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Abstract
In an environment with private information, we study the class of sequencing problems
with welfare lower bounds. The “generalized welfare lower bound” represents some
of the lower bounds that have been previously studied in the literature. Every agent is
offered a protection in the form of a minimum guarantee on their utilities. We provide
a necessary and sufficient condition to identify an outcome efficient and strategyproof
mechanism that satisfies generalized welfare lower bound. We then characterize the
entire class of mechanisms that satisfy outcome efficiency, strategyproofness and gen-
eralized welfare lower bound. These are termed as “relative pivotal mechanisms”. Our
paper proposes relevant theoretical applications namely; ex-ante initial order, identical
costs bound and expected cost bound. We also give insights on the issues of feasibility
and/or budget balance.

1 Introduction

1.1 Purpose

We live in an instant world where time is precious and convenience is an essential
prerequisite. The service sector is struggling under the burden of long waiting lines
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that hamper customer satisfaction and long term loyalty. This paper adopts a holistic
approach to analyzing sequencing problems that prioritize a customer’s well-being. A
sequencing problem consists of a service provider and a finite set of agents who wait
in a queue to process their jobs. Each position in a queue is an indivisible good. The
designer decides the order in which agents are served and their respective monetary
transfers.

Service platforms often make an attempt to smoothen out the disutility of waiting
and render a fair treatment to all its customers. We often encounter instances when
waiting for a service is either inevitable (e.g. toll plazas, surgical procedures) or vol-
untary (blood donation banks). One might argue that a consumer can always choose to
walk away and not participate in the mechanism. But, such an option is not desirable
for service providers who care about the welfare of consumers. Our model offers the
participating individuals a basic layer of protection against the agony of waiting in a
queue to avail a service. This is done by guaranteeing each agent a minimum level of
utility, when it is ex-post realized. Such an assurance acts as a safety net for an agent
and tends to improve a consumer’s overall satisfaction despite adverse circumstances.
We discuss a few real life scenarios of waiting-time guarantees below.

In Sweden, long waiting lines for surgical procedures pose a threat to the quality of
their health policy agenda. To reduce waiting lists, in 1992 the Swedish Government
and the Federation of County Council agreed on an initiative to offer a maximum
waiting-time guarantee. Patients awaiting medical procedures are guaranteed a wait-
ing time no longer than 3 months from the physician’s decision to treat/operate (see
Hanning 1996). Similarly, UK’s national health service (NHS) provides emergency
patients with a four hours target window within which 95% of the patients need to
be discharged or transferred.1 Pan et al. (2021) study the perturbations in healthcare
operations caused by patients’ tardiness. Their objective is to minimize the total cost
incurred by patient waiting and provider overtime through appointment scheduling
and real time sequencing. India faces a massive congestion of vehicles at the highway
toll plazas. When an individual drives on the highway, waiting at a toll plaza to pay the
toll tax is just as necessary as waiting at the airport check-in counter or the boarding
gate before departure. The National Highway Authority of India (NHAI) ensures that
the number of toll lanes/booths are such that, the service time per vehicle during peak
hours is not more than 10 s. The NHAI rules also suggest an increase in the number of
toll lanes if the waiting time of the users exceeds 3 min. Moreover, there are specific
regions in the country where riders are exempted from paying the toll tax altogether if
the total waiting time surpasses 3 min. The above examples suggest that measures to
introduce guarantees on an individual’s realized welfare is important and desirable.

1.2 Our framework

We work in a standard sequencing environment with a finite set of agents. In our
model, each agent has a single job to process using a facility that can only serve one
agent’s requirement at a time. It is assumed that no job can be interrupted once it starts
processing. A job is characterized by its processing time and an agent’s waiting cost.

1 https://www.nhsinform.scot/care-support-and-rights/health-rights/access/waiting-times.
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The latter represents the dis-utility of waiting (per unit of time). The processing time
of all agents are publicly known while the waiting costs are private information. There
is a well established literature in this direction.2 We work in a private information set-
up where agents have quasi-linear preferences and the mechanism designer allows for
monetary incentives. Businesses often resort tomonetary and non-monetary incentives
to induce better queue management (express passes for peak hours at theme parks, off
season discounts, airlines providing priority check-ins against a nominal fee, Amazon
charging for faster deliveries and cash back offers for those willing to wait, etc.). For
sequencing problems, mechanism design under incomplete information was analyzed
byDolan (1978),Hain andMitra (2004),Moulin (2007),Mitra (2002) andSuijs (1996).
A special case of sequencing problems where the processing times of the agents are
identical is called queueing problems. Queueing problems have also been analyzed
extensively from both normative and strategic viewpoints.3

1.3 Contribution to the literature

The sequencing and queueing literature has studied the impact of imposing lower
bounds on the utility function in various contexts. The most natural bound is the first
comefirst serve protocolwhere there is a preexisting order inwhich agents arrive. From
the cooperative game perspective, sequencing games with initial order was analyzed
by Curiel et al. (1989) who define the worth of a coalition as the maximal achievable
cost savings by rearranging its members without jumping over non-members. Yang
et al. (2019) also study cooperative games in sequencing situations with externalities
where the worth of coalition can be influenced by the external players in the queue.
From themechanismdesign perspective, the queueing problemwas addressed byChun
et al. (2017) and by Gershkov and Schweinzer (2010). There are other fairness bounds
that have been studied from the normative viewpoint. We use the fairness idea of
identical cost bound (ICB) and this idea stems from the notion of identical-preference
lower bound, introduced byMoulin (1991).4 The notion of identical cost bound (ICB)
defines a reference problem and requires that every agent receives at least as much as
his utility from this benchmark case. The reference problem for any agent i requires
that all other agents have the same waiting cost and processing time as agent i . Since
agents are identical in this sense, each of them has an equal right to the resource. As
a consequence, there is an equal probability for agent i to occupy any position in the
queue. No agent suffers due to the heterogeneity of other’s preferences. For queueing
problems, the notion of ICB was analyzed by Maniquet (2003), Chun (2006b), Kayi
and Ramaekers (2010) and Mitra (2007). Another well-studied notion, namely, the
expected costs bound (ECB) requires that the utility of each agent is no less than the
expected cost of the agent associated with random arrival where each arrival order is

2 See De (2017, 2019), De and Mitra (2017, 2019), Dolan (1978), Duives et al. (2012), Hain and Mitra
(2004), Mitra (2002), Moulin (2007) and Suijs (1996).
3 See Chun (2006a, b), Chun and Mitra (2014), Chun et al. (2014, 2017, 2019a, b), Hashimoto (2018),
Kayi and Ramaekers (2010), Maniquet (2003), Mitra (2001, 2005, 2007), Mitra and Mutuswami (2011)
and Mukherjee (2013).
4 Also see Bevia (1996), Moulin (1990), Steinhaus (1948) and Yengin (2013).
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equally probable. Chun and Yengin (2017) introduce welfare lower bounds with the k-
welfare lower bound guaranteeing each agent his utility at the kth queue position with
zero transfer. Starting from the last position, the designer progressively reduces k (thus
increasing the welfare levels) till there is a clash with certain budgetary requirements.
For queueing problems, ECB coincides with the expected “k-welfare bound” in Chun
and Yengin (2017). Further, in the queueing literature, Gershkov and Schweinzer
(2010) honor an agent’s existing service rights by defining individual rationality with
respect to an existing mechanism (first come first serve and random arrival schedules).
They examine whether efficient reordering is possible when individuals are rational
with respect to the status quo.

We introduce thegeneralizedwelfare lower bound (GWLB),which is a compact and
unified representation of some existing bounds in the literature.5 Such a representation
encompasses both fairness bounds aswell as naturally/artificially constructed bounds.6

The (GWLB) is type-dependent and guarantees an assured level of utility to every
agent.7,8 By virtue of the linear cost structure, one can easily observe that such a
bound can be decomposed and expressed as a product of two components- an agent’s
own waiting cost, θi (we do not consider interdependent waiting costs in this paper)
and some function of the job processing time vector (“s”), denoted by Oi (s). The
component Oi (s) is the lower bound parameter which varies depending on the specific
bound under consideration.9 For instance, say mechanism μ1 assures every agent his
worst case utility, that is, when he is placed in the last position. Let mechanism μ2
guarantee every agent the utility hewould have obtained under the first come first serve
protocol. The lower bound parameter Oi (s) under μ1 is the sum of the processing
times of all the agents while under μ2, it is the sum of his own processing time and
the processing time of all the agents preceding him in the initial order of arrival. The
bound under μ2 is stricter than μ1 and guarantees a higher minimum welfare (unless
of course the agent coincidentally occupies the last position in the initial order too!)

5 Apart from ICB and ECB, GWLB covers the k-welfare bound proposed in Chun and Yengin (2017) and
sequencing with initial order studied by Gershkov and Schweinzer (2010) and Chun et al. (2014).
6 Although GWLB encompasses all multiplicative lower bounds, since the lower bound parameter Oi (s)
can be any function of s, it is not broad enough to manifest any kind of solidarity requirements. For example
it does not reflect the notion of cost monotonicity or population monotonicity (Thomson 2011; Yengin and
Chun 2020).
7 This paper does not discuss the question of participation or tries to impose the individual rationality
constraint (with respect to not getting the service) at any point.
8 Wilson (1989) has analyzed priority service contracts that specifies each customer’s priority in obtaining
the service contingent on supply side constraints.Wework in a framework where the facility starts operating
only after the finite set of agents have arrived. In our framework, every agent is entitled to getting his job
processed completely without interruption. Moreover, Wilson (1989) deals with priority service contract in
order to reduce inefficiency that may arise because of impossibility associated with spot pricing, while our
objective is to design mechanisms that achieve outcome efficiency and strategyproofness when no agent is
deprived of the service.
9 The lower bound parameter of any agent purely depends on the job processing time vector (“s”) and not
on the waiting costs. Refer to how we define the job completion cost of an agent in the Framework section
below for further clarity.
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1.4 Results

Under private information, we study the implications of a generalized welfare lower
bound in a sequencing problem with monetary transfers. A mechanism is said to be
outcome efficient if it minimizes the aggregate job completion cost. A mechanism is
strategy-proof if each agent is at least as well off reporting their true per-unit timewait-
ing cost as they would be by misreporting their true type. Our first theorem identifies
a necessary and sufficient condition to obtain an outcome efficient and strategyproof
mechanism satisfying the generalized welfare lower bound.

Given this property, our second theorem is a characterization result introducing the
class of ‘relative pivotal mechanisms’ which is the subclass of VCG mechanisms that
satisfy the generalized welfare lower bound.

We also address the issue of finding those relative pivotal mechanisms that satisfy
either feasibility or its stronger version, budget balance.10 When there are two agents,
the relative pivotal mechanisms are feasible under a certain restriction and are not
budget balanced.When there aremore than two agents, the same restriction is sufficient
for the relative pivotal mechanism to be budget balanced (hence, feasible). The latter
half of the paper provides relevant theoretical applications of the generalized welfare
lower bound and also studies its implications in queueing problems. Chun and Yengin
(2017) have characterized the class of VCG mechanisms which satisfies ICB in the
queueing context. They discuss ICB as a special case of the k-welfare lower bound
where k = (n+1)/2 and argue that ICB coincides with the welfare lower bound from
random arrival. This paper eliminates the gap between their necessary and sufficient
condition by specifying a tighter and complete characterization of the same. We have
summarized all the results in the concluding section.

1.5 Applications

We first apply our results to sequencing problems with an ex-ante initial order (natural
order in which agents arrive). We show that there is no feasible (and hence no bud-
get balanced) relative pivotal mechanism.11 Our next two applications captures the
essence of fairness by constructing the identical costs bound (ICB) and expected costs
bound (ECB). For queueing problems, the notions of ICB and ECB are equivalent.
We show that if there are exactly three agents, then only for queueing problems we
can get feasible relative pivotal mechanisms under both ICB and ECB; for more than
two agents, we provide a sufficient condition that guarantees the existence of budget
balanced relative pivotal mechanisms.

10 It is well-known that feasibility of a mechanism requires that the sum of transfers across all agents is
non-positive and budget balance requires that the sum of transfers across all agents is zero.
11 For the queueing problem this impossibility was shown by Chun et al. (2017) and our result shows that
even if processing time across agents are non-identical this impossibility holds.
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2 The framework

Consider a finite set of agents N = {1, 2, . . . , n} who want to process their jobs using
a facility that can be used sequentially. The job processing time can be different for
different agents. Specifically, for each agent i ∈ N , the job processing time is given
by si > 0. By means of an order σ = (σ1, . . . , σn) on N , one can describe the
position of each agent in the order. Specifically, σi = k indicates that agent i has the
k-th position in the order. Let � be the set of n! possible orders on N . We define
Pi (σ ) = { j ∈ N\{i} | σ j < σi } to be the predecessor set of i in the order σ. Similarly,
Fi (σ ) = { j ∈ N\{i} | σ j > σi } denotes the follower (or successor) set of i in the
order σ. Given a vector s = (s1, . . . , sn) ∈ R

n++ and an order σ ∈ �, the cost of job
completion for agent i ∈ N is θi Si (σ, s), where Si (σ, s) := ∑

j∈Pi (σ ) s j + si ∈ R++
is the job completion time of agent i given the order σ and θi ∈ � := R++ is her
constant per-period waiting cost and here R++ is the positive orthant of the real line
R. Due to the sequential nature of providing the service, the job completion time for
agent i depends not only on his own processing time si , but also on the processing
time of the agents who precede him in the order of service. Note that, for any i ∈ N
we write,

∑
j∈Pi (σ ) s j = 0 if Pi (σ ) = ∅. The agents have quasi-linear utility of the

form ui (σ, τi ; θi , s) = −θi Si (σ, s) + τi where σ is the order, τi ∈ R is the transfer
that he receives and the parameter of the model θi is the waiting cost. Given any
processing time vector s = (s1, . . . , sn) ∈ R

n++ define A(s) := ∑
j∈N s j and, with

slight abuse of notation, we denote a sequencing problem by � and we denote the set
of all sequencing problems with the set of agents N by S(N ). A sequencing problem
� ∈ S(N ) is called a queueing problem if s = (s1, . . . , sn) is such that s1 = · · · = sn .
We denote the set of all queueing problems with the set of agents N byQ(N ).Clearly,
Q(N ) ⊂ S(N ) for any given N (such that N is a finite set and n ≥ 2).

A typical profile of waiting costs is denoted by θ = (θ1, . . . , θn) ∈ �n . For any i ∈
N , let θ−i , denote the profile (θ1 . . . θi−1, θi+1, . . . θn) ∈ �n−1 which is obtained from
the profile θ by eliminating i’s waiting cost. A mechanism μ = (σ, τ ) constitutes of a
sequencing rule σ and a transfer rule τ. A sequencing rule is a function σ : �n → �

that specifies for each profile θ ∈ �n a unique order σ(θ) = (σ1(θ), . . . , σn(θ)) ∈ �.

Because the sequencing rule is a function (and not a correspondence) we will require
a tie-breaking rule to reduce a correspondence to a function which, unless explicitly
discussed, is assumed to be fixed. We use the following tie-breaking rule. We take
the linear order 1 � 2 � · · · � n on the set of agents N . For any sequencing
rule σ and any profile θ ∈ �n with a tie situation between agents i, j ∈ N , we
pick the order σ(θ) with σi (θ) < σ j (θ) if and only if i � j . A transfer rule is
a function τ : �n → R

n that specifies for each profile θ ∈ �n a transfer vector
τ(θ) = (τ1(θ), . . . , τn(θ)) ∈ R

n . Specifically, given any mechanism μ = (σ, τ ), if
(θ ′

i , θ−i ) is the announced profile when the true waiting cost of i is θi , then utility of
i is ui (μi (θ

′
i , θ−i ); θi , s) = −θi Si (σ (θ ′

i , θ−i ), s) + τi (θ
′
i , θ−i ) where μi (θ

′
i , θ−i ) :=

(σ (θ ′
i , θ−i ), τi (θ

′
i , θ−i )). Given any � ∈ S(N ), any θ ∈ �n and any order σ ∈ �,

define the aggregate cost as C(σ ; θ, s), that is, C(σ ; θ, s) := ∑
j∈N θ j S j (σ, s).

A sequencing rule is outcome efficient if it minimizes the aggregate job comple-
tion cost. A mechanism implements a sequencing rule in dominant strategies if the
transfer is such that truthful reporting for any agent weakly dominates false report-
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ing irrespective of what other agents declare. Implementation of outcome efficient
sequencing rules in dominant strategies has been well studied in the literature on
mechanism design under incomplete information. It is also well-known that, as long
as preferences are ‘smoothly connected’ (see Holmström 1979), outcome efficient
rules can be implemented in dominant strategies if and only if the mechanism is a
Vickrey–Clarke–Groves (VCG) mechanism (see Clarke 1971; Groves 1973; Vickrey
1961).

Definition 1 A sequencing rule σ ∗ is said to be outcome efficient if for any profile
θ ∈ �n, σ ∗(θ) ∈ argminσ∈�C(σ ; θ, s).

An urgency index of agent i is the ratio of his waiting cost to his processing time,
that is, θi/si . From Smith (1956) it follows that σ ∗ is outcome efficient if and only
if the following holds: (OE) For any θ ∈ �n, the selected order σ ∗(θ) satisfies the
following: For any i, j ∈ N , θi/si > θ j/s j ⇒ σ ∗

i (θ) < σ ∗
j (θ), that is, if the urgency

index of agent i is more than that of agent j, then agent i should be served before
agent j . We say that a mechanism μ = (σ, τ ) satisfies outcome efficiency if σ = σ ∗.
In a sequencing problem with outcome efficient rule, a tie situation arises when two
agents have the same urgency index.

Suppose that a waiting cost of zero was admissible in the domain. Consider any
outcome efficient order σ ∗(θ) for θ ∈ �n . We define the “induced” order σ ∗(0, θ−i )

as follows:

σ ∗
j (0, θ−i ) =

⎧
⎨

⎩

σ ∗
j (θ) − 1 if j ∈ Fi (σ ∗(θ)),

σ ∗
j (θ) if j ∈ Pi (σ ∗(θ)),

n j = i .
(1)

In words, given θ ∈ �n and given any i ∈ N , σ ∗(0, θ−i ) is the order formed by
setting the waiting cost of agent i at zero and hence moving agent i to the last position
(following the outcome efficiency condition of Smith (1956) by admitting zerowaiting
cost of agent i) so that only the agents in the set behind Fi (σ ∗(θ)) move up by one
position under the outcome efficient queue for the induced profile (0, θ−i ).

Definition 2 For a sequencing rule σ, a mechanism μ = (σ, τ ) is strategyproof (dom-
inant strategy incentive compatible) if the transfer rule τ : �n → R

n is such that for
any i ∈ N , any θi , θ

′
i ∈ � and any θ−i ∈ �n−1,

ui (μi (θ); θi , s) ≥ ui (μi (θ
′
i , θ−i ); θi , s). (2)

For a given sequencing rule σ, strategyproofness of a mechanism μ = (σ, τ )

requires that the transfer rule τ is such that truthful reporting for any agent weakly
dominates false reporting no matter what others’ report.

Definition 3 A mechanism μ satisfies feasibility if for any θ ∈ �n,
∑

j∈N τi (θ) ≤ 0.

Definition 4 A mechanism μ satisfies budget balance if for any θ ∈ �n,
∑

j∈N τi (θ)

= 0.
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2.1 Generalized welfare lower bound

Given any sequencing problem � ∈ S(N ), let Oi (s) be the lower bound parameter
of agent i and O(N ; s) := (O1(s), . . . , On(s)) ∈ R

n denote the lower bound vector.

Definition 5 For any sequencing problem � ∈ S(N ), a mechanism μ = (σ, τ ) satis-
fies GWLB with the lower bound vector O(N ; s) := (O1(s), . . . , On(s)) ∈ R

n if the
transfer rule τ : �n → R

n is such that for any i ∈ N , any θi ∈ � and any θ−i ∈ �n−1,

ui (μi (θi , θ−i ); θi , s) ≥ −θi Oi (s). (3)

3 GWLB, outcome efficiency and strategyproofness

Given any sequencing problem � ∈ S(N ) and any mechanism satisfying GWLB,
we first try to identify the restriction on the lower bound vector O(N ; s) for which
we can get a mechanism satisfying outcome efficiency, strategyproofness and GWLB
with this lower bound vector O(N ; s). The next property is necessary and sufficient
for getting such mechanisms.

Definition 6 For any mechanism satisfying GWLB, the lower bound vector O(N ; s)
:= (O1(s), . . . , On(s)) satisfies the constrained welfare property if

Oi (s) ≥ si ∀ i ∈ N . (4)

Condition (4) in Definition 6 puts a constraint on the lower bound parameter, indi-
cating that an agent will always need to incur at least the cost of her own processing
time with zero transfers. In particular, it admits any Oi (s) of the form Oi (s) = si +Mi

where Mi is any non-negative real number for every i ∈ N . For the special case when
Oi (s) = si for all i ∈ N this can be interpreted as the 1-welfare bound defined in
Chun and Yengin (2017) which states that no agent should have a utility less than her
best-case utility (when she is served first and there is no transfers). Also note that if
Oi (s) = A(s) = ∑

j∈N s j for all i ∈ N , then it satisfies condition (4) and we have the
n-welfare bound of Chun and Yengin (2017) extended to the sequencing case. Hence,
k-welfare bounds defined for all k ∈ {1, . . . , n} in Chun and Yengin (2017) are special
cases of the constrained welfare property.

Theorem 1 The following statements are equivalent for any given sequencing problem
� ∈ S(N ):
(SPC1) We can find a mechanism that satisfies outcome efficiency, strategyproofness

and GWLB with the lower bound vector O(N ; s).
(SPC2) The lower bound vector O(N ; s) satisfies the constrained welfare property.

It is well-known that for an outcome efficient sequencing rule a mechanism is strat-
egyproof if and only if the associated transfer is a VCG transfer (seeHolmström 1979).
The standardwayof specifying theVCG transfers for any sequencing problem� is that
for all θ ∈ �n and for all i ∈ N , τi (θ) = −C(σ ∗(θ); θ, s)+θi Si (σ ∗(θ), s)+gi (θ−i ),
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where for each i ∈ N the function gi : �|N\{i}| → R is arbitrary.12 If in addition we
require GWLB to bemet, then it is necessary that for any profile θ ∈ �N and any agent
i ∈ N , ui (σ ∗(θ), τi (θ); θi , s) = −C(σ ∗(θ); θ, s) + gi (θ−i ) ≥ −θi Oi (s) implying
that gi (θ−i ) ≥ C(σ ∗(θ); θ, s) − θi Oi (s). Since the function gi (θ−i ) is independent
of agent i’s waiting cost θi , we have the following:

gi (θ−i ) ≥ ḡi (θ−i ) := sup
xi∈�

[
Ti (xi ; θ−i )

]
, Ti (xi ; θ−i ) := [

C(σ ∗(xi , θ−i ); (xi , θ−i ), s) − xi Oi (s)
]
. (5)

Equivalently, we can represent Ti (xi ; θ−i ) in Eq. (5) in an expanded form as follows:

Ti (xi ; θ−i ) := ∑
j∈N\{i} θ j S j (σ

∗(xi , θ−i ), s) + {Si (σ ∗(xi , θ−i ), s) − Oi (s)}xi , where xi ∈ R+. (6)

Observe that if Oi (s) > A(s) = ∑
j∈N s j , then Si (σ ∗(xi , θ−i ), s) < Oi (s) for all

xi ∈ � and hence the function Ti (xi ; θ−i ) has no maximum value xi ∈ � though
the function has a least upper bound if we set xi = 0. Hence, if Oi (s) > A(s), we
have Ti (xi ; θ−i ) < Ti (0; θ−i ) < ∞ for all xi ∈ �.13 One can also verify that even
if Oi (s) = A(s), we have Ti (xi ; θ−i ) ≤ Ti (0; θ−i ) < ∞ for all xi ∈ �. However, if
Oi (s) < si , then Si (σ ∗(xi , θ−i ), s) > Oi (s) for all xi ∈ � and the function Ti (xi ; θ−i )

has neither a maximum nor a least upper bound. Hence, for the function Ti (xi ; θ−i )

defined on xi ∈ � to have a least upper bound, the constrained welfare property (of
Definition 6) is necessary.

Example 1 To illustrate the above optimization exercise, let us consider a set of three
agents denoted by N = {1, 2, 3}. Consider the profile θ = (θ1 = 9, θ2 = 4, θ3 = 1).
The job processing time vector is s = (s1 = 3, s2 = 2, s3 = 1). On computing the
urgency index of every agent we observe, θ1/s1 = 3 > θ2/s2 = 2 > θ3/s3 = 1.
This implies that the outcome efficient ordering is σ ∗(θ) = (σ ∗

1 (θ) = 1, σ ∗
2 (θ) =

2, σ ∗
3 (θ) = 3).Let us assume Oi (s) = si+∑

j �=i s j/2 for each i ∈ N thus, O(N ; s) =
(O1(s) = 4.5, O2(s) = 4, O3(s) = 3.5). To understand how the function Ti (xi ; θ−i )

behaves, refer to Fig. 1 below, which demonstrates this specifically for agent 1. Under
outcome efficiency, note the following:

(1) When x1 ≥ 6, agent 1 continues occupying the first position in the queue (since
x1/s1 ≥ θ2/s2 > θ3/s3). The slope of T1(x1; θ−1) is negative. This can be seen
from Eq. (6) where the slope is given by {s1 − O1(s)} = −1.5.

(2) When 3 ≤ x1 < 6, agent 1 now occupies the second position in the outcome
efficient ordering (since θ2/s2 > x1/s1 ≥ θ3/s3). The slope is positive in this
range, that is, {s1 + s2 − O1(s)} = 0.5.

(3) When x1 < 3, agent 1 is served last and the slope gets steeper, that is, {s1 + s2 +
s3 − O1(s)} = 1.5.

Denote θ∗
1 ∈ R+ such that T1(θ∗

1 ; θ−1) ≥ T1(x1; θ−1) for all x1 ∈ �. Clearly from
Fig. 1, the value of T1(x1; θ−1) is maximised at θ∗

1 = 6, that is, when x1/s1 = θ2/s2.
Similarly, we can plot T2(x2; θ−2) and T3(x3; θ−3) to compute θ∗

2 and θ∗
3 respectively.

12 See Mitra (2002) and Suijs (1996).
13 Given condition (1), the order σ∗(0; θ−i ) is well-defined and hence the function Ti (xi ; θ−i ) is well-
defined at xi = 0.
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Fig. 1 Finding the maximum value of T1(x1; θ−1)

Definition 7 An outcome efficient mechanism μp = (σ ∗, τ p) is called a relative
pivotal mechanism if τ p satisfies the following property: For any profile θ ∈ �n and
any agent i ∈ N ,

τ
p
i (θ) = {Si (σ ∗(θ∗

i , θ−i ), s) − Oi (s)}θ∗
i + RPi (θ) + hi (θ−i ), (7)

where, given the function Ti (xi ; θ−i ) (defined in (6)), θ∗
i ∈ R+ is such that

Ti (θ∗
i ; θ−i ) ≥ Ti (xi ; θ−i ) for all xi ∈ �, RPi (θ) := ∑

j∈N\{i}
(|Pj (σ

∗(θ∗
i , θ−i ))| −

|Pj (σ
∗(θ))|)θ j si and hi : �|N\{i}| → R+.

LetR(N ) denote the set of all relative pivotal mechanisms defined in Definition 7.

Theorem 2 For any given � ∈ S(N ), an outcome efficient mechanism μ = (σ ∗, τ )

satisfies strategyproofness and GWLB with O(N , s) meeting the constrained welfare
property if and only if it is a relative pivotal mechanism, that is, μ ∈ R(N ).

It is well-known from Holmström (1979) that for outcome efficiency and strate-
gyproof it is necessary that the mechanism μ = (σ ∗, τ ) must be a VCG mechanism
where the transfers satisfy the following property: For any profile θ ∈ �n and
any agent i ∈ N , τi (θ) = −C(σ ∗(θ); θ, s) + θi Si (σ ∗(θ), s) + gi (θ−i ) where
gi : �|N\{i}| → R is arbitrary. The relative pivotal mechanism given in Definition 7
is a VCG mechanism which is obtained for each agent i ∈ N and each profile θ ∈ �n

by substituting gi (θ−i ) = Ti (θ∗
i ; θ−i )+hi (θ−i )where Ti (θ∗

i ; θ−i ) (resulting from the
optimization exercise in Definition 7) and the restriction hi (θ−i ) ≥ 0 are necessary
to satisfy the GWLB. After appropriate simplification of the VCG transfer τi (θ) =
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−C(σ ∗(θ); θ, s)+θi Si (σ ∗(θ), s)+gi (θ−i ) by using gi (θ−i ) = Ti (θ∗
i ; θ−i )+hi (θ−i )

we get that for all θ ∈ �n and all i ∈ N ,

τ
p
i (θ) = −C(σ ∗(θ); θ, s) + θi Si (σ

∗(θ), s) + Ti (θ
∗
i ; θ−i ) + hi (θ−i ). (8)

Simplifying (8) we get a subset of VCG mechanisms which we call relative pivotal
mechanisms (Definition 7). From the proof of Theorem 2 it is clear that given any
relative pivotal mechanism μp = (σ ∗, τ p) ∈ R(N ), for any θ ∈ �n and any i ∈ N ,

ui (μ
p
i (θi , θ−i ); θi , s) = −θi Oi (s)+{Ti (θ∗

i ; θ−i )−Ti (θi ; θ−i )+hi (θ−i )} ≥ −θi Oi (s)
since Ti (θ∗

i ; θ−i )−Ti (θi ; θ−i )+hi (θ−i ) ≥ 0.Hence, GWLB is satisfied for all agents.
The sum RPi (θ) = ∑

j∈N\{i}(|Pj (σ
∗(θ∗

i , θ−i ))| − |Pj (σ
∗(θ))|)θ j si in condition

(7) captures the relative pivotal nature of this sub-class ofVCGmechanisms.Given any
profile i ∈ N , any θ−i ∈ �n−1 the ‘benchmark’ type θ∗

i of agent i is obtained from the
optimization exercise inDefinition 7 and if this θ∗

i is taken alongwith θ−i ∈ �n−1, then
the resulting benchmark outcome efficient order is σ ∗(θ∗

i , θ−i ). Given any θi ∈ �,

this benchmark order σ ∗(θ∗
i , θ−i ) may or may not be the same as the actual outcome

efficient order σ ∗(θi , θ−i ) though the relative order across the agents other than i
remains unchanged.14 Given σ ∗(θ∗

i , θ−i ) and σ ∗(θi , θ−i ),we can have the threemutu-
ally exclusive and exhaustive possibilities-(i) Pi (σ ∗(θi , θ−i )) ⊂ Pi (σ ∗(θ∗

i , θ−i )), (ii)
Pi (σ ∗(θi , θ−i )) = Pi (σ ∗(θ∗

i , θ−i )), and, (iii) Pi (σ ∗(θ∗
i , θ−i )) ⊂ Pi (σ ∗(θi , θ−i )).

(R1) If Pi (σ ∗(θi , θ−i )) ⊂ Pi (σ ∗(θ∗
i , θ−i )) (so that θ∗

i ∈ [0, θi )), then relative to
σ ∗(θ∗

i , θ−i ), agent i has inflicted an incremental cost of θ j si to each agent
j ∈ Pi (σ ∗(θ∗

i , θ−i )\Pi (σ ∗(θi , θ−i )) under the actual order σ ∗(θi , θ−i ).Hence,
for any j ∈ Pi (σ ∗(θ∗

i , θ−i )\Pi (σ ∗(θi , θ−i )), we get |Pj (σ
∗(θ∗

i , θ−i ))| −
|Pj (σ

∗(θi , θ−i ))| = −1. Therefore, using the sum in (7) it follows that agent i
has to pay

RPi (θ) =
∑

j∈N\{i}
(|Pj (σ

∗(θ∗
i , θ−i ))| − |Pj (σ

∗(θi , θ−i ))|)θ j si

= −
∑

j∈Pi (σ ∗(θ∗
i ,θ−i )\Pi (σ ∗(θi ,θ−i ))

θ j si .

When can we have θ∗
i = 0? If for any agent i ∈ N we have Oi (s) ≥ A(s),

then for every θ−i ∈ �n−1, Ti (xi ; θ−i ) is decreasing in xi ∈ � implying that
by setting θ∗

i = 0 we get Ti (0; θ−i ) ≥ Ti (xi , θ−i ) for all xi ∈ �. In this case,

RPi (θ) =
∑

j∈N\{i}
(|Pj (σ

∗(0, θ−i ))| − |Pj (σ
∗(θi , θ−i ))|)θ j si = −

∑

j∈Fi (σ∗(θ∗
i ,θ−i )

θ j si .

(R2) If Pi (σ ∗(θi , θ−i )) = Pi (σ ∗(θ∗
i , θ−i )), then σ ∗(θ∗

i , θ−i ) = σ ∗(θi , θ−i ) and
agent i has neither inflicted any incremental cost to any other agent nor
has agent i induced any incremental benefit for any other agent, that is,

14 Specifically, for any σ∗(θ∗
i , θ−i ) and σ∗(θi , θ−i ), the relative order across the agents other than i

remains unchanged means that for any j, k ∈ N\{i} with j �= k, σ∗
j (θ

∗
i , θ−i ) > σ∗

k (θ∗
i , θ−i ) if and only

if and σ∗
j (θi , θ−i ) > σ∗

k (θi , θ−i ).
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|Pj (σ
∗(θ∗

i , θ−i ))| = |Pj (σ
∗(θi , θ−i ))| for all j ∈ N . Hence, using the sum

in (7), it follows that

RPi (θ) =
∑

j∈N\{i}
(|Pj (σ

∗(θi , θ−i ))| − |Pj (σ
∗(θ∗

i , θ−i ))|)θ j si = 0

.
(R3) If Pi (σ ∗(θ∗

i , θ−i )) ⊂ Pi (σ ∗(θi , θ−i )) (so that θ∗
i > θi ), then relative to the

outcome efficient order σ ∗(θ∗
i , θ−i ), agent i has given an incremental benefit

of θ j si to each j ∈ Pi (σ ∗(θi , θ−i ))\Pi (σ ∗(θ∗
i , θ−i ) under the outcome efficient

orderσ ∗(θi , θ−i ).Hence, for any j ∈ Pi (σ ∗(θi , θ−i ))\Pi (σ ∗(θ∗
i , θ−i ),wehave

|Pj (σ
∗(θ∗

i , θ−i ))|−|Pj (σ
∗(θi , θ−i ))| = 1.Thus, from the sum in (7), it follows

that agent i gets a reward of

RPi (θ) =
∑

j∈N\{i}
(|Pj (σ

∗(θ∗
i , θ−i ))| − |Pj (σ

∗(θi , θ−i ))|)θ j si

=
∑

j∈Pi (σ ∗(θi ,θ−i ))\Pi (σ ∗(θ∗
i ,θ−i )

θ j si .

Therefore, (R1), (R2) and (R3) explains how the sum RPi (θ) in (7) for agent i with
type θi , given θ−i is calculated based on the difference in the cost of all other agents
N\{i} that results from the actual profile specific outcome efficient order σ ∗(θi , θ−i )

relative to the benchmark outcome efficient order σ ∗(θ∗
i , θ−i ). What follows from the

above discussion is that for all θ ∈ �n and each i ∈ N , either |Pj (σ
∗(θ∗

i , θ−i ))| −
|Pj (σ

∗(θ))| ∈ {−1, 0} for all j ∈ N\{i} or |Pj (σ
∗(θ∗

i , θ−i ))| − |Pj (σ
∗(θ))| ∈ {0, 1}

for all j ∈ N\{i}. Equivalently, we cannot find a profile θ ∈ �n and an agent i ∈ N
such that |Pj (σ

∗(θ∗
i , θ−i ))| − |Pj (σ

∗(θ))| = −1 for some agent j ∈ N\{i} and
|Pk(σ ∗(θ∗

i , θ−i ))| − |Pk(σ ∗(θ))| = 1 for other agent k ∈ N\{i, j}.
Example 2 Continuing with the same illustration as in Example 1, Table 1 provides
the necessary inputs to compute the relative pivotal transfer and the correspond-
ing utility of every agent. Using the specifications provided in the fourth column
of Table 1 and given σ ∗(θ) = (σ ∗

1 (θ) = 1, σ ∗
2 (θ) = 2, σ ∗

3 (θ) = 3), we have
(i) P1(σ ∗(θ)) = P1(σ ∗(θ∗

1 , θ−1)) = ∅, (ii) P2(σ ∗(θ)) = P2(σ ∗(θ∗
2 , θ−2)) = {1}

and (iii) P3(σ ∗(θ))\P3(σ ∗(θ∗
3 , θ−3) = {2}. Therefore, using (R2) above, it follows

that RP1(θ) = 0 and RP2(θ) = 0. Moreover, from (R3) above it also follows that
RP3(θ) = ∑

j∈P3(σ ∗(θ))\P3(σ ∗(θ∗
3 ,θ−3)

θ j s3 = θ2s3 = 4. This explains the entries
in fifth column of Table 1. The term RP3(θ) shows that agent 3 is compensated
for being served last under σ ∗(θ) relative to the benchmark outcome efficient order
σ ∗(θ∗

3 ; θ−3) = (σ ∗
1 (θ∗

3 ; θ−3) = 1, σ ∗
2 (θ∗

3 ; θ−3) = 3, σ ∗
3 (θ∗

3 ; θ−3) = 2) where she
occupies the second position.

Using the form of the relative pivotal mechanism given in condition (7) of Defini-
tion 7 and using the specifications provided in Table 1, we derive the relative pivotal
transfers of the three agents. These transfers are-(I) τ

p
1 (θ) = −9 + h1(θ2, θ3), (II)

τ
p
2 (θ) = 6+h2(θ1, θ3) and (III) τ

p
3 (θ) = 5.5+h3(θ1, θ2).Finally, usinghi (θ j , θk) ≥ 0

for i �= j �= k �= i, it follows that (A) u1(μ
p
1 (θ); θ1, s) = −36 + h1(θ2, θ3) >

−θ1O1(s) = −40.5, (B) u2(μ
p
2 (θ); θ2, s) = −14 + h2(θ1, θ3) > −θ2O2(s) = −16

and (C) u3(μ
p
3 (θ); θ3, s) = −0.5 + h3(θ1, θ2) > −θ3O3(s) = −3.5.
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Table 1 Inputs to derive the relative pivotal transfers

Agents Oi (s) θ∗
i σ ∗(θ∗

i , θ−i ) RPi (θ)

1 O1(s) = 4.5 θ∗
1 = s1

(
θ2
s2

)
= 6 σ ∗(θ∗

1 , θ−1) = (1, 2, 3) 0

2 O2(s) = 4 θ∗
2 = s2

(
θ1
s1

)
= 6 σ ∗(θ∗

2 , θ−2) = (1, 2, 3) 0

3 O3(s) = 3.5 θ∗
3 = s3

(
θ1
s1

)
= 3 σ ∗(θ∗

3 , θ−3) = (1, 3, 2) θ2s3 = 4

3.1 Feasibility and budget balance

Before going to our results on identifying the class of relative pivotal mechanisms that
ensures outcome efficiency, strategyproofness, GWLB and feasibility; we first drop
strategyproofness and provide a necessary restriction for obtaining mechanisms that
satisfy outcome efficiency, GWLB and feasibility.

Definition 8 For a mechanism satisfying GWLB, the lower welfare bound vector
O(N , s) satisfies the weighted net welfare if

D(O(N , s)) :=
∑

j∈N
s j

{

Oj (s) −
(
s j + A(s)

2

)}

≥ 0. (9)

The condition in Eq. (9) is independent of the per unit waiting cost of an agent
(θi ), which is private information in our model. For each agent j ∈ N consider the
product of this agent’s processing time s j and the term

(
Oj (s) − {(s j + A(s))/2})

that captures difference between the bound parameter of agent j and the average job
processing time of agent j resulting from occupying the first and the last position
in the queue. If such an agent specific product is added across all agents, then the
resulting sum under condition (9) must be non-negative. The inequality in condition
(20) of Appendix A provides an equivalent representation of condition (9) in terms
of arithmetic mean and coefficient of variation of the elements in the processing time
vector s = (s1, . . . , sn).

If we choose O(N ; s) such that Oi (s) = si for all i ∈ N , condition (9) fails to hold.
If O(N ; s) is such that Oi (s) ≥ (si + A(s))/2 for all i ∈ N , condition (9) is satisfied.
The following lemma shows that the weighted net welfare property is necessary to
find an outcome efficient and feasible mechanism satisfying GWLB.

Lemma 1 If for any sequencing problem � ∈ S(N ), we can find a mechanism that
satisfies outcome efficiency, GWLB with lower bound vector O(N , s) and feasibility,
then for the lower bound vector O(N , s), the weighted net welfare property must hold.

Given Lemma 1, we provide a more detailed discussion about the complete set
of O(N , s) satisfying weighted net welfare property. We denote this set by O(N , s)
and this set is explicitly given by condition (21) in Appendix A. It has been shown
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in Appendix A that the set O(N , s) is non-empty and convex and satisfies a certain
vector domination property.

Definition 9 An outcome efficient mechanism μ̂p = (σ ∗, τ̂ p) is called a minimal
relative pivotal mechanism if it is a relative pivotal mechanism with the property that
for all i ∈ N and all θ−i ∈ �n−1, hi (θ−i ) = 0, that is, for any profile θ ∈ �n and any
agent i ∈ N ,

τ̂
p
i (θ) = {Si (σ ∗(θ∗

i , θ−i ), s) − Oi (s)}θ∗
i + RPi (θ), (10)

where the weighting cost θ∗
i ∈ R+ ensures that Ti (θ∗

i ; θ−i ) ≥ Ti (xi ; θ−i ) for all
xi ∈ � and RPi (θ) = ∑

j∈N\{i}(|Pj (σ
∗(θ∗

i , θ−i ))| − |Pj (σ
∗(θ))|)θ j si .

Observe that if a relative pivotal mechanism μp = (σ ∗, τ p) ∈ R(N ) is feasible,
then the minimal relative pivotal mechanism μ̂p = (σ ∗, τ̂ p) is also feasible since for
any θ ∈ �n and any i ∈ N , τ

p
i (θ) − τ̂

p
i (θ) = hi (θ−i ) ≥ 0. Therefore, if we want

to check whether we can find a feasible relative pivotal mechanism or not, we simply
need to check the prospect of feasibility with the minimal relative pivotal mechanism
μ̂p.

Proposition 1 Suppose that for any sequencing problem � ∈ S(N ) with |N | = 2, we
can find a mechanism that satisfies outcome efficiency, GWLB with the lower bound
vector O(N , s) satisfying the weighted net welfare property. We have the following
results:
(B2a) A feasible relative pivotal mechanism exists if and only if O1(s) ≥ A(s) and

O2(s) ≥ A(s).
(B2b) There is no budget balanced relative pivotal mechanism.

Can we find budget balanced relative pivotal mechanisms when there are more than
two agents?

Proposition 2 Suppose that for any sequencing problem � ∈ S(N ) with |N | ≥ 3, we
can find a mechanism that satisfies outcome efficiency,GWLBwith O(N , s) satisfying
weighted net welfare property and satisfying Oi (s) ≥ A(s) for all i ∈ N . Then we
can find budget balanced relative pivotal mechanisms.

Part 1 (ii) ofAppendixA states that theweighted average of the lower bound param-
eters is no less than the aggregate processing time (that is,

∑
j∈N w j (s)Oj (s) ≥ A(s))

is a sufficient condition for weighted net welfare property. Proposition 1 shows that
the lower bound parameter of each agent is no less than the aggregate processing
time is necessary and sufficient for feasible relative pivotal mechanisms when there
are two agents and Proposition 2 shows that the same condition is sufficient to get bud-
get balanced relative pivotal mechanism when there are more than two agents. What
can we say about obtaining feasible relative pivotal mechanism for any sequencing
problem � ∈ S(N ) with the mechanism satisfying the GWLB with O(N , s) sat-
isfying the weighted net welfare property and when there exists at least one agent
with Oi (s) ∈ (si , A(s))? It is difficult to answer this question in general as the trans-
fers associated with any relative pivotal mechanism lacks closed form representation.
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However, the following example suggests that onewould expect to get more restriction
on the processing time of the agents (over and above what is required under the con-
strained welfare and weighted net welfare properties) to get feasible relative pivotal
mechanisms.

Example 3 Consider any � ∈ S(N ) with |N | = 3 and take any mechanism satisfying
GWLBwith the lower bound vector O(N , s) satisfying Oi (s) = si +max j �=i s j for all
i ∈ N .Without loss of generality, assume that s1 ≥ s2 ≥ s3.Observe that condition (9)
holds sinceD(s) = s1(s2−s3)/2+s2(s1−s3)/2+s3(s1−s2)/2 ≥ 0.Hence, weighted
net welfare property holds. Consider the profile θ ∈ �3 such that σ ∗

j (θ) = n + 1− j
for all j ∈ N and in particular θ3/s3 = a > θ2/s2 = b > θ1/s1 = c > 0. Using the
function Ti (xi ; θ−i ) (in (6)), we can fix θ∗

1 = s1b, θ∗
2 = s2c and θ∗

3 = s3c. Then, using
the transfers associated with the minimal relative pivotal mechanism (Definition 9),
we get τ̂1(θ) = s1s3b, τ̂2(θ) = −cs2(s1 − s3), and τ̂3(θ) = −cs3(s1 − s2) − s3s2b.
If s1 > s2 and a > b > c + c[s2(s1 − s3)/s3(s1 − s2)], then ∑

j∈N τ̂ j (θ) = (b −
c)s3(s1 − s2) − cs2(s1 − s3) > 0 and feasibility gets violated. Hence, for feasibility
to hold it is necessary that s1 = s2 ≥ s3 which is a restriction on the processing time
vector s = (s1, s2, s3).

Remark 1 In Proposition 1, we are looking for a subclass of VCGmechanism that sat-
isfies budget balancedness along with GWLB. However, there does not exist a budget
balanced VCGmechanismwith two agents since outcome efficiency is not compatible
with budget balancedness and strategyproofness. For sequencing problems with two
agents, De andMitra (2019) have characterized the budget balanced and strategyproof
mechanisms. Agent sovereignty means that all agents individually have the ability to
affect the allocation outcome of the mechanism.15 They observe that the only class
of non-increasing (with individual agent’s type) allocation rules that are compatible
must disregard agent sovereignty. Note that, an outcome efficient mechanism satisfies
agent sovereignty and hence for two agents we do not find a budget balanced VCG
mechanism. When |N | ≥ 3, De and Mitra (2019) also argue that one can find mech-
anisms that satisfy outcome efficiency, strategyproofness and budget balancedness.
This is a special case of Proposition 3 in De and Mitra (2019). Hence, as it turns out
that a bound like Oi (s) ≥ A(s) := ∑

j∈N s j for all i ∈ N is sufficient to achieve
GWLB along with outcome efficiency, strategyproofness and budget balancedness.

Remark 2 It is difficult to give an explicit expression for the transfers of a budget
balanced relative pivotal mechanism. It is specific to the exact structure of the welfare
bound under consideration and the profile under consideration. However, the proof of
Proposition 2 in the appendix provides some insight on how the transfers look like
when there are at least three agents and the welfare lower bound guarantees each agent
his utility from being served last in the queue. Equation (32) gives the precise form of

the transfer and by setting hi (θ−i ) = ∑
j∈N\{i}

{
s j

∑
k∈Fj (σ

∗(θ−i ))
θk

}
/(n − 2) to the

mechanism τ
ρ
i (θ) where τ

ρ
i (θ) = −∑

k∈Fi (σ ∗(θ)) θksi + hi (θ−i ). Note that the first
part of τ

ρ
i (θ), that is, −∑

k∈Fi (σ ∗(θ)) θksi is the transfer associated with the pivotal
mechanism for sequencing problems.

15 See Mukherjee (2020).
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4 Applications

4.1 Sequencing with a given initial order

For a sequencing problem � ∈ S(N ) with initial order, there is a preexisting order
in which the agents have arrived to use the facility and the job processing starts only
after all agents have arrived to use the facility. This problem is the natural exten-
sion of the problem of reordering an existing queue (addressed by Chun et al. 2017
and by Gershkov and Schweinzer 2010) to the sequencing problem. Suppose that
initial order of arrival is σ 0 ∈ �. For a sequencing problem � ∈ S(N ) with ini-
tial order σ 0, a mechanism satisfying GWLB has the property that the lower bound
vector is Oσ 0

(N , s) = (Oσ 0

1 (s), . . . , Oσ 0

n (s)) ∈ R
n++ where for each i ∈ N ,

Oσ 0

i (s) = si + ∑
j∈Pi (σ 0) s j and hence for any profile θ ∈ �n,

∑
j∈N θ j Oσ 0

j (s) =
C(σ 0; θ, s). It must be noted that with the lower bound vector Oσ 0

(N , s), the con-
strained welfare property is satisfied since for each i ∈ N , Oσ 0

i (s) = Si (σ 0, s) =
si + ∑

j∈Pi (σ 0) s j ≥ si . Moreover, the weighted net welfare property is also satisfied

sinceD(s) = ∑
j∈N s j {S j (σ

0, s)− (s j + A(s))/2} = ∑
j∈N (s j/2){(∑k∈Pj (σ

0) sk −
∑

k∈Fj (σ
0) sk} = ∑

j∈N
∑

k∈Pj (σ
0)(s j sk/2) − ∑

j∈N
∑

k∈Fj (σ
0)(s j sk/2) = 0 imply-

ing that condition (9) holds.16 One can check that the special feature of the relative
pivotal mechanisms is that the function Ti (xi ; θ−i ) (defined in (6)) has the following
form:

T I
i (xi ; θ−i ) =

⎡

⎣
∑

j∈Pi (σ ∗(xi ,θ−i ))

s j −
∑

j∈Pi (σ 0)

s j

⎤

⎦ xi +
∑

j∈N\{i}
θ j S j (σ

∗(xi , θ−i ), s).17

(11)

4.2 Sequencing with identical cost bounds

Identical cost bounds (ICB) requires that each agent i ∈ N receives at least the
utility he could expect if all agents were like him (both in terms of waiting cost as
well as in terms of processing time) in a reference problem. This means that each
agent i ∈ N in his reference problem has an equal chance of facing each order
from �. Thus, ICB requires that for any agent i ∈ N and any profile θ ∈ �n,

ui (μi (θ); θi , s) ≥ −θi ((n + 1)si/2) where θi ((n + 1)si/2) represents the expected
cost of agent i withwaiting cost θi and processing time si when all agents have the same
processing time si and agent i gets each of the positions 1 to n with probability 1/n.

16 The reason for the last equality is the following: For any two agents j, k ∈ N , {k ∈ Pj (σ
0) ⇔ j ∈

Pk (σ
0)} which implies that for any term of the form s j sk/2, there is exactly one term of the form −s j sk/2

that cancels it out.
17 Note that for any i ∈ N , any θ−i ∈ �n−1 and any xi ∈ R+, {Si (σ∗(xi , θ−i ), s) − Oi (s)}xi =[

∑

j∈Pi (σ∗(xi ,θ−i ))
s j + si − ∑

j∈Pi (σ0) s j − si

]

xi =
[∑

j∈Pi (σ∗(xi ,θ−i ))
s j − ∑

j∈Pi (σ0) s j
]
xi .
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Thus, any sequencing problem � ∈ S(N ) with ICB requires that for any mechanism
satisfyingGWLB the lower boundvector isOs(N , s) = (Os1

1 (s), . . . , Osn
n (s)) ∈ R

n++
where for each i ∈ N , Osi

i (s) = (n+1)si/2.Observe that given the lower boundvector
Os(N , s), the constrainedwelfare property is satisfied sinceOsi

i (s) = (n+1)si/2 > si
for every i ∈ N . Moreover, the weighted net welfare property is also satisfied since

D(s) = ∑
j∈N s j {(n + 1)s j/2 − (s j + A(s))/2} = ∑

j∈N s j
{∑

k �= j (s j − sk)
}

=
∑n−1

j=1

{∑
k> j (s j − sk)2

}
≥ 0 and hence condition (9) also holds. One can easily

verify that the special feature of the relative pivotal mechanisms in this context is that
the function Ti (xi ; θ−i ) (provided in (6)) has the following form:

TC
i (xi ; θ−i ) =

⎡

⎣
∑

j∈Pi (σ ∗(xi ,θ−i ))

s j − (n − 1)si
2

⎤

⎦ xi +
∑

j∈N\{i}
θ j Si (σ

∗(xi , θ−i ), s).18

(12)

4.3 Sequencing with expected cost bounds

The expected cost bounds (ECB) requires that the utility of each agent is no less
than the expected cost of the agent associated with random arrival where each arrival
order is equally likely. Formally, ECB requires the following property: For any agent

i ∈ N and any profile θ ∈ �n, ui (μi (θ); θi , s) ≥ −θi

(∑
σ∈�

Si (σ,s)
n!

)
. Define

S̄i (s) := si + ∑
j∈N\{i}(s j/2) for each i ∈ N . It is quite easy to verify that for each

agent i ∈ N ,
∑

σ∈�
Si (σ,s)

n! = S̄i (s).19 Therefore, an equivalent representation of the
ECB requirement is that for any agent i ∈ N and any profile θ ∈ �n, ui (μ(θ); θi , s) ≥
−θi S̄i (s).

For any sequencing problem� ∈ S(N )with ECB, a mechanism satisfying GWLB

has a lower bound vector OS̄(N , s) = (OS̄1
1 (s), . . . , OS̄n

n (s)) ∈ R
n++ where for

each i ∈ N , OS̄i
i (s) = S̄i (s). Observe that for any i ∈ N , OS̄i

i (s) = S̄i (s) =
si + ∑

j∈N\{i}(s j/2) > si implying that the constrained welfare property given by
condition (4) holds. Further, weighted net welfare property is also satisfied since

18 Observe that for any i ∈ N , any θ−i ∈ �n−1 and any xi ∈ R+,

{Si (σ∗(xi , θ−i ), s) − Oi (s)}xi

=
⎡

⎣
∑

j∈Pi (σ∗(xi ,θ−i ))

s j + si − (n + 1)si
2

⎤

⎦ xi =
⎡

⎣
∑

j∈Pi (σ∗(xi ,θ−i ))

s j − (n − 1)si
2

⎤

⎦ xi .

19 The equality
∑

σ∈�
Si (σ,s)

n! = S̄i (s) states that the average completion time of each agent i equals

S̄i (s). The sum in S̄i has two components-own processing time si and half of the total processing time of
all other agents j �= i . In any possible ordering σ ∈ �, an agent will always incur his own processing time
and hence si enters S̄i (s)with probability one. Moreover, observe that any other agent j �= i precedes agent
i in any ordering σ if and only if he does not precede agent i in the complement ordering σ c. Therefore,
when we consider all possible orderings to calculate agent i’s average completion time, s j for j �= i will
occur in exactly half of the cases as a part of the completion time of agent i .
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D(s) = ∑
j∈N s j {(s j + A(s))/2 − (s j + A(s))/2} = 0 and condition (9) holds. One

can verify that the special feature of the relative pivotal mechanisms in this context is
that the function Ti (xi ; θ−i ) (in condition (6)) has the following form:

T E
i (xi ; θ−i ) =

⎡

⎣
∑

k∈Pi (σ∗(xi ,θ−i ))

sk
2

−
∑

k∈Fi (σ∗(xi ,θ−i ))

sk
2

⎤

⎦ xi +
∑

j∈N\{i}
θ j Si (σ

∗(xi , θ−i ), s).
20

(13)

Remark 3 Clearly, the bounds associated with ICB and ECB are different for any
sequencing problem which is not a queueing problem, that is, for any � ∈
S(N )\Q(N ). However, for any queueing problem � ∈ Q(N ) with s1 = · · · =
sn = a > 0, S̄i (a) = (n + 1)a/2 for all i ∈ N implying that the notions of ICB and
ECB are equivalent.21

4.4 Feasibility and budget balance

4.4.1 Sequencing with given initial order

Using Proposition 1 it follows that if we consider any two agent sequencing problem
with initial order, then we cannot find a mechanism that satisfies outcome efficiency,
strategyproofness, GWLB and feasibility since for any agent (i say) having first posi-
tion in the initial order σ 0, Oi (s) = si < A(s). The discussion to follow shows
that this impossibility result holds in general for any sequencing problems with given
initial order.

Remark 4 Consider any � ∈ S(N ) with given initial order σ 0 and with |N | ≥ 3. We
provide certain observations about the minimal relative mechanism μ̂ = (σ ∗, τ̂ ) with
the Ti (xi ; θ−i ) function given by condition (11).

(IO1) Let i ∈ N be that agent having first queueing position under that initial
order σ 0, that is, Si (σ 0, s) = si . Then, for any profile θ ∈ �n, θ∗

i =
si .{max{θ j/s j } j∈N\{i}} is a solution to themaximization of the function T I

i (xi :
θ−i ) and we select σ ∗(θ∗

i , θ−i ) such that Pi (σ ∗(θ∗
i , θ−i )) = Pi (σ 0) = ∅.

Therefore, we have θ∗
i [Si (σ ∗(θ∗

i , θ−i ), s) − Oi (s)] = θ∗
i [si − si ] = 0 and

20 Observe that for any i ∈ N , any θ−i ∈ �n−1 and any xi ∈ R+, {Si (σ∗(xi , θ−i ), s) − Oi (s)}xi

=
⎡

⎣
∑

j∈Pi (σ∗(xi ,θ−i ))

s j + si −
∑

j∈N\{i}

s j
2

− si

⎤

⎦

xi =
⎡

⎣
∑

k∈Pi (σ∗(xi ,θ−i ))

sk
2

−
∑

k∈Fi (σ∗(xi ,θ−i ))

sk
2

⎤

⎦ xi .

21 Here a is an n-element vector with all its elements equal to a.
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hence using (11) it follows that the transfer associated with the minimal rela-
tive pivotal mechanism μ̂ = (σ ∗, τ̂ ) for agent i ∈ N is

τ̂i (θ) = si
∑

j∈Pi (σ ∗(θ))

θ j .

(IO2) Let k ∈ N be that agent having last queueing position under that initial order
σ 0, that is, Si (σ 0, s) = A(s) = ∑

j∈N s j . Then, using argument similar to the
one used in (R1), it follows that for any θ ∈ �n, θ∗

k = 0 and Pk(σ ∗(0, θ−k)) =
Pi (σ 0) = N\{k}. Therefore, we have θ∗

i [Si (σ ∗(0i , θ−i ), s) − Oi (s)] =
θ∗
i [A(s)− A(s)] = 0 and hence using (11) it follows that the transfer associated
with the minimal relative pivotal mechanism μ̂ = (σ ∗, τ̂ ) for agent k ∈ N is

τ̂k(θ) = −sk
∑

j∈Fk(σ ∗(θ))

θ j .

Points (IO1) and (IO2) of Remark 4 show that given a sequencing problem with
initial order σ 0, the explicit form of the minimal relative pivotal transfers of the agents
having the first and last positions under the initial order σ 0 are easy to derive. However,
it is difficult to get an explicit form of the minimal relative pivotal transfers for agents
having other positions under the initial order σ 0. Despite this difficulty, using points
(IO1) and (IO2) of Remark 4 and by appropriate construction of a profile we can prove
the following impossibility result.

Proposition 3 For any � ∈ S(N ) with given initial order σ 0 and with |N | ≥ 3,
there is no mechanism that satisfies outcome efficiency, strategyproofness, GWLB
and feasibility.

4.4.2 Sequencing with ICB and sequencing with ECB

Using Proposition 1 one can show that if we consider an� ∈ S(N )with ICB and with
two agents N = {1, 2}, then we cannot find a mechanism that satisfies outcome effi-
ciency, strategyproofness, GWLB and feasibility since we require 3s1/2 ≥ A(s) and
3s2/2 ≥ A(s) to hold simultaneously which is impossible. Similarly, using Propo-
sition 1 one can also show that if we consider � ∈ S(N ) with ECB and with two
agents N = {1, 2}, then we cannot find a mechanism that satisfies outcome efficiency,
strategyproofness, GWLB and feasibility since, for each i, j ∈ {1, 2} with i �= j, we
have si + s j/2 < A(s) = s1 + s2. What happens when we have more that two agents?

Proposition 4 For any sequencing problem � ∈ S(N ) with |N | = 3 and either with
ICBorwith ECB, if we can find a feasible relative pivotalmechanism, then� ∈ Q(N ).

Proposition 4 states that when there are three agents, if we can find a mechanism
satisfying outcome efficiency, strategyproofness, feasibility and GWLB either with
ICB or with ECB, then we must have a queueing problem. It is well-known from the
existing literature on queueing problems that, when there are three or more agents we
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can find mechanisms that satisfy budget balance along with outcome efficiency, strat-
egyproofness and GWLB with ICB (or ECB).22 The next section analyzes queueing
problems in this context.

5 Queueing problems

Throughout this section we assume without loss of generality that s1 = · · · = sn = 1,
and, given any queueing problem� ∈ Q(N ) for anymechanism satisfyingGWLB,we
define the lower bound vector as O(N ) = (O1, . . . , On) ∈ R

n . As a result, given any
mechanism μ = (σ = (σ1, . . . , σn), τ = (τ1, . . . , τn)), by using s1 = · · · = sn = 1
we can represent the utility function of any agent i with waiting cost θi ∈ � as
ui (μi ; θi ) = −σiθi + τi where μi := (σi , τi ) for all i ∈ N . For any queueing
� ∈ Q(N )with mechanism satisfying GWLB, the lower bound vector O(N ) satisfies
the constrained welfare property if O(N ) = (O1, . . . , On) is such that Oi ≥ 1 for all
i ∈ N .One can easily verify that the special feature of the relative pivotal mechanisms
in this context is that the function Ti (xi ; θ−i ) (given by (6)) has the following form:

T Q
i (xi ; θ−i ) = [

σ ∗
i (xi , θ−i ) − Oi

]
xi +

∑

j∈N\{i}
σ ∗
j (xi , θ−i )θ j . (14)

For any queueing problem � ∈ Q(N ) and any mechanism with GWLB, the lower
bound vector with either ICB or ECB is OB(N ) = (OB

1 , . . . , OB
n ) where OB

i = n+1
2

for all i ∈ N (see Remark 3). Given (14) we get that the function T Q
i (xi ; θ−i ) has the

following form:

T QB
i (xi ; θ−i ) =

[

σ ∗
i (xi , θ−i ) − (n + 1)

2

]

xi +
∑

j∈N\{i}
σ ∗
j (xi , θ−i )θ j . (15)

The discussion to follow identifies the explicit forms of the relative pivotal mecha-
nisms.

Definition 10 For σ ∗ and for any positive integer K ≤ |N |, a mechanism μk =
(σ ∗, τ (K )) is a K-pivotal mechanism if for any θ ∈ �n and any i ∈ N ,

τ
(K )
i (θ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− ∑

j :σ ∗
i (θ)<σ ∗

j (θ)≤K
θ j if σ ∗

i (θ) < K ,

0 if σ ∗
i (θ) = K ,∑

j :K≤σ ∗
j (θ)<σ ∗

i (θ)

θ j if σ ∗
i (θ) > K .

(16)

See Mitra and Mutuswami (2011) who introduce and characterize the K -pivotal
mechanisms for the queueing problems. Chun and Yengin (2017) also provide another

22 SeeChun andMitra (2014), Chun et al. (2019a) andKayi andRamaekers (2010) for a detailed discussions
on symmetrically balanced VCG mechanisms.
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characterization of these mechanism. We define a new set of mechanisms which are
obtained by appropriately mixing different K -pivotal mechanisms.

Definition 11 For any queueing problem, a mechanism μ̄a = (σ ∗, τ̄ a) is a centered
K -pivotal mechanism with non-negative intercepts if for all θ ∈ �n and all i ∈ N ,

τ̄ ai (θ) = Hi (θ−i ) +
⎧
⎨

⎩
τ

(
n+1
2

)

i (θ) if n is odd,
1
2τ

( n
2 )

i (θ) + 1
2τ

( n
2+1)

i (θ) if n is even,
(17)

where for each i ∈ N , the function Hi : �|N\{i}| → R+.

Corollary 1 For any queueing problem � ∈ Q(N ), a mechanism satisfies outcome
efficiency, strategyproofness and GWLB with ICB (ECB) if and only if it is a centered
K -pivotal mechanism with non-negative intercepts.

Corollary 1 generalizes the result in Chun and Yengin (2017), where they char-
acterize outcome efficient and strategyproof mechanisms satisfying ICB (ECB) by
eliminating the gap between their necessary and sufficient conditions.

5.1 Symmetrically balancedVCGmechanism

The symmetrically balanced VCG mechanism is defined for any queueing problem
with three or more agents as follows.

Definition 12 Assume |N | ≥ 3. The mechanism μS = (σ ∗, τ S) is the symmetrically
balanced VCG mechanism if for all profiles θ ∈ �n and all i ∈ N ,

τ S
i (θ) =

∑

j∈Pi (σ ∗(θ))

(
σ ∗
j (θ) − 1

n − 2

)

θ j −
∑

j∈Fi (σ ∗(θ))

(
n − σ ∗

j (θ)

n − 2

)

θ j . (18)

From the existing literature on queueing problems it is well known that the sym-
metrically balanced VCG mechanisms are outcome efficient, strategyproof, budget
balanced and satisfy GWLB with ICB (ECB) when there are three or more agents
(see Chun and Mitra 2014; Chun et al. 2019a; Kayi and Ramaekers 2010). Given
Corollary 1 it means that the symmetrically balanced VCG mechanism is a centered
K -pivotal mechanismwith non-negative intercept when there are three ormore agents.
Given more than two agents, consider that centered K -pivotal mechanism with non-
negative intercept for which the Hi : �|N\{i}| → R+ function for any i ∈ N and any
θ−i ∈ �|N |\{i} has the following form:

Hi (θ−i ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n
2 −1∑

k=1

(
k−1
n−2

) {
θ(k)(θ−i ) − θ(n−k)(θ−i )

}
if n is even and n ≥ 4,

n−1
2∑

k=1

(
k−1
n−2

) {
θ(k)(θ−i ) − θ(n−k)(θ−i )

}
if n is odd and n ≥ 3

(19)
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where for any k ∈ {1, . . . , n − 1}, θ(k)(θ−i ) is the k-th ranked waiting cost from
the profile θ−i ∈ �|N\{i}| so that θ(1)(θ−i ) ≥ · · · ≥ θ(n−1)(θ−i ). One can verify
that with the Hi : �|N\{i}| → R+ function given by (19), the resulting centered K -
pivotal mechanism with non-negative intercept is the symmetrically balanced VCG
mechanism.

5.2 Feasibility and budget balance

From Proposition 1 it follows that if there are two agents, then for a queueing problem
� ∈ Q({1, 2}) we can find a mechanism satisfying outcome efficiency, strategyproof-
ness, GWLB with given lower bound vector O({1, 2}) = (O1, O2) and feasibility if
and only if O1 ≥ 2 and O2 ≥ 2.

From Lemma 1 it follows that for any queueing problem we can find mechanisms
satisfying outcome efficiency, GWLB with O(N ) = (O1, . . . , On) and feasibility
only if condition (9) holds. Condition (9) for any queueing problem reduces to the
following inequality:

∑
j∈N Oi/n ≥ (n + 1)/2 (see part 1(i) of Appendix A). This

inequality requires that the average of the lower bound parameters of all the agents
should be no less than (n + 1)/2. The next result shows that if the lower bound
parameter of every agent is no less than (n + 1)/2, then we can find mechanisms that
satisfy outcome efficiency, strategyproofness, GWLBwith O(N ) and budget balance.

Proposition 5 For any � ∈ Q(N ) with |N | ≥ 3, if a mechanism satisfying GWLB
is such that the lower bound vector O(N ) = (O1, . . . , On) satisfies Oi ≥ n+1

2
for all i ∈ N , then we can also find mechanisms that satisfy outcome efficiency,
strategyproofness, GWLB and budget balance.

To prove Proposition 5, we make use of the fact that for any queueing problem
with three or more agents, the symmetrically balanced VCG mechanism satisfies
outcome efficiency, strategyproofness, GWLBwith ICB (ECB) and,more importantly,
budget balance (see Chun and Mitra 2014; Chun et al. 2019a; Kayi and Ramaekers
2010). From Part 1(i) of Appendix A, it also follows that if the lower bound vector
O(N ) = (O1, . . . , On) is such that all agents have identical Oi ’s, that is, Oi = B∗
for all i ∈ N , then condition Oi = B∗ ≥ n+1

2 for all i ∈ N is both necessary and
sufficient for getting mechanisms that satisfy outcome efficiency, strategyproofness,
GWLB and budget balance.

6 Summary and conclusions

The generalized welfare lower bound is imposed on an agent’s utility function to offer
him an assurance that his welfare level will not drop below a guaranteed amount. Such
a comprehensive boundwill make future studies more compact and convenient. Below
we summarize and elaborate on our results.

(1) For a sequencing problem, we can find a mechanism that satisfies generalized
welfare lower bound, outcome efficiency and strategyproofness if and only if
the constrained welfare property (given in Definition 6) holds. The constrained
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welfare property puts a restriction on the lower bound parameter, indicating that
an agent will always need to incur at least the cost of his own processing time.

(2) For a sequencing problem, an outcome efficient mechanism satisfies generalized
welfare lower bound and strategyproofness if and only if it is a relative pivotal
mechanism (given in Definition 7). For any given vector of waiting costs, the
main aspect of a relative pivotal mechanism is to construct a ‘benchmark’ wait-
ing cost. This is based on an optimization exercise conducted using the lower
bound parameter of the agent and waiting costs of all other agents. Given the
benchmark waiting costs of all agents, under the relative pivotal mechanism, the
transfer of each agent has three parts. One part of the transfer depends on the
difference between his lower bound parameter and his job completion time with
this benchmark waiting cost. The other part of the transfer involves calculating the
externality caused by this agent with his waiting cost on all other agents relative
to what would have happened if, ceteris paribus, this agent had the benchmark
waiting cost. The third part of the transfer is any non-negative valued function that
depends on the waiting cost of all other agents.

(3) For a sequencing problem, if we can find a mechanism that satisfies generalized
welfare lower bound, outcome efficiency and feasibility, the weighted net welfare
property (given by condition (9)) must hold.

(4) If there are two agents, then there is no budget balanced relative pivotalmechanism
and we can find a feasible relative pivotal mechanism if and only if Oi (s) ≥ A(s)
for i = 1, 2.

(5) If there are more than two agents and if Oi (s) ≥ A(s) for all i ∈ N , then we can
find a budget balanced relative pivotal mechanism.23

(6) For any sequencing problem with a given initial order we cannot find a relative
pivotal mechanism that satisfies feasibility.

(7) For a three agent sequencing problem with either the identical cost bound or the
expected cost bound, if we can find a feasible relative pivotal mechanism, then the
sequencing problem must have identical processing time across all agents, that is,
the sequencing problem must reduce to a queueing problem.24

(8) For a queueing problem with more than two agents, an outcome efficient mech-
anism satisfies strategyproofness and generalized welfare lower bound with
identical cost bound (or expected cost bound) if and only if it is a centered K -
pivotal mechanism with non-negative intercept (given in condition (17)). It is also
argued that a special case of centered K -pivotal mechanism with non-negative
intercept is the symmetrically balancedVCGmechanism (given in condition (18)).

(9) Using the symmetrically balanced VCG mechanism one can show that if there
are more than two agents and if the lower bound vector O(N ) = (O1, . . . , On)

is such that Oi ≥ (n + 1)/2 for all i ∈ N , then we can find an outcome efficient
mechanism satisfying generalized welfare lower bound, strategyproofness and
budget balance.

23 Recall that to check for feasibility we restrict our attention tominimal relative pivotalmechanismwithout
loss of generality.
24 Recall that for a queueing problem identical cost bound and expected cost bound are equivalent.
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Generalized welfare lower bound has been shown to be compatible with some
standard desirable lower bound properties in the literature. As future research, one
can also study the implications of this bound when the costs are interdependent. What
happens if we allow for budget deficits with appropriate bounds on the deficit is also
an important open question in this context.

7 Appendices

7.1 Appendix A

(1) For any sequencing problem � ∈ S(N ) with a mechanism satisfying GWLB
with lower bound vector O(N ; s), a good way to explain condition (9) is in terms
of mean ζ(s), variance V (s) and coefficient of variation CoV (s) := √

V (s)/ζ
of the elements of the processing time vector s = (s1, . . . , sn). Specifically, an
equivalent way of representing condition (9) is the following:

∑

j∈N
w j (s)Oj (s) ≥ ζ(s)

2

[
n + 1 + {CoV (s)}2

]
, (20)

where wi (s) := si/A(s) for all i ∈ N .25

(i) If we have the queueing problem, that is if � ∈ Q(N ) with s1 = · · · =
sn = a > 0, then ζ(s) = a, CoV (s) = 0 and wi (s) = 1/n for all i ∈ N .

Condition (20) holds if and only if
∑

j∈N O j (s)/n ≥ (n + 1)a/2. Moreover,
if we also require that the generalized welfare lower bound of all the agents
are identical, that is Oi (s) = B∗ for all i ∈ N , then condition (20) requires
B∗ ≥ (n + 1)a/2.

(ii) It is well-known that CoV (s) ≤ √
n − 1 for any positive integer n and any

s = (s1, . . . , sn) ∈ R
n++. Therefore, a sufficient condition for (20) to hold for

any sequencing problem � ∈ S(N ) with a mechanism satisfying GWLB and
having lower bound vector O(N ; s) is obtained by substituting CoV (s) =√
n − 1 in (20) that yields

∑
j∈N w j (s)Oj (s) ≥ nζ(s) = A(s).

(2) Fix any N and any s = (s1, . . . , sn) ∈ R
n++. Let O(N , s) denote the set of lower

bound vectors O(N , s) = (O1(s), . . . , On(s)) satisfying the constrained welfare
property and the weighted net welfare. It is obvious that the set O(N , s) is non-
empty and convex. It is non-empty since for Ō(N , s) = (Ō1(s), . . . , Ōn(s)) with
Ōi (s) = (si + A(s))/2 for all i ∈ N , inequality (9) holds. For convexity of
O(N , s), observe that if O(N , s), O ′(N , s) ∈ O(N , s) so that D(O(N , s)) ≥ 0
andD(O ′(N , s)) ≥ 0, then, given (9) it easily follows that for any λ∗ ∈ [0, 1] we
getD(λ∗O(N , s)+(1−λ∗)O ′(N , s)) = λ∗D(O(N , s))+(1−λ∗)D(O ′(N , s)) ≥
0 implying λ∗O(N , s) + (1 − λ∗)O ′(N , s) ∈ O(N , s). For any i ∈ N , define

25 To derive inequality (20) we have used the following equalities:
∑

j∈N s2j = nVar(s) + n{ζ(s)}2 =
n{ζ(s)}2{1 + (Cov(s))2} = A(s)ζ(s){1 + (Cov(s))2}.
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Ei (s) := si +
(∑

j∈N\{i} s j
∑

k∈N\{ j} sk
)

/si and Oi (N , s) := (Ei (s), s−i ).
26

It is easy to verify that for any i ∈ N , Oi (N , s) = (Ei (s), s−i ) ∈ O(N , s)
since D(Oi (N , s)) = 0. Moreover, given (9) it is also obvious that for any i ∈
N and any O(N , s) ∈ Rn++ such that Oi (N , s) ≥ O(N , s) and O(N , s) �=
Oi (N , s), we have O(N , s) /∈ O(N , s). Therefore, for any i ∈ N , Oi (N , s)
is a boundary point of the set O(N , s). Further, for the same type of reasoning,
Ō(N , s) = (Ō1(s), . . . , Ōn(s)) ∈ O(N , s) such that Ōi (s) = (si + A(s))/2
for all i ∈ N is also a boundary point of O(N , s). However, one can verify
that

∑
j∈N w j (s)Oi (N , s) = Ō(N , s), that is, Ō(N , s) is a weighted sum of

the elements of the set {{Oi (N , s)}i∈N } with weight wi (s) = si/A(s) for each
i ∈ N . The set {{Oi (N , s)}i∈N } plays a key role in explaining the set O(N , s).
For any λ = (λ1, . . . , λn) ∈ [0, 1]n with

∑
j∈N λ j = 1, consider the vector

∑
j∈N λ j O j (N , s) = (λ1E1(s) + (1 − λ1)s1, . . . , λn En(s) + (1 − λn)sn). One

can verify that O(N , s) is a non-empty and convex set given by

O(N , s) =
{

O(N , s) ∈ R
N++ | ∃λ ∈ [0, 1]n with

∑

j∈N
λ j = 1, s.t. O(N , s)

≥
∑

j∈N
λ j O

j (N , s)

}

. (21)

Therefore, the set O(N , s) is non-empty and convex with the added property
that any element in this set weakly vector dominates some weighted sum of the
elements of the set {{Oi (N , s)}i∈N }.

7.2 Appendix B

Proof of Theorem 1 (SPC1) ⇒ (SPC2). As discussed in the paragraph below Theo-
rem 1, a mechanism satisfies outcome efficiency, strategyproofness and GWLB only
if the associated transfer is a VCG transfer (see Holmström 1979) and we have,

gi (θ−i ) ≥ ḡi (θ−i ) := sup
xi∈�

[
Ti (xi ; θ−i )

]
, Ti (xi ; θ−i ) := [

C(σ ∗(xi , θ−i ); (xi , θ−i ), s) − xi Oi (s)
]
. (22)

Consider any profile θ̃ ∈ �n and any i ∈ N such that θ̃ j/s j = a > 0 for all
j ∈ N\{i}. Consider any x ′

i , x
′′
i ∈ � such that x ′

i/si ≥ a ≥ x ′′
i /si and x ′

i > x ′′
i . If

Oi (s) < si , then we have

Ti (x
′
i ; θ̃−i )− Ti (x

′′
i ; θ̃−i ) = (x ′

i − x ′′
i )[si − Oi (s)]+

∑

j �=i

si s j

[
θ̃ j

s j
− x ′′

i

si

]

> 0. (23)

26 Note that if |N | = 2, then Ei = A(s) for any i ∈ N .
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Moreover, for any xi > si a, Ti (xi ; θ̃−i ) = xi [si − Oi (s)] + ∑
j∈N\{i} θ̃ j S j

(σ ∗(xi , θ̃−i ), s) is increasing in xi . Therefore, the x∗
i that maximizes Ti (xi ; θ̃−i ) is

then x∗
i = ∞ implying that we do not have a supremum. Therefore, for a supremum

to exist it is necessary that Oi (s) ≥ si .
(SPC2) ⇒ (SPC1). Consider any sequencing problem � ∈ S(N ) and any mech-

anism satisfying the GWLB and with the lower bound vector O(N , s) satisfying the
constrained welfare property. For any profile θ ∈ �n and any i ∈ N , consider the
type x∗

i ∈ � such that it is a supremum for the function Ti (xi , θ−i ).

Step 1: For any i ∈ N and any θ−i ∈ �|N\{i}|, there exists x∗
i ∈ {{si (θk/sk)}k∈N\{i} ∪

{0}} such that Ti (x∗
i ; θ−i ) ≥ Ti (xi ; θ−i ) for all xi ∈ �.

Proof of Step 1: Consider any agent i ∈ N and any θ−i ∈ �|N\{i}| and we define the
vector R̃(θ−i ) = ((R̃ j (θ−i ) = θ j/s j )) j �=i ) of agent specific waiting cost to processing
time ratio of agents in N\{i} and R(θ−i ) = (R1(θ−i ) = θ(1)/s(1), . . . , Rn−1(θ−i ) =
θ(n−1)/s(n−1)) be the permutation of R̃(θ−i ) such that R1(θ−i ) ≥ · · · ≥ Rn−1(θ−i ).

We divide the proof into two possibilities (a) Oi (s) ∈ [si , A(s)] and (b) Oi (s) > A(s).
Proof of Possibility (a):We first show that there exists x∗

i ∈ [si Rn−1(θ−i ), si R1(θ−i )]
that maximizes Ti (xi , θ−i ). Observe that for any xi ∈ �, the function Ti (xi ; θ−i ) =
[Si (σ ∗(xi , θ−i ), s) − Oi (s)]xi + ∑

j∈N\{i} θ j S j (σ
∗(xi , θ−i ), s). If xi > si R1(θ−i ),

then Si (σ ∗(xi , θ−i ), s) = si and hence Ti (xi ; θ−i ) = [si − Oi (s)]xi
+∑

j∈N\{i} θ j S j (σ
∗(xi , θ−i ), s)which is non-increasing in xi since by interval prop-

erty si ≤ Oi (s) implying that the coefficient of xi in Ti (xi ; θ−i ) is non-positive.
Hence, (i) if a maxima exists then we can always find a waiting cost x∗

i ≤ si R1(θ−i )

that achieves it. Similarly, if yi < si Rn−1(θ−i ), then Si (σ ∗(yi , θ−i ), s) = A(s) and
hence it follows that Ti (yi ; θ−i ) = [A(s)− Oi (s)]yi +∑

j∈N\{i} θ j Si (σ ∗(yi , θ−i ), s)
which is non-decreasing in yi since by interval property A(s) ≥ Oi (s) implying that
the coefficient of xi in Ti (xi ; θ−i ) is non-negative. Hence, (ii) if a maxima exists, then
we can always find a waiting cost x∗

i ≥ si Rn−1(θ−i ) that achieves it.
The function Ti (xi ; θ−i ) is continuous and concave in xi on the interval

[si Rn−1(θ−i ), si R1(θ−i )] and the interval [si Rn−1(θ−i ), si R1(θ−i )] is compact.27

Hence, the function Ti (xi ; θ−i ) has amaxima in the interval [si Rn−1(θ−i ), si R1(θ−i )].
Given x∗

i ∈ [si Rn−1(θ−i ), si R1(θ−i )] and given continuity of Ti (xi ; θ−i ), for two
agents the proof is complete since x∗

i = si R1(θ j ) = si (θ j/s j ) and it follows that
Ti (θi (θ j ), θ j ) = [si − Oi (s)]si (θ j/s j ) + θ j (si + s j ). Therefore, consider the more
than two agents case. If there exists k ∈ N\{i} such that x∗

i = si (θ(k)/s(k)) (so
that Ti (x∗

i ; θ−i ) = Ti (si (θk/sk); θ−i ) ≥ Ti (xi ; θ−i ) holds for all xi ∈ �), then the
proof is complete. If not then suppose there exists k ∈ {1, . . . , n − 2} such that

27 From the functional form of Ti (xi ; θ−i ) and given outcome efficiency it is obvious that given any θ−i ,

the function Ti (xi ; θ−i ) is continuous in xi on any open interval (si Rk+1(θ−i ), si Rk (θ−i )) for all k ∈
{1, . . . , n−2} and by using appropriate limit argument one can also show continuity at any point si Rk (θ−i )

for k ∈ {1, . . . , n − 1}. For concavity note that for any θ−i ∈ �−i , for every xi ∈ (si Rk+1(θi ), si Rk (θi ))
for all k ∈ {0, . . . , n}, where Rn+1 = 0 and R0 = ∞, Ti (xi ; θ−i ) = [

Si (σ
∗(xi , θi ), s) − Oi (s)

]
xi +∑

j∈N\{i} θ j s j (σ
∗(xi , θi )) is a straight line. Moreover, Si (σ

∗(xi , θi ), s) is non-increasing in xi ∈ R++.

Hence, the slope Si (σ
∗(xi , θi ), s) − Oi (s) is also non-increasing for xi ∈ R++. As a result the piece-wise

linear continuous function Ti (xi ; θ−i ) is concave for xi ∈ R++.
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x∗
i ∈ (si Rk+1(θ−i ), si Rk(θ−i )), that is,

Ti (x
∗
i ; θ−i ) =

[
k∑

r=1

s(r) + si − Oi (s)

]

x∗
i +

∑

j∈N\{i}
θ j S j (σ

∗(x∗
i , θ−i ), s).

If
∑k

r=1 s(r) + si − Oi (s) > 0, then for any xi ∈ (x∗
i , si Rk(θ−i )], σ ∗(xi , θ−i ) =

σ ∗(x∗
i , θ−i ) and Ti (xi ; θ−i ) > Ti (x∗

i ; θ−i ) since Ti (xi ; θ−i ) − Ti (x∗
i ; θ−i ) =[∑k

r=1 s(r) + si − Oi (s)
]
(xi − x∗

i ) > 0. Therefore we have a contradiction to our

assumption that at x∗
i the function Ti (xi ; θ−i ) ismaximized. If

∑k
r=1 s(r)+si−Oi (s) <

0, then for any x ′
i ∈ [si Rk(θ−i ), x∗

i ), σ ∗(x ′
i , θ−i ) = σ ∗(x∗

i , θ−i ) and Ti (x ′
i ; θ−i ) >

Ti (x∗
i ; θ−i ) sinceTi (x ′

i ; θ−i )−Ti (x∗
i ; θ−i ) =

[∑k
r=1 s(r) + si − Oi (s)

]
(x ′

i−x∗
i ) > 0.

Again we have a contradiction to our assumption that at x∗
i the function Ti (xi ; θ−i )

is maximized. Therefore, the only possibility left is
∑k

r=1 s(r) + si − Oi (s) = 0.
However, in that case Ti (x∗

i ; θ−i ) = ∑
j∈N\{i} θ j Si (σ ∗(x∗

i , θ−i ), s) and for every
xi ∈ [si Rk+1(θ−i ), si Rk(θ−i )] the function Ti (xi , θ−i ) attains its maximum value
implying that Ti (x∗

i ; θ−i ) = Ti (si Rk+1(θ−i ); θ−i ) = Ti (si Rk(θ−i ); θ−i ) and Step 1
continues to be valid.
Proof of Possibility (b): If Oi (s) > A(s), then for any i ∈ N and any given
θ−i ∈ �|N\{i}|, the function Ti (xi ; θ−i ) on R+ is maximized if we set x∗

i = 0.
Since the function Ti (xi ; θ−i ) is only defined on the domain �n = R+\{0},
x∗
i = 0 acts as a supremum of the function Ti (xi ; θ−i ) and that Ti (0; θ−i ) =∑
j∈N\{i} θ j S j (σ

∗(0, θ−i ), s) > Ti (xi ; θ−i ) for all xi ∈ �.

Fix any i ∈ N . First, suppose that Oi (s) ∈ [si , A(s)]. Given the proof of Pos-
sibility (a) of Step 1 and given any θ−i ∈ �n−1, let us define x∗

i := θ∗
i so that

Ti (x∗
i ; θ−i ) = Ti (θ∗

i ; θ−i ) and there exists k ∈ N\{i} such that θ∗
i = si (θk/sk). Con-

sider theVCG transfer having the following property: For all θ ∈ �n and for all i ∈ N ,

τ ∗
i (θ) = −C(σ ∗(θ); θ, s) + θi Si (σ ∗(θ), s) + ḡi (θ−i ) with ḡi (θ−i ) := Ti (θ∗

i ; θ−i ).

Then for any given θ ∈ �n and any agent i ∈ N ,we have ui (μ∗
i (θ); θi , s)+θi Oi (s) =

−[Si (σ ∗(θ), s) − Oi (s)]θi + ḡi (θ−i ) = Ti (θ∗
i , θ−i ) − Ti (θi , θ−i ) ≥ 0. The last

inequality follows from the fact that Ti (θi , θ−i ) ≤ Ti (θ∗
i , θ−i ) for all θi ∈ �. Hence,

ui (μ∗
i (θ); θi , s) ≥ −θi Oi (s) implying that this VCG transfer satisfies the GWLB for

agent i . Next, suppose that Oi (s) > A(s). Given the proof of Possibility (b) of Step
1 and given any θ−i ∈ �n−1, let us define x∗

i := 0 so that Ti (xi ; θ−i ) ≤ Ti (0; θ−i )

for all xi ∈ �. Consider the VCG transfer having the following property: For all
θ ∈ �n and for all i ∈ N , τ ∗

i (θ) = −C(σ ∗(θ); θ, s) + θi Si (σ ∗(θ), s) + ḡi (θ−i )

with ḡi (θ−i ) := Ti (0; θ−i ). Then for any given θ ∈ �n and any agent i ∈ N ,

we have ui (μ∗
i (θ); θi , s) + θi Oi (s) = −[Si (σ ∗(θ), s) − Oi (s)]θi + ḡi (θ−i ) =

Ti (0; θ−i ) − Ti (θi ; θ−i ) ≥ 0. Thus, using the constrained welfare property we have
identified VCG transfers that satisfies GWLB. ��

Proof of Theorem 2 For outcome efficiency and strategyproof it is necessary that the
mechanism μ = (σ ∗, τ ) must be VCG with transfers satisfying the following prop-
erty: For any profile θ ∈ �n and any agent i ∈ N , τi (θ) = −C(σ ∗(θ); θ, s) +
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θi Si (σ ∗(θ), s) + gi (θ−i ) where gi : �|N\{i}| → R is arbitrary. For the GWLB condi-
tion to hold, in addition, it is necessary that

(I) gi (θ−i ) ≥ ḡi (θ−i ) = Ti (θ∗
i ; θ−i ) ∈ maxxi∈� Ti (xi ; θ−i ) and Ti (xi ; θ−i ) =

[Si (σ ∗(xi , θ−i ), s)−Oi (s)]xi+∑
j∈N\{i} θ j S j (σ

∗(xi , θ−i ), s) (see condition (22)
in the proof of Theorem 1).

Hence, using (I)we can replace gi (θ−i ) = hi (θ−i )+Ti (θ∗
i ; θ−i )where hi : �|N\{i}| →

R and hi (θ−i ) ≥ 0. By substituting gi (θ−i ) = hi (θ−i ) + Ti (θ∗
i ; θ−i ) in the transfer

τi (θ) and then simplifying it we get

τi (θ) = [Si (σ ∗(θ∗
i , θ−i ), s) − Oi (s)]θ∗

i +
∑

j∈N\{i}
θ jδ j i (θ) + hi (θ−i ), (24)

where δ j i (θ) :=
(∑

k∈Pj (σ
∗(θ∗

i ,θ−i ))
sk − ∑

k∈Pj (σ
∗(θ)) sk

)
. Observe the following:

(a) If Pi (σ ∗(θ)) = Pi (σ ∗(θ∗
i , θ−i )), then for any j ∈ N\{i} we have Pj (σ

∗(θ)) =
Pj (σ

∗(θ∗
i , θ−i )), then it easily follows that δ j i (θ) = 0 = (|Pj (σ

∗(θ∗
i , θ−i ))| −

|Pj (σ
∗(θ))|)si .

(b) If Pi (σ ∗(θ∗
i , θ−i )) ⊂ Pi (σ ∗(θ)), then for agent any

j ∈ Pi (σ ∗(θ))\Pi (σ ∗(θ∗
i , θ−i )), we have Pj (σ

∗(θ∗
i , θ−i ))\Pj (σ

∗(θ)) = {i}.
Hence, δ j i (θ) = si = (|Pj (σ

∗(θ∗
i , θ−i ))| − |Pj (σ

∗(θ))|)si .
(c) If Pi (σ ∗(θ)) ⊂ Pi (σ ∗(θ∗

i , θ−i )), then for any j ∈ Pi (σ ∗(θ∗
i , θ−i ))\Pi (σ ∗(θ)),

it easily follows that Pj (σ
∗(θ))\Pj (σ

∗(θ∗
i , θ−i )) = {i}. Therefore, we obtain

δ j i (θ) = −si = (|Pj (σ
∗(θ∗

i , θ−i ))| − |Pj (σ
∗(θ))|)si .

By substituting the values of δ j i (θ) for possibilities (a), (b) and (c) in the sum∑
j∈N\{i} θ jδ j i (θ) of (24) we get the sum in (7).
From (I) condition (24) and the expansion of the sum

∑
j∈N\{i} θ jδ j i (θ) summa-

rized in (a), (b) and (c) we get τ = τ p.

To prove the converse, observe that since any μp is a particular type of VCG
transfers, μp is sufficient to ensure outcome efficiency and strategyproofness. To
complete the proof we need to check the sufficiency of GWLB with μp. Consider
any relative pivotal mechanism μp. For any θ ∈ �n and any i ∈ N , we have
ui (μ

p
i (θ); θi , s) + θi Oi (s) = −θi [Si (σ ∗(θ), s) − Oi (s)] + [Si (σ ∗(θ∗

i , θ−i ), s) −
Oi (s)]θ∗

i +∑
j∈N\{i}(|Pj (σ

∗(θ∗
i , θ−i ))|−|Pj (σ

∗(θ))|)θ j si+hi (θ−i ) = Ti (θ∗
i , θ−i )−

Ti (θ) + hi (θ−i ) ≥ 0. Therefore, ui (μ
p
i (θ); θi , s) + θi Oi (s) ≥ 0 implying

ui (μ
p
i (θ); θi , s) ≥ −θi Oi (s). Hence, any relative pivotal mechanism μp satisfies

the relevant generalized welfare lower bounds. ��
Proof of Lemma 1 Suppose for a sequencing problem � ∈ S(N ) we can find a mech-
anism that satisfies outcome efficiency, GWLB and feasibility and let μ = (σ ∗, τ )

be such a mechanism. Then using GWLB it follows that for every θ ∈ �n and each
i ∈ N , ui (μi (θ); θi , s) = −θi Si (σ ∗(θ), s) + τi (θ) ≥ −θi Oi (s) implying that for all
i ∈ N , τi (θ) ≥ θi Si (σ ∗(θ), s) − θi Oi (s). By summing the transfers over all agents
and applying feasibility it follows that C(σ ∗(θ); θ, s) − ∑

j∈N θ j O j (s) ≤ 0. Hence,
for the mechanism μ = (σ ∗, τ ) to satisfy outcome efficiency, GWLB and feasibility
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it is necessary that

∑

j∈N
θ j

{
Oj (s) − S j (σ

∗(θ), s)
} ≥ 0, ∀ θ ∈ �n . (25)

Consider a set of profiles, θ t = (θ t1, . . . , θ
t
n) ∈ �n defined for any positive integer

t such that θ tj = s j [1 − { j/(2t n)}] for all j ∈ N . Observe that for any given t and
any l,m ∈ N such that l < m, θ tl /sl > θ tm/sm so that for every positive integer t,
we have the same outcome efficient order σ 0(θ t ) = (σ 0

1 , . . . , σ 0
n ) with σ 0

j = j for
all j ∈ N . Also observe that as t → ∞, θ tj → s j > 0. Given (25), the condition
∑

j∈N θ tj

{
Oj (s) − S j (σ

0, s)
} ≥ 0 must hold for every positive integer t and hence it

must also hold at the limiting value of t as well, that is, it must also hold when θ j = s j
for all j ∈ N . Hence, it is also necessary that

∑

j∈N
s j

{
Oj (s) − S j (σ

0, s)
}

≥ 0. (26)

If we can show that the equality
∑

j∈N s j S j (σ
0, s) = ∑

j∈N s j {s j + A(s)}/2 holds,

then one can easily verify that using this equality in (26) we get the result.28 Hence,
our final step is to show this equality. Observe that

∑

j∈N
s j S j (σ

0, s) =
∑

j∈N
s j

⎛

⎝s j +
∑

k> j

sk

⎞

⎠ =
∑

j∈N
s2j +

∑

j∈N

∑

k> j

s j sk

=
∑

j∈N
s2j +

∑

j∈N

⎛

⎝
∑

k �= j

s j sk
2

⎞

⎠ =
∑

j∈N
s j

⎛

⎝s j +
∑

k �= j

sk
2

⎞

⎠

=
∑

j∈N
s j

(
2s j + ∑

k �= j sk

2

)

=
∑

j∈N
s j

(
s j + A(s)

2

)

.

(27)

Therefore, from (27) we get the required equality and the result follows. ��
Proof of Proposition 1 Consider any sequencing problem � ∈ S(N ) such that N =
{1, 2}. Given any mechanism satisfying GWLB with the lower bound vector O(N , s)
satisfying the constrained welfare property, assume without loss of generality that

28 Specifically, if
∑

j∈N s j S j (σ
0, s) = ∑

j∈N s j {s j + A(s)}/2, then expanding the left hand side of (26)
we get

∑

j∈N
s j O j (s) −

∑

j∈N
s j S j (σ

0, s)

=
∑

j∈N
s j O j (s) −

∑

j∈N
s j

(
s j + A(s)

2

)

=
∑

j∈N
s j

{

O j (s) −
(
s j + A(s)

2

)}

.
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O1(s) = s1 + λ1s2 and O2(s) = s2 + λ2s1 where λ1 ≥ 0 and λ2 ≥ 0. If θ =
(θ1, θ2) ∈ �2 is any profile such that θ1/s1 > θ2/s2, then, given θ∗

i = siθ j/s j if
λi ∈ [0, 1) and θ∗

i = 0 if λi ≥ 1 for any i, j ∈ {1, 2} such that i �= j, from the
definition of minimal relative pivotal mechanism μ̂p = (σ ∗, τ̂ p) it follows that

τ̂
p
1 (θ1, θ2) = −min{λ1, 1}θ2s1 and τ̂

p
2 (θ1, θ2) = (1 − min{λ2, 1})θ1s2. (28)

Therefore, from (28) it follows that

τ̂
p
1 (θ1, θ2) + τ̂

p
2 (θ1, θ2) = [(1 − min{λ2, 1})θ1s2 − min{λ1, 1}θ2s1] . (29)

Feasibility requires that τ̂ p
1 (θ1, θ2)+ τ̂

p
2 (θ1, θ2) ≤ 0 for all θ = (θ1, θ2) ∈ �2 and for

any θ1 and any θ2 such that θ1/s1 > θ2/s2, (I) (1−min{λ2, 1})θ1s2 ≤ min{λ1, 1}θ2s1.
If (1−min{λ2, 1}) > 0 (that is, if λ2 ∈ [0, 1)), then given any θ2 > 0 and any λ1 ≥ 0,
by taking any θ1 sufficiently large such that θ1 > min{λ1, 1}s1θ2/(1 − min{λ2, 1})s2
and making it sufficiently large we have a violation of condition (I). Hence, λ2 ≥ 1.
Similarly, if θ ′ = (θ ′

1, θ
′
2) ∈ �2 is such that θ ′

1/s1 < θ ′
2/s2, then, given λ2 ≥ 1, from

the definition of minimal relative pivotal mechanism μ̂p = (σ ∗, τ̂ p) it follows that

τ̂
p
1 (θ ′

1, θ
′
2) = (1 − min{λ1, 1})θ ′

2s1 and τ̂
p
2 (θ ′

1, θ
′
2) = −θ ′

1s2. (30)

Feasibility requires that τ̂
p
1 (θ ′

1, θ
′
2) + τ̂

p
2 (θ ′

1, θ
′
2) ≤ 0 for all θ ′ = (θ ′

1, θ
′
2) ∈ �2 and

hence given (30) for any θ ′
1 and any θ ′

2 such that θ ′
1/s1 < θ ′

2/s2, for feasibility it is
necessary that (II) (1 − min{λ1, 1})θ ′

2s1 ≤ θ ′
1s2. If (1 − min{λ1, 1}) > 0 (that is,

λ1 ∈ [0, 1)), then given any θ ′
1, by taking θ ′

2 > s2θ ′
1/(1 − min{λ1, 1})s1 we have a

violation of condition (II). Hence, we must also have λ1 ≥ 1. Therefore, for feasibility
it is necessary that λ1 ≥ 1 and λ2 ≥ 1, that is, O1(s) ≥ A(s) and O2(s) ≥ A(s).

Conversely, if λ1 ≥ 1 and λ2 ≥ 1, then, from the definition of minimal relative
pivotal mechanism μ̂p = (σ ∗, τ̂ p), it follows that for any θ ∈ �2, any i ∈ {1, 2} and
any j ∈ {1, 2} with j �= i,

τ̂
p
i (θ) =

{−θ j si if Pi (σ ∗(θ)) = ∅,

0 if Pi (σ ∗(θi (θ−i ), θ−i ) = { j}. (31)

It is immediate from (31) that for all θ1, θ2 ∈ � we get feasibility. Hence, we have the
first part of the result.

The proof of the second part, that is, any relative pivotal mechanism given by (31)
is not budget balanced, is a special case of Proposition 3 in De andMitra (2019) where
we need to replace linear sequencing rule by its special case of outcome efficient
sequencing rule. ��
Proof of Proposition 2 Consider any sequencing problem � ∈ S(N ) for which the
mechanism satisfying GWLB and having the lower bound vector O(N , s) meets the
following property: Oi (s) ≥ A(s) = ∑

j∈N s j for all i ∈ N . Observe that the
constrained welfare property given by condition (4) holds for this example as well.
For any θ ∈ �n and any i ∈ N , the function Ti (xi ; θ−i ) (given by Definition 7)) has
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a supremum at θ∗
i = 0 for all i ∈ N implying that Pi (σ ∗(0, , θ−i )) ∪ {i} = n and

hence Si (σ ∗(0, θ−i ), s) = A(s) ≤ Oi (s). The reason is the following: For any i ∈ N
and any xi ∈ � such that Pi (σ ∗(xi , θ−i )) ⊂ N\{i} and Pi (σ ∗(xi , θ−i )) �= N\{i},
the function Ti (xi ; θ−i )) is decreasing in xi since [Si (σ ∗(xi , θ−i ), s) − Oi (s)] =∑

j∈Pi (σ ∗(xi ,θ−i ))
s j − ∑

j∈N\{i} s j = −∑
j∈Fi (σ ∗(xi ,θ−i ))

s j is negative. Therefore,
for any i ∈ N , θ∗

i = 0 implying that agent i is always served last in the benchmark
orderσ ∗(0, θ−i ).Given θ∗

i = 0, it is quite easy to verify that (I) θ∗
i [Si (σ ∗(xi , θ−i ), s)−

Oi (s)] = 0 and (II) RPi (θ) = −∑
k∈Fi (σ ∗(θ)) θksi . Therefore, using (I) and (II) in

Definition 7 we get that an outcome efficient mechanism μp = (σ ∗, τ p) is a relative
pivotal mechanism if τ p satisfies the following property: For any profile θ ∈ �n and
any agent i ∈ N ,

τ
p
i (θ) = −

∑

k∈Fi (σ ∗(θ))

θksi + hi (θ−i ), (32)

where hi : �|N\{i}| → R+. Let n ≥ 3 and for all i ∈ N and all θ−i ∈ �|N\{i}|,
suppose we set hi (θ−i ) = ∑

j∈N\{i}
{
s j

∑
k∈Fj (σ

∗(θ−i ))
θk

}
/(n − 2) in the transfer

given by (32). One can then simplify the resulting transfers (32) and show that we get
budget balance. ��
Proof of Proposition 3 Consider any sequencing problem � ∈ S(N ) with given ini-
tial order and, without29 loss of generality, assume σ 0 such that σ 0

i = i for all
i ∈ N . Consider any θ ∈ �n such that θn/sn > θ1/s1 > · · · > θn−1/sn−1 so
that P1(σ ∗(θ)) = {n}, Pj (σ

∗(θ)) = {1, . . . , j − 1} ∪ {n} for all j ∈ N\{1, n}
and Pn(σ ∗(θ)) = ∅. Consider the minimal relative pivotal mechanism μ̂ = (σ ∗, τ̂ )

(in Definition 9) with the Ti (xi ; θ−i ) function given by (11). It is easy to verify the
following:

(i) Given P1(σ 0) = ∅, from (IO1) of Remark 4 we have θ∗
1 = s1θn/sn and

P1(σ ∗(θ∗
1 , θ−1)) = P1(σ 0) = ∅. Further, Pn(σ ∗(θ∗

1 , θ−1))\Pn(σ ∗(θ)) =
{1} and Pj (σ

∗(θ∗
1 , θ−1)) = Pj (σ

∗(θ)) for all j ∈ N\{1, n}. Thus, τ̂1(θ) =
(|Pn(σ ∗(θ∗

1 , θ−1))| − |Pn(σ ∗(θ))|)θns1 = θns1.
(ii) Given Pn(σ 0) = N\{n}, from condition (IO2) of Remark 4 we get

θ∗
n = snθn−1/sn−1 and Pn(σ ∗(θ∗

n , θ−n)) = Pn(σ 0) = N\{n}. Moreover,
Pj (σ

∗(θ))\Pj (σ
∗(θ∗

n , θ−n)) = {n} for all j ∈ N\{n}. Hence, the trans-
fer of n is τ̂n(θ) = ∑

j∈N\{n}(|Pj (σ
∗(θ∗

n , θ−n))| − |Pj (σ
∗(θ))|)θ j sn =

−∑
j∈N\{n} θ j sn . Therefore, the transfer of agent n does not involve the

waiting cost θn .
(iii) Finally, consider any k ∈ N\{1, n}. Observe that if xk = skθn/sn,

then T I
k (xk; θ−k)) is decreasing in xk since the coefficient of xk, that

is [∑ j∈Pk (σ ∗(xk ,θ−k ))
s j − ∑

j∈Pk(σ 0) s j ] = −∑k−1
j=1 s j < 0. Hence,

θ∗
k �= skθn/sn . Further, (|Pn(σ ∗(θ∗

k , θ−k))| − |Pn(σ ∗(θ))|)θnsk = 0 since
Pn(σ ∗(θ∗

k , θ−k)) = Pn(σ ∗(θ)) = ∅. Thus, the transfer of any agent
k ∈ N\{1, n} does not involve the waiting cost θn of agent n and hence
can be expressed in the following form: τ̂k(θ) = θ∗

k [∑ j∈Pk (σ ∗(θ∗
k ,θ−k ))

s j −
∑

j∈Pk(σ 0) sk] + ∑
j∈N\{k,n}(|Pj (σ

∗(θ∗
k , θ−k))| − |Pj (σ

∗(θ))|)θ j sk .

29 We do not provide a formal proof since it is a special case of the proof of Theorem 1 in De and Mitra
(2019).
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From (i), (ii) and (iii) it follows that
∑

j∈N τ̂ j (θ) = θns1 + ∑
j∈N\{1} τ̂ j (θ). From

(i) and (iii) above it also follows that the sum
∑

j∈N\{1} τ̂ j (θ) does not involve the
waiting cost θn and hence by defining T (σ ∗(θ); θ−n) := ∑

j∈N\{1} τ̂ j (θ) we get

∑

j∈N
τ̂ j (θ) = θns1 + T (σ ∗(θ); θ−n). (33)

If
∑

j∈N τ̂ j (θ) > 0, then we have a violation of feasibility and the proof is com-
plete. Therefore, assume

∑
j∈N τ̂ j (θ) = θns1 + T (σ ∗(θ); θ−n) ≤ 0. Given that

T (σ ∗(θ); θ−n) is independent of θn, if we increase the waiting cost of agent n to any
yn(> θn) by keeping θ−n fixed, then the outcome efficient order remains unchanged
(that is, σ ∗(yn, θ−n) = σ ∗(θ) for all yn > θn) and the transfers of all but agent 1
continues to remain unchanged due to above mentioned independence argument, that
is, T (σ ∗(yn, θ−n); θ−n) = T (σ ∗(θ); θ−n) for all yn > θn . Hence, we have

∑

j∈N
τ̂ j (yn, θ−n) = yns1 + T (σ ∗(θ); θ−n) ∀ yn > θn . (34)

Since the first term in the right hand side of condition (34) is increasing in yn and
the second term remains constant with a change in yn, it follows that by making yn
sufficiently large (say some y∗

n ) we get
∑

j∈N τ̂ j (y∗
n , θ−n) = y∗

n s1+T (σ ∗(θ); θ−n) >

0 leading to a violation of feasibility. ��
Proof of Proposition 4 Consider any sequencing problem � ∈ S(N ) with any mech-
anism satisfying GWLB with ICB and with |N | = 3 and, without loss of generality,
assume that s1 ≥ s2 ≥ s3. Consider the profile θ ∈ �3 such that σ ∗

j (θ) = j for all
j ∈ N and in particular θ1/s1 = a > θ2/s2 = b > θ3/s3 = c > 0 and assume
that (i) a > max{cs1/s2, bs2/s3}. Since Os

j (s) = (n + 1)s j/2 > si for all j ∈ N ,

using the function TC
j (x j ; θ− j ) given by (12), we can take θ∗

1 = s1c, θ∗
2 = s2a

and θ∗
3 = s3a. Then using the transfers associated with the minimal relative pivotal

mechanism (Definition 9) with TC
j (x j ; θ− j ) given by (12) we get the following:

(1) τ̂1(θ) = −cs1(s1 − s2) − bs1s2,
(2) τ̂2(θ) = as2(s1 − s2), and
(3) τ̂3(θ) = as3(s1 − s2) + bs2s3.

If s1 > s3, then
∑

j∈N τ̂ j (θ) = (s1 − s2)(as2 − cs1) + (s1 − s3)(as3 − bs2) =
(s1 − s2)s2[a − (cs1/s2)] + (s1 − s3)s3[a − (bs2/s3)] > 0 (due to (i)) and we have a
contradiction to feasibility. Hence, for feasibility it is necessary that s1 ≤ s3 implying
s1 ≥ s2 ≥ s3 ≥ s1. Hence, s1 = s2 = s3.

Consider any sequencing problem � ∈ S(N ) with any mechanism satisfying
GWLB with ECB and with |N | = 3 and, without loss of generality, assume that
s1 ≥ s2 ≥ s3.Consider the profile θ ∈ �3 such thatσ ∗

j (θ) = j for all j ∈ N and in par-

ticular θ1/s1 = a > θ2/s2 = b > θ3/s3 = c > 0. Since OS̄
j (s) = (s j + A(s))/2 > si

for all j ∈ N , using the function T E
j (x j ; θ− j ) given by (13), we can take θ∗

1 = s1b,
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θ∗
2 = s2a and θ∗

3 = s3a. Then using the transfers associated with the minimal rel-
ative pivotal mechanism (Definition 9) with T E

j (x j ; θ− j ) given by (13) we get the
following:

(1) τ̂1(θ) = −s1b
( s2+s3

2

)
,

(2) τ̂2(θ) = s2a
( s1−s3

2

)
, and

(3) τ̂3(θ) = s3a
( s1−s2

2

) + s2s3b.

If s1 > s3, then
∑

j∈N τ̂ j (θ) = (a−b)
2 (s2s1 + s1s3 − 2s2s3) >

(a−b)
2 (s2s3 + s1s3 −

2s2s3) = (a−b)s3(s1−s2)
2 ≥ 0 and we have a contradiction to feasibility. Hence, for

feasibility we need s1 ≤ s3 implying s1 = s2 = s3. ��
Proof of Corollary 1 For any profile θ ∈ �n and i ∈ N , consider the type θ∗

i ∈ �

such that the function T QB
i (xi , θ−i ) (defined in (15)) takes the maximum value, that

is, T QB
i (θ∗

i , θ−i ) ≥ T QB
i (xi , θ−i ) for all xi ∈ �n . Let r̄(θ−i ) = ((r̄ j (θ−i ) = θ j ) j �=i )

be the vector of agent specific waiting cost in N\{i} and ri (θ−i ) = (r1(θ−i ) =
θ(1), . . . rn−1(θ−i ) = θ(n−1)) be the permutation of r̄(θ−i ) such that r1(θ−i ) ≥ · · · ≥
rn−1(θ−i ). We can verify that if n is odd, θ∗

i ∈ {r n−1
2

(θ−i ), r n+1
2

(θ−i )} and when n is

even, θ∗
i = r n

2
(θ−i ). Using the resulting θ∗

i that maximizes the function T QB
i (xi , θ−i )

(defined in (15)), we have the following forms of the relative pivotal mechanisms
derived for the even and odd cases separately. If n is odd, then we get the transfer
given by τ oddi (θ) + hi (θ−i ) where,

τ oddi (θ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− ∑

k∈Fi (σ ∗(θ))|1<σ ∗
k (θ)≤ n+1

2

θk if σ ∗
i (θ) < n+1

2 ,

0 if σ ∗
i (θ) = n+1

2 ,
∑

k∈Pi (σ ∗(θ))| n+1
2 ≤σ ∗

k (θ)<n

θk if σ ∗
i (θ) > n+1

2 ,

(35)

and if n is even, then we get the transfer given by τ eveni (θ) + hi (θ−i ) where,

τ eveni (θ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− ∑

k∈Fi (σ ∗(θ))|1<σ ∗
k (θ)≤ n

2

θk − θ f
2 if σ ∗

i (θ) < n
2 , σ ∗

f (θ) = n
2 + 1 and n > 2,

− θ f
2 if σ ∗

i (θ) = n
2 and σ ∗

f (θ) = n
2 + 1,

θp
2 if σ ∗

i (θ) = n
2 + 1 and σ ∗

p (θ) = n
2 ,

∑

k∈Pi (σ ∗(θ))| n2 +1≤σ ∗
k (θ)<n

θk + θp
2 if σ ∗

i (θ) > n
2 + 1, σ ∗

p (θ) = n
2 and n > 2.

(36)

Observe that, τ oddi (θ) is a K -pivotal mechanism with K = n+1
2 while τ eveni (θ) is the

simple average of two K -pivotal mechanisms-one with K = n/2 and the other with
K = n/2 + 1. We can then generally express,

τ̄ ai (θ) = Hi (θ−i ) +
{

τ
( n+1

2 )

i (θ)+ if n is odd,
1
2τ

( n2 )

i (θ) + 1
2τ

( n2+1)
i (θ) if n is even.

(37)

��
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Proof of Proposition 5 Given that for any queueing problem � ∈ Q(N ), the sym-
metrically balanced VCG mechanism satisfies outcome efficiency, strategyproofness,
GWLB with ICB (ECB) and budget balance, it follows that with Oi = (n + 1)/2 for
all i ∈ N (which is the bound associated with ICB (ECB)), the result holds. In partic-
ular, for any θ ∈ �n, the utility of an agent i ∈ N associated with the symmetrically
balanced VCG mechanism satisfies ui (σ ∗

i (θ), τ sbi (θ); θi ) ≥ −θi (n + 1)/2. Consider
any queueing problemwith generalized welfare lower bounds satisfying the following
property: For all i ∈ N , Oi ≥ (n + 1)/2 or equivalently, for each i ∈ N , there exists
βi ≥ 0 such that Oi = ( n+1

2

)+βi .With the symmetrically balanced VCGmechanism
we have that for each θ ∈ �n and each i ∈ N ,

ui (σ
∗
i (θ), τ sbi (θ); θi ) ≥ −θi

(
n + 1

2

)

≥ −θi

(
n + 1

2

)

− βi , for any βi ≥ 0.

Therefore, the symmetrically balanced VCG mechanism also ensures outcome effi-
ciency, strategyproofness, budget balance and GWLB for any lower bound vector
O(N ) = (O1, . . . , On) such that Oi ≥ (n + 1)/2 for all i ∈ N . ��

Data Availability No data was used or analysed in this study. Data sharing is not applicable to this article.
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