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Abstract
Social decision schemes (SDSs) map the preferences of a group of voters over some
set of m alternatives to a probability distribution over the alternatives. A seminal
characterization of strategyproof SDSs by Gibbard (Econometrica 45(3):665–681,
1977) implies that there are no strategyproof Condorcet extensions and that only
random dictatorships satisfy ex post efficiency and strategyproofness. The latter is
known as the random dictatorship theorem. We relax Condorcet-consistency and ex
post efficiency by introducing a lower bound on the probability of Condorcet winners
and an upper bound on the probability of Pareto-dominated alternatives, respectively.
We then show that the randomized Copeland rule is the only anonymous, neutral,
and strategyproof SDS that guarantees the Condorcet winner a probability of at least
2/m. Secondly, we prove a continuous strengthening of Gibbard’s random dictatorship
theorem: the less probability we put on Pareto-dominated alternatives, the closer to a
random dictatorship is the resulting SDS. Finally, we show that the only anonymous,
neutral, and strategyproof SDSs that maximize the probability of Condorcet winners
while minimizing the probability of Pareto-dominated alternatives are mixtures of the
uniform random dictatorship and the randomized Copeland rule.

1 Introduction

A pervasive phenomenon in collective decision making is strategic manipulation:
voters may be better off by lying about their preferences than reporting them truthfully.
This is problematic for a number of reasons: for one, spending resources on finding out
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other voters’ preferences and identifying beneficial manipulations is rewarded. These
resources are typically not spread evenly across society and thus, voting becomes
unfair. Perhapsmore importantly, when a voting rule is manipulable, all of its desirable
properties are in doubt because they were shown to hold under the assumption that
all voters submit their preferences truthfully. Hence, it is desirable that voting rules
incentivize voters to report their true preferences. Unfortunately, Gibbard (1973) and
Satterthwaite (1975) have shown independently that dictatorships are the only non-
imposing voting rules that are immune to strategic manipulations. However, these
voting rules are unacceptable for most applications as they invariably return the most
preferred alternative of a fixed voter.

A natural follow-up question is whether more positive results can be obtained when
allowing for randomization. Instead of choosing a single winner deterministically,
randomized voting rules return a lottery over the alternatives and the final winner is
drawn according to this lottery. Gibbard (1977) calls these randomized voting rules
social decision schemes (SDSs) and motivates them as follows:

“What is meant here by a combination of voting with chance? Suppose a deci-
sion is made in the following way: first, voting of some kind is used to pick out
a set of one or more winning alternatives; then, in case there is more than one
such winner, one of them is chosen by lot. Such a scheme, in effect, uses the way
people vote to determine the probability each alternative has of being adopted.
This I shall take as the defining feature of a scheme which combines voting
with chance: on the basis of the way people vote, it assigns to each alternative a
probability of being adopted.” (Gibbard 1977, p. 665)

Gibbard defined SDSs to be strategyproof if no voter can obtain more expected utility
for any utility representation that is consistent with his ordinal preference relation.
He then gave a complete characterization of strategyproof SDSs in terms of convex
combinations of two types of restricted SDSs, so-called unilaterals and duples. An
important consequence of this result is the random dictatorship theorem: random dic-
tatorships are the only ex post efficient and strategyproof SDSs. Random dictatorships
are convex combinations of dictatorships, i.e., each voter is selected with some fixed
probability, and the top choice of the chosen voter is returned.

While this result may seem like an extension of the Gibbard–Satterthwaite theorem
to the randomized context, it is in fact much more positive. In contrast to deterministic
dictatorships, the uniform random dictatorship, in which every agent is pickedwith the
same probability, enjoys a high degree of fairness and is in fact used in subdomains
of social choice that are concerned with the allocation of private goods (see, e.g.,
Abdulkadiroğlu and Sönmez 1998; Che and Kojima 2010). Gibbard’s theorem has
been the point of departure for a large body of follow-up work. In addition to several
alternative proofs of the theorem (e.g., Duggan 1996; Nandeibam 1997; Tanaka 2003),
there have been extensions with respect to manipulations by groups (Barberà 1979a),
cardinal preferences (e.g., Hylland 1980; Dutta et al. 2007; Nandeibam 2013), weaker
notions of strategyproofness (e.g., Benoît 2002; Sen 2011; Aziz et al. 2018; Brandl
et al. 2018; Brandt et al. 2023a), and restricted domains of preferences (e.g., Dutta
et al. 2002; Chatterji et al. 2014; Brandt et al. 2023b).
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Relaxed notions of Condorcet-consistency and efficiency 21

1.1 Objectives

The goal of this paper is to investigate whether there are attractive strategyproof SDSs
other than random dictatorships when relaxing classic axioms. A problem of random
dictatorships is that they do not allow for compromise. For example, suppose that vot-
ers strongly disagree on the best alternative but have a common second best alternative.
In such a scenario, it seems reasonable to choose the second best alternative, but this
alternative would never be considered by random dictatorships. On a formal level,
this observation is related to the fact that random dictatorships violate Condorcet-
consistency, which demands that an alternative that beats all other alternatives in
pairwise majority comparisons should be selected. Unfortunately, it is a simple conse-
quence of Gibbard’s work that no strategyproof SDS satisfies Condorcet-consistency.
Our first objective thus is to study how much probability a strategyproof SDS can
guarantee to the Condorcet winner.

The point of departure for our second objective is that the random dictatorship
theorem demands that Pareto-dominated alternatives always receive probability 0. In
particular, Gibbard’s theorem does not preclude the possibility of a strategyproof SDS
that is axiomatically attractive except that it will select Pareto-dominated alternatives
with astronomically small probability. If this probability is, for example, 10−100, the
SDS will be ex post efficient for all practical matters and virtually indistinguishable
from an ex post efficient SDS. We thus investigate whether letting Pareto-dominated
alternatives be selected with negligible probability allows for more interesting SDSs
than random dictatorships.

1.2 Contribution

In order to formally study these problems, we introduce relaxations of Condorcet-
consistency and ex post efficiency. In more detail, we say that an SDS is α-Condorcet-
consistent if a Condorcet winner will be selected with a probability of at least α and
β-ex post efficient if a Pareto-dominated alternative will be selected with a probability
no more than β. Moreover, we say a strategyproof SDS is γ -randomly dictatorial if it
can be represented as a convex combination of two strategyproof SDSs, one of which
is a random dictatorship that will be selected with probability γ . All of these axioms
are discussed in more detail in Sect. 2.2.

Building on a characterization of strategyproof SDSs by Barberà (1979b), we then
prove the following results (m is the number of alternatives and n the number of
voters).

• Let m, n ≥ 3. There is no strategyproof SDS that satisfies α-Condorcet-
consistency for α > 2/m. Moreover, the randomized Copeland rule, which assigns
probabilities proportional to Copeland scores, is the only strategyproof SDS that
satisfies anonymity, neutrality, and 2/m-Condorcet-consistency (Theorem 4).

• Let 0 ≤ ε ≤ 1 and m ≥ 3. Every strategyproof SDS that is 1−ε
m -ex post efficient

is γ -randomly dictatorial for γ ≥ ε. If we additionally require anonymity and
m ≥ 4, then only mixtures of the uniform random dictatorship and the uniform
lottery rule satisfy this bound tightly (Theorem 5).
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Fig. 1 Graphical summary of our results. Points in the graphs correspond to SDSs. In both graphs the
horizontal axis indicates the value of β for which the considered SDS is β-ex post efficient. In the left
graph, the vertical axis represents the α for which the considered SDSs are α-Condorcet-consistent, and
in the right graph, it represents the γ for which SDSs are γ -randomly dictatorial. Theorems 4 and 6 show
that no strategyproof SDS lies in the grey area of the left graph. Theorem 5 shows that no strategyproof
SDS lies in the grey area below the diagonal in the right graph. Furthermore, no SDS lies in the grey
area above the diagonal since a γ -randomly dictatorial SDS can put no more than probability 1 − γ on
Pareto-dominated alternatives. Finally, the following SDSs are marked in the graphs: D corresponds to all
random dictatorships, C to the randomized Copeland rule, B to the randomized Borda rule, and U to the
uniform lottery rule

• Let m ≥ 4 and n ≥ 5. No strategyproof SDS that is α-Condorcet-consistent is
β-ex post efficient for β < m−2

m−1α. If we additionally require anonymity and neu-
trality, then only mixtures of the uniform random dictatorship and the randomized
Copeland rule satisfy β = m−2

m−1α (Theorem 6).

Our findings, which are summarized in Fig. 1, show that two strategyproof SDSs
perform particularly well with respect to α-Condorcet-consistency and β-ex post effi-
ciency: the uniform random dictatorship (and random dictatorships in general), and
the randomized Copeland rule.

In more detail, the first statement characterizes the randomized Copeland rule as
the “most Condorcet-consistent” SDS that satisfies strategyproofness, anonymity, and
neutrality. In fact, no strategyproof SDS can guarantee more than probability 2/m on
the Condorcet winner, even when dropping anonymity and neutrality. Conversely,
this means that every strategyproof SDS satisfies α-Condorcet-consistency for some
α ∈ [0, 2/m].

The second result can be interpreted as a continuous strengthening of Gibbard’s
random dictatorship theorem: the less probability we put on Pareto-dominated alterna-
tives, the more randomly dictatorial is the resulting SDS. In other words, any hope for
attractive strategyproof SDSs by relaxing ex post efficiency is in vain: strategyproof
SDSs that almost never select Pareto-dominated alternatives are almost equivalent to
random dictatorships. An interesting consequence of this result is that every strate-
gyproof SDS that has no random dictatorship component is as “inefficient” as the
uniform lottery rule which always returns the uniform lottery over all alternatives.
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Relaxed notions of Condorcet-consistency and efficiency 23

The second part of the theorem characterizes the SDSs that optimize β-ex post effi-
ciency subject to being strategyproof, anonymous, andγ -randomlydictatorial for some
γ ∈ [0, 1]: these are mixtures of the uniform random dictatorship and the uniform
lottery rule.

The last statement identifies a tradeoff between α-Condorcet-consistency and β-ex
post efficiency: the more probability a strategyproof SDS guarantees to the Condorcet
winner, the less efficient it is. Thus, we can either only maximize the α-Condorcet-
consistency or minimize the β-ex post efficiency of a strategyproof SDS, which again
highlights the antipodal roles of the randomized Copeland rule and random dictator-
ships. Furthermore, we characterize the SDSs that optimize this tradeoff under the
additional assumptions of anonymity and neutrality.

2 Themodel

Let N = {1, 2, . . . , n} be a finite set of voters and let A = {a, b, . . . } be a finite set of
m alternatives. Every voter i has a preference relation �i , which is an anti-symmetric,
complete, and transitive binary relation on A. We write x �i y if voter i prefers x
strictly to y and x �i y if x �i y or x = y. The set of all preference relations is
denoted by R. A preference profile R ∈ Rn contains the preference relation of each
voter i ∈ N . We define the supporting size nxy(R) = |{i ∈ N : x �i y}| for x against
y in the preference profile R as the number of voters that prefer x to y. Moreover,
the rank r(x,�i ) = |{y ∈ A : y �i x}| of an alternative x in the preference relation
of a voter i is the number of alternatives that are weakly preferred to x by voter i .
Finally, the rank vector r∗(x, R) of an alternative x in a preference profile R is the
vector that contains the rank of x with respect to every voter in increasing order,
i.e., r∗(x, R) = (r(x,�i1), r(x,�i2), . . . , r(x,�in )) where the voters i1, . . . , in are
ordered such that r(x,�i1) ≤ r(x,�i2) ≤ · · · ≤ r(x,�in ).

Given a preference profile, we are interested in the winning chance of each alterna-
tive.We therefore analyze social decision schemes (SDSs) whichmap each preference
profile to a lottery over the alternatives. A lottery p is a probability distribution over
the set of alternatives A, i.e., it assigns each alternative x a probability p(x) ≥ 0 such
that

∑
x∈A p(x) = 1. The set of all lotteries over A is denoted by �(A). Formally, a

social decision scheme (SDS) is a function f : Rn → �(A). We denote by f (R, x)
the probability assigned to alternative x by f for the preference profile R. The winner
will eventually be selected according to these probabilities.

Two basic fairness conditions are anonymity and neutrality. Anonymity requires
that voters are treated equally. Formally, an SDS f is anonymous if f (R) = f (π(R))

for all preference profiles R and permutations π : N → N . Here, R′ = π(R) denotes
the profile with�′

π(i) = �i for all voters i ∈ N .Neutrality guarantees that alternatives
are treated equally and formally requires for an SDS f that f (R, x) = f (τ (R), τ (x))
for all preference profiles R and permutations τ : A → A. This time, R′ = τ(R) is the
profile derived by permuting the alternatives in R according to τ , i.e., τ(x) �′

i τ(y) if
and only if x �i y for all alternatives x, y ∈ A and voters i ∈ N .
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24 F. Brandt et al.

2.1 Stochastic dominance and strategyproofness

This paper is concernedwith strategyproof SDSs, i.e., social decision schemes inwhich
voters cannot benefit by lying about their preferences. In order to make this formally
precise, we need to specify how voters compare lotteries. To this end, we leverage
the well-known notion of stochastic dominance: a voter i (weakly) prefers a lottery
p to another lottery q, written as p �i q, if

∑
y∈A:y�i x p(y) ≥ ∑

y∈A:y�i x q(y) for
every alternative x ∈ A. In other words, a voter prefers a lottery p to a lottery q if,
for every alternative x ∈ A, p returns a better alternative than x with as least as much
probability as q. Stochastic dominance does not induce a complete order on the set of
lotteries, i.e., there are lotteries p and q such that a voter i neither prefers p to q nor
q to p.

Based on stochastic dominance, we can now formalize strategyproofness. An SDS
f is strategyproof if f (R) �i f (R′) for all preference profiles R and R′ and voters
i ∈ N such that � j = �′

j for all j ∈ N\{i}. In other words, strategyproofness
requires that every voter prefers the lottery obtained by voting truthfully to any lottery
that he could obtain by voting dishonestly. Conversely, we call an SDS f manipulable
if it is not strategyproof. While there are other ways to compare lotteries with each
other, stochastic dominance is the most common one (see, e.g., Gibbard 1977; Barberà
1979b; Bogomolnaia and Moulin 2001; Ehlers et al. 2002; Aziz et al. 2018). This is
mainly due to the fact that p �i q implies that the expected utility of p is at least as high
as the expected utility of q for every vNM utility function that is ordinally consistent
with voter i’s preferences. Hence, if an SDS is strategyproof, no voter can manipulate
regardless of his exact utility function (see, e.g., Sen 2011; Brandl et al. 2018). This
observation immediately implies that the convex combination h = λ f + (1 − λ)g
(for some λ ∈ [0, 1]) of two strategyproof SDSs f and g is again strategyproof: a
manipulator who obtains more expected utility from h(R′) than h(R) prefers f (R′)
to f (R) or g(R′) to g(R).

Gibbard (1977) shows that every strategyproof SDS can be represented as convex
combinations of unilaterals and duples.1 The terms “unilateral” and “duple” refer to
special classes of SDSs: a unilateral is a strategyproof SDS that only depends on the
preferences of a single voter i , i.e., f (R) = f (R′) for all preference profiles R and
R′ such that �i = �′

i . A duple, on the other hand, is a strategyproof SDS that only
chooses between two alternatives x and y, i.e., f (R, z) = 0 for all preference profiles
R and alternatives z ∈ A \ {x, y}.
Theorem 1 (Gibbard 1977) An SDS is strategyproof if and only if it can be represented
as a convex combination of unilaterals and duples.

Since duples and unilaterals are by definition strategyproof, Theorem 1 only states
that strategyproof SDSs can be decomposed into amixture of strategyproof SDSs, each
of which must be of a special type. In order to circumvent this restriction, Gibbard
proves another characterization of strategyproof SDSs.

1 In order to simplify the exposition, we slightly modify Gibbard’s terminology by requiring that duples
and unilaterals have to be strategyproof.
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Relaxed notions of Condorcet-consistency and efficiency 25

Theorem 2 (Gibbard 1977) An SDS is strategyproof if and only if it is non-perverse
and localized.

Non-perversity and localizedness are two axioms describing the behavior of an
SDS. For defining these axioms, we denote by Ri :yx the profile derived from R by
only reinforcing y against x in voter i’s preference relation. Note that this requires that
x �i y and that there is no alternative z ∈ A such that x �i z �i y. Then, an SDS f is
non-perverse if f (Ri :yx , y) ≥ f (R, y) for all preference profiles R, voters i ∈ N , and
alternatives x, y ∈ A. Moreover, an SDS is localized if f (Ri :yx , z) = f (R, z) for all
preference profiles R, voters i ∈ N , and distinct alternatives x, y, z ∈ A. Intuitively,
non-perversity—which is now often referred to as monotonicity—requires that the
probability of an alternative only increases if it is reinforced, and localizedness that
the probability of an alternative does not depend on the order of the other alternatives.
Together, Theorems 1 and 2 show that each strategyproof SDS can be represented as
a mixture of unilaterals and duples, each of which is non-perverse and localized.

Since Gibbard’s results can be quite difficult to work with, we now state another
characterization of strategyproof SDSs due to Barberà (1979b). This characterization
shows that every strategyproof SDS that satisfies anonymity and neutrality can be
represented as a convex combination of a supporting size SDS and a point voting
SDS. A point voting SDS is defined by a scoring vector (a1, a2, . . . , am) that satisfies
a1 ≥ a2 ≥ · · · ≥ am ≥ 0 and

∑
i∈{1,...,m} ai = 1

n . The probability assigned to an
alternative x by a point voting SDS f is f (R, x) = ∑

i∈N ar(x,�i ). Furthermore,
supporting size SDSs also rely on a scoring vector (bn, bn−1, . . . , b0) with bn ≥
bn−1 ≥ · · · ≥ b0 ≥ 0 and bi + bn−i = 2

m(m−1) for all i ∈ {0, . . . , n} to compute the
outcome. The probability assigned to an alternative x by a supporting size SDS f is
then f (R, x) = ∑

y∈A\{x} bnxy(R). Point voting SDSs can be seen as a generalization
of deterministic positional scoring rules and supporting size SDSs can be seen as a
variant of Fishburn’s C2 functions (Fishburn 1977).

Theorem 3 (Barberà 1979b) An SDS is anonymous, neutral, and strategyproof if and
only if it can be represented as a convex combination of a point voting SDS and a
supporting size SDS.

Manywell-known SDSs can be represented as point voting SDSs or supporting size
SDSs. For example, the uniform random dictatorship fRD, which chooses one voter
uniformly at random and returns his best alternative, is the point voting SDS defined by
the scoring vector

( 1
n , 0, . . . , 0

)
. An instance of a supporting size SDS is the random-

izedCopeland rule fC , which assigns probabilities proportional to theCopeland scores
c(x, R) = |{y ∈ A\{x} : nxy(R) > nyx (R)}| + 1

2 |{y ∈ A\{x} : nxy(R) = nyx (R)}|.
This SDS is the supporting size SDS defined by the vector b = (bn, bn−1, . . . , b0),
where bi = 2

m(m−1) if i > n
2 , bi = 1

m(m−1) if i = n
2 , and bi = 0 otherwise. Further-

more, there are SDSs that can be represented both as point voting SDSs and supporting
size SDSs. An example is the randomized Borda rule fB , which randomizes propor-
tional to the Borda scores of the alternatives. This SDS is the point voting SDS defined
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26 F. Brandt et al.

by the vector
(

2(m−1)
nm(m−1) ,

2(m−2)
nm(m−1) , . . . ,

2
nm(m−1) , 0

)
and equivalently the supporting

size SDS defined by the vector
(

2n
nm(m−1) ,

2(n−1)
nm(m−1) , . . . ,

2
nm(m−1) , 0

)
.2

2.2 Classic axioms and their relaxations

An alternative x Pareto-dominates another alternative y in a preference profile R if
x �i y for all i ∈ N . The standard notion of ex post efficiency then demands that
Pareto-dominated alternatives should have no chance of winning, i.e., f (R, x) = 0
for all preference profiles R and alternatives x that are Pareto-dominated in R. Gibbard
(1977) showed that Theorem 1 implies a simple characterization of strategyproof and
ex post efficient SDSs. This result is commonly known as the random dictatorship
theorem.

Corollary 1 (Gibbard 1977) The only strategyproof SDSs that satisfy ex post efficiency
are random dictatorships, i.e., each voter is selected with a fixed probability and the
most preferred alternative of this voter is returned as the winner.

When insisting on anonymity, Corollary 1 turns into a complete characterization
of fRD. However, Corollary 1 breaks down once we allow that Pareto-dominated
alternatives can have a non-zero chance β > 0 of being selected. To illustrate this
point, consider a random dictatorship d and another strategyproof SDS g. Then, the
SDS f ∗ = (1 − β)d + βg is strategyproof for every β ∈ (0, 1] and no random
dictatorship, but assigns a probability of at most β to Pareto-dominated alternatives.
We call the last property β-ex post efficiency: an SDS f is β-ex post efficient if
f (R, x) ≤ β for all preference profiles R and alternatives x that are Pareto-dominated
in R.

Our first objective is to study which strategyproof SDSs satisfy β-ex post effi-
ciency for small values of β because sufficiently small values of β may be acceptable
to accomplish other design goals. As it turns out, Corollary 1 is quite robust in the
sense that all SDSs that satisfy β-ex post efficiency for β < 1

m are “similar” to ran-
dom dictatorships. In order to formalize this phenomenon, we introduce γ -randomly
dictatorial SDSs: a strategyproof SDS f is γ -randomly dictatorial if γ ∈ [0, 1] is the
maximal value such that f can be represented as f = γ d + (1 − γ )g, where d is a
random dictatorship and g is another strategyproof SDS. In particular, we require that
g is strategyproof as otherwise, SDSs that seem “non-randomly dictatorial” are not 0-
randomly dictatorial. For instance, the uniform lottery rule fU , which always assigns
probability 1

m to all alternatives, is not 0-randomly dictatorial if g is not required to be
strategyproof because it can be represented as fU = 1

m di + m−1
m g, where di is the dic-

tatorial SDS of voter i and g is the SDS that randomizes uniformly over all alternatives
but voter i’s favorite one. Moreover, it should be mentioned that the maximality of γ

implies that g is 0-randomly dictatorial if γ < 1. Otherwise, we could also represent

2 Both the randomized Copeland rule and the randomized Borda rule were rediscovered several times by
authors who were apparently unaware of Barberà’s pioneering work (see Heckelman 2003; Conitzer and
Sandholm 2006; Procaccia 2010).
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Fig. 2 Condorcet-consistent SDSs violate strategyproofness when m = n = 3. Due to the symmetry of R′,
we may assume without loss of generality that f (R′, a) > 0. It follows from Condorcet-consistency that
f (R, c) = 1. Since it is not the case that f (R) � f (R′), the left-most voter can manipulate by swapping
c and b in R

g as a mixture of a random dictatorship and some other strategyproof SDS h, which
means that f is γ ′-randomly dictatorial for γ ′ > γ .

The following characterization of γ -randomly dictatorial SDSs is very useful.
Recall that Ri :yx denotes the profile derived from R by only reinforcing y against
x in voter i’s preference relation.

Lemma 1 A strategyproof SDS f is γ -randomly dictatorial if and only if there are non-
negative values γ1, . . . , γn such that

∑
i∈N γi = γ , and γi = minx,y∈A minR∈Ri :xy

f (Ri :yx , y) − f (R, y) where Ri :xy ⊆ Rn denotes the set of profiles in which voter i
prefers x the most and y the second most.

Theproof of this lemmacanbe found in the appendix. Lemma1provides an intuitive
interpretation of γ -randomly dictatorial SDSs: it requires that there are voters who
increase the winning probability of an alternative by at least γi by swapping their
two top-ranked alternatives. For small values of γ , this axiom seems uncontroversial
and can be seen as a strict monotonicity property. However, for larger values of γ , γ -
randomly dictatorial SDSs becomemore similar to randomdictatorships. Furthermore,
the proof of Lemma 1 shows that the decomposition of γ -randomly dictatorial SDSs is
completely determined by the values γ1, . . . , γn : given these values for a strategyproof
SDS f , it can be represented as f = ∑

i∈N γi di + (1 − ∑
i∈N γi )g, where g is

a strategyproof SDS and di the dictatorial SDS of voter i . Thus, Lemma 1 directly
provides away to compute the valueγ for a givenSDS f :we only need to determine the
valuesγ1, . . . , γn of f by computingγi = minx,y∈A minR∈Ri :xy f (Ri :yx , y)− f (R, y)
because then γ = ∑

i∈N γi .
Finally, we consider Condorcet-consistency. A Condorcet winner in a profile R is

an alternative x that wins every majority comparison in R, i.e., nxy(R) > nyx (R) for
all y ∈ A\{x}. Condorcet-consistency demands that f (R, x) = 1 for all preference
profiles R and alternatives x such that x is the Condorcet winner in R. Unfortu-
nately,Condorcet-consistency is in conflictwith strategyproofness,which can easily be
derived fromGibbard’swork. A simple two-profile proof for this fact whenm = n = 3
is given in Fig. 2. To circumvent this impossibility, we relax Condorcet-consistency.
Instead of requiring that the Condorcet winner always obtains probability 1, we only
require that it receives a probability of at least α. An SDS f is α-Condorcet-consistent
if f (R, x) ≥ α for all profiles R and alternatives x ∈ A such that x is the Condorcet
winner in R. For small values ofα, this axiom is clearly compatible with strategyproof-
ness and therefore, we are interested in the maximum value of α such that there are
α-Condorcet-consistent and strategyproof SDSs.
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28 F. Brandt et al.

Table 1 Values of α, β, and γ for which specific strategyproof SDSs are α-Condorcet-consistent, β-ex post
efficient, and γ -randomly dictatorial

SDS α-Condorcet-cons. β-ex post efficiency γ -random dictatorship

fRD 0 0 1

fU
1
m

1
m 0

fB
1
m + 2−(n mod 2)

mn
2(m−2)
m(m−1)

2
m(m−1)

fC
2
m

2(m−2)
m(m−1) 0

Each row shows the values of α, β, and γ for which the SDS satisfies the corresponding axioms. fRD stands
for the uniform random dictatorship, fU for the uniform lottery rule, fB for the randomized Borda rule,
and fC for the randomized Copeland rule

2.3 Examples of strategyproof SDSs

To illustrate the notions of α-Condorcet-consistency, β-ex post efficiency, and γ -
random dictatorships, let us discuss some of the values in Table 1. The uniform
random dictatorship is 1-randomly dictatorial and 0-ex post efficient by definition.
Moreover, it is 0-Condorcet-consistent because a Condorcet winner may not be
top-ranked by any voter. The same values of α, β, and γ are also attained by non-
uniform (and thus non-anonymous) random dictatorships. The randomized Borda
rule is 2(m−2)

m(m−1) -ex post efficient because it assigns this probability to an alternative

that is second-ranked by every voter. Moreover, it is 2
m(m−1) -randomly dictatorial

as we can represent it as 2
m(m−1) fRD +

(
1 − 2

m(m−1)

)
g, where fRD is the uniform

random dictatorship and g is the point voting SDS defined by the scoring vector(
2(m−2)

n(m(m−1)−2) ,
2(m−2)

n(m(m−1)−2) ,
2(m−3)

n(m(m−1)−2) , . . . , 0
)
. Finally, the randomized Copeland

rule is 0-randomly dictatorial because for every voter there is a profile in which he
can swap his two best alternatives without affecting the outcome. Moreover, it is 2

m -
Condorcet-consistent because a Condorcet winner x satisfies that nxy(R) > n

2 for all
y ∈ A \ {x} and hence, fC (R, x) = ∑

y∈A\{x} bnxy(R) = (m − 1) 2
m(m−1) = 2

m .
The randomized Copeland and the randomized Borda rule can be interpreted as

rules where two alternatives are drawn uniformly at random (see Remark 4). In the
randomized Copeland rule, the majority-preferred of the two alternatives is selected,
whereas in the randomized Borda rule, a randomly selected voter picks his preferred
alternative. It is possible to define non-neutral variants of these rules, in which the
two alternatives are not drawn independently (see Remark 3). As long as the total
probability of drawing each alternative is still 2

m , the resulting rules achieve the same
values of α, β, and γ as their neutral counterparts in Table 1.

Note that Table 1 also contains a row corresponding to the uniform lottery rule fU
which always selects every alternative with probability 1

m . We consider this SDS as a
threshold with respect to α-Condorcet-consistency and β-ex post efficiency because
we can compute it without knowledge about the voters’ preferences. Hence, if an SDS
performs worse than the uniform lottery rule with respect to α-Condorcet-consistency
or β-ex post efficiency, we could as well dismiss the voters’ preferences.
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3 Results

We are now ready to state our results about α-Condorcet-consistent and β-ex post
efficient strategyproof SDSs.

3.1 ˛-Condorcet-consistency

Our first result shows that no strategyproof SDS satisfies α-Condorcet-consistency for
α > 2

m . Conversely, this means that strategyproof SDSs can only be α-Condorcet-
consistent forα ∈ [0, 2

m ]. This bound is tight as the randomizedCopeland rule fC is 2
m -

Condorcet-consistent, which means that it is one of the “most Condorcet-consistent”
strategyproof SDSs. Even more, we turn this observation into a characterization of
fC by additionally requiring anonymity and neutrality: the randomized Copeland rule
is the only strategyproof SDS that satisfies 2

m -Condorcet-consistency, anonymity, and
neutrality.

To prove these results, we derive several auxiliary lemmas. As the first step, we
show in Lemma 2 that we can “symmetrize” any given strategyproof andα-Condorcet-
consistent SDS.

Lemma 2 Let α ∈ [0, 1]. If there is a strategyproof and α-Condorcet-consistent SDS,
there is also a strategyproof and α-Condorcet-consistent SDS that satisfies anonymity
and neutrality.

Proof Let f denote an arbitrary strategyproof SDS that is α-Condorcet-consistent for
some α ∈ [0, 1]. In the sequel, we construct an anonymous and neutral SDS f ∗ that
satisfies strategyproofness and α-Condorcet-consistency for the same α as f . For this,
we define the SDSs f πτ for all permutations π : N → N and τ : A → A as follows.
First, f πτ permutes the voters in the input profile R according toπ and the alternatives
according to τ . Next, we compute f on the resulting profile τ(π(R)) and finally, we
define f πτ (R, x) as the probability assigned to τ(x) by f in τ(π(R)). More formally,
f πτ is defined as f πτ (R, x) = f (τ (π(R)), τ (x)), where the profile τ(π(R)) satisfies
for all i ∈ N and x, y ∈ A that τ(x) �π(i) τ (y) in τ(π(R)) if and only if x �i y
in R. Note that f πτ is strategyproof for all permutations π and τ because every
manipulation of f πτ implies a manipulation of f . Furthermore, f πτ is α-Condorcet-
consistent because for every preference profile R with Condorcet winner x , τ(x) is
the Condorcet winner in τ(π(R)). Hence, if f πτ violates α-Condorcet-consistency in
some profile R, then f violates this axiom in the profile τ(π(R)).

Finally, we define the SDS f ∗ by averaging over f πτ for all permutations π and
τ . Hence, let 
 denote the set of all permutations on N and let T denote the set of all
permutations on A. Then, f ∗ is defined as follows.

f ∗(R, x) :=
∑

π∈


1

|
|
∑

τ∈T

1

|T| f
πτ (R, x)

=
∑

π∈


∑

τ∈T

1

n!m! f (τ (π(R)), τ (x))
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Next, we show that f ∗ satisfies all axioms required by the lemma. First, f ∗ is
strategyproof since all SDSs f πτ are strategyproof. The α-Condorcet-consistency of
f ∗ is shown by the following inequality, where R denotes a profile in which x is the
Condorcet winner.

f ∗(R, x) =
∑

π∈


∑

τ∈T

1

n!m! f (τ (π(R)), τ (x)) ≥
∑

π∈


∑

τ∈T

1

n!m!α = α

Furthermore, observe that f ∗ is anonymous because it averages over all possible
permutations of the voters, i.e., for all permutations of the voters π ∈ 
 : f ∗(R) =
f ∗(π(R)). It follows from a similar argument that f ∗ is neutral: since f ∗ averages
over all permutations of the alternatives, it holds that f ∗(R, x) = f ∗(τ (R), τ (x)) for
every τ ∈ T. Hence, f ∗ is strategyproof, α-Condorcet-consistent, anonymous, and
neutral. 
�

We next investigate the α-Condorcet-consistency of strategyproof SDSs that satisfy
anonymity and neutrality because Lemma 2 turns an upper bound on the α-Condorcet-
consistency of such SDSs into an upper bound for all strategyproof SDSs. Since
Theorem3 shows that every strategyproof, anonymous, and neutral SDScan be decom-
posed in a point voting SDS and a supporting size SDS, we analyze these two classes
separately in the following two lemmas. First, we bound the α-Condorcet-consistency
of point voting SDSs.

Lemma 3 No point voting SDS is α-Condorcet-consistent for α ≥ 2
m if n ≥ 3 and

m ≥ 3.

Proof Let f be a point voting SDS for m ≥ 3 alternatives and n ≥ 3 voters, and let
a = (a1, . . . , am) be the scoring vector that defines f . Moreover, let α ∈ [0, 1] be
the maximal value such that f is α-Condorcet-consistent. We will show that α < 2

m .
The central observation for this is that f (R, x) = f (R′, x) for all profiles R, R′ with
r∗(x, R) = r∗(x, R′) as f assigns probability ai to x whenever it is ranked i-th. As
a consequence of this insight, we will focus on Condorcet winner candidates which
are alternatives that can be made into the Condorcet winner without changing their
rank vector. The reason for this is that Condorcet winner candidates must also have a
probability of α due to our previous insights. Hence, we will construct profiles with
�m
2  Condorcet winner candidates because then each Condorcet winner candidate has

a probability of at most 2
m . Otherwise,

∑
x∈A f (R, x) > 1, which contradicts the

definition of an SDS. This shows that f is only α-Condorcet-consistent for α ≤ 2
m

and, by investigating our profiles in more detail, we can also deduce that α �= 2
m .

For constructing the required profiles with k = �m
2  Condorcet winner candidates

x1, . . . , xk , we use a case distinction with respect to the parity of n and m. Moreover,
we first focus on caseswith fixed n, and provide in the end an argument for generalizing
our base profiles to all n ≥ 3. Figure3 illustrates our constructions for n,m ∈ {3, 4}.

Case 1: n = 3 and m is odd
In this case, we consider the profile R1 which is defined as follows: for every

i ∈ {1, . . . , k}, voters 1 and 2 rank alternative xi at position i , and voter 3 ranks it at
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position m + 2− 2i . The remaining alternatives can be ranked arbitrarily. The sum of
ranks of xi in R1 is then equal to

∑
j∈{1,2,3} r(xi ,� j ) = 2i + m + 2 − 2i = m + 2,

which means that only m − 1 alternatives can be ranked above xi . Hence, for every
i ∈ {1, . . . , k}, we can reorder the alternatives in A \ {xi } such that each alternative
y ∈ A \ {xi } is preferred to xi by a single voter. So, xi is a Condorcet winner candidate
in R1 and f (R1, xi ) ≥ α for all i ∈ {1, . . . , k}. Since m is odd and k = �m

2  = m+1
2 ,

this implies that α ≤ 2
m+1 < 2

m .

Case 2: n = 3 and m is even
Next, suppose that n = 3 andm is even. In this case,we first choosem−1 candidates

from A and construct the profile R1 of Case 1. Then, we add the last alternative z as
the last-ranked one of voters 1 and 2 and as the first-ranked one of voter 3 to derive
the profile R2. The candidates x1, . . . , xk are Condorcet winning candidates in R2 as
they are in R1 and only voter 3 prefers z to xi . Hence, there are m

2 Condorcet winner
candidates and an analogous argument as in the last case shows that α ≤ 2

m . As the last
step, we will show that α �= 2

m . Otherwise, each of the
m
2 Condorcet winner candidates

has a probability of 2
m , which entails that the other alternatives have a probability of 0.

In particular, f (R2, z) = 0 even though voter 3 reports z as his best alternative. This
implies for the scoring vector a = (a1, . . . , am) of f that a1 = 0. However, this is
not possible because the scoring vector a satisfies

∑m
i=1 ai = 1

n and ai ≥ a j if i ≤ j .
Hence, α < 2

m .

Case 3: n = 4 and m is odd
As third case, we suppose n = 4 and m is odd and construct the profile R3 as

follows: for every i ∈ {1, . . . , k}, voters 1 and 2 rank alternative xi at position i ,
and voters 3 and 4 rank it at position m+1

2 + 1 − i . The remaining alternatives can
again be placed arbitrarily. For each xi , it holds that

∑
j∈{1,2,3,4} r(xi ,� j ) = 2i +

2
(m+1

2 + 1 − i
) = m+3. Consequently, onlym−1 alternatives can be ranked above

xi for every i ∈ {1, . . . , k}, and all xi thus are Condorcet winner candidates. We can
now derive that α ≤ 2

m+1 < 2
m as there are m+1

2 Condorcet winner candidates.

Case 4: n = 4 and m is even
In the last case,we construct the profile R4 with k = m

2 Condorcetwinner candidates
as follows: we choose an alternative z, and apply the construction of Case 3 to the
alternatives in A \ {z}. Then, voters 1 to 3 add z as their least preferred alternative
and voter 4 adds it as his best alternative. Every alternative that is a Condorcet winner
candidate before adding z is also a Condorcet winner candidate after adding this
alternative because z is the least preferred alternative of three voters. Hence, there are
m
2 Condorcet winner candidates in R4, which implies that α ≤ m

2 . Finally, if α = 2
m ,

then f (R4, z) = 0, which, analogous to Case 2, conflicts with the definition of point
voting SDSs since voter 4 reports z as his favorite choice. Therefore, we infer again
that α < 2

m .

Case 5: Generalizing the impossibility to larger n
Finally, we explain how to generalize the last four cases to an arbitrary number of

voters n ≥ 3. For this, we choose the suitable base case and add repeatedly pairs of
voters with inverse preferences until there are n voters. Note that voters with inverse
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Fig. 3 Profiles used in the base cases of the proof of Lemma 3 if m ∈ {3, 4}. The profile Rk shows the
profile corresponding to case k

preferences do not change the majority margins, and therefore they do not change
whether an alternative is a Condorcet winner candidate. Hence, every alternative that
is a Condorcet winner candidate in the base case is also a Condorcet winner candidate
in the extended profile, which means that the arguments in the base cases also apply
to larger numbers of voters. Therefore, no point voting SDS satisfies α-Condorcet-
consistency for α ≥ 2

m . 
�
The last ingredient for the proof of Theorem 4 is that no supporting size SDS can

assign a probability of more than 2
m to any alternative. This immediately implies that

no supporting size SDS satisfies α-Condorcet-consistency for α > 2
m .

Lemma 4 No supporting size SDS can assign more than probability 2
m to an alterna-

tive.

Proof Let f be a supporting size SDS and let b = (bn, . . . , b0) be the scoring vector
that defines f . Recall that the definition of a supporting size SDS requires that bn ≥
· · · ≥ b0 ≥ 0 and bi + bn−i = 2

m(m−1) for all i ∈ {0, . . . , n}. This implies that

bi ≤ 2
m(m−1) for all i ∈ {0, . . . , n} and hence f (R, x) = ∑

y∈A\{x} bnxy(R) ≤ (m −
1) 2

m(m−1) = 2
m for all preference profiles R and alternatives x ∈ A. 
�

We now have all lemmas required to prove our first theorem.

Theorem 4 The randomized Copeland rule is the only strategyproof SDS that satisfies
anonymity, neutrality, and 2

m -Condorcet-consistency if m ≥ 3 and n ≥ 3. Moreover,
no strategyproof SDS satisfies α-Condorcet-consistency for α > 2

m if n ≥ 3.

Proof The theorem consists of two claims: the characterization of the randomized
Condorcet rule fC and the fact that no other strategyproof SDS can attainα-Condorcet-
consistency for a larger α than fC . We prove these claims separately.

Claim 1: The randomized Copeland rule is the only strategyproof SDS that
satisfies 2

m -Condorcet-consistency, anonymity, and neutrality.
The randomized Copeland rule fC is a supporting size SDS and satisfies there-

fore anonymity, neutrality, and strategyproofness. Furthermore, it satisfies also
2
m -Condorcet-consistency because a Condorcet winner x wins every pairwise major-
ity comparison in R. Hence, nxy(R) > n

2 for all y ∈ A\{x}, which implies that
fC (R, x) = ∑

y∈A\{x} bnxy(R) = (m − 1) 2
m(m−1) = 2

m .
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Next, let f be an SDS satisfying anonymity, neutrality, strategyproofness, and 2
m -

Condorcet-consistency. We show that f is the randomized Copeland rule. Since f
is anonymous, neutral, and strategyproof, we can apply Theorem 3 to represent f as
f = λ fpoint + (1−λ) fsup, where λ ∈ [0, 1], fpoint is a point voting SDS, and fsup is a
supporting size SDS. Lemma 3 states that there is a profile R with Condorcet winner x
such that fpoint(R, x) < 2

m , and it follows from Lemma 4 that fsup(R, x) ≤ 2
m . Hence,

f (R, x) = λ fpoint(R, x) + fsup(R, x) < 2
m if λ > 0. Therefore, f is a supporting

size SDS as it satisfies 2
m -Condorcet-consistency.

Next, we show that f has the same scoring vector as the randomized Copeland
rule. Since f is a supporting size SDS, there is a scoring vector b = (bn, . . . , b0) with
bn ≥ bn−1 ≥ · · · ≥ b0 ≥ 0 and bi + bn−i = 2

m(m−1) for all i ∈ {1, . . . , n} such that

f (R, x) = ∑
y∈A\{x} bnxy(R). Moreover, f (R, x) = 2

m if x is the Condorcet winner in

R because of 2
m -Condorcet-consistency and Lemma 4. We derive from the definition

of supporting size SDSs that the Condorcet winner x can only achieve this probability
if bnxy(R)

= 2
m(m−1) for every other alternatives y ∈ A\{x}. Moreover, observe that the

Condorcet winner needs to win every majority comparison but is indifferent about the
exact supporting sizes. Hence, it follows that bi = 2

m(m−1) for all i > n
2 as otherwise,

there is a profile in which the Condorcet winner does not receive a probability of 2
m .

We also know that bi + bn−i = 2
m(m−1) , so bi = 0 for all i < n

2 . If n is even, then

bn
2

= 1
m(m−1) is required by the definition of supporting size SDSs as n

2 = n − n
2 .

Hence, the scoring vector of f is equal to the scoring vector of fC , which proves that
f is fC .

Claim 2: No strategyproof SDS satisfies α-Condorcet-consistency for α > 2
m .

The claim is trivially true if m ≤ 2 because α-Condorcet-consistency for α > 1 is
impossible. Hence, let f denote a strategyproof SDS form ≥ 3 alternatives. We show
in the sequel that f cannot satisfy α-Condorcet-consistency for α > 2

m . As a first
step, we use Lemma 2 to construct a strategyproof SDS f ∗ that satisfies anonymity,
neutrality, and α-Condorcet-consistency for the same α as f . Since f ∗ is anonymous,
neutral, and strategyproof, it follows from Theorem 3 that f ∗ can be represented as
a mixture of a point voting SDS fpoint and a supporting size SDS fsup, i.e., f ∗ =
λ fpoint + (1 − λ) fsup for some λ ∈ [0, 1].

Next, we consider fpoint and fsup separately. Lemma 3 implies for fpoint that there
is a profile R with a Condorcet winner a such that fpoint(R, a) < 2

m . Moreover,
Lemma 4 shows that fsup(R, a) ≤ 2

m . Thus, we derive the following inequality, which
shows that f ∗ fails α-Condorcet-consistency for α > 2

m . Hence, no strategyproof SDS
satisfies α-Condorcet-consistency for α > 2

m when n ≥ 3.

α ≤ f ∗(R, a) = λ fpoint(R, a) + (1 − λ) fsup(R, a) ≤ λ
2

m
+ (1 − λ)

2

m
= 2

m


�
Remark 1 Lemma 2 can be applied to properties other than α-Condorcet-consistency
as well. For example, given a strategyproof and β-ex post efficient SDS, one can con-
struct another SDS that satisfies anonymity and neutrality on top of these axioms. In
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general, our construction maintains all axioms that can be described by linear inequal-
ities and that are themselves closed under permutations of voters and alternatives.

Remark 2 Point votingSDSs canbe interpreted as positional scoring rules that random-
ize in proportion to the assigned scores. A result by Smith (1973) shows that for large
n, every scoring rule except Borda’s rule can assign the Condorcet winner the lowest
score. Hence, for every point voting SDS except the randomized Borda rule, there is
a profile where the Condorcet winner receives less than probability 1

m . On the other

hand, the randomizedBorda rule fB is
(

1
m + 2−(n mod 2)

nm

)
-Condorcet-consistent. This

argument gives a more restrictive bound on the α-Condorcet-consistency of point vot-
ing SDSs when there is a large number of voters. Moreover, it shows that fB is a point
voting SDS that maximizes the α-Condorcet-consistency when considering large elec-
torates.

Remark 3 All axioms in the characterization of the randomized Copeland rule are
independent of each other. The SDS that picks the Condorcet winner with probability
2
m if one exists and distributes the remaining probability uniformly between the other
alternatives only violates strategyproofness. The randomized Borda rule satisfies all
axioms of Theorem 4 but 2

m -Condorcet-consistency. An SDS that satisfies anonymity,
strategyproofness, and 2

m -Condorcet-consistency can be defined based on an arbitrary
order of alternatives x0, . . . , xm−1. Then, we pick an index i ∈ {0, . . . ,m − 1} uni-
formly at random and return the winner of the majority comparison between xi and
xi+1 mod m (if there is a majority tie, a fair coin toss decides the winner). Furthermore,
we can use the randomized Copeland rule fC to construct an SDS that fails only
anonymity for even n: we just ignore one voter when computing the outcome of fC .
If n is even and x is the Condorcet winner in R, then nxy(R) ≥ n+2

2 for all y ∈ N\{x}
and x remains the Condorcet winner after removing a single voter. Finally, the impos-
sibility in Theorem 4 does not hold when there are only n = 2 voters because random
dictatorships are strategyproof and Condorcet-consistent in this case.

Remark 4 The randomized Copeland rule has various interesting interpretations.
Firstly, it can be defined as a supporting size SDS as shown in Sect. 2.1. Alterna-
tively, it can be defined as the SDS that picks two alternatives uniformly at random
and then picks the majority winner between them; majority ties are broken by a fair
coin toss. Next, Theorem 4 shows that the randomized Copeland rule is the SDS
that maximizes the value of α for α-Condorcet-consistency among all anonymous,
neutral, and strategyproof SDSs. Finally, the randomized Copeland rule is the only
strategyproof SDS that satisfies anonymity, neutrality, and assigns probability 0 to a
Condorcet loser (i.e., an alternative that loses all pairwise comparisons) whenever it
exists.
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3.2 ˇ-ex post efficiency and �-random dictatorships

In this section, we show that the random dictatorship theorem (Corollary 1) is rather
robust by identifying a tradeoff between β-ex post efficiency and γ -random dictator-
ships. More formally, we prove that for every ε ∈ [0, 1], all strategyproof and 1−ε

m -ex
post efficient SDSs are γ -randomly dictatorial for γ ≥ ε. If we set ε = 1, we obtain
Corollary 1. Conversely, our result also entails that γ -randomly dictatorial SDSs can
only satisfy 1−ε

m -ex post efficiency for ε ≤ γ . Moreover, one can derive from this the-
orem that every 0-randomly dictatorial and strategyproof SDS is β-ex post efficient
for β ≥ 1

m , i.e., every such SDS is at least as inefficient as the uniform lottery rule.
Finally, we also investigate the SDSs that optimize the tradeoff between being both
γ -randomly dictatorial and β-ex post efficient for small values of γ and β. In partic-
ular, from our first claim, we know that a strategyproof and 1−ε

m -randomly dictatorial
SDS is β-ex post efficient for β ≥ ε, and we show for every ε ∈ [0, 1] that mixtures
of the uniform random dictatorship and the uniform lottery rule are the only SDSs
that satisfy β = ε when additionally requiring anonymity and m ≥ 4. These results
demonstrate that relaxing ex post efficiency does not lead to interesting strategyproof
SDSs.

For proving the tradeoff between β-ex post efficiency and γ -random dictatorships,
we first investigate the efficiency of 0-randomly dictatorial strategyproof SDSs. In
more detail, we prove next that every such SDS fails β-ex post efficiency for β < 1

m .
In particular, this means that every 0-randomly dictatorial SDS is as ”inefficient” as
the uniform lottery rule and we thus interpret Proposition 1 as a negative result.

Proposition 1 No strategyproof SDS that is 0-randomly dictatorial satisfies β-ex post
efficiency for β < 1

m if m ≥ 3.

The proof of this result is deferred to the appendix because it is rather involved;
instead, we only give a short summary here. First, we note that we cannot apply Lemma
2 as convex combinations of 0-randomly dictatorial SDSs may not be 0-randomly dic-
tatorial. Hence, we work with Theorem 1 and decompose a strategyproof SDS into
a mixture of duples and a mixture of unilaterals. For both classes, we show that if
the considered SDS is 0-randomly dictatorial, it fails β-ex post efficiency for β < 1

m .
Next, we consider an arbitrary 0-randomly dictatorial SDS f and aim to show that
there are a profile R and a Pareto-dominated alternative x ∈ A such that f (R, x) ≥ β.
Even though Theorem 1 allows us to represent f as the convex combination of a 0-
randomly dictatorial mixture of unilaterals funi and a 0-randomly dictatorial mixture
of duples fduple, our previous observations have no direct consequences for the β-ex
post efficiency of f as funi and fduple may violate β-ex post efficiency for different
profiles or alternatives. We solve this problem by transforming f into a more sym-
metric SDS f ∗ while preserving 0-random dictatorship and β-ex post efficiency. We
then decompose f ∗ into a 0-randomly dictatorial mixture of unilaterals f ∗

uni and a
0-randomly dictatorial mixture of duples f ∗

duple, and due to the symmetry of f ∗, we
identify a profile R where f ∗

uni and f ∗
duple assign both at least probability

1
m to the same

Pareto-dominated alternative. Consequently, f ∗ fails β-ex post efficiency for β < 1
m ,

which implies that also f violates this axiom.
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Based on Proposition 1, we next formalize the tradeoff between ex post efficiency
and the similarity to random dictatorships in Theorem 5.

Theorem 5 For every ε ∈ [0, 1], every strategyproof and 1−ε
m -ex post efficient SDS

is γ -randomly dictatorial for γ ≥ ε if m ≥ 3. Moreover, when m ≥ 4, every strat-
egyproof and ε-randomly dictatorial SDS that satisfies anonymity and 1−ε

m -ex post
efficiency is a mixture of the uniform random dictatorship and the uniform lottery
rule.

Proof Just as for Theorem 4, we need to show two claims: (i) for every ε ∈ [0, 1],
there is no strategyproof and 1−ε

m -ex post efficient SDS that is γ -randomly dictatorial
for γ < ε, and (ii) every strategyproof and ε-randomly dictatorial SDS that satisfies
anonymity, neutrality, and 1−ε

m -ex post efficiency is a mixture of the uniform random
dictatorship and the uniform lottery rule.

Claim 1: Every strategyproof and 1−ε
m -ex post efficient SDS is γ -randomly

dictatorial for γ ≥ ε.
Consider an arbitrary SDS f that is strategyproof and 1−ε

m -ex post efficient for
some ε ∈ [0, 1]. By the definition of γ -randomly dictatorial SDSs, there is a maximal
γ ∈ [0, 1] such that f can be represented as f = γ d + (1 − γ )g, where d is a
random dictatorship and g is another strategyproof SDS. We need to show that γ ≥ ε.
If γ = 1, this is trivially the case since ε ∈ [0, 1]. On the other hand, if γ < 1, the
maximality of γ entails that the SDS g is 0-randomly dictatorial. Hence, Proposition
1 shows that g is at most 1

m -ex post efficient, i.e., there is a profile R with a Pareto-
dominated alternative x such that g(R, x) ≥ 1

m . Since f is 1−ε
m -ex post efficient, we

derive therefore the following inequality.

1 − ε

m
≥ f (R, x) = γ d(R, x) + (1 − γ )g(R, x) ≥ 1 − γ

m

This inequality is equivalent to ε ≤ γ and therefore proves the claim.

Claim 2: Every strategyproof and ε-randomly dictatorial SDS that satisfies
anonymity and 1−ε

m -ex post efficiency is a mixture of the uniform random dicta-
torship and the uniform lottery rule.

Consider an arbitrary ε ∈ [0, 1] and let f denote an SDS for m ≥ 4 alternatives
that satisfies all axioms listed above. In particular, f is ε-randomly dictatorial and
therefore, it can be represented a f = εd+ (1−ε)g, where d is a random dictatorship
and g another strategyproof SDS. As a first step, we show that d is the uniform
random dictatorship. Note for this that anonymity implies that the values γ1, . . . , γn
introduced in Lemma 1 are equal for all voters, i.e., γi = γ j for all i, j ∈ N . A
close inspection of the proof of Lemma 1 then reveals that d is the uniform random
dictatorship because we prove for this lemma that, given the values γi , f can be
represented as f = ∑

i∈N γi di + (1 − ∑
i∈N γi )g. Here, di denotes the dictatorial

SDS of voter i . Hence, f is the uniform random dictatorship if ε = 1, so our claim
holds in this case.

Next, assume that ε < 1. In this case, the maximality of ε implies that the SDS
g is 0-randomly dictatorial. Furthermore, g needs to satisfy 1

m -ex post efficiency
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as otherwise, there is a profile R with a Pareto-dominated alternative x such that
f (R, x) = εd(R, x)+ (1−ε)g(R, x) > 1−ε

m . This contradicts, however, the assump-
tion that f is 1−ε

m -ex post efficient. As the last point on g, observe that it is also
anonymous as both d and f satisfy this axiom.

Since g is strategyproof, we can use Theorem 1 to represent g as a convex combi-
nation of unilateral SDSs and duple SDSs, i.e., g = λ funi + (1 − λ) fduple for some
λ ∈ [0, 1], mixture of unilateral SDSs funi, and mixture of duple SDSs fduple. We will
show that both funi and fduple always return the uniform lottery.

We start with the proof for fduple = fU and assume for contradiction that this is
not the case. Then, a profile R and alternative x exists such that fduple(R, x) > 1

m .
Let R′ denote the profile derived from R by pushing x to the top of the preferences
of all voters, and let Rx denote an arbitrary profile in which all voters unanimously
rank x first. By strategyproofness, 1

m < fduple(R, x) ≤ fduple(R′, x) = fduple(Rx , x).
Furthermore, for all alternatives y ∈ A and profiles Ry , we have fduple(Ry, y) ≥ 1

m
as otherwise 1

m -ex post efficiency is violated for some alternative z ∈ A \ {y}.
Next, we apply Lemma 2 to fduple to construct a new SDS f ∗

duple. By construction,
f ∗
duple is a mixture of duples that satisfies anonymity, neutrality, strategyproof-

ness, and 1
m -ex post-efficiency. Hence, we derive from Theorem 3 that f ∗

duple is
a supporting size SDS. Let b = (bn, . . . , b0) be the scoring vector such that
f ∗
duple(R, x) = ∑

y∈A\{x} bnxy(R) and recall that b satisfies bn ≥ · · · ≥ b0 ≥ 0

and bi + bn−i = 2
m(m−1) for all i ∈ {0, . . . , n}. Now, since fduple(Ry, y) ≥ 1

m for all

y ∈ A and fduple(Rx , x) > 1
m for some x ∈ A, it follows that f ∗

duple(R
z, z) > 1

m for
all alternatives z and profiles Rz as the construction of Lemma 2 only averages the
probabilities of fduple. In particular, this means that f ∗

duple is not the uniform lottery.
We will now derive a contradiction to f ∗

duple �= fU . For this, let Rxy be the profile in

which all agents rank x first and y second. By 1
m -ex post efficiency and the definition

of supporting size SDSs, 1
m ≥ f ∗

duple(R
xy, y) = ∑

z∈A\{y} bnyz(R) = b0 + (m − 2)bn .

This implies that 1
m ≥ b0+(m−2)

(
2

m(m−1) − b0
)

= −(m−3)b0+ 2(m−2)
m(m−1) . Solving

for b0 then results in b0 ≥ 1
m(m−1) ; in particular,m ≥ 4 prevents thatm−3 = 0. Since

the definition of supporting size schemes requires that b0 + bn = 2
m(m−1) and bi ≥ b j

if i > j , we can now infer that bi = 1
m(m−1) for all i ∈ {0, . . . , n}. Hence, f ∗

duple is the
uniform lottery rule, which contradicts our previous observations. Therefore, fduple
must also be the uniform lottery.

Next, we turn to funi. First, we note that funi must be anonymous, 0-randomly
dictatorial, and 1

m -ex post efficient since f satisfies these axioms and fduple is the
uniform lottery rule. Now, since funi is anonymous, there is a unilateral f ∗ such that
funi(R) = ∑

i∈N 1
n f ∗(�i ). This follows from the following averaging argument:

given some weights λi ≥ 0 and unilaterals f i such that funi = ∑
i∈N λi f i , we

can construct a new representation of funi by averaging the f i over all permutations
π : N → N , i.e., f̄ i = ∑

π∈

1
n! f

π(i). Since funi is anonymous, it holds that
funi(R) = ∑

π∈

1
n! funi(π(R)) = ∑

i∈N 1
n f̄ i . Finally, it can be checked that f̄ i = f̄ j

for all i, j ∈ N , which shows that funi(R) = ∑
i∈N 1

n f ∗(�i ).
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For showing that funi = fU , we will prove that f ∗ always returns the uniform
lottery. Hence, we focus from now on a single voter i . Note here that f ∗ is 1

m -ex
post efficient and 0-randomly dictatorial as otherwise, funi fails these properties, too.
Hence, there are alternatives x, y ∈ A and a preference relation �i with r(x,�i ) = 1
and r(y,�i ) = 2 such that f ∗(�i ) = f ∗(�i :yx

i ). Moreover, strategyproofness shows
that this equality also holds if voter i reorders the alternatives z ∈ A\{x, y}. Now,
let �a1

i = a1 � . . . , �a1a2
i = a1 �i a2 �i . . . , and �a1a2a3

i = a1 �i a2 �i a3 �i

. . . denote the preference relations in which voter i prefers the alternatives in the
superscript the most. In particular, note that f ∗(�xy

i , a) = f ∗(�yx
i , a) for a ∈ {x, y}.

Now, consider an arbitrary preference relation�z
i .Wewill show that f ∗(�z

i , z) = 1
m

because 1
m -ex post efficiency then requires that f ∗(�z

i ) is the uniform lottery. Note
for this that this axiom immediately entails that f ∗(�z

i , z) ≥ 1
m because otherwise,

there is a Pareto-dominated alternative z′ such that f ∗(�z
i , z

′) > 1
m . First, suppose

that z = x . Then, it holds that f ∗(�x
i , x) = f ∗(�xy

i , x) = f ∗(�yx
i , x) ≤ 1

m , where
the first equality follows from strategyproofness, the second one from the definition
of x and y, and the final inequality from 1

m -ex post efficiency. Together with our lower
bound, we thus have that f ∗(�x

i , x) = 1
m . An analogous argument also holds for all

preference relations �y
i .

Hence, suppose now that z /∈ {x, y} and consider the preference relations �xzy
i ,

�yzx
i , �zxy

i , and �zyx
i . By the last case, it holds that f ∗(�xzy

i , a) = f ∗(�yzx
i

, a) = 1
m for all a ∈ A. Localizedness thus implies that f ∗(�zxy

i , y) = f ∗(�xzy
i

, y) = 1
m and f ∗(�zyx

i , x) = f ∗(�yzx
i , x) = 1

m . On the other hand, non-
perversity requires that f ∗(�zxy

i , x) ≥ f ∗(�zyx
i , x) = 1

m . Finally, since f ∗(�xzy
i , a)

= 1
m for all a and since we can go from �xzy

i to �zxy
i by only swapping x and z,

localizedness requires that f ∗(�zxy
i , z) ≤ 1

m . Hence, our lower bounds requires again
that f ∗(�z

i ) = f ∗(�zxy
i , z) = 1

m , which proves that f ∗ always returns the uniform
lottery. Thus, funi = fU .

Since fduple and funi are both the uniform lottery rule, g itself is also the uniform
lottery rule. So, the original SDS f is indeed a mixture of the uniform lottery rule and
the uniform random dictatorship. 
�

Remark 5 All axioms of the characterization in Theorem 5 are independent of each
other if ε ∈ (0, 1). Mixtures of the uniform random dictatorship and the Condorcet
rule (choose the Condorcet winner if there is one, otherwise return the uniform lottery)
satisfy all axioms except strategyproofness. Without anonymity, the uniform random
dictatorship can be replaced with other random dictatorships. If we drop the constraint
that ε = γ or when m = 3 the randomized Copeland rule also satisfies all required
axioms and the uniform lottery rule thus is not the unique choice.

Remark 6 Theorem 5 shows that the uniform lottery rule is the only strategyproof
SDS that is 0-randomly dictatorial, 1

m -ex post efficient, and anonymous. This insight
strengthens the negative consequences of Proposition 1 as it demonstrates that every
other anonymous and strategyproof 0-random dictatorship is strictly less efficient than
the uniform lottery rule. We interpret this (as well as Proposition 1) as an impossibility
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result stating that no strategyproof and 0-randomly dictatorial SDS performs well with
respect to β-ex post efficiency.

Remark 7 Another natural variant of β-ex post efficiency is to bound the sum of prob-
abilities assigned to Pareto-dominated alternatives. When requiring anonymity and
neutrality, it is easy to show that every strategyproof and 0-randomly dictatorial SDS
assigns at least a total probability of 1

2 to Pareto-dominated alternatives. Based on
such a result, one can then also generalize Theorem 5. On the other hand, if we drop
anonymity and neutrality, things become much more difficult, and the bound of 1

2
does no longer hold. For example, consider the following SDS f for m alternatives
and n = (m

2

)
voters: each voter is associated with a unique pair of alternatives x, y

and if x or y is his first choice, the voter assigns probability 1
2n to both his best and

second best alternative; otherwise, he assigns probability 1
n to his best alternative. It

can be checked that f is strategyproof, 0-randomly dictatorial, and always assigns
strictly less than probability 1

2 to Pareto-dominated alternatives. Thus, contrary to all
of our results, the availability of anonymity and neutrality plays an important role for
a bound on the sum of probabilities of Pareto-dominated alternatives.

3.3 ˇ-ex post efficiency and˛-Condorcet-consistency

As our last result, we identify a tradeoff between α-Condorcet-consistency and β-ex
post efficiency: every α-Condorcet-consistent and strategyproof SDS fails β-ex post
efficiency for β < m−2

m−1α. Or, put differently, every stategyproof and α-Condorcet-

consistent SDS satisfies β-ex post efficiency only for β ≥ m−2
m−1α. This result follows

essentially from the correlation between β-ex post efficiency and γ -random dicta-
torships identified in Theorem 5: since every 1−ε

m -ex post efficient SDS f is at least
ε-randomly dictatorial and since random dictatorships are 0-Condorcet-consistent,
it follows immediately that f is at most (1 − ε)-Condorcet-consistent. In our next
theorem, we thus determine the exact tradeoff between α-Condorcet-consistency and
β-ex post efficiency. Moreover, we also characterize the anonymous, neutral, and
strategyproof SDSs that optimize this tradeoff as mixtures of the uniform random dic-
tatorship and the randomized Copeland rule. This result highlights the antipodal roles
of the randomized Copeland rule and the uniform random dictatorship.

Theorem 6 Every strategyproof SDS that satisfies anonymity, neutrality,α-Condorcet-
consistency, and β-ex post efficiency with β = m−2

m−1α is a mixture of the uniform
randomdictatorship and the randomizedCopeland rule if m ≥ 4, n ≥ 5. Furthermore,
no strategyproof SDS satisfies α-Condorcet-consistency and β-ex post efficiency for
β < m−2

m−1α if m ≥ 4, n ≥ 5.

Proof We again show the two claims of the theorem separately and start with the upper
bound on β-ex post efficiency.

Claim 1: No strategyproof SDS is α-Condorcet-consistent and β-ex post effi-
cient for β < m−2

m−1α.
Let f be a strategyproof SDS that satisfies α-Condorcet-consistency for some

α ∈ [0, 2
m ] and let β ∈ [0, 1] denote the minimal value such that f is β-ex post
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efficient. As the first step, we apply Lemma 2 to construct an SDS f ∗ that satis-
fies strategyproofness, anonymity, neutrality, α-Condorcet-consistency, and β-ex post
efficiency. We will show that β ≥ m−2

m−1α.
For this, we apply Theorem 3 to represent f ∗ as a mixture of a supporting size

SDS fsup and a point voting SDS fpoint , i.e., f ∗ = λ fpoint + (1 − λ) fsup for some
λ ∈ [0, 1]. Let (a1, . . . , am) and (b0, . . . , bn) denote the scoring vectors describing
fpoint and fsup, respectively. Next, we derive a lower bound for α and an upper bound
for β by considering specific profiles. First, consider the profile R1 in which every
voter reports x as his best alternative and y as his second best alternative; the remaining
alternatives can be ordered arbitrarily. It follows from the definition of point voting
SDSs that fpoint(R1, y) = na2 and from the definition of supporting size SDS that
fsup(R1, y) = (m − 2)bn + b0. Since x Pareto-dominates y in R1, it holds that
β ≥ f (R1, y) = λna2 + (1 − λ)((m − 2)bn + b0).

For the upper bound on α, wewill construct a profile R2 in which alternative x is the
Condorcet winner, wins all pairwise comparisons by a minimal margin, and is never
ranked first. For this, we denote the alternatives as A = {x, x1, . . . , xm−1}. Now, R2 is
defined as follows: the voters i ∈ {1, 2, 3} rank the alternatives Xi := {xk ∈ A\{x} : k
mod 3 = i − 1} above x and all other alternatives below. The exact order of the
alternatives in A \ {x} does not matter. Since m ≥ 4, no voter i ∈ {1, 2, 3} ranks
x first. Next, if the number of voters n is even, we duplicate voters 1, 2, and 3.
As the last step, we add pairs of voters with inverse preferences such that no voter
prefers x the most until R2 consists of n voters. Since alternative x is never top-
ranked in R2, it follows that fpoint(R2, x) ≤ na2. Furthermore, nxy(R2) = � n+1

2 
for all y ∈ A\{x} and therefore fsup(R2, x) = (m − 1)b� n+1

2 . Finally, we derive

that α ≤ f (R2, x) ≤ λna2 + (1 − λ)(m − 1)b� n+1
2  because x is by construction the

Condorcet winner in R2.
Using these bounds, we finally show that β ≥ m−2

m−1α, which proves our first claim.
In the subsequent calculation, the first and last inequality follow from our previous
analysis. The second inequality is true since m−2

m−1 ≤ 1 and m−2
m−1 (m − 1) = m − 2. The

third inequality uses the definition of supporting size SDSs.

β ≥ λna2 + (1 − λ)((m − 2)bn + b0)

≥ m − 2

m − 1
λna2 + m − 2

m − 1
(1 − λ)((m − 1)bn + b0)

≥ m − 2

m − 1
λna2 + m − 2

m − 1
(1 − λ)(m − 1)b� n+1

2 

≥ m − 2

m − 1
α (1)

Claim 2: Every strategyproof SDS that satisfies anonymity, neutrality, α-
Condorcet-consistency, and β-ex post efficiency with β = m−2

m−1α is a mixture
of the uniform random dictatorship and the randomized Copeland rule.

Next, suppose that f is a strategyproof SDS that satisfies anonymity, neutrality,
α-Condorcet-consistency, and β-ex post efficiency with β = m−2

m−1α. By Theorem 3,
f can be represented as mixture of a point voting scheme fpoint and a supporting
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size scheme fsup, i.e., there is λ ∈ [0, 1] such that f = λ fpoint + (1 − λ) fsup. Now,
by considering the profiles R1 and R2 of Claim 1, we infer that Equation (1) must
also hold for f . Even more, since β = m−2

m−1α, all inequalities must be tight. For the
second inequality, this is only the case if a2 = 0 and b0 = 0, and for the third one if
bn = b� n+1

2 . These observations fully specify the scoring vectors of fpoint and fsup. For

the point voting SDS, a2 = 0 implies ai = 0 for all i ≥ 2 and a1 = 1
n , i.e., fpoint is the

uniform random dictatorship. Next, b0 = 0 and bn = b� n+1
2  imply that bi = 2

m(m−1)

for all i ∈ {� n+1
2 , . . . , bn} and bi = 0 for all i ∈ {0, . . . , � n−1

2 �}. Moreover, if n is
even, the definition of supporting size SDSs requires that bn

2
= 1

m(m−1) . Hence, f is
a mixture of the uniform random dictatorship and the randomized Copeland rule. 
�
Remark 8 All axioms of the characterization in Theorem 6 are independent of each
other. Every mixture of a non-uniform random dictatorship and the randomized
Copeland rule only violates anonymity. An SDS that only violates neutrality can
be constructed by using a variant of the randomized Copeland rule that does not split
the probability equally if there is a majority tie. Finally, the correlation between α-
Condorcet-consistency and β-ex post efficiency is required since the uniform lottery
rule satisfies all other axioms. Moreover, all bounds on m and n in Theorem 6 are
tight. If there are only n = 2 voters, m = 3 alternatives, or m = 4 alternatives and
n = 4 voters, the uniform random dictatorship is not 0-Condorcet-consistent since a
Condorcet winner is always ranked first by at least one voter. Hence, the bound on β

does not hold in these cases. By contrast, our proof shows that Theorem 6 is also true
when n = 3.
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A Omitted proofs

In the following, we present the proofs of Lemma 1 and Proposition 1. Since the proof
of the latter lemma is rather involved, we organize the appendix in two subsections:
Appendix A.1 discusses the proof of Lemma 1 and Appendix A.2 the proof of Propo-
sition 1. Proof sketches explaining the main ideas for these proofs can be found in the
main body.
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A.1 Proof of Lemma 1

We start with the proof of Lemma 1. Recall for this proof that Ri :yx is the profile
derived from R by letting voter i reinforce y against x .

Lemma 1 A strategyproof SDS f is γ -randomly dictatorial if and only if there are non-
negative values γ1, . . . , γn such that

∑
i∈N γi = γ , and γi = minx,y∈A minR∈Ri :xy

f (Ri :yx , y) − f (R, y) where Ri :xy ⊆ Rn denotes the set of profiles in which voter i
prefers x the most and y the second most.

Proof We first note that γi = minx,y∈A minR∈Ri :xy f (Ri :yx , y) − f (R, y) if and only
if the following two conditions hold:

(i) f (Ri :yx , y) − f (R, y) ≥ γi for all alternatives x, y ∈ A and preference profiles
R in which voter i prefers x the most and y the second most, and

(ii) there are alternatives x, y ∈ A and a profile R such that voter i prefers x the most
and y the second most in R, and f (Ri :yx , y) − f (R, y) = γi .

We use these equivalent conditions in this proof.
“⇐”: Assume that f is a strategyproof SDS for which there are values γ1, . . . , γn

such that f (Ri :yx , y) − f (R, y) ≥ γi ≥ 0 for all alternatives x, y ∈ A, voters
i ∈ N , and profiles R such that voter i prefers x the most and y the second most
in R. Furthermore, we assume that for every voter i ∈ N , this inequality is tight for
at least one pair of alternatives x, y ∈ A and one profile R. We show next that f is
γ -randomly dictatorial for γ = ∑

i∈N γi .
As the first step, note that f (R, x) ≥ ∑

i∈S γi for every profile R, alternative x ∈ A,
and set of voters S ⊆ N such that all voters in S report x as their favorite alternative.
This follows by letting the voters i ∈ S one after another swap x with their second best
alternative y (note that y might be a different alternative for every voter i ∈ S). Using
our assumption on f , the probability of y has to increase by at least γi during such a
step, which means that the probability of x decreases by γi because of localizedness.
Furthermore, it holds that f (R′, x) ≥ 0, where R′ is the profile derived by letting all
voters in S swap their best two alternatives. Combining these two facts then implies
that f (R, x) ≥ ∑

i∈S γi . Moreover, this observation also shows that γ ≤ 1 because
f fails the definition of an SDS otherwise. Moreover, f is a random dictatorship if
γ = 1. This follows from the following reasoning: for all profiles R and alternatives
x ∈ A, it holds that f (R, x) ≥ ∑

i∈Sx γi , where Sx denotes the set of voters who
prefer x the most in R. Since the sets Sx partition N and γ = 1, this inequality
must be tight for every alternative; otherwise,

∑
x∈A f (R, x) >

∑
x∈A

∑
i∈Sx γi = 1,

contradicting the definition of an SDS. Hence, if γ = 1, f is 1-randomly dictatorial
as f = ∑

i∈N γi di , where di denotes the dictatorial SDS of voter i .
As next case, suppose that γ < 1 and define g = 1

1−γ

(
f − ∑

i∈N γi di
)
. Note that g

is a well-defined SDS: for all profiles R and alternatives x ∈ A, it holds that g(R, x) ≥
0 because f (R, x) ≥ ∑

i∈Sx γi . Moreover,
∑

x∈A g(R, x) = 1
1−γ

∑
x∈A f (R, x) −

∑
x∈A

∑
i∈N

γi
1−γ

di (R, x) = 1
1−γ

− γ
1−γ

= 1 for all profiles R. Next, we show that g
is strategyproof, which implies that f is γ ′-randomly dictatorial for γ ′ ≥ γ because
f = ∑

i∈N γi di + (1 − γ )g. For this, it suffices to prove that g is localized and
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non-perverse because of Theorem 2. Now, g is localized because the SDS f and all
SDSs di are localized. Hence, swapping two alternatives in the preferences of a voter
only affects the probabilities of these alternatives. For seeing that g is non-perverse,
consider a voter i , two alternatives x, y ∈ A and a profile R such that x is voter i’s k-th
best alternative and y is his k+1-th best one.Wewill show that g(Ri :yx , y) ≥ g(R, y).
Note for this that d j (Ri :yx ) = d j (R) for all j ∈ N\{i} because the preferences of these
voters did not change, and f (Ri :yx , y)− f (R, y) ≥ 0 because f is strategyproof. If x
and y are not the two best alternatives of voter i , then di (Ri :yx ) = di (R) = 0. Hence, it

immediately follows that g(Ri :yx , y)− g(R, y) = 1
1−γ

(
f (Ri :yx , y)− f (R, y)

)
≥ 0.

On the other hand, if x and y are voter i’s best and second best alternatives, we
have that di (Ri :yx , y) = 1 and di (R, y) = 0. Moreover, our assumptions imply
that f (Ri :yx , y) − f (R, y) ≥ γi . Thus, we calculate that g(Ri :yx , y) − g(R, y) =
1

1−γ

(
f (Ri :yx , y) − f (R, y) − γi (di (Ri :yx , y) − di (R, y))

)
≥ 1

1−γ

(
γi − γi

)
= 0.

This means that g is non-perverse.
Finally, we show that f cannot be γ ′-randomly dictatorial for γ ′ > γ . If this

was the case, we can represent f as f = ∑
i∈N γ ′

i di + (1 − γ ′)g′, where γ ′
i ≥

0 are values such that
∑

i∈N γ ′
i = γ ′ and g′ is a strategyproof SDS. Since γ ′ >

γ , there is a voter i with γ ′
i > γi . Furthermore, our assumptions state that there

are a profile R and alternatives x, y such that voter i prefers x the most and y the

second most in R, and f (Ri :yx , y) − f (R, y) = γi . This means that
(
f (Ri :yx , y) −

∑
j∈N γ ′

j d j (Ri :yx , y)
)

−
(
f (R, y) − ∑

j∈N γ ′
j d j (R, y)

)
= γi − γ ′

i < 0 because

di (Ri :yx , y) − di (R, y) = 1 and d j (Ri :yx , y) − d j (R, y) = 0 for all j ∈ N \ {i}.
Consequently, g′(Ri :yx , y)−g′(R, y) < 0whichmeans that g′ violates non-perversity
and therefore also strategyproofness. Hence, the assumption that f is γ ′-randomly
dictatorial for γ ′ > γ is wrong and f is γ -randomly dictatorial.

“⇒”: Let f be a strategyproof γ -randomly dictatorial SDS. We show next that
there are values γi that satisfy the requirements of the lemma. Since f is γ -randomly
dictatorial, it can be represented as f = γ d+(1−γ )g,whered is a randomdictatorship
and g is another strategyproof SDS. Moreover, as d is a random dictatorship, there are
values δ1, . . . , δn such that δi ≥ 0 for all i ∈ N ,

∑
i∈N δi = 1, and d = ∑

i∈N δi di .
Combining these two equations, we derive that f = γ

∑
i∈N δi di + (1 − γ )g. We

will show in the sequel that the values γi = γ δi satisfy all requirements of our lemma.
First, note that the conditions γi ≥ 0 for all i ∈ N and

∑
i∈N γi = γ are obviously

true.
Next, consider two alternatives x, y ∈ A, an arbitrary voter i ∈ N , and a profile

R in which voter i reports x as his best alternative and y as his second best one. It
holds that g(Ri :yx , y) − g(R, y) ≥ 0 because g is strategyproof and therefore non-
perverse, d j (Ri :yx , y) − d j (R, y) = 0 for all j ∈ N\{i} because �i :yx

j = � j , and

di (Ri :yx , y) − di (R, y) = 1 as y is voter i’s best alternative in Ri :yx but not in R.
Hence, f (Ri :yx , y)− f (R, y) ≥ γ δi = γi for all voters i ∈ N , alternatives x, y ∈ A,
and preference profiles R in which voter i reports x as his best and y as his second
best alternative.
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Finally, it remains to show that there is for every voter i ∈ N a pair of alternatives
x, y ∈ A and a profile R such that voter i prefers x the most and y the second most
in R and f (Ri :yx , y) − f (R, y) = γi . Assume this is not the case for some voter
i , i.e., that f (Ri :yx , y) − f (R, y) > γi for all alternatives x, y ∈ A and profiles R
in which x is voter i’s best alternative and y his second best one. Hence, let γ ′

i >

γi denote γ ′
i = minx,y∈A minR∈Ri :xy f (Ri :yx , y) − f (R, y). Moreover, we define

γ ′ = γ ′
i + ∑

j∈N\{i} γ j . We can now apply the arguments for the inverse direction to
derive that f is γ ′′-randomly dictatorial for some γ ′′ ≥ γ ′ > γ . This contradicts our
assumption that f is γ -randomly dictatorial as γ must be the maximal value such that
f can be represented as f = γ d + (1 − γ )g, where d is a random dictatorship and
g is another strategyproof SDS. Hence, it follows that for every voter i ∈ N , there
are a profile R and two alternatives x, y ∈ A such that f (Ri :yx , y) − f (R, y) = γi
and voter i reports x as his best alternative and y as his second best one in R. So, our
choice of γi satisfies all requirements of the lemma. 
�

A.2 Proofs of Proposition 1

Finally, we present proof of Proposition 1, i.e., we discuss our lower bound for the β-ex
post efficiency of strategyproof 0-randomly dictatorial SDSs. Since Theorem 1 allows
us to represent strategyproof SDSs as mixtures of duples and unilaterals, we focus
next on these two classes. To simplify the proof we put these two cases in auxiliary
lemmas.

First, we investigate the β-ex post efficiency of duples. Recall therefore that a duple
is a strategyproof SDS fxy such that fxy(R, z) = 0 for all alternatives z ∈ A\{x, y}.
Moreover, a mixture of duples f is defined as f (R, x) = ∑

y∈A\{x} λxy fxy(R, x),
where fxy = fyx and λxy = λyx denote non-negative weights that sum up to 1.
Finally, note that one duple for every pair is sufficient to represent every mixture of
duples because two duples fxy and f ′

xy can be merged into one.

Lemma 5 No SDS that can be represented as a mixture of duples satisfies β-ex post
efficiency for β < 1

m if m ≥ 3.

Proof Let f (R, x) = ∑
y∈A\{x} λxy fxy(R, x) be an SDS represented as a convex

combination of duples, where fxy = fyx is the duple SDS for the pair x and y and
λxy = λyx is the weight of fxy . Furthermore, we define Rx,y as a profile where all
voters report x as best alternative and y asworst one; all other alternatives can be ranked
arbitrarily. First, note that f (Rx,y, x) = f (Rx,z, x) and f (Ry,x , x) = f (Rz,x , x) for
all distinct x, y, z ∈ A. Thus, we also write Rx,· and R·,x to indicate that alternative
x is unanimously top-ranked or bottom-ranked, respectively.

As first step, we want to bound the average probability f (Rx,y, x) + f (Rx,y, y)
over all x, y ∈ A. In more detail, the subsequent equation shows that

∑
x∈A

∑
y∈A\{x}(

f (Rx,y, x) + f (Rx,y, y)
)

= 2(m − 1).

∑

x∈A

∑

y∈A\{x}
f (Rx,y, x) + f (Rx,y, y)
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= (m − 1)
∑

x∈A

f (Rx,·, x) + (m − 1)
∑

y∈A

f (R·,y, y)

= (m − 1)
∑

x∈A

∑

y∈A\{x}
λxy fxy(R

x,y, x) + λxy fxy(R
x,y, y)

= (m − 1)
∑

x∈A

∑

y∈A\{x}
λxy

= 2(m − 1)

The first equality follows because f (Rx,y, x) = f (Rx,·, x), f (Rx,y, y) =
f (R·,y, y) for all alternatives x, y ∈ A and every alternative x is both unan-
imously top-ranked and unanimously bottom-ranked in exactly (m − 1) of the
considered preferences profiles. For the second equality, we replace f (Rx,·, x) with∑

y∈A\{x} λxy fxy(Rx,y, x) and f (R·,y, y) with
∑

x∈A\{y} λxy fxy(Rx,y, y) according
to the definition of f . Furthermore, we swap the order of the sum for the second term.
Wederive the third equality from the fact that fxy(R, x)+ fxy(R, y) = 1 for all profiles
R. Finally, the last equality uses that

∑
x∈A

∑
y∈A\{x} λxy = 2, which follows from∑

x∈A f (R, x) = ∑
x∈A

∑
y∈A\{x} λxy fxy(R, x) = 1 and fxy(R, x)+ fxy(R, y) = 1

for all profiles R.
As a consequence of this observation, there is a pair of alternatives x, y ∈ A such

that f (Rx,y, x)+ f (Rx,y, y) ≤ 2
m .Otherwise, it holds that

∑
x∈A

∑
y∈A\{x} f (Rx,y, x)

+ f (Rx,y, y) >
∑

x∈A
∑

y∈A\{x} 2
m = 2(m − 1) contradicting our previous equation.

Hence,
∑

z∈A\{x,y} f (Rx,y, z) ≥ m−2
m . Since all alternatives z ∈ A\{x, y} are Pareto-

dominated by x , this entails that one of these alternative receives a probability of at
least m−2

m(m−2) = 1
m . We conclude therefore that f fails β-ex post efficiency for β < 1

m .
�

Next, we aim to show that no 0-randomly dictatorial SDS that can be represented
as a mixture of unilaterals satisfies β-ex post efficiency for β < 1

m . For this, we will
first discuss a construction that allows us to construct a strategyproof, 0-randomly
dictatorial, and β-ex post efficient SDS that satisfies several symmetry properties
based on another strategyproof, 0-randomly dictatorial, and β-ex post efficient SDS.
Unfortunately, we cannot use Lemma 2 here as this lemma does not preserve the 0-
random dictatorship of an SDS. For demonstrating this point, let A = {x1, . . . , xm}
denote the alternatives and consider the SDS f for n ≥ 3 voters andm = n alternatives
in which every voter i ∈ N assigns probability 1

n to his favorite alternative in A \
{xi }. Lemma 1 shows that this SDS is 0-randomly dictatorial because for all i ∈ N ,
the probability of xi does not increase if voter i reinforces it to his best alternative.
However, applying the construction of Lemma 2 to f results in the point voting
SDS defined by the scoring vector (m−1

nm , 1
nm , 0, . . . , 0). This SDS is not 0-randomly

dictatorial as pushing an alternative from second place to first place increases its
probability always by m−2

nm > 0.
Therefore, we discuss another construction in the next lemma that preserves 0-

random dictatorships while introducing new symmetries. Note that we require some
additional terminology for Lemma 6: we say that voter i or his unilateral SDS fi is
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0-randomly dictatorial for alternatives x, y if f (R) = f (Ri :yx ) for all preference
profiles R in which x is voter i’s best alternative and y is his second best alternative.

Lemma 6 Let f be a strategyproof and 0-randomly dictatorial SDS that satisfies β-
ex post efficiency for some β ∈ [0, 1] and that can be represented as a mixture of
unilaterals. Then, there is a strategyproof and 0-randomly dictatorial SDS f ∗ for

(m
2

)

voters that can be represented as a mixture of unilaterals and that is β-ex post efficient
for the same β as f . Moreover, f ∗ satisfies the following conditions:

(i) For every voter i ∈ N, there is a set {xi , yi } such that voter i is 0-randomly
dictatorial for xi , yi and {xi , yi } �= {x j , y j } if i �= j .

(ii) There is a constant δ such that f ∗(Ri :cb, c) − f ∗(R, c) = δ for all voters i ∈ N,
alternatives {a, b} = {xi , yi }, c ∈ A\{xi , yi }, and preference profiles R such that
voter i reports a as his best alternative, b as his second best one, and c as his third
best one.

(iii) If every voter i ∈ N reports xi and yi as their two best alternatives, there is a
scoring vector a = (a1, . . . , am) such that a1 = a2 ≥ 0, a3 ≥ · · · ≥ am ≥ 0, and
f ∗(R, x) = ∑

i∈N ar(x,�i ).

Proof Let β ∈ [0, 1] and let f denote a strategyproof 0-randomly dictatorial SDS that
is β-ex post efficient and that can be represented as a mixture of unilaterals. In the
sequel, we use f to construct the SDS f ∗ that satisfies all requirements of the lemma.
Note that this proof is quite involved and therefore, we use some auxiliary claims that
are proven in the end.

We start by representing f as f (R) = ∑
i∈N λi fi (�i ), where fi denotes the

unilateral SDS of voter i and λi ≥ 0 is its weight. Note that we interpret unilaterals in
this proof as SDSs that take a single preference relation as input. This is possible as
unilaterals only rely on the preferences of a single voter. Claim 1 states that for every
voter i ∈ N there are alternatives x , y such that fi is 0-randomly dictatorial for x and
y. Even though a voter can be 0-randomly dictatorial for multiple pairs of alternatives,
we associate from now on every voter i with exactly one such pair xi , yi . This pair
can be chosen arbitrarily as it will not affect the rest of the proof.

Next, we define the unilaterals f τ
i as f τ

i (R, x) = fi (τ (R), τ (x)) for all voters
i ∈ N and permutations τ : A → A. Claim 2 states that every SDS f τ

i is strategyproof
and 0-randomly dictatorial for τ−1(xi ), τ−1(yi ), where τ−1 is the inverse permutation
of τ and xi and yi are the alternatives associated with fi . Just as the SDSs fi , each
f τ
i can be 0-randomly dictatorial for multiple pairs of alternatives, but we associate
f τ
i from now on only with the pair τ−1(xi ), τ−1(yi ). Then, we partition the SDSs f τ

i
with respect to the alternatives τ−1(xi ), τ−1(yi ). In more detail, let Fxy = { f τ

i : i ∈
N , τ ∈ T, {τ−1(xi ), τ−1(yi )} = {x, y}} denote the multi-set of SDSs f τ

i that are
associated with x and y. Note that all unilaterals in Fxy are 0-randomly dictatorial for
x, y. Furthermore, thesemulti-sets partition the SDSs f τ

i as each f τ
i is only associated

with a single pair of alternatives. Even more, there are for every fi exactly 2(m − 2)!
permutations τ such that {τ−1(xi ), τ−1(yi )} = {x, y}. Hence, we derive that each set
Fxy contains 2n(m − 2)! unilaterals.

In the next step, we merge all unilaterals in a multi-set Fxy into a single unilateral.
Thus, we define the unilateral fxy(� j ) as fxy(� j ) = ∑

f τ
i ∈Fxy

λi
2(m−2)! f

τ
i (� j ), i.e.,
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fxy chooses each SDS f τ
i ∈ Fxy with a probability proportional to λi . Observe that

fxy is strategyproof because it is a mixture of strategyproof SDSs and it is 0-randomly
dictatorial for x, y because all unilaterals in Fxy are 0-randomly dictatorial for these
alternatives. Based on the SDS fxy , we can finally define the SDS f ∗ for n∗ = (m

2

)

voters. To this end, let N∗ denote the electorate of f ∗. We associate each voter j ∈ N∗
with a different pair of alternatives x, y ∈ A and set f ∗

j = fxy . Then, the SDS f ∗
chooses one of the voters j ∈ N∗ uniformly at randomand returns f ∗

j (� j ) = fxy(� j ),

i.e., f ∗(R) = 1
n∗

∑n∗
j=1 f ∗

j (� j ). Clearly, f ∗ is strategyproof because it is a mixture of
strategyproof SDSs.Moreover, it is 0-randomly dictatorial because every voter j ∈ N∗
is 0-randomly dictatorial for the pair of alternatives x, y with which he is associated.
Furthermore, Claim 3 shows that f ∗ is β-ex post efficient for the same β as f .

It remains to show that theSDS f ∗ satisfies the properties (i), (ii), and (iii). First, note
that it satisfies (i) by construction as every voter is 0-randomly dictatorial for a different
pair of alternatives. For (ii) and (iii), we show first the auxiliary claim that fxy(R, x) =
fτ(x)τ (y)(τ (R), τ (x)) for all permutations τ : A → A, preference profiles R, and
alternatives x ∈ A. Hence, we fix two arbitrary alternatives x, y and a permutation
τ : A → A.Moreover, consider an arbitrary SDS f τ ′

i ∈ Fxy and note that f τ ′
i (R, x) =

fi (τ ′(R), τ ′(x)) = f (τ ′(τ−1(τ (R))), τ ′(τ−1(τ (x)))) = f τ ′◦τ−1

i (τ (R), τ (x)). Next,

observe that f τ ′◦τ−1 ∈ Fτ(x),τ (y). This is true because f τ ′
i ∈ Fxy implies that

{τ ′−1(xi ), τ ′−1(yi )} = {x, y} or equivalently that {τ ′(x), τ ′(y)} = {xi , yi }. Therefore,
{τ ′(τ−1(τ (x))), τ ′(τ−1(τ (y)))} = {xi , yi } which shows that f τ ′◦τ−1 ∈ Fτ(x)τ (y).
Finally, we derive the following equality for all profiles R and alternatives x ∈ A.

fxy(R, x) =
∑

f τ ′
i ∈Fxy

λi

2(m − 2)! f
τ ′
i (R, x)

=
∑

f τ ′
i ∈Fxy

λi

2(m − 2)! f
τ ′◦τ−1

i (τ (R), τ (x))

=
∑

f τ̂
i ∈Fτ (x)τ (y)

λi

2(m − 2)! f
τ̂
i (τ (R), τ (x))

= fτ(x)τ (y)(τ (R), τ (x)).

In the third step of this equation, we define τ̂ = τ ′ ◦ τ−1. Moreover, we use here
the fact that τ ′ ◦ τ−1 �= τ ′′ ◦ τ−1 if τ ′ �= τ ′′, which implies that every SDS f τ

i ∈ Fxy
is mapped to a unique element f τ̂

i ∈ Fτ(x)τ (y). This proves the auxiliary claim.
Subsequently, we show that f ∗ satisfies condition (ii) and consider therefore an

arbitrary voter i ∈ N∗. Moreover, let xi , yi denote the alternatives associated with f ∗
i ,

i.e., f ∗
i = fxi yi . Finally, consider a profile R in which voter i prefers xi the most, yi the

second most, and some arbitrary alternative zi ∈ A \ {xi , yi } the third most. We define
δ = f ∗(Ri :zi yi , zi )− f ∗(R, zi ). First, note that Ri :zi yi and R only differ in the prefer-
ences of voter i and thus, f ∗(Ri :zi yi , zi ) − f ∗(R, zi ) = f ∗

i (�i :zi yi
i , zi ) − f ∗

i (�i , zi ).
Next, consider a second voter j ∈ N∗ ( j = i is possible), let x j and y j denote
the alternatives which are associated with f ∗

j , and let z j ∈ A \ {x j , y j } denote
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another alternative. Moreover, define R′ as a profile such that voter j ranks x j
first, y j second, and z j third in R′, and let R+ = (R′) j :z j y j . We show in the
sequel that f ∗(R+, z j ) − f ∗(R′, z j ) = δ, which proves claim (ii). Thus, note that
f ∗(R+, z j ) − f ∗(R′, z j ) = f ∗

j (�+
j , z j ) − f ∗

j (�′
j , z j ) because f ∗ is a mixture of

unilaterals and only voter j changes his preference relation. Next, let τ denote a permu-
tation such that τ(�′

j ) = �i , which means in particular that τ(x j ) = xi , τ(y j ) = yi ,
and τ(z j ) = zi . Now, our auxiliary claim proves (ii) since

f ∗
j (�+

j , z j ) − f ∗
j (�′

j , z j ) = fx j y j ((�′
j )

j :z j y j , z j ) − fx j y j (�′
j , z j )

= fτ(x j )τ (y j )(τ ((�′
j )

j :z j y j ), τ (z j )) − fτ(x j )τ (y j )(τ (�′
j ), τ (z j ))

= fxi yi (�i :zi yi
i , zi ) − fxi yi (�i , zi )

= δ.

Finally, we discuss why f ∗ satisfies condition (iii). For this, consider two voters
i, j ∈ N∗ and let xi , yi and x j , y j denote the alternatives associated with f ∗

i and
f ∗
j , respectively. We explicitly allow that i = j . Furthermore, consider two prefer-

ence relations �i and � j such that xi and yi are top-ranked in �i and x j and y j are
top-ranked in � j . Finally, let τ denote a permutation such that �i = τ(� j ) and let
zki and zkj denote the k-th ranked alternative of voter i and j , respectively. Our aux-

iliary claim shows immediately that f ∗
i (�i , zki ) = f ∗

j (� j , zkj ). This means that for
every k ∈ {1, . . . ,m}, the k-th ranked alternative receives the same probability from
every voter if they report the alternatives xi , yi as their favorite choice. Hence, there
is a scoring vector a = (a1, . . . , am) such that f ∗(R, x) = ∑

i∈N ar(x,�i ) for such
profiles. Moreover, it follows from strategyproofness that a3 ≥ a4 ≥ . . . am and from
the definition of an SDS that ai ≥ 0 for all i ∈ {1, . . . ,m}. Finally, a1 = a2 since for
all i ∈ N∗, the unilateral f ∗

i is 0-randomly dictatorial for xi and yi . Hence, there is a
scoring vector that meets all requirements of (iii).

Claim 1: For every voter i , there exists a pair of alternatives xi , yi such that
f (R) = f (Ri :yi xi ) for all preference profiles R in which voter i reports xi as best
alternative and yi as second best one.

Since f is a strategyproof and 0-randomly dictatorial SDS, Lemma 1 shows that
for every voter i ∈ N , there is a pair of alternatives xi , yi and a preference profile
R such that f (R, y) = f (Ri :yi xi , y), voter i top-ranks xi in R, and second-ranks yi .
First, note that localizedness immediately generalizes this claim to f (R) = f (Ri :yi xi ).
Moreover, since only voter i’s preference changes and f is a mixture of unilaterals,
we also infer that fi (R) = fi (Ri :yi xi ) where fi is the unilateral of voter i . We show
in the sequel that f (R̄) = f (R̄i :yi xi ) for all preference profiles R̄ in which voter i
reports xi and yi as his best and second best alternatives.

Since f is a mixture of unilaterals, it follows that f (R̄) = f (R̄i :yi xi ) if
fi (�̄i ) = fi (�̄i :yi xi

i ) because �̄ j = �̄i :yi xi
j for all j ∈ N\{i}. Moreover, it follows

from strategyproofness, which entails localizedness, that fi (�̄i , z) = fi (�i , z) =
fi (�i :yi xi

i , z) = fi (�̄i :yi xi
i , z) for z ∈ {xi , yi } since �̄i and �i only differ in the

order of the alternatives in A \ {xi , yi }. On the other hand, �̄i and �̄i :yi xi
i differ only
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in the preference over xi and yi , so another application of localizedness shows that
fi (�̄i ) = fi (�̄i :yi xi

i ). Hence, it holds indeed that f (R̄) = f (R̄i :yi xi ) for all preference
profiles in which voter i reports xi and yi as his two best alternatives.

Claim 2: The SDS f τ
i (R, x) = fi (τ (R), τ (x)) is strategyproof and 0-randomly

dictatorial for τ−1(xi ), τ−1(yi ).
First, note that f τ

i is strategyproof as every manipulation of f τ
i can be mapped

to a manipulation of fi . In more detail, if voter i can manipulate f τ
i by switching

from R to R′, he can also manipulate fi by deviating from τ(R) to τ(R′). This is
true because a manipulation requires an alternative x such that

∑
y�i x f τ

i (R′, y) >
∑

y�i x f τ
i (R, y), which entails by definition of f τ

i that
∑

y�i x fi (τ (R′), τ (y)) >∑
y�i x fi (τ (R), τ (y)). Finally, since y �i x in R if and only if τ(y) �i τ(x) in τ(R),

we derive that voter i can manipulate fi by deviating from τ(R) to τ(R′) if he can
manipulate f τ

i by deviating from R to R′.
Furthermore, f τ

i is a 0-randomly dictatorial SDS because fi is one: Claim 1
shows that for every voter i , there exists a pair of alternatives xi , yi such that
f (R) = f (Ri :yi xi ) for all preference profiles R inwhich voter i prefers xi themost and
yi the second most. It follows from this claim that f τ

i (τ−1(R), τ−1(x)) = fi (R, x) =
fi (Ri :yi xi , x) = f τ

i (τ−1(Ri :yi xi ), τ−1(x)) for all x ∈ A, where τ−1 is the inverse per-
mutation of τ , i.e., τ−1(τ (x)) = x for all x ∈ A. Therefore, f τ

i (τ−1(R), τ−1(xi )) =
f τ
i (τ−1(Ri :yi xi ), τ−1(xi )) and f τ

i (τ−1(R), τ−1(yi )) = f τ
i (τ−1(Ri :yi xi ), τ−1(yi )).

Moreover, the preference profiles τ−1(R) and τ−1(Ri :yi xi ) only differ in the order of
the two best alternatives τ−1(x) and τ−1(y) of voter i and the proof of Claim 1 entails
thus that f τ

i is 0-randomly dictatorial for these two alternatives.

Claim 3: The SDS f ∗ = 1
n∗

∑n∗
i=1 f ∗

i is β-ex post efficient for the same β as f .
To prove this claim, we construct first another SDS f + and show that this SDS is

β-ex post efficient for the same β as f . As the second step, we show that f ∗ can also
be derived from f + by merging voters, and thus f ∗ inherits the β-ex post efficiency of
f +. Before defining f +, we introduce the SDS f τ : just as the SDSs f τ

i , it is defined
as f τ (R, x) = f (τ (R), τ (x)). In particular, f τ is β-ex post efficient for the same β

as f . This follows by considering an arbitrary profile R in which an alternative x is
Pareto-dominated. It is easy to see that τ(x) is then Pareto-dominated in τ(R), and
we derive therefore that f τ (R, x) = f (τ (R), τ (x)) ≤ β because f is β-ex post effi-
cient. Next, we define the SDS f + for nm! voters as follows: we partition the voters
{1, . . . , nm!} into m! sets N1, . . . , Nm! with |Ni | = n and associate with every set a
different permutation τi : A → A. Then, f +(R) = 1

m!
∑m!

i=1 f τi (RNi ), where RNi

denotes the restriction of R to the voters in Ni . Observe that f + is β-ex post efficient
for the same β as f because an alternative x that is Pareto-dominated in R is also
Pareto-dominated in all RNi and all f

τi are β-ex post efficient. Hence, it follows that
f +(R, x) = 1

m!
∑m!

i=1 f τi (RNi , x) ≤ 1
m!

∑m!
i+1 β = β.

Next, we show that f + and f ∗ satisfy β-ex post efficiency for the same β.
Therefore, we change the representation of f +. The central observation here is that
f τ = ∑

i∈N λi f τ
i . Hence, we can also associate every voter j ∈ {1, . . . , nm!} with

an index i ∈ N and a permutation τ such that each index-permutation pair is assigned
exactly once. Thus, define f +

j = f τ
i and λ+

j = λi
m! (i.e., the weight of f τ

i is the
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proportional to the weight of fi in the original SDS f ). Then, we can write f + as
f +(R) = ∑nm!

j=1 λ+
j f +

j (� j ). Next, note that every f τ
i appears once in the defini-

tion of f + and once in the union of all Fxy . Therefore, we derive that f +(R) =
1
n∗

∑
{x,y}∈(A2)

∑
f τ
i ∈Fxy

λi
2(m−2)! f

τ
i (�i ), where n∗ = (m

2

)
. Next, we restrict our atten-

tion to profiles R such that for all {x, y} ∈ (A
2

)
, all voters j with f j ∈ Fxy submit the

same preference relation. In this case, we may replace the preferences of all voters j
with f j ∈ Fxy with a single preference relation. Then, there are exactly

(m
2

)
voters left,

each ofwhich is associatedwith a different pair of alternatives. In particular, we can use
the definition of fxy(�i ) = ∑

f τ
i ∈Fxy

λi
2(m−2)! f

τ
i (�i ) now as we apply all unilateral

SDSs in Fxy to the same preference relation�i . Hence, f + returns the same outcomes
as f ∗ if for each {x, y} ∈ (A

2

)
, all voters j with f j ∈ Fxy report the same preferences.

Since f + is β-ex post efficient, it follows therefore also that f ∗ is β-ex post efficient.
�
Next, we use Lemma 6 to prove that no 0-randomly dictatorial SDS that can be

represented as a mixture of unilaterals is β-ex post efficient for β < 1
m .

Lemma 7 No 0-randomly dictatorial SDS that can be represented as a mixture of
unilaterals satisfies β-ex post efficiency for β < 1

m if m ≥ 3.

Proof Let the SDS f denote a mixture of unilaterals. First, we apply Lemma 6 to
construct the SDS f ∗ as specified by this lemma. In the sequel, we show that f ∗ is
β-ex post efficient for β ≥ 1

m and the same therefore holds for f . In our proof, we
will construct a profile R∗ in which every alternative must receive a probability of at
most β which leads to a contradiction if β < 1

m . Let N with |N | = (m
2

)
be the set of

voters of f ∗. Furthermore, Lemma 6 (i) states that every voter j ∈ N is associated
with a different pair of alternatives {x j , y j } for which he is 0-randomly dictatorial.

First, we explain the construction of an auxiliary profile R. For this profile, we
choose an arbitrary pair of alternatives a, b and assume without loss of generality
that voter 1 is 0-randomly dictatorial for a, b, i.e., {a, b} = {x1, y1}. Voter 1 submits
the preference relation �1 = b �1 a �1 . . . in R. Furthermore, there are m − 2
other voters j ∈ N with a ∈ {x j , y j } and b /∈ {x j , y j }. We assume without loss of
generality that these are the voters in {2, . . . ,m−1} and that a = x j . The preferences
of the voters j ∈ {2, . . . ,m − 2} in R is � j = y j � j a � j b � j . . . . Also, there
are m − 2 voters j with a /∈ {x j , y j } and b ∈ {x j , y j }. We assume that these voters
are the ones in {m, . . . , 2m − 3} and that b = y j . The preferences of these voters
is � j = b � j x j � j a � j . . . . Finally, a, b /∈ {x j , y j } for the remaining voters
j ∈ {2m − 2, . . . ,

(m
2

)}. These voters report � j = x j � j y j � j b � j a � j . . . in
R. Note that if m = 3, there are no voters of the fourth type. Furthermore, every voter
j ∈ N ranks the alternatives x j , y j for which he is 0-randomly dictatorial at the top.
The full profile for m = 4 is shown in Fig. 4.

We show next that f ∗(R, a) ≤ β by constructing a new preference profile R′
such that f ∗(R, a) = f ∗(R′, a) ≤ β. For the construction of R′, let all voters in
the second group j ∈ {2, . . . ,m − 1} swap a and b, and all voters in the third group
j ∈ {m, . . . , 2m−3} swap a and x j . The resulting preference profile is shown in Fig. 5
for the case that m = 4. It is easy to see that b Pareto-dominates a in R′ and, as f ∗ is
β-ex post efficient, f ∗(R′, a) ≤ β. Alternative a was moved from third to second and
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Fig. 4 The preference profile R from the proof of Lemma 7 for m = 4. There are four groups of voters.
The first group contains only the first voter who is 0-randomly dictatorial for a and b. The next two groups
have both m − 2 voters and are 0-randomly dictatorial for one of a and b. The last group contains the
remaining

(m−2
2

)
voters that are not 0-randomly dictatorial a or b. All voters have the pair for which they

are 0-randomly dictatorial ranked at the top

Fig. 5 The preference profile R′ for m = 4 alternatives that results from R by swapping the second and
third alternatives of voters j ∈ {2, . . . , 2m − 3}. Alternative a is Pareto-dominated by alternative b

from second to third place bym−2 voters. It follows therefore from Lemma 6 (ii) and
localizedness that the probability that alternative a gains when m − 2 voters swap it
from third to second place is the same as the probability that a looseswhenm−2 voters
swap it from second to third place. Thus, we derive that f ∗(R, a) = f ∗(R′, a) ≤ β.

Finally, note that in R, all voters j ∈ N report the pair x j , y j for which they are
0-randomly dictatorial as their two best alternatives. Hence, Lemma 6 (iii) entails the
existence of a scoring vector (a1, . . . , am) such that a1 = a2 ≥ 0, a3 ≥ · · · ≥ am ≥ 0,
and f ∗(R, x) = ∑

j∈N ar(x,� j ) for all x ∈ A. In particular, observe that the probability
of an alternative only depends on its rank vector r∗(x, R), which contains the rank of
x with respect to every voter in increasing order. The rank vector of alternative a in R
is

r∗(a, R) = (

m−1
︷ ︸︸ ︷
2, . . . , 2,

m−2
︷ ︸︸ ︷
3, . . . , 3,

(m−2
2 )

︷ ︸︸ ︷
4, . . . , 4).

Furthermore, observe that f ∗(R̄, x) ≤ f ∗(R, a) in every profile R̄ in which (i)
each voter j ∈ N reports the alternatives x j , y j as his two best alternatives and (ii)
r∗(x, R̄)k ≥ r∗(a, R)k for all k ∈ {m, . . . ,

(m
2

)}. Condition (i) implies that f ∗ can be
computed based on the scoring vector (a1, . . . , am). Furthermore, it implies that every
alternative x ∈ A is among the two best alternatives of exactlym−1 voters, and since
a1 = a2, it follows that we can ignore these entries when comparing the probability
of a in R with the probability of x in R̄. Finally, the claim follows as a3 ≥ · · · ≥ am
and r∗(x, R̄)k ≥ r∗(a, R)k for all k ∈ {m, . . . ,

(m
2

)}.
We use this fact to construct a new profile R∗ where f ∗(R∗, x) ≤ f ∗(R, a) ≤ β

for every x ∈ A. Let every voter j ∈ N report the alternatives x j , y j for which he
is 0-randomly dictatorial as his two best alternatives. Furthermore, we distribute all
other alternatives such that no alternative is ranked third by more than m − 2 voters.
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This is possible as there are m ≥ 3 alternatives and m(m−1)
2 voters. It follows from

the construction that r∗(x, R∗)k ≥ r∗(a, R)k for every k ∈ {m, . . . ,
(m
2

)} and every
x ∈ A. Hence, we derive that f ∗(R∗, x) ≤ f ∗(R, a) ≤ β for every x ∈ A. If β < 1

m ,
this entails that

∑
x∈A f ∗(R∗, x) < 1, a contradiction. Thus, f ∗ cannot satisfy β-ex

post efficiency for β < 1
m and f therefore violates this axiom, too. This shows that

there exists no 0-randomly dictatorial SDS that can be represented as a mixture of
unilaterals and that satisfies β-ex post efficiency for β < 1

m when m ≥ 3. 
�
Finally, we use Lemmas 5 and 7 to prove that there are no 0-randomly dictatorial

SDSs that satisfy β-ex post efficiency for β < 1
m .

Proposition 1 No strategyproof SDS that is 0-randomly dictatorial satisfies β-ex post
efficiency for β < 1

m if m ≥ 3.

Proof Let f denote a strategyproof SDS for n voters and m ≥ 3 alternatives that is
0-randomly dictatorial. Our argument focuses mainly on the profiles Rx,y , in which
all voters report x as their best choice and y as their second best choice. The reason
for this is that if f (R, y) > β for some profile R in which y is Pareto-dominated
by x , then f (Rx,y, y) > β. This is a direct consequence of strategyproofness as we
can transform R into Rx,y by reinforcing x and y. Hence, non-perversity implies that
f (Rx,y, y) ≥ f (R, y) > β. Moreover, localizedness entails that the order of the
alternatives z ∈ A\{x, y} in Rx,y is not important as it does not affect the probabilities
of x and y.

Next, we use Theorem 1 to represent f as mixture of duples and unilaterals, i.e.,
f = λ funi+(1−λ) fduple, whereλ ∈ [0, 1], funi is amixture of unilaterals, and fduple is
a mixture of duples.While Lemmas 5 and 7 imply that funi and fduple are not β-ex post
efficient for β < 1

m , this does not imply that f violates β-efficiency for β < 1
m , too.

The reason for this is that funi and fduple may violate β-ex post efficiency for different
profiles or alternatives. We solve this problem by constructing a strategyproof SDS
f ∗ = λ f ∗

uni + (1 − λ) f ∗
duple that is 0-randomly dictatorial and β-ex post efficient

for the same β as f , and for which f ∗
uni and f ∗

duple denote mixtures of unilaterals

and duples such that f ∗
uni(R

x,y, y) = f ∗
uni(R

τ(x),τ (y), τ (y)) and f ∗
duple(R

x,y, y) =
f ∗
duple(R

τ(x),τ (y), τ (y)) for all permutations τ : A → A.
For this construction, we define f τ as f τ (R, x) = f (τ (R), τ (x)) for every permu-

tation τ : A → A. We construct the SDS f ∗ for m!n voters as follows: we partition
the electorate in m! sets Nk with |Nk | = n and associate each of these sets with a
different permutation τk : A → A. Then, we choose one of these sets Nk uniformly
at random and consider from now on only the preference profile RNk defined by the
voters in Nk . Finally, return f τk (RNk ), where τk denotes the permutation associated
with Nk . More formally, f ∗(R) = 1

m!
∑m!

k=1 f τk (RNk ).
First, note that f ∗ is 0-randomly dictatorial because of Lemma 1. In more detail,

since f is 0-randomly dictatorial, there is for every voter i a profile R and alternatives
x, y such that voter i prefers x the most and y the second most in R, and f (R, y) =
f (Ri :yx , y). Consequently, there are such profiles and alternatives for every voter in
each SDS f τ . Finally, we derive that such profiles and alternatives exist also for f ∗.
For a voter i ∈ Nk , the corresponding alternatives x, y and the preferences of the
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voters in Nk are the same as for f τk . The preferences of the remaining voters do not
matter. If f ∗ does not choose Nk in the first step, the preferences of voter i do not
matter, and if f ∗ chooses Nk , it only computes f τk (RNk ). Hence, if voter i now swaps
x and y, the outcome of f ∗ does not change as the outcome of f τk does not change.
Consequently, Lemma 1 implies that f ∗ is 0-randomly dictatorial.

Next, observe that f ∗(R) = 1
m!

∑m!
k=1 f τk (RNk ) is strategyproof as it is a mixture

of strategyproof SDSs. In particular, we can interpret each term f τk (RNk ) as SDS for n
voters that ignores the preferences of the voters not in Nk . It follows immediately from
this interpretation that f ∗ is strategyproof because all f τk are strategyproof. Hence, we
canuseTheorem1 to represent f ∗ as f ∗ = λ f ∗

uni+(1−λ) f ∗
duple,where f ∗

uni is amixture
of unilaterals and f ∗

duple is a mixture of duples. In more detail, the following equation

shows that f ∗
uni(R) = 1

m!
∑m!

k=1 f τk
uni(RNk ) and f ∗

duple(R) = 1
m!

∑m!
k=1 f τk

duple(RNk ),

where f τk
uni and f τk

duple are defined analogously to f τk .

f ∗(R) = 1

m!
m!∑

k=1

f τk (RNk )

= 1

m!
m!∑

k=1

λ f τk
uni(RNk ) + (1 − λ) f τk

duple(RNk )

= λ
1

m!
m!∑

k=1

f τk
uni(RNk ) + (1 − λ)

1

m!
m!∑

k=1

f τk
duple(RNk )

= λ f ∗
uni(R) + (1 − λ) f ∗

duple(R)

Note that the definitions of f ∗
uni and f ∗

duple entail that f
∗
uni(R

x,y, y) = f ∗
uni(R

ρ(x),ρ(y),

ρ(y)) and f ∗
duple(R

x,y, y) = f ∗
duple(R

ρ(x),ρ(y), ρ(y)) for every permutation ρ : A →
A. For f ∗

uni, this follows from the following equations and a symmetric argument holds
for f ∗

duple.

f ∗
uni(R

x,y, y) = 1

m!
m!∑

k=1

f τk
uni(R

x,y
Nk

, y)

= 1

m!
m!∑

k=1

funi(τk(R
x,y
Nk

), τk(y))

= 1

m!
m!∑

k=1

funi(τk(ρ(Rx,y
Nk

)), τk(ρ(y)))

= f ∗
uni(R

ρ(x),ρ(y), ρ(y)))

The first two equations rely only on our definitions. The third equation follows
because {τ ◦ ρ : τ ∈ T} = T = {τk : k ∈ {1, . . . ,m!}} for every permutation ρ : A →
A, where T is the set of all permutations on A.
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Finally, we show that f ∗ violates β-ex post efficiency for every β < 1
m , which

entails that f also violates this axiom.We use Lemma 5 and Lemma 7 for this as these
lemmas imply that f ∗

duple and f ∗
uni violate β-ex post efficiency. Note for this that f ∗

uni
is 0-randomly dictatorial as otherwise, f ∗ cannot be 0-randomly dictatorial. Hence,
there are profiles R1 and R2, and alternatives x1, y1, x2, and y2 such that xi Pareto-
dominates yi in Ri for i ∈ {1, 2}, f ∗

uni(R
1, y1) ≥ 1

m , and f ∗
duple(R

2, y2) ≥ 1
m . We now

derive from strategyproofness that f ∗
uni(R

x1,y1 , y1) ≥ 1
m and f ∗

duple(R
x2,y2 , y2) ≥ 1

m .
Finally, it follows from the symmetry of f ∗

uni and f ∗
duple with respect to the profiles R

x,y

that f ∗
uni(R

x,y, y) ≥ 1
m and f ∗

duple(R
x,y, y) ≥ 1

m for all alternatives x, y ∈ A. Conse-

quently, we conclude that f ∗(Rx,y, y) = λ f ∗
uni(R

x,y, y)+(1−λ) f ∗
duple(R

x,y, y) ≥ 1
m

for all x, y ∈ A. This means that f ∗ and therefore also f violate β-ex post efficiency
for every β < 1

m . 
�
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