged, then all the patents in T should obtain or lose the
same amount. In this version of the fairness requirement, it is similarly stated that if all
patents in a package are essential to the functionality provided by the package, these
patents should be considered equally weighted when there are no exogenous value
indices.

Axiom 5 A sharing ruleψ satisfies package independence for worth (PIW) if for every
H ⊆ 2N\{∅}, T ∈ H, and v, v′ with v′(T ,H) > v(T ,H) and v′(S,M) = v(S,M)

for every (S,M) ∈ EMN\{(T ,H)}, we have

ψi (v
′,H) = ψi (v,H)

for every i ∈ N\T .
PIW states that if the worth of package T in H changes with keeping the worth

of the other packages unchanged, then the change in package T does not affect the
shares allocated to the patents outside of T . In other words, it ensures that if the change
in v does not impact the worth of packages containing i , the allocation to i remains
unchanged.

While F and PI constrain a sharing rule applied to the domain of v without consid-
ering substitutability, FW and PIW constrain a sharing rule applied to the domain of v

with substitutability. In this sense, FW and PIW serve as generalizations of F and PI.
Due to the different domains, there is no direct strong or weak relationship between F
and FW (and, PI and PIW).8

8 As demonstrated in Table 2, the package-wise equal sharing rule does not straightforwardly obey F and
PI in the presence of substitutability. This is because substitutability allows S to change its worth depending
onH and, hence, the requirements of F and PI become very demanding. Nevertheless, in the next section,
we will propose another sharing rule that satisfies the generalized fairness requirement even in the presence
of substitutability.
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For the sake of completeness, by replacing v(T ) with v(T ,H), we redefine PE in
the presence of substitutability.

Axiom 6 A sharing rule ψ satisfies PE if for every (v,H) ∈ PP∗(N ),

∑

j∈N
ψ j (v,H) =

∑

T∈H
v(T ,H).

The following proposition shows that these three requirements axiomatically char-
acterize the package-wise equal sharing rule in the presence of substitutability.

Proposition 2.2 A sharing ruleψ satisfies PE, FW, and PIW if and only ifψi (v,H) =
∑

T :i∈T∈H
v(T ,H)

|T | for every i ∈ N.

Proposition 2.2 can be seen as an extension of Proposition 2.1, where the axioms
F and PI are replaced by FW and PIW. However, the proofs of Propositions 2.2 and
2.1 are significantly different because FW and PIW impose constraints on changes in
the worth v of packages, while F and PI focus on changes in package structureH.

These results provide an axiomatic rationale for using the package-wise equal shar-
ing rule and, equivalently, (an extension of) the numeric proportional sharing rule
empirically analyzed by Layne-Farrar and Lerner (2011).

3 Objection-freeness and revenuemaximization

In addition to ensuring a fair distribution of royalty revenue, the patent pool agent faces
the task of selecting profileH that maximizes royalty revenue

∑
T∈H v(T ,H). How-

ever, even if the agent chooses a revenue-maximizing profile, it may not be accepted
by all patent holders who contribute to the profile. This is because some patent holders
may object to the chosen profile if another profile offers them higher profits under the
sharing rule.

Table 3 provides a numerical example that demonstrates the conflict between
revenue-maximizing profiles and objection-free profiles.9 In this example, we con-
sider two patents: patent 1 owned by patent holder 1 and patent 2 owned by patent
holder 2. We test the sharing rule ψi (v,H) = ∑

T :i∈T∈H
v(T ,H)

|T | in this example.
The rightmost column of the table shows the shares based on the package-wise equal
sharing rule.

9 This example is also generated from the demand side with the following setups. For every H =
H2, . . . ,H8 and S ∈ H, let DH

S (r) = aHS − bHS · (
∑

S′∈H θSS′rS′ ), where |θSS′ | represents the
degree of substitutability between S and S′: specifically, θSS′ = θS′S for every S, S′ ⊆ N ; θSS′ = 1
if S = S′; and θSS′ ≤ 0 if S �= S′. Note that θSS′ = 0 states that there is no substitutability
between the two packages. The numerical example Table 3 is obtained from, for example, the follow-
ing parameters: (θ{1}{1}, θ{1}{2}, θ{1}{1,2}) = (1, 0, −1), (θ{2}{1}, θ{2}{2}, θ{2}{1,2}) = (0, 1, −1), and

(θ{1,2}{1}, θ{1,2}{2}, θ{1,2}{1,2}) = (−1, −1, 1); aH2{1} = a
H3{2} = 2

√
2, aH4{1,2} = 4

√
2, (a

H5{1} , a
H5{2} ) =

(2
√
2, 2

√
2), (a

H6{1} , a
H6{1,2}) = (a

H7{2} , a
H7{1,2}) = (2

√
2,

√
2), (a

H8{1} , a
H8{2} , a

H8{1,2}) = (
√
2,

√
2,

√
2/2);

bHS = 1/2 for (S,H) = ({1, 2},H8) and 1 otherwise; and r̄S = √
2 for every S ⊆ N .

123



286 T. Abe et al.

Table 3 All the profiles allow some patent holders to object

H v({1},H) v({2},H) v({1, 2},H) (ψ1, ψ2)

H1 ∅ − − − (0, 0)

H2 {{1}} 2 − − (2, 0)

H3 {{2}} − 2 − (0, 2)

H4 {{1, 2}} − − 8 (4, 4)

H5 {{1}, {2}} 2 2 − (2, 2)

H6 {{1}, {1, 2}} 4 − 2 (5, 1)

H7 {{2}, {1, 2}} − 4 2 (1, 5)

H8 {{1}, {2}, {1, 2}} 2 2 2 (3, 3)

The revenue-maximizing profile is H4 as the total revenue is 8. However, patent
holder 1 has an incentive to object to H4 by demanding that the agent includes the
singleton package of patent 1 in H4, as ψ1(H6) = 5 > 4 = ψ1(H4). Patent holder 1
can propose the singleton package {1} without requiring the support of patent holder
2. In this sense, the revenue-maximizing profile allows some patent holders to object.

To further analyze the relationship between revenue-maximizing profiles and
objection-free profiles,we formally define the concept of an objection. LetH ⊆ N\{∅}
and ψ be an arbitrary sharing rule. An objection to profile H for ψ is (S,H′) that
satisfies the following three conditions:

(a) ψ j (v,H′) > ψ j (v,H) for every j ∈ S,
(b1) H′\H ⊆ 2S\{∅},
(b2) H\H′ ⊆ {T ∈ H|S ∩ T �= ∅}.
Condition (a) is an incentive requirement, which states that the proposed profile H′
provides higher payoffs to the owners of the patents in S. Conditions (b1) and (b2) are
feasibility requirements: (b1) states that the newly proposed packages,H′\H, consist
only of patents in S and can be formed without involving patents in N\S; and (b2)
states that the packages proposed for deletion, H\H′, contain a patent in S. In other
words, (b1) states that for a new package to be formed, it requires the agreement of all
patent holders of S, and (b2) states that a package is canceled if at least one member
disagrees. Profile H is objection-free for ψ if no objections are raised against H for
ψ .

The concept of objection is close to that of deviation used to define the core for
TU-games and that of an objection proposed by Aumann and Maschler (1964) for
the bargaining set. Moreover, the feasibility conditions, (b1) and (b2), are consistent
with that of the formation and elimination of links in a network. For a link between
two nodes (or individuals) to be formed, the agreement from both nodes is needed,
whereas the elimination of a link only requires disagreement from either of the nodes.

Given the definition of an objection, we reexamine the example in Table 3. The
example also shows that the set of objection-free profiles can be empty. Patent holder
2 has an incentive to withdraw its patent from package {1, 2} in H6 and instead
propose package {2}, which leads toH5. InH5, both patent holders have an incentive
to jointly offer package {1, 2} instead of the two separate packages, which results in
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H4. Therefore, we have a cycle: H4 → (H6 or H7) → H5 → H4. For H1, H2, H3,
andH8, both patent holders have a common incentive to cancel the singleton packages
and jointly offer the two-patent package.

This analysis suggests that the package-wise equal sharing rule (i) does not
necessarily make a revenue-maximizing profile objection-free in the presence of sub-
stitutability10 and (ii) does not guarantee the existence of objection-free profiles. If
(i) is resolved, then the established revenue-maximizing profile is objection-free and
resolves (ii). Therefore, we explore a sharing rule that resolves (i), namely, a sharing
rule that makes revenue-maximizing profiles objection-free.

The set of objection-free profiles can vary depending on v and the choice of a
sharing rule, while that of revenue-maximizing profiles depends only on v. Therefore,
for every v : EMN → R+, let RM(v) denote the set of revenue-maximizing pro-
files: RM(v) = {H ⊆ 2N\{∅}|∑T∈H v(T ,H) ≥ ∑

T∈H′ v(T ,H′) for every H′ ⊆
2N\{∅}}.Moreover, letOFψ(v) denote the set of objection-free profiles for the sharing
rule ψ .

This notation allows us to formulate our objective as follows: What sharing rule ψ

achieves RM(v) ⊆ OFψ(v)? The following axiom plays a key role in answering this
question. It states that if the total revenue either increases or is unchanged, then the
shares do not decrease.

Axiom 7 A sharing rule ψ satisfies pool monotonicity (PM) if for every i ∈ N and
(v,H), (v′,H′) ∈ PP∗(N ),

∑
T∈H′ v′(T ,H′) ≥ ∑

T∈H v(T ,H) ⇒ ψi (v
′,H′) ≥

ψi (v,H).

Moreover, we redefine F in the presence of substitutability by replacing PP(N ) in
Axiom 2 with PP∗(N ).

Axiom 8 A sharing rule ψ satisfies F if for every (v,H) ∈ PP∗(N ), T ∈ H, and
i, j ∈ T ,

ψi (v,H) − ψi (v,H\{T }) = ψ j (v,H) − ψ j (v,H\{T }).
The following proposition shows that a single sharing rule, which is different from

the rule ψi (v,H) = ∑
T :i∈T∈H

v(T ,H)
|T | , satisfies F and PM along with PE.

Proposition 3.1 A sharing rule ψ satisfies PE, F, and PM if and only if ψi (v,H) =
∑

T∈H
v(T ,H)

|N | for every i ∈ N.

Proposition 3.1 suggests that PE, F, and PM yield the sharing rule that distributes
the total revenue equally among all patents. This rule directly divides the total revenue
among all patents, while the rule ψi (v,H) = ∑

T :i∈T∈H
v(T ,H)

|T | divides the revenue
of each package among the constituent patents of the package. The following propo-
sition shows that the rule characterized in Proposition 3.1 makes revenue-maximizing
profiles objection-free for an arbitrary v.

Proposition 3.2 If a sharing rule ψ satisfies:

10 In the absence of substitutability, the sharing rule readily achieves this requirement because the full
profileH = 2N \{∅} maximizes

∑
T∈H v(T ), and no one has an incentive to withdraw its patents.

123



288 T. Abe et al.

Table 4 The combination of PM and PE does not imply RM(v) = OFψ(v)

H v({1},H) v({2},H) v({1, 2},H) (ψ̃1, ψ̃2)

H1 {{1}, {1, 2}} 0 − 1 (1, 0)

H2 {{1}, {2}, {1, 2}} 0 0 2 (2, 0)

• PM, then RM(v) ⊆ OFψ(v) for every v : EMN → R+.
• PM, F, and PE, then RM(v) = OFψ(v) for every v : EMN → R+.

Proposition 3.2 highlights the central role of PM in reconciling revenue maximiza-
tion and objection-freeness. The first statement suggests that a pool monotonic sharing
rule ensures the existence of a revenue-maximizing and objection-free profile since
RM(v) is always nonempty for an arbitrary v. Therefore, regardless of the situation
v the pool agent faces, pool monotonicity enables the agent to choose a revenue-
maximizing and objection-free profile. In other words, assuming that the pool agent
chooses a revenue maximizing profile, pool monotonicity is a sufficient condition of a
sharing rule for the selected profile to be stable in the sense of the objection-freeness.
However, it also suggests that PM may allow for the possibility of OFψ(v)\RM(v)

to be nonempty. We can consider profile H ∈ OFψ(v)\RM(v) to be an inefficient
“stuck” profile, as it fails to maximize the total revenue, while all potential objections
are not feasible.

The second statement shows that F and PE eliminate these stuck profiles and that a
profile becomes revenue-maximizing if and only if it is objection-free.Moreover, F and
PE are “tight” requirements because removing either could allow for the possibility
of a sharing rule that makes OFψ(v)\RM(v) nonempty, as described below.

Consider the following sharing rule: ψ̃i (v,H) = ωi
∑

T∈H v(T ,H) with ω1 = 1
and ω j = 0 for j ∈ 2, ..., n. This rule satisfies PM and PE but not F. We apply this
sharing rule to the example in Table 4, where let v(S,H) = 0 for every H ⊆ 2N\{∅}
withH /∈ {H1,H2} and S ∈ H.

In this example, H2 is the unique revenue-maximizing profile, while both H1 and
H2 are objection-free profiles because without the involvement of patent 2, the holder
of patent 1 cannot change H1 toH2.11

Now, consider the sharing rule ψ̂i (v,H) = c for every i ∈ N , where c is an arbitrary
constant. This rule readily violates PE but satisfies PM and F since it always assigns c

to all patents. As a result, no one has any incentive to object to any profile, and OF ψ̂

includes all profiles. However, the revenue maximization requirement still selectsH2.
The combination of Propositions 3.1 and 3.2 implies that the sharing rule

ψi (v,H) = ∑
T∈H

v(T ,H)
|N | guarantees the existence of objection-free profiles and

that each objection-free profile maximizes the total revenue. In this sense, our result
suggests that this sharing rule serves as a mediator between the patent pool agent,
which aims to maximize revenue, and patent holders, which may have an incentive to
object.

11 If condition (a) requires “weak inequalities ≥ for all j ∈ S and strict one > for some i ∈ S,” then the
combination of PM and PE implies RM(v) = OFψ(v).
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4 Conclusion

In this study, we conducted an axiomatic analysis of sharing rules for royalty revenue
by incorporating package structures. Themain findings can be summarized as follows.

• The package-wise equal sharing rule, which assigns to each patent i the summa-
tion of the average revenues of the packages containing patent i , is the unique
sharing rule that satisfies the pool efficiency, fairness, and package independence
requirements. Moreover, this sharing rule incorporates the contributions of each
patent to the packages and can be seen as an extension of the numeric proportional
sharing rule empirically analyzed by Layne-Farrar and Lerner (2011) (Sect. 2).

• The package-wise equal sharing rule does not guarantee that revenue-maximizing
profiles are objection-free. The sharing rule that equally distributes the total
revenue among all patents ensures that revenue-maximizing profiles are objection-
free. This rule is characterized by the pool efficiency, fairness, and pool mono-
tonicity requirements (Sect. 3).

In this study, a sharing rule is formulated as a function of v and H (i.e., royalty
revenues and a patent package structure). However, other factors can contribute to
the evaluation of patents, such as total citation counts and the remaining years until
expiration, as highlighted by Layne-Farrar and Lerner (2011). To incorporate citation
counts into a sharing rule, it would be necessary to consider a directed graph that rep-
resents the citation network among patents. This graph would capture the relationships
between patents based on citations, allowing us to incorporate citation scores as an
additional criterion in the patent evaluation process. The remaining years until patent
expiration can be represented as an n-dimensional vector. However, further research is
needed to propose a sharing rule that integrates all these factors and remains practical
and explainable.

Moreover, we conjecture that the entire set of v ∈ PP∗(N ) forms the class of
“hypergraph function form games,” akin to partition function form games. To analyze
this class of games, it is needed to establish key properties such as superadditivity and
convexity, similar to what Hafalir (2007) has done for partition function form games.
Investigating these properties is part of our ongoing and future research.

5 Proofs and independence of axioms

Proof of Proposition 2.1

A sharing rule ψ satisfies PE, PI and F if and only if ψi (v,H) = ∑
T :i∈T∈H

v(T )
|T | for

every i ∈ N .

Proof The sharing ruleψ straightforwardly satisfies the three axioms. Hence, we focus
on the uniqueness. Suppose that there are two sharing rules ψ and ψ ′ such that both
satisfy the three axioms. In the same manner as Myerson (1980), van den Nouweland
et al. (1992), and Casajus (2009), there is (v,H) ∈ PP(N ) satisfying the following
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(1) and (2)12:

ψ(v,H) �= ψ ′(v,H), (1)

ψ(v,M) = ψ ′(v,M) for every M ⊆ H. (2)

Moreover, by (1), we have

there is k ∈ N such that ψk(v,H) > ψ ′
k(v,H). (3)

If the patent k belongs to exactly one package that is a singleton, i.e., {T ∈ H|k ∈
T } = {{k}}, or belongs to no package, then PI and PE result in a contradiction by
removing all packages from H except for {k}. Therefore, we consider T ∈ H with
|T | ≥ 2 and k ∈ T . For every i ∈ T ∈ H with i �= k, we have

ψi (v,H) − ψk(v,H)
F= ψi (v,H\{T }) − ψk(v,H\{T })

(2)= ψ ′
i (v,H\{T }) − ψ ′

k(v,H\{T })
F= ψ ′

i (v,H) − ψ ′
k(v,H).

By (3), we obtain ψi (v,H) > ψ ′
i (v,H). Letting Ck ∈ C(H) be the component

containing patent k,13 we repeat this for every i ∈ Ck and then obtain

∑

i∈Ck

ψi (v,H) >
∑

i∈Ck

ψ ′
i (v,H).

For the component Ck ∈ C(H), PE implies that

∑

i∈N\Ck

ψi (v,H) <
∑

i∈N\Ck

ψ ′
i (v,H).

However, for an arbitrary T ∈ H(Ck), we have

∑

i∈N\Ck

ψi (v,H)
PI=

∑

i∈N\Ck

ψi (v,H\{T })

(2)=
∑

i∈N\Ck

ψ ′
i (v,H\{T })

PI=
∑

i∈N\Ck

ψ ′
i (v,H),

which is a contradiction. ��
12 Note that for H0 = ∅, we have ψi (v,H0) = ψ ′

i (v,H0) for every i ∈ N by PE and the non-negativity
of ψ .
13 For the details of components of a hypergraph, see van den Nouweland et al. (1992). The collection of
the components ofH, i.e., C(H), partitions N , and every pair of the components has an empty intersection.
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Independence of axioms for Proposition 2.1

[A sharing rule that satisfies PI and F but not PE]
Sharing rule ψ1

ψ1
i (v,H) =

∑

T :i∈T∈H
v(T ).

satisfies PI and F but not PE.
[A sharing rule that satisfies PE and PI but not F]

Let ψ2
i (v,H) = ∑

T :i∈T∈H Z(i, T , v), where

Z(i, T , v) =
{

v(T ) if index i is the minimum in T ,
0 otherwise.

This rule satisfies PE and PI but not F.
[A sharing rule that satisfies PE and F but not PI]

Let ψ3 be

ψ3
i (v,H) =

∑
T∈H v(T )

|N | .

This sharing rule straightforwardly satisfies PE and F. However, it violates PI: Let
N = {1, 2}, H = {{1}, {2}}, and v({1}) = v({2}) = 1. We have ψ3

1 (v,H) = 1 �=
0.5 = ψ3

1 (v,H\{{2}}).

Proof of Proposition 2.2

Asharing ruleψ satisfiesPE,FW, andPIWif andonly ifψi (v,H) = ∑
T :i∈T∈H

v(T ,H)
|T |

for every i ∈ N .

Proof Sufficiency: We show thatψi (v,H) = ∑
T :i∈T∈H

v(T ,H)
|T | satisfies PE, FW, and

PIW. For every (v,H) ∈ PP∗(N ), we have

∑

j∈N
ψ j (v,H) =

∑

j∈N

∑

T∈H
j∈T

v(T ,H)

|T | =
∑

T∈H

∑

j∈T

v(T ,H)

|T | =
∑

T∈H
v(T ,H).

Therefore, ψ satisfies PE.
Next, let H ⊆ 2N\{∅}, T ∗ ∈ H, and v, v′ with v′(T ∗,H) > v(T ∗,H) and

v′(S,M) = v(S,M) for every (S,M) ∈ EMN\{(T ∗,H)}. For every i, j ∈ T ∗,
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we have

ψi (v
′,H) − ψi (v,H) =

∑

T :i∈T∈H

v′(T ,H)

|T | −
∑

T :i∈T∈H

v(T ,H)

|T |

= v′(T ∗,H)

|T ∗| − v(T ∗,H)

|T ∗|
=

∑

T : j∈T∈H

v′(T ,H)

|T | −
∑

T : j∈T∈H

v(T ,H)

|T |
= ψ j (v

′,H) − ψ j (v,H).

Therefore, ψ satisfies FW.
Moreover, for every i ∈ N\T ∗,

ψi (v,H) =
∑

T :i∈T∈H

v(T ,H)

|T | =
∑

T :i∈T∈H

v′(T ,H)

|T | = ψi (v
′,H).

Hence, ψ satisfies PIW.
Uniqueness: Let ψ be a sharing rule that satisfies PE, FW, and PIW. Let (v,H) ∈

PP∗(N ). For every i ∈ N\N∗
H, we have ψi (v,H)

PE,PIW= 0 = ∑
T :i∈T∈H

v(T ,H)
|T | as

{T : i ∈ T ∈ H} = ∅. Henceforth, we consider i ∈ N∗
H. Let τi (H) denote the set of

packages inH that contain i :

τi (H) = {T ∈ H|i ∈ T } = {T1, . . . , Tk, . . . , Tm}.

First, consider v0 with v0(S,H) = 0 for every (S,H) ∈ EMN . By PE and the
nonnegativity of ψ , ψi (v0,H) = 0.

Next, for every k = 1, . . . ,m, define vk as follows:

vk(Tk,H) = v(Tk,H) (4)

and
vk(S,M) = vk−1(S,M) for every (S,M) ∈ EMN\{(Tk,H)}. (5)

By PIW, we have

ψ j (vk,H) = ψ j (vk−1,H) for every j ∈ N\Tk . (6)

Moreover, FW enables us to define

ak := ψ j (vk,H) − ψ j (vk−1,H) for every j ∈ Tk . (7)
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By PE, for every k = 1, . . . ,m, we obtain

∑

j∈N
ψ j (vk,H) −

∑

j∈N
ψ j (vk−1,H) =

k∑

h=1

vk(Th,H) −
k−1∑

h=1

vk−1(Th,H). (8)

The left-hand side of (8) is

∑

j∈N
ψ j (vk,H) −

∑

j∈N
ψ j (vk−1,H)

(6)=
∑

j∈Tk
ψ j (vk,H) −

∑

j∈Tk
ψ j (vk−1,H)

(7)= |Tk | · ak .

The right-hand side of (8) is

k∑

h=1

vk(Th,H) −
k−1∑

h=1

vk−1(Th,H)
(5)= vk(Tk,H)

(4)= v(Tk,H).

Hence, we obtain ak = v(Tk ,H)
|Tk | .

From i ∈ Tk and (7), it follows that

ψi (vk,H) = ak + ψi (vk−1,H)

= ak + ak−1 + ψi (vk−2,H)

= ak + ak−1 + · · · + a1.

Therefore, we have ψi (v,H)
PIW= ψi (vm,H) = am + ak−1 + · · · + a1 =

∑
T :i∈T∈H

v(T ,H)
|T | . ��

Independence of axioms for Proposition 2.2

[A sharing rule that satisfies PIW and FW but not PE]
Let ψ4 be

ψ4
i (v,H) =

∑

T :i∈T∈H
v(T ,H).

This sharing rule satisfies FW and PIW by replacing v(T ,H)
|T | with v(T ,H) in the proof

of the sufficiency-part of Proposition 2.2. However, ψ4 violates PE as it is not divided
by |T |.
[A sharing rule that satisfies PE and FW but not PIW]

Let ψ5 be

ψ5
i (v,H) = 1

|C |
∑

T∈H(C)

v(T ,H),
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where C is the component of H that contains i . This sharing rule straightforwardly
satisfies PE. It also satisfies FW as follows: Let H ⊆ 2N\{∅}, T ∗ ∈ H, and
v, v′ with v′(T ∗,H) > v(T ∗,H) and v′(S,M) = v(S,M) for every (S,M) ∈
EMN\{(T ∗,H)}. For every i, j ∈ T ∗, we have

ψ5
i (v′,H) − ψ5

i (v,H) = 1

|C |v
′(T ∗,H) − 1

|C |v(T ∗,H) = ψ5
j (v

′,H) − ψ5
j (v,H).

However, it violates PIW: Consider, for example, N = {1, 2}, H = {{1}, {1, 2}},
v({1, 2},H) = 1, and v(S,M) = 0 for every (S,M) ∈ EMN\{({1, 2},H)}. Let
v′({1},H) = 5, and v′(S,M) = v(S,M) for every (S,M) ∈ EMN\{({1},H)}.
Then, we have ψ4

2 (v′,H) = 1+5
2 �= 1

2 = ψ4
2 (v,H).

[A sharing rule that satisfies PE and PIW but not FW]
Let ψ6

i (v,H) = ∑
T :i∈T∈H Z(i, T , v), where

Z(i, T , v) =
{

v(T ,H) if index i is the minimum in T ,
0 otherwise.

This sharing rule satisfies PE because

∑

j∈N
ψ6

j (v,H) =
∑

j∈N

∑

T∈H
j∈T

Z( j, T , v) =
∑

T∈H

∑

j∈T
Z( j, T , v) =

∑

T∈H
v(T ,H).

Moreover, it satisfies PIW as follows: Let H ⊆ 2N\{∅}, T ∗ ∈ H, and v, v′
with v′(T ∗,H) > v(T ∗,H) and v′(S,M) = v(S,M) for every (S,M) ∈
EMN\{(T ∗,H)}. For every i ∈ N\T ∗, we have ψ6

i (v′,H) = ∑
T :i∈T∈H Z(i, T , v′).

Since i /∈ T ∗, we have Z(i, T , v′) = Z(i, T , v) for every T : i ∈ T ∈ H.
Therefore,

∑
T :i∈T∈H Z(i, T , v′) = ∑

T :i∈T∈H Z(i, T , v) = ψ6
i (v,H). However,

ψ6 violates FW: Consider N = {1, 2}, H = {{1, 2}}, v({1, 2},H) = 1, and
v(S,M) = 0 for every (S,M) ∈ EMN\{({1, 2},H)}. Let v′({1, 2},H) = 5,
and v′(S,M) = v(S,M) for every (S,M) ∈ EMN\{({1, 2},H)}. Then, we have
ψ6
1 (v′,H) − ψ6

1 (v,H) = 5 − 1 �= 0 − 0 = ψ6
2 (v′,H) − ψ6

2 (v,H).

Proof of Proposition 3.1

A sharing rule ψ satisfies PE, F, and PM if and only if ψi (v,H) = ∑
T∈H

v(T ,H)
|N | for

every i ∈ N .

Proof The sharing rule
∑

T∈H
v(T ,H)

|N | immediately satisfies the three axioms.We show
that the function is the unique sharing rule satisfying PE, F, and PM.
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Let (v,H) ∈ PP∗(N ) and arbitrarily fix i ∈ N . Let H′ = H ∪ {N }. Moreover,
define v′ as follows:

v′(N ,H′) :=
∑

T∈H
v(T ,H), (9)

v′(S,M) := 0 for every (S,M) ∈ EM(N )\{(N ,H′)}.

We have
∑

T∈H′\{N } v′(T ,H′) = 0. From F, it follows that ψi (v
′,H′) −

ψi (v
′,H′\{N }) = ψ j (v

′,H′) − ψ j (v
′,H′\{N }) for every j ∈ N . PE and the non-

negativity of ψ imply that

ψ j (v
′,H′\{N }) = 0 for every j ∈ N .

Hence, ψi (v
′,H′) = ψ j (v

′,H′) for every j ∈ N . By PE, ψi (v
′,H′) =

1
|N |

∑
T∈H′ v′(T ,H′). Moreover, by PM, we have ψi (v,H) = ψi (v

′,H′). Hence,
we obtain

ψi (v,H) = ψi (v
′,H′) = 1

|N |
∑

T∈H′
v′(T ,H′) (9)= 1

|N |
∑

T∈H
v(T ,H).

��

Independence of axioms for 3.1

[A sharing rule that satisfies PE and F but not PM]
Let

ψ7
i (v,H) = ai (v) + 1

|N |

⎡

⎣
∑

T∈H
v(T ,H) −

∑

j∈N
a j (v)

⎤

⎦ ,

whereai (v) = ωi ·minH′:∅�=H′⊆2N \{∅}
∑

T∈H′ v(T ,H′), andω1 = 1,ω j = 0 for every
j = 2, . . . , n.We show thatψ7 satisfies PE and F. For PE, we have

∑
j∈N ψ7

j (v,H) =
∑

j∈N a j (v) + [∑T∈H v(T ,H) − ∑
j∈N a j (v)] = ∑

T∈H v(T ,H). For F, letting
(v,H) ∈ PP∗(N ), T ∗ ∈ H, and i, j ∈ T ∗, we have

ψ7
i (v,H) − ψ7

i (v,H\{T ∗}) = 1

|N |

⎡

⎣
∑

T∈H
v(T ,H) −

∑

T∈H\{T ∗}
v(T ,H\{T ∗})

⎤

⎦

= ψ7
j (v,H) − ψ7

j (v,H\{T }).

However, it violates PM as follows. Let N = {1, 2}, H1 = {{1}}, H2 = {{2}}, and
H3 = {{1}, {2}, {1, 2}}. Moreover, let

v({2},H2) = 7, v({1},H3) = 2, v({2},H3) = 2, v({1, 2},H3) = 4,

and v(S,M) = 99 for other (S,M). Now, let
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v′({1},H1) = 2, v′({1},H3) = 2, v′({2},H3) = 2, v′({1, 2},H3) = 6,

and v′(S,M) = 99 for other (S,M). We have
∑

T∈H3
v′(T ,H3) = 2 + 2 + 6 =

10 > 8 = 2 + 2 + 4 = ∑
T∈H3

v(T ,H3). However, ψ1(v
′,H3) = 2 + 1

2 [10 − 2] =
6 < 7.5 = 7 + 1

2 [8 − 7] = ψ1(v,H3).

[A sharing rule that satisfies PE and PM but not F]
Let ψ8

i (v,H) = ωi · ∑
T∈H v(T ,H), where

∑
j∈N ω j = 1 and ω j �= 1

n for some
j ∈ N . This rule straightforwardly satisfies PE and PM but violates F as follows. Let
N = {1, 2} and H = {{1}, {2}, {1, 2}}. Moreover, let v({1, 2},H) = 10, v({1},H) =
v({1},H\{{1, 2}}) = 0, and v({2},H) = v({2},H\{{1, 2}}) = 0. We consider, for
example, (ω1, ω2) = (0.6, 0.4). We have ψ8

1 (v,H) − ψ8
1 (v,H\{{1, 2}}) = 6 − 0 >

4 − 0 = ψ8
2 (v,H) − ψ8

2 (v,H\{{1, 2}}).
[A sharing rule that satisfies PM and F but not PE]

Sharing rule ψ9
i (v,H) = 2

n · ∑
T∈H v(T ,H) satisfies F and PM. However, it

violates PE as the summation is doubled.

Proof of Proposition 3.2

If a sharing rule ψ satisfies:

• PM, then RM(v) ⊆ OFψ(v) for every v : EMN → R+.
• PM, F, and PE, then RM(v) = OFψ(v) for every v : EMN → R+.

Proof Let ψ satisfies PM. Fixing an arbitrary v : EMN → R+, we prove that
RM(v) ⊆ OFψ(v). Assume that there is H ∈ RM(v) such that H /∈ OFψ(v).
By H /∈ OFψ(v), there is (S,H′) such that H′ satisfies (a), (b1), and (b2). It
follows from (a) that ψ j (v,H′) > ψ j (v,H) for every j ∈ S. Then, we have∑

T∈H′ v(T ,H′) >
∑

T∈H v(T ,H) because if
∑

T∈H′ v(T ,H′) ≤ ∑
T∈H v(T ,H),

PM implies that ψ j (v,H′) ≤ ψ j (v,H) for every j ∈ N , which is a contradiction.
Therefore,

∑
T∈H′ v(T ,H′) >

∑
T∈H v(T ,H). However, H ∈ RM(v) implies that∑

T∈H v(T ,H) ≥ ∑
T∈H′ v(T ,H′), which contradicts the assumption.

Now, letψ satisfies PM, F, and PE. By Proposition 3.1,ψi (v,H) = ∑
T∈H

v(T ,H)
|N | .

Since ψ satisfies PM, it suffices to prove that OFψ(v) ⊆ RM(v). We assume that
there is H ∈ OFψ(v) such that H /∈ RM(v). Since H is not a revenue-maximizing
profile, considerH′ ∈ RM(v)withH′ �= H.We haveψ j (v,H′) = ∑

T∈H′ v(T ,H′)
|N | >

∑
T∈H

v(T ,H)
|N | = ψ j (v,H) for every j ∈ N . Hence, (N ,H′) satisfies (a). Moreover,

(N ,H′) satisfies H′\H ⊆ 2N\{∅}, i.e., (b1); and every package T ∈ H\H′ has a
nonempty intersection with N , i.e, (b2). Hence, (N ,H′) is an objection to H for ψ .
This contradicts H ∈ OFψ(v). ��
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