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Abstract

Social decision schemes (SDSs) map the preferences of a group of voters over some
set of m alternatives to a probability distribution over the alternatives. A seminal
characterization of strategyproof SDSs by Gibbard (Econometrica 45(3):665-681,
1977) implies that there are no strategyproof Condorcet extensions and that only
random dictatorships satisfy ex post efficiency and strategyproofness. The latter is
known as the random dictatorship theorem. We relax Condorcet-consistency and ex
post efficiency by introducing a lower bound on the probability of Condorcet winners
and an upper bound on the probability of Pareto-dominated alternatives, respectively.
We then show that the randomized Copeland rule is the only anonymous, neutral,
and strategyproof SDS that guarantees the Condorcet winner a probability of at least
2/m. Secondly, we prove a continuous strengthening of Gibbard’s random dictatorship
theorem: the less probability we put on Pareto-dominated alternatives, the closer to a
random dictatorship is the resulting SDS. Finally, we show that the only anonymous,
neutral, and strategyproof SDSs that maximize the probability of Condorcet winners
while minimizing the probability of Pareto-dominated alternatives are mixtures of the
uniform random dictatorship and the randomized Copeland rule.

1 Introduction

A pervasive phenomenon in collective decision making is strategic manipulation:
voters may be better off by lying about their preferences than reporting them truthfully.
This is problematic for a number of reasons: for one, spending resources on finding out
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other voters’ preferences and identifying beneficial manipulations is rewarded. These
resources are typically not spread evenly across society and thus, voting becomes
unfair. Perhaps more importantly, when a voting rule is manipulable, all of its desirable
properties are in doubt because they were shown to hold under the assumption that
all voters submit their preferences truthfully. Hence, it is desirable that voting rules
incentivize voters to report their true preferences. Unfortunately, Gibbard (1973) and
Satterthwaite (1975) have shown independently that dictatorships are the only non-
imposing voting rules that are immune to strategic manipulations. However, these
voting rules are unacceptable for most applications as they invariably return the most
preferred alternative of a fixed voter.

A natural follow-up question is whether more positive results can be obtained when
allowing for randomization. Instead of choosing a single winner deterministically,
randomized voting rules return a lottery over the alternatives and the final winner is
drawn according to this lottery. Gibbard (1977) calls these randomized voting rules
social decision schemes (SDSs) and motivates them as follows:

“What is meant here by a combination of voting with chance? Suppose a deci-
sion is made in the following way: first, voting of some kind is used to pick out
a set of one or more winning alternatives; then, in case there is more than one
such winner, one of them is chosen by lot. Such a scheme, in effect, uses the way
people vote to determine the probability each alternative has of being adopted.
This I shall take as the defining feature of a scheme which combines voting
with chance: on the basis of the way people vote, it assigns to each alternative a
probability of being adopted.” (Gibbard 1977, p. 665)

Gibbard defined SDSs to be strategyproof if no voter can obtain more expected utility
for any utility representation that is consistent with his ordinal preference relation.
He then gave a complete characterization of strategyproof SDSs in terms of convex
combinations of two types of restricted SDSs, so-called unilaterals and duples. An
important consequence of this result is the random dictatorship theorem: random dic-
tatorships are the only ex post efficient and strategyproof SDSs. Random dictatorships
are convex combinations of dictatorships, i.e., each voter is selected with some fixed
probability, and the top choice of the chosen voter is returned.

While this result may seem like an extension of the Gibbard—Satterthwaite theorem
to the randomized context, it is in fact much more positive. In contrast to deterministic
dictatorships, the uniform random dictatorship, in which every agent is picked with the
same probability, enjoys a high degree of fairness and is in fact used in subdomains
of social choice that are concerned with the allocation of private goods (see, e.g.,
Abdulkadiroglu and Sonmez 1998; Che and Kojima 2010). Gibbard’s theorem has
been the point of departure for a large body of follow-up work. In addition to several
alternative proofs of the theorem (e.g., Duggan 1996; Nandeibam 1997; Tanaka 2003),
there have been extensions with respect to manipulations by groups (Barbera 1979a),
cardinal preferences (e.g., Hylland 1980; Dutta et al. 2007; Nandeibam 2013), weaker
notions of strategyproofness (e.g., Benoit 2002; Sen 2011; Aziz et al. 2018; Brandl
et al. 2018; Brandt et al. 2023a), and restricted domains of preferences (e.g., Dutta
et al. 2002; Chatterji et al. 2014; Brandt et al. 2023b).
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1.1 Objectives

The goal of this paper is to investigate whether there are attractive strategyproof SDSs
other than random dictatorships when relaxing classic axioms. A problem of random
dictatorships is that they do not allow for compromise. For example, suppose that vot-
ers strongly disagree on the best alternative but have a common second best alternative.
In such a scenario, it seems reasonable to choose the second best alternative, but this
alternative would never be considered by random dictatorships. On a formal level,
this observation is related to the fact that random dictatorships violate Condorcet-
consistency, which demands that an alternative that beats all other alternatives in
pairwise majority comparisons should be selected. Unfortunately, it is a simple conse-
quence of Gibbard’s work that no strategyproof SDS satisfies Condorcet-consistency.
Our first objective thus is to study how much probability a strategyproof SDS can
guarantee to the Condorcet winner.

The point of departure for our second objective is that the random dictatorship
theorem demands that Pareto-dominated alternatives always receive probability 0. In
particular, Gibbard’s theorem does not preclude the possibility of a strategyproof SDS
that is axiomatically attractive except that it will select Pareto-dominated alternatives
with astronomically small probability. If this probability is, for example, 10719, the
SDS will be ex post efficient for all practical matters and virtually indistinguishable
from an ex post efficient SDS. We thus investigate whether letting Pareto-dominated
alternatives be selected with negligible probability allows for more interesting SDSs
than random dictatorships.

1.2 Contribution

In order to formally study these problems, we introduce relaxations of Condorcet-
consistency and ex post efficiency. In more detail, we say that an SDS is a-Condorcet-
consistent if a Condorcet winner will be selected with a probability of at least o and
B-ex post efficient if a Pareto-dominated alternative will be selected with a probability
no more than . Moreover, we say a strategyproof SDS is y -randomly dictatorial if it
can be represented as a convex combination of two strategyproof SDSs, one of which
is a random dictatorship that will be selected with probability y. All of these axioms
are discussed in more detail in Sect.2.2.

Building on a characterization of strategyproof SDSs by Barbera (1979b), we then
prove the following results (7 is the number of alternatives and n the number of
voters).

e Let m,n > 3. There is no strategyproof SDS that satisfies o-Condorcet-
consistency for o > 2/m. Moreover, the randomized Copeland rule, which assigns
probabilities proportional to Copeland scores, is the only strategyproof SDS that
satisfies anonymity, neutrality, and 2/m-Condorcet-consistency (Theorem 4).

e Let0 <& < 1andm > 3. Every strategyproof SDS that is 1m;"3-ex post efficient
is y-randomly dictatorial for y > e. If we additionally require anonymity and
m > 4, then only mixtures of the uniform random dictatorship and the uniform
lottery rule satisfy this bound tightly (Theorem 5).
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Fig. 1 Graphical summary of our results. Points in the graphs correspond to SDSs. In both graphs the
horizontal axis indicates the value of 8 for which the considered SDS is S-ex post efficient. In the left
graph, the vertical axis represents the « for which the considered SDSs are a-Condorcet-consistent, and
in the right graph, it represents the y for which SDSs are y-randomly dictatorial. Theorems 4 and 6 show
that no strategyproof SDS lies in the grey area of the left graph. Theorem 5 shows that no strategyproof
SDS lies in the grey area below the diagonal in the right graph. Furthermore, no SDS lies in the grey
area above the diagonal since a y-randomly dictatorial SDS can put no more than probability 1 — y on
Pareto-dominated alternatives. Finally, the following SDSs are marked in the graphs: D corresponds to all
random dictatorships, C to the randomized Copeland rule, B to the randomized Borda rule, and U to the
uniform lottery rule

e Letm > 4 and n > 5. No strategyproof SDS that is o-Condorcet-consistent is
B-ex post efficient for < z—ja. If we additionally require anonymity and neu-
trality, then only mixtures of the uniform random dictatorship and the randomized

Copeland rule satisfy g = Z:ja (Theorem 6).

Our findings, which are summarized in Fig. 1, show that two strategyproof SDSs
perform particularly well with respect to e-Condorcet-consistency and B-ex post effi-
ciency: the uniform random dictatorship (and random dictatorships in general), and
the randomized Copeland rule.

In more detail, the first statement characterizes the randomized Copeland rule as
the “most Condorcet-consistent” SDS that satisfies strategyproofness, anonymity, and
neutrality. In fact, no strategyproof SDS can guarantee more than probability 2/m on
the Condorcet winner, even when dropping anonymity and neutrality. Conversely,
this means that every strategyproof SDS satisfies «-Condorcet-consistency for some
(OS] [0, 2/m].

The second result can be interpreted as a continuous strengthening of Gibbard’s
random dictatorship theorem: the less probability we put on Pareto-dominated alterna-
tives, the more randomly dictatorial is the resulting SDS. In other words, any hope for
attractive strategyproof SDSs by relaxing ex post efficiency is in vain: strategyproof
SDSs that almost never select Pareto-dominated alternatives are almost equivalent to
random dictatorships. An interesting consequence of this result is that every strate-
gyproof SDS that has no random dictatorship component is as “inefficient” as the
uniform lottery rule which always returns the uniform lottery over all alternatives.
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Relaxed notions of Condorcet-consistency and efficiency 23

The second part of the theorem characterizes the SDSs that optimize B-ex post effi-
ciency subject to being strategyproof, anonymous, and y -randomly dictatorial for some
y € [0, 1]: these are mixtures of the uniform random dictatorship and the uniform
lottery rule.

The last statement identifies a tradeoff between a-Condorcet-consistency and S-ex
post efficiency: the more probability a strategyproof SDS guarantees to the Condorcet
winner, the less efficient it is. Thus, we can either only maximize the «-Condorcet-
consistency or minimize the S-ex post efficiency of a strategyproof SDS, which again
highlights the antipodal roles of the randomized Copeland rule and random dictator-
ships. Furthermore, we characterize the SDSs that optimize this tradeoff under the
additional assumptions of anonymity and neutrality.

2 The model

Let N = {1, 2, ..., n}be afinite set of voters and let A = {a, b, ...} be a finite set of
m alternatives. Every voter i has a preference relation >;, which is an anti-symmetric,
complete, and transitive binary relation on A. We write x >; y if voter i prefers x
strictly to y and x =; y if x >; y or x = y. The set of all preference relations is
denoted by R. A preference profile R € R" contains the preference relation of each
voter i € N. We define the supporting size nyy(R) = |{i € N : x >; y}| for x against
y in the preference profile R as the number of voters that prefer x to y. Moreover,
the rank r(x, >;) = |[{y € A: y =; x}| of an alternative x in the preference relation
of a voter i is the number of alternatives that are weakly preferred to x by voter i.
Finally, the rank vector r*(x, R) of an alternative x in a preference profile R is the
vector that contains the rank of x with respect to every voter in increasing order,
ie,r*(x,R) = (r(x,>;), r(x, >, ..., r(x,>; )) where the voters iy, ..., i, are
ordered such that r (x, >;;) <r(x,>;) < - <r(x, >;,).

Given a preference profile, we are interested in the winning chance of each alterna-
tive. We therefore analyze social decision schemes (SDSs) which map each preference
profile to a lottery over the alternatives. A lottery p is a probability distribution over
the set of alternatives A, i.e., it assigns each alternative x a probability p(x) > 0 such
that 4 p(x) = 1. The set of all lotteries over A is denoted by A(A). Formally, a
social decision scheme (SDS) is a function f : R" — A(A). We denote by f(R, x)
the probability assigned to alternative x by f for the preference profile R. The winner
will eventually be selected according to these probabilities.

Two basic fairness conditions are anonymity and neutrality. Anonymity requires
that voters are treated equally. Formally, an SDS f is anonymous if f(R) = f(w(R))
for all preference profiles R and permutations 7 : N — N. Here, R’ = 7 (R) denotes
the profile with >;T(i = >; forall votersi € N. Neutrality guarantees that alternatives
are treated equally and formally requires for an SDS f that f(R, x) = f(z(R), t(x))
for all preference profiles R and permutations t : A — A. Thistime, R" = t(R) is the
profile derived by permuting the alternatives in R accordingto ,i.e., 7(x) >} (y) if
and only if x >; y for all alternatives x, y € A and votersi € N.
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2.1 Stochastic dominance and strategyproofness

This paper is concerned with strategyproof SDSs, i.e., social decision schemes in which
voters cannot benefit by lying about their preferences. In order to make this formally
precise, we need to specify how voters compare lotteries. To this end, we leverage
the well-known notion of stochastic dominance: a voter i (weakly) prefers a lottery
p to another lottery ¢, written as p 3=; g, if ZyeA:y>ix p(y) > ZWA:V”C q(y) for
every alternative x € A. In other words, a voter prefers a lottery p to a lottery q if,
for every alternative x € A, p returns a better alternative than x with as least as much
probability as g. Stochastic dominance does not induce a complete order on the set of
lotteries, i.e., there are lotteries p and g such that a voter i neither prefers p to ¢ nor
g top.

Based on stochastic dominance, we can now formalize strategyproofness. An SDS
[ is strategyproof if f(R) =; f(R’) for all preference profiles R and R’ and voters
i € N such that >~; = >’j for all j € N\{i}. In other words, strategyproofness
requires that every voter prefers the lottery obtained by voting truthfully to any lottery
that he could obtain by voting dishonestly. Conversely, we call an SDS f manipulable
if it is not strategyproof. While there are other ways to compare lotteries with each
other, stochastic dominance is the most common one (see, e.g., Gibbard 1977; Barbera
1979b; Bogomolnaia and Moulin 2001; Ehlers et al. 2002; Aziz et al. 2018). This is
mainly due to the fact that p =; g implies that the expected utility of p is atleast as high
as the expected utility of g for every vNM utility function that is ordinally consistent
with voter i’s preferences. Hence, if an SDS is strategyproof, no voter can manipulate
regardless of his exact utility function (see, e.g., Sen 2011; Brandl et al. 2018). This
observation immediately implies that the convex combination h = Af + (1 — A)g
(for some A € [0, 1]) of two strategyproof SDSs f and g is again strategyproof: a
manipulator who obtains more expected utility from A (R’) than h(R) prefers f(R’)
to f(R) or g(R') to g(R).

Gibbard (1977) shows that every strategyproof SDS can be represented as convex
combinations of unilaterals and duples.! The terms “unilateral” and “duple” refer to
special classes of SDSs: a unilateral is a strategyproof SDS that only depends on the
preferences of a single voter i, i.e., f(R) = f(R’) for all preference profiles R and
R’ such that >; = >. A duple, on the other hand, is a strategyproof SDS that only
chooses between two alternatives x and y, i.e., f(R, z) = 0 for all preference profiles
R and alternatives z € A \ {x, y}.

Theorem 1 (Gibbard 1977) An SDS is strategyproof if and only if it can be represented
as a convex combination of unilaterals and duples.

Since duples and unilaterals are by definition strategyproof, Theorem 1 only states
that strategyproof SDSs can be decomposed into a mixture of strategyproof SDSs, each
of which must be of a special type. In order to circumvent this restriction, Gibbard
proves another characterization of strategyproof SDSs.

! In order to simplify the exposition, we slightly modify Gibbard’s terminology by requiring that duples
and unilaterals have to be strategyproof.
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Theorem 2 (Gibbard 1977) An SDS is strategyproof if and only if it is non-perverse
and localized.

Non-perversity and localizedness are two axioms describing the behavior of an
SDS. For defining these axioms, we denote by R*¥* the profile derived from R by
only reinforcing y against x in voter i’s preference relation. Note that this requires that
x >; y and that there is no alternative z € A such thatx >; z >; y. Then, an SDS f is
non-perverse if f(Ri:-V", y) > f(R, y) for all preference profiles R, votersi € N, and
alternatives x, y € A. Moreover, an SDS is localized if f(Ri:yx, z) = f(R, z) for all
preference profiles R, voters i € N, and distinct alternatives x, y, z € A. Intuitively,
non-perversity—which is now often referred to as monotonicity—requires that the
probability of an alternative only increases if it is reinforced, and localizedness that
the probability of an alternative does not depend on the order of the other alternatives.
Together, Theorems 1 and 2 show that each strategyproof SDS can be represented as
a mixture of unilaterals and duples, each of which is non-perverse and localized.

Since Gibbard’s results can be quite difficult to work with, we now state another
characterization of strategyproof SDSs due to Barbera (1979b). This characterization
shows that every strategyproof SDS that satisfies anonymity and neutrality can be
represented as a convex combination of a supporting size SDS and a point voting
SDS. A point voting SDS is defined by a scoring vector (ay, az, ..., a,,) that satisfies
ag > ay > >ap =0and )Y @ = % The probability assigned to an
alternative x by a point voting SDS f is f(R,x) = Y ;.y Gr(x,»;). Furthermore,
supporting size SDSs also rely on a scoring vector (b,, b,—1,...,by) with b, >
by_1>--->byp>0and b; + b,_; = m foralli € {0, ..., n} to compute the
outcome. The probability assigned to an alternative x by a supporting size SDS f is
then f(R, x) =}, a\(x} D, (R)- Point voting SDSs can be seen as a generalization
of deterministic positional scoring rules and supporting size SDSs can be seen as a
variant of Fishburn’s C2 functions (Fishburn 1977).

Theorem 3 (Barbera 1979b) An SDS is anonymous, neutral, and strategyproof if and
only if it can be represented as a convex combination of a point voting SDS and a
supporting size SDS.

Many well-known SDSs can be represented as point voting SDSs or supporting size
SDSs. For example, the uniform random dictatorship frp, which chooses one voter
uniformly at random and returns his best alternative, is the point voting SDS defined by
the scoring vector (}l, o,..., O). An instance of a supporting size SDS is the random-
ized Copelandrule fc,which assigns probabilities proportional to the Copeland scores
c(x, R) = [{y € A\{x}: nyy(R) > ny:(R)} + %Hy € A\{x}: nyy(R) = ny (R)}|.
This SDS is the supporting size SDS defined by the vector b = (b, b,—1, ..., bp),
where b; = )] ifi >3,b = m if i = 5, and b; = 0 otherwise. Further-
more, there are SDSs that can be represented both as point voting SDSs and supporting
size SDSs. An example is the randomized Borda rule fp, which randomizes propor-
tional to the Borda scores of the alternatives. This SDS is the point voting SDS defined
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2.2 Classic axioms and their relaxations

An alternative x Pareto-dominates another alternative y in a preference profile R if
x >; yforalli € N. The standard notion of ex post efficiency then demands that
Pareto-dominated alternatives should have no chance of winning, i.e., f(R,x) = 0
for all preference profiles R and alternatives x that are Pareto-dominated in R. Gibbard
(1977) showed that Theorem 1 implies a simple characterization of strategyproof and
ex post efficient SDSs. This result is commonly known as the random dictatorship
theorem.

Corollary 1 (Gibbard 1977) The only strategyproof SDSs that satisfy ex post efficiency
are random dictatorships, i.e., each voter is selected with a fixed probability and the
most preferred alternative of this voter is returned as the winner.

When insisting on anonymity, Corollary 1 turns into a complete characterization
of frp. However, Corollary 1 breaks down once we allow that Pareto-dominated
alternatives can have a non-zero chance § > 0 of being selected. To illustrate this
point, consider a random dictatorship d and another strategyproof SDS g. Then, the
SDS f* = (1 — B)d + Bg is strategyproof for every B € (0, 1] and no random
dictatorship, but assigns a probability of at most 8 to Pareto-dominated alternatives.
We call the last property B-ex post efficiency: an SDS f is B-ex post efficient if
f (R, x) < B forall preference profiles R and alternatives x that are Pareto-dominated
in R.

Our first objective is to study which strategyproof SDSs satisfy B-ex post effi-
ciency for small values of 8 because sufficiently small values of 8 may be acceptable
to accomplish other design goals. As it turns out, Corollary 1 is quite robust in the
sense that all SDSs that satisfy §-ex post efficiency for 8 < % are “similar” to ran-
dom dictatorships. In order to formalize this phenomenon, we introduce y-randomly
dictatorial SDSs: a strategyproof SDS f is y-randomly dictatorial if y € [0, 1] is the
maximal value such that f can be represented as f = yd + (1 — y)g, where d is a
random dictatorship and g is another strategyproof SDS. In particular, we require that
g is strategyproof as otherwise, SDSs that seem “non-randomly dictatorial” are not O-
randomly dictatorial. For instance, the uniform lottery rule fy;, which always assigns
probability % to all alternatives, is not O-randomly dictatorial if g is not required to be

strategyproof because it can be represented as fy = %d,- + = L ¢, where d; is the dic-
tatorial SDS of voter i and g is the SDS that randomizes uniformly over all alternatives
but voter i’s favorite one. Moreover, it should be mentioned that the maximality of y

implies that g is O-randomly dictatorial if y < 1. Otherwise, we could also represent

2 Both the randomized Copeland rule and the randomized Borda rule were rediscovered several times by
authors who were apparently unaware of Barbera’s pioneering work (see Heckelman 2003; Conitzer and
Sandholm 2006; Procaccia 2010).
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Fig.2 Condorcet-consistent SDSs violate strategyproofness when m = n = 3. Due to the symmetry of R/,
we may assume without loss of generality that f(R’, @) > 0. It follows from Condorcet-consistency that
f(R,c) = 1. Since it is not the case that f(R) = f(R’), the left-most voter can manipulate by swapping
cand bin R
g as a mixture of a random dictatorship and some other strategyproof SDS 4, which
means that f is y’-randomly dictatorial for y’ > y.

The following characterization of y-randomly dictatorial SDSs is very useful.
Recall that R**¥* denotes the profile derived from R by only reinforcing y against
x in voter i’s preference relation.

Lemma 1 A strategyproof SDS f is y -randomly dictatorial if and only if there are non-
negative values yi, ..., vy such that Y ;,.n vi = ¥, and y; = miny yes Ming iy
F(R™%,y) — f(R, y) where R"* C R" denotes the set of profiles in which voter i
prefers x the most and y the second most.

The proof of this lemma can be found in the appendix. Lemma 1 provides an intuitive
interpretation of y-randomly dictatorial SDSs: it requires that there are voters who
increase the winning probability of an alternative by at least y; by swapping their
two top-ranked alternatives. For small values of y, this axiom seems uncontroversial
and can be seen as a strict monotonicity property. However, for larger values of y, y-
randomly dictatorial SDSs become more similar to random dictatorships. Furthermore,
the proof of Lemma 1 shows that the decomposition of y-randomly dictatorial SDSs is
completely determined by the values y1, . . ., y,: given these values for a strategyproof
SDS f, it can be represented as f = ) .y vidi + (1 — Y,y ¥i)g, Where g is
a strategyproof SDS and d; the dictatorial SDS of voter i. Thus, Lemma 1 directly
provides a way to compute the value y fora given SDS f: we only need to determine the
values yp, ..., ¥, of f bycomputing y; = miny ye4 ming iy F(REY y)—f(R, y)
because then y = ) ;_y Vi

Finally, we consider Condorcet-consistency. A Condorcet winner in a profile R is
an alternative x that wins every majority comparison in R, i.e., 1y, (R) > ny,(R) for
all y € A\{x}. Condorcet-consistency demands that f(R, x) = 1 for all preference
profiles R and alternatives x such that x is the Condorcet winner in R. Unfortu-
nately, Condorcet-consistency is in conflict with strategyproofness, which can easily be
derived from Gibbard’s work. A simple two-profile proof for this fact whenm = n = 3
is given in Fig.2. To circumvent this impossibility, we relax Condorcet-consistency.
Instead of requiring that the Condorcet winner always obtains probability 1, we only
require that it receives a probability of at least . An SDS f is «-Condorcet-consistent
if f(R,x) > « for all profiles R and alternatives x € A such that x is the Condorcet
winner in R. For small values of «, this axiom is clearly compatible with strategyproof-
ness and therefore, we are interested in the maximum value of « such that there are
a-Condorcet-consistent and strategyproof SDSs.
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Table 1 Values of «, 8, and y for which specific strategyproof SDSs are «-Condorcet-consistent, S-ex post
efficient, and y-randomly dictatorial

SDS a-Condorcet-cons. B-ex post efficiency y-random dictatorship
JRD 0 0 1

fu 0 0 0

fz Lynmdd 23 ey

fe 2 1) 0

Each row shows the values of «, 8, and y for which the SDS satisfies the corresponding axioms. fgp stands
for the uniform random dictatorship, fyy for the uniform lottery rule, fp for the randomized Borda rule,
and fc¢ for the randomized Copeland rule

2.3 Examples of strategyproof SDSs

To illustrate the notions of a-Condorcet-consistency, fS-ex post efficiency, and y-
random dictatorships, let us discuss some of the values in Table 1. The uniform
random dictatorship is 1-randomly dictatorial and 0-ex post efficient by definition.
Moreover, it is 0-Condorcet-consistent because a Condorcet winner may not be
top-ranked by any voter. The same values of «, 8, and y are also attained by non-
uniform (and thus non-anonymous) random dictatorships. The randomized Borda

rule is i((’zl__zl))—ex post efficient because it assigns this probability to an alternative

that is second-ranked by every voter. Moreover, it is ﬁ—randomly dictatorial

as we can represent it as mfRD + (1 — m) g, where fgp is the uniform

random dictatorship and g is the point voting SDS defined by the scoring vector

2(m—2) 2(m—2) 2(m—3) . .
(n(m(m_l)_2), Aonm—T)=2)" nmm=T)=2)" " *» 0). Finally, the randomized Copeland

rule is O-randomly dictatorial because for every voter there is a profile in which he
can swap his two best alternatives without affecting the outcome. Moreover, it is %—
Condorcet-consistent because a Condorcet winner x satisfies that ny,(R) > 7 for all
y € A\ {x} and hence, fc(R,x) = ZyeA\{x}any(R) =(m— l)ﬁ = %

The randomized Copeland and the randomized Borda rule can be interpreted as
rules where two alternatives are drawn uniformly at random (see Remark 4). In the
randomized Copeland rule, the majority-preferred of the two alternatives is selected,
whereas in the randomized Borda rule, a randomly selected voter picks his preferred
alternative. It is possible to define non-neutral variants of these rules, in which the
two alternatives are not drawn independently (see Remark 3). As long as the total
probability of drawing each alternative is still %, the resulting rules achieve the same
values of «, B, and y as their neutral counterparts in Table 1.

Note that Table 1 also contains a row corresponding to the uniform lottery rule fi
which always selects every alternative with probability % We consider this SDS as a
threshold with respect to «-Condorcet-consistency and S-ex post efficiency because
we can compute it without knowledge about the voters’ preferences. Hence, if an SDS
performs worse than the uniform lottery rule with respect to «-Condorcet-consistency
or B-ex post efficiency, we could as well dismiss the voters’ preferences.
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3 Results

We are now ready to state our results about a-Condorcet-consistent and B-ex post
efficient strategyproof SDSs.

3.1 a-Condorcet-consistency

Our first result shows that no strategyproof SDS satisfies «-Condorcet-consistency for
o > % Conversely, this means that strategyproof SDSs can only be «-Condorcet-
consistent foro € [0, %], This bound is tight as the randomized Copeland rule fc is %-
Condorcet-consistent, which means that it is one of the “most Condorcet-consistent”
strategyproof SDSs. Even more, we turn this observation into a characterization of
fc by additionally requiring anonymity and neutrality: the randomized Copeland rule
is the only strategyproof SDS that satisfies %—Condorcet—consistency, anonymity, and
neutrality.

To prove these results, we derive several auxiliary lemmas. As the first step, we
show in Lemma 2 that we can “symmetrize” any given strategyproof and «-Condorcet-
consistent SDS.

Lemma2 Let o € [0, 1]. If there is a strategyproof and «-Condorcet-consistent SDS,
there is also a strategyproof and a-Condorcet-consistent SDS that satisfies anonymity
and neutrality.

Proof Let f denote an arbitrary strategyproof SDS that is «-Condorcet-consistent for
some « € [0, 1]. In the sequel, we construct an anonymous and neutral SDS f* that
satisfies strategyproofness and «-Condorcet-consistency for the same « as f. For this,
we define the SDSs 77 for all permutations 7 : N — N andt : A — A as follows.
First, f™7 permutes the voters in the input profile R according to iv and the alternatives
according to t. Next, we compute f on the resulting profile 7 (7 (R)) and finally, we
define 77 (R, x) as the probability assigned to 7 (x) by f in t(;r(R)). More formally,
fTTisdefined as f*T(R, x) = f(z(w(R)), T(x)), where the profile 7 (;r (R)) satisfies
foralli € N andx,y € A that t(x) >z 7(y) in T(7w(R)) if and only if x >; y
in R. Note that "7 is strategyproof for all permutations 7 and t because every
manipulation of ™7 implies a manipulation of f. Furthermore, f”7 is ¢-Condorcet-
consistent because for every preference profile R with Condorcet winner x, t(x) is
the Condorcet winner in 7 (77 (R)). Hence, if f™* violates a-Condorcet-consistency in
some profile R, then f violates this axiom in the profile t (7 (R)).

Finally, we define the SDS f* by averaging over f™° for all permutations 7 and
7. Hence, let IT denote the set of all permutations on N and let T denote the set of all
permutations on A. Then, f* is defined as follows.

1 1
F¥(R, x) = ZH il ZT mf’”(R, x)

Yy ﬁf(r(n(R)), T(x)

mellreT
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Next, we show that f* satisfies all axioms required by the lemma. First, f* is
strategyproof since all SDSs 77 are strategyproof. The «-Condorcet-consistency of
f* is shown by the following inequality, where R denotes a profile in which x is the
Condorcet winner.

PR =Y R, ) = Y =a

mellteT mell teT

Furthermore, observe that f* is anonymous because it averages over all possible
permutations of the voters, i.e., for all permutations of the voters 7 € IT : f*(R) =
f*(m(R)). It follows from a similar argument that f* is neutral: since f* averages
over all permutations of the alternatives, it holds that f*(R, x) = f*(z(R), t(x)) for
every T € T. Hence, f* is strategyproof, e-Condorcet-consistent, anonymous, and
neutral. O

We next investigate the «-Condorcet-consistency of strategyproof SDSs that satisfy
anonymity and neutrality because Lemma 2 turns an upper bound on the «-Condorcet-
consistency of such SDSs into an upper bound for all strategyproof SDSs. Since
Theorem 3 shows that every strategyproof, anonymous, and neutral SDS can be decom-
posed in a point voting SDS and a supporting size SDS, we analyze these two classes
separately in the following two lemmas. First, we bound the o-Condorcet-consistency
of point voting SDSs.

Lemma 3 No point voting SDS is a-Condorcet-consistent for o > % ifn > 3 and
m > 3.

Proof Let f be a point voting SDS for m > 3 alternatives and n > 3 voters, and let
a = (ai,...,an) be the scoring vector that defines f. Moreover, let @ € [0, 1] be
the maximal value such that f is ¢-Condorcet-consistent. We will show that o < %
The central observation for this is that f(R, x) = f(R’, x) for all profiles R, R’ with
r*(x, R) = r*(x, R’) as f assigns probability a; to x whenever it is ranked i-th. As
a consequence of this insight, we will focus on Condorcet winner candidates which
are alternatives that can be made into the Condorcet winner without changing their
rank vector. The reason for this is that Condorcet winner candidates must also have a
probability of o due to our previous insights. Hence, we will construct profiles with
f%l Condorcet winner candidates because then each Condorcet winner candidate has

a probability of at most % Otherwise, Zx ea f(R,x) > 1, which contradicts the

definition of an SDS. This shows that f is only a-Condorcet-consistent for o < n%

and, by investigating our profiles in more detail, we can also deduce that o # %
For constructing the required profiles with k = [%5] Condorcet winner candidates
X1, ..., Xk, We use a case distinction with respect to the parity of n and m. Moreover,
we first focus on cases with fixed n, and provide in the end an argument for generalizing
our base profiles to all n > 3. Figure 3 illustrates our constructions for n, m € {3, 4}.

Case 1: n = 3 and m is odd
In this case, we consider the profile R' which is defined as follows: for every
i €{l,...,k}, voters 1 and 2 rank alternative x; at position i, and voter 3 ranks it at
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position m 4 2 — 2i. The remaining alternatives can be ranked arbitrarily. The sum of

ranks of x; in R! is then equal to Zje{l,2,3} r(xi,>j)=2i+m+2-2i=m+2,

which means that only m — 1 alternatives can be ranked above x;. Hence, for every

i €{l,...,k}, we can reorder the alternatives in A \ {x;} such that each alternative

y € A\ {x;}is preferred to x; by a single voter. So, x; is a Condorcet winner candidate

in R' and f(R',x;) > a foralli € {1,...,k}. Since m is odd and k = [%2] = ZFL,
2 2

this implies that o < T <

Case 2: n = 3 and m is even

Next, suppose thatn = 3 and m is even. In this case, we first choose m — 1 candidates
from A and construct the profile R! of Case 1. Then, we add the last alternative z as
the last-ranked one of voters 1 and 2 and as the first-ranked one of voter 3 to derive
the profile RZ. The candidates X1, ..., x; are Condorcet winning candidates in R? as
they are in R! and only voter 3 prefers z to x;. Hence, there are 5 Condorcet winner
candidates and an analogous argument as in the last case shows that ¢ < % As the last
step, we will show that o # % Otherwise, each of the % Condorcet winner candidates
has a probability of %, which entails that the other alternatives have a probability of 0.

In particular, f(R?, z) = 0 even though voter 3 reports z as his best alternative. This
implies for the scoring vector a = (ay, ..., ay) of f that a; = 0. However, this is
not possible because the scoring vector a satisfies ) ;- | a; = % anda; > a;ifi < j.

Hence, o < %

Case 3: n = 4 and m is odd

As third case, we suppose n = 4 and m is odd and construct the profile R? as
follows: for every i € {l,...,k}, voters 1 and 2 rank alternative x; at position i,
and voters 3 and 4 rank it at position ’"T“ + 1 — i. The remaining alternatives can
again be placed arbitrarily. For each x;, it holds that Zje{1,2,3,4} r(xi, ;) = 2i +
2 (’”TH +1-— i) = m + 3. Consequently, only m — 1 alternatives can be ranked above
x; forevery i € {1,...,k}, and all x; thus are Condorcet winner candidates. We can

m

now derive that o < mL_H < % as there are TH Condorcet winner candidates.

Case 4: n = 4 and m is even

In the last case, we construct the profile R*withk = % Condorcet winner candidates
as follows: we choose an alternative z, and apply the construction of Case 3 to the
alternatives in A \ {z}. Then, voters 1 to 3 add z as their least preferred alternative
and voter 4 adds it as his best alternative. Every alternative that is a Condorcet winner
candidate before adding z is also a Condorcet winner candidate after adding this
alternative because z is the least preferred alternative of three voters. Hence, there are
% Condorcet winner candidates in R*, which implies that o < % Finally, if ¢ = n%,
then f (R4, z) = 0, which, analogous to Case 2, conflicts with the definition of point
voting SDSs since voter 4 reports z as his favorite choice. Therefore, we infer again

2
that @ < =

Case 5: Generalizing the impossibility to larger n

Finally, we explain how to generalize the last four cases to an arbitrary number of
voters n > 3. For this, we choose the suitable base case and add repeatedly pairs of
voters with inverse preferences until there are n voters. Note that voters with inverse
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2 1 2 1 2 2 2 1 1
ry X2 Ty T4 Ty T2 Ty T2 X4
i) X3 i) X9 X9 I i) I i)
r3 X1 r3 X3 r3 I3 r3 T3 X1
Ty X1 X4 Ty T3

R! R? R3 R*

Fig. 3 Profiles used in the base cases of the proof of Lemma 3 if m € (3, 4}. The profile R¥ shows the
profile corresponding to case k

preferences do not change the majority margins, and therefore they do not change
whether an alternative is a Condorcet winner candidate. Hence, every alternative that
is a Condorcet winner candidate in the base case is also a Condorcet winner candidate
in the extended profile, which means that the arguments in the base cases also apply
to larger numbers of voters. Therefore, no point voting SDS satisfies a-Condorcet-
consistency for o > % O

The last ingredient for the proof of Theorem 4 is that no supporting size SDS can

assign a probability of more than % to any alternative. This immediately implies that

no supporting size SDS satisfies a-Condorcet-consistency for o > %

Lemma 4 No supporting size SDS can assign more than probability % to an alterna-

tive.

Proof Let f be a supporting size SDS and let b = (b,, ..., by) be the scoring vector

that defines f. Recall that the definition of a supporting size SDS requires that b, >
->by >0and b; + b,_; = m(m;fl) for all i € {0,...,n}. This implies that

b; < m(m;—l) foralli € {0,...,n} and hence f(R,x) = ZyeA\{x} by, Ry < (m —

1)% = % for all preference profiles R and alternatives x € A. O

We now have all lemmas required to prove our first theorem.

Theorem 4 The randomized Copeland rule is the only strategyproof SDS that satisfies
anonymity, neutrality, and %-Condorcet-consistency ifm > 3 and n > 3. Moreover,

. . 2 .
no strategyproof SDS satisfies a-Condorcet-consistency for a > = ifn > 3.

Proof The theorem consists of two claims: the characterization of the randomized
Condorcetrule fc and the fact that no other strategyproof SDS can attain «-Condorcet-
consistency for a larger o than fc. We prove these claims separately.

Claim 1: The randomized Copeland rule is the only strategyproof SDS that
satisfies %-Condorcet-consistency, anonymity, and neutrality.

The randomized Copeland rule fc is a supporting size SDS and satisfies there-
fore anonymity, neutrality, and strategyproofness. Furthermore, it satisfies also
%-Condorcet-consistency because a Condorcet winner x wins every pairwise major-

ity comparison in R. Hence, ny,(R) > 75 for all y € A\{x}, which implies that

2 2
feR,x) = 2oy ea\(x) bry(r) = (m = D iy = 40
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Next, let f be an SDS satisfying anonymity, neutrality, strategyproofness, and %-
Condorcet-consistency. We show that f is the randomized Copeland rule. Since f
is anonymous, neutral, and strategyproof, we can apply Theorem 3 to represent f as
S = A fpoint + (1 = 4) fsup, where A € [0, 1], fpoins is a point voting SDS, and fy,, is a
supporting size SDS. Lemma 3 states that there is a profile R with Condorcetzwinner X

such that fpoin (R, x) < n%, and it follows from Lemma 4 that fj,,,(R, x) < =. Hence,

SR, x) = A fpoint (R, X) + faup(R, x) < % if A > 0. Therefore, f is a supporting
size SDS as it satisfies %-Condorcet-consistency.

Next, we show that f has the same scoring vector as the randomized Copeland
rule. Since f is a supporting size SDS, there is a scoring vector b = (by,, . .., by) with
b, >b,_1>--->by>0and b; + b,_; = —2 _foralli € {1, ..., n} such that

m(m—1)
f(R,x) = ZyeA\{x} bn”(R). Moreover, f(R, x) = % if x is the Condorcet winner in
R because of %—Condorcet—consistency and Lemma 4. We derive from the definition
of supporting size SDSs that the Condorcet winner x can only achieve this probability
if b ) for every other alternatives y € A\{x}. Moreover, observe that the

Nxy(R) = m(m—1
Condorcet winner needs to win every majority comparison but is indifferent about the
exact supporting sizes. Hence, it follows that b; = m forall i > 7 as otherwise,

there is a profile in which the Condorcet winner does not receive a probability of n%
We also know that b; + b,—; = m,

by = m i§ required by the definition of supporting size SDSs as 5=n-—73.
Hence, the scoring vector of f is equal to the scoring vector of fc, which proves that

fis fc.
2

Claim 2: No strategyproof SDS satisfies «-Condorcet-consistency for o > =.

The claim is trivially true if m < 2 because «-Condorcet-consistency for o > 1 is
impossible. Hence, let f denote a strategyproof SDS for m > 3 alternatives. We show
in the sequel that f cannot satisfy a-Condorcet-consistency for o > % As a first
step, we use Lemma 2 to construct a strategyproof SDS f* that satisfies anonymity,
neutrality, and «-Condorcet-consistency for the same « as f. Since f* is anonymous,
neutral, and strategyproof, it follows from Theorem 3 that f* can be represented as
a mixture of a point voting SDS f,.in; and a supporting size SDS f,, i.e., f* =
A fpoint + (1 = ) fsup for some A € [0, 1].

Next, we consider fpoins and fy,, separately. Lemma 3 implies for fpoin that there

is a profile R with a Condorcet winner a such that fpein(R,a) < n% Moreover,

Lemma 4 shows that f,,(R, a) < % Thus, we derive the following inequality, which

shows that f* fails «-Condorcet-consistency for o > n% Hence, no strategyproof SDS
satisfies «-Condorcet-consistency for o > % when n > 3.

2 2 2
a < fY(R,a@) = Afpoim(R, @) + (L = 1) faup(R, @) <A—+ (1 —2)— = —
m m m

sob; = 0foralli < 5.If n is even, then

]

Remark 1 Lemma 2 can be applied to properties other than a-Condorcet-consistency
as well. For example, given a strategyproof and -ex post efficient SDS, one can con-
struct another SDS that satisfies anonymity and neutrality on top of these axioms. In
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general, our construction maintains all axioms that can be described by linear inequal-
ities and that are themselves closed under permutations of voters and alternatives.

Remark 2 Point voting SDSs can be interpreted as positional scoring rules that random-
ize in proportion to the assigned scores. A result by Smith (1973) shows that for large
n, every scoring rule except Borda’s rule can assign the Condorcet winner the lowest
score. Hence, for every point voting SDS except the randomized Borda rule, there is
a profile where the Condorcet winner receives less than probability % On the other

1 2—(n mod 2)
m + nm

argument gives a more restrictive bound on the a-Condorcet-consistency of point vot-
ing SDSs when there is a large number of voters. Moreover, it shows that fp is a point
voting SDS that maximizes the «¢-Condorcet-consistency when considering large elec-
torates.

hand, the randomized Bordarule fp is ( ) -Condorcet-consistent. This

Remark 3 All axioms in the characterization of the randomized Copeland rule are
independent of each other. The SDS that picks the Condorcet winner with probability
% if one exists and distributes the remaining probability uniformly between the other
alternatives only violates strategyproofness. The randomized Borda rule satisfies all
axioms of Theorem 4 but %—Condorcet—consistency. An SDS that satisfies anonymity,
strategyproofness, and %—Condorcet—consistency can be defined based on an arbitrary
order of alternatives xg, ..., X;—1. Then, we pick an index i € {0, ..., m — 1} uni-
formly at random and return the winner of the majority comparison between x; and
Xi+1 mod m (if there is a majority tie, a fair coin toss decides the winner). Furthermore,
we can use the randomized Copeland rule f¢ to construct an SDS that fails only
anonymity for even n: we just ignore one voter when computing the outcome of fc.
If nis even and x is the Condorcet winner in R, then ny, (R) > # forally € N\{x}
and x remains the Condorcet winner after removing a single voter. Finally, the impos-
sibility in Theorem 4 does not hold when there are only n = 2 voters because random
dictatorships are strategyproof and Condorcet-consistent in this case.

Remark 4 The randomized Copeland rule has various interesting interpretations.
Firstly, it can be defined as a supporting size SDS as shown in Sect.2.1. Alterna-
tively, it can be defined as the SDS that picks two alternatives uniformly at random
and then picks the majority winner between them; majority ties are broken by a fair
coin toss. Next, Theorem 4 shows that the randomized Copeland rule is the SDS
that maximizes the value of « for a-Condorcet-consistency among all anonymous,
neutral, and strategyproof SDSs. Finally, the randomized Copeland rule is the only
strategyproof SDS that satisfies anonymity, neutrality, and assigns probability O to a
Condorcet loser (i.e., an alternative that loses all pairwise comparisons) whenever it
exists.
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3.2 B-ex post efficiency and y-random dictatorships

In this section, we show that the random dictatorship theorem (Corollary 1) is rather
robust by identifying a tradeoff between S-ex post efficiency and y-random dictator-
ships. More formally, we prove that for every ¢ € [0, 1], all strategyproof and lm;g-ex
post efficient SDSs are y-randomly dictatorial for y > ¢. If we set ¢ = 1, we obtain
Corollary 1. Conversely, our result also entails that y-randomly dictatorial SDSs can
only satisfy lm;s-ex post efficiency for ¢ < y. Moreover, one can derive from this the-
orem that every O-randomly dictatorial and strategyproof SDS is S-ex post efficient
for B > n—11, i.e., every such SDS is at least as inefficient as the uniform lottery rule.
Finally, we also investigate the SDSs that optimize the tradeoff between being both
y-randomly dictatorial and B-ex post efficient for small values of y and $. In partic-
ular, from our first claim, we know that a strategyproof and 1m;5-rand0mly dictatorial
SDS is B-ex post efficient for § > &, and we show for every ¢ € [0, 1] that mixtures
of the uniform random dictatorship and the uniform lottery rule are the only SDSs
that satisfy B = ¢ when additionally requiring anonymity and m > 4. These results
demonstrate that relaxing ex post efficiency does not lead to interesting strategyproof
SDSs.

For proving the tradeoff between B-ex post efficiency and y-random dictatorships,
we first investigate the efficiency of O-randomly dictatorial strategyproof SDSs. In
more detail, we prove next that every such SDS fails 8-ex post efficiency for 8 < %
In particular, this means that every O-randomly dictatorial SDS is as “inefficient” as
the uniform lottery rule and we thus interpret Proposition 1 as a negative result.

Proposition 1 No strategyproof SDS that is O-randomly dictatorial satisfies -ex post
efficiency for B < % ifm > 3.

The proof of this result is deferred to the appendix because it is rather involved,;
instead, we only give a short summary here. First, we note that we cannot apply Lemma
2 as convex combinations of O-randomly dictatorial SDSs may not be O-randomly dic-
tatorial. Hence, we work with Theorem 1 and decompose a strategyproof SDS into
a mixture of duples and a mixture of unilaterals. For both classes, we show that if
the considered SDS is 0-randomly dictatorial, it fails 8-ex post efficiency for 8 < %
Next, we consider an arbitrary O-randomly dictatorial SDS f and aim to show that
there are a profile R and a Pareto-dominated alternative x € A such that f(R, x) > B.
Even though Theorem 1 allows us to represent f as the convex combination of a 0-
randomly dictatorial mixture of unilaterals f;; and a O-randomly dictatorial mixture
of duples faypie, our previous observations have no direct consequences for the §-ex
post efficiency of f as fy,; and fgple may violate B-ex post efficiency for different
profiles or alternatives. We solve this problem by transforming f into a more sym-
metric SDS f* while preserving O-random dictatorship and S-ex post efficiency. We
then decompose f* into a O-randomly dictatorial mixture of unilaterals f . and a
O-randomly dictatorial mixture of duples f ;up 1> and due to the symmetry of f*, we

*
uni

identify a profile R where and f ;uple assign both at least probability % to the same

Pareto-dominated alternative. Consequently, f* fails S-ex post efficiency for f < L

m b
which implies that also f violates this axiom.
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Based on Proposition 1, we next formalize the tradeoff between ex post efficiency
and the similarity to random dictatorships in Theorem 5.

Theorem 5 For every ¢ € [0, 1], every strategyproof and %-ex post efficient SDS
is y-randomly dictatorial for y > ¢ if m > 3. Moreover, when m > 4, every strat-
egyproof and e-randomly dictatorial SDS that satisfies anonymity and lm;e—ex post
efficiency is a mixture of the uniform random dictatorship and the uniform lottery
rule.

Proof Just as for Theorem 4, we need to show two claims: (i) for every ¢ € [0, 1],
there is no strategyproof and lm;e-ex post efficient SDS that is y-randomly dictatorial
for y < ¢, and (ii) every strategyproof and e-randomly dictatorial SDS that satisfies
anonymity, neutrality, and 1m;5-ex post efficiency is a mixture of the uniform random

dictatorship and the uniform lottery rule.

Claim 1: Every strategyproof and %-ex post efficient SDS is y-randomly
dictatorial for y > ¢.

Consider an arbitrary SDS f that is strategyproof and %-ex post efficient for
some ¢ € [0, 1]. By the definition of y-randomly dictatorial SDSs, there is a maximal
y € [0, 1] such that f can be represented as f = yd + (1 — y)g, where d is a
random dictatorship and g is another strategyproof SDS. We need to show that y > ¢.
If y = 1, this is trivially the case since ¢ € [0, 1]. On the other hand, if y < 1, the
maximality of y entails that the SDS g is O-randomly dictatorial. Hence, Proposition
1 shows that g is at most %—ex post efficient, i.e., there is a profile R with a Pareto-
dominated alternative x such that g(R, x) > % Since f is %—ex post efficient, we
derive therefore the following inequality.

L S R0 = yd(R %) + (1 = y)g(Rox) = Y

This inequality is equivalent to ¢ < y and therefore proves the claim.

Claim 2: Every strategyproof and ¢-randomly dictatorial SDS that satisfies
anonymity and lm;a-ex post efficiency is a mixture of the uniform random dicta-
torship and the uniform lottery rule.

Consider an arbitrary ¢ € [0, 1] and let f denote an SDS for m > 4 alternatives
that satisfies all axioms listed above. In particular, f is e-randomly dictatorial and
therefore, it can be represented a f = ed 4 (1 — ¢) g, where d is a random dictatorship
and g another strategyproof SDS. As a first step, we show that d is the uniform
random dictatorship. Note for this that anonymity implies that the values yi, ..., v,
introduced in Lemma 1 are equal for all voters, i.e., y; = y; foralli,j € N. A
close inspection of the proof of Lemma 1 then reveals that d is the uniform random
dictatorship because we prove for this lemma that, given the values y;, f can be
represented as f = Zi en Yidi + (1 — Zie v vi)g. Here, d; denotes the dictatorial
SDS of voter i. Hence, f is the uniform random dictatorship if ¢ = 1, so our claim
holds in this case.

Next, assume that ¢ < 1. In this case, the maximality of ¢ implies that the SDS
g is O-randomly dictatorial. Furthermore, g needs to satisfy %—ex post efficiency
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as otherwise, there is a profile R with a Pareto-dominated alternative x such that
f(R,x)=¢ed(R,x)+(1—¢)g(R, x) > lm;s This contradicts, however, the assump-
tion that f is %—ex post efficient. As the last point on g, observe that it is also
anonymous as both d and f satisfy this axiom.

Since g is strategyproof, we can use Theorem 1 to represent g as a convex combi-
nation of unilateral SDSs and duple SDSs, i.e., g = A funi + (1 — A) faupie for some
A € [0, 1], mixture of unilateral SDSs f,,,;, and mixture of duple SDSSs fgpi.. We will
show that both f,,;; and fyupie always return the uniform lottery.

We start with the proof for fy,pe = fu and assume for contradiction that this is
not the case. Then, a profile R and alternative x exists such that fge(R, x) > %
Let R’ denote the profile derived from R by pushing x to the top of the preferences
of all voters, and let R* denote an arbitrary profile in which all voters unanimously
rank x first. By strategyproofness, % < faupte(R, x) < fdup[g(R/, x) = fauple(R*, x).
Furthermore, for all alternatives y € A and profiles RY, we have fap(R”,y) > %
as otherwise n—11—ex post efficiency is violated for some alternative z € A \ {y}.

Next, we apply Lemma 2 to fgypie to construct a new SDS f, ;uple. By construction,
f juple is a mixture of duples that satisfies anonymity, neutrality, strategyproof-

1 . . * .
ness, and oo-ex post-efficiency. Hence, we derive from Theorem 3 that fduple is

a supporting size SDS. Let b = (b,,...,bo) be the scoring vector such that
ftzlple(R,x) = ZyeA\{x} bu,,(r) and recall that b satisfies b, > --- > by > 0
and b; + b,,_; = m(m woD for allz € {0, ..., n}. Now, since faupre(RY,y) > ”il for all

yeA and.fduple(R ,X) > E for some x € A, it.follows that f;uple(RZ, 7) > % for

all alternatives z and profiles R* as the construction of Lemma 2 only averages the

probabilities of fi,pie. In particular, this means that f, ;Mpl . s not the uniform lottery.
We will now derive a contradiction to f ;Mp 1 7 Ju.Forthis, let R*Y be the profile in

which all agents rank x first and y second. By %-ex post efficiency and the definition
of supporting size SDSs, % > f;uple(R"y, y) = ZzeA\{y} bn,.(r) = bo + (m —2)b,.
This implies that - >byg+(m—2) (m bo) =—m—3)by+ 2(m—2) . Solving

m(m—1)

for by then results inbg > ; in particular, m > 4 prevents thatm —3 = 0. Since

m(m 0 and b; > b;

ifi > j, we can now infer that b; = m foralli € {0, ..., n}. Hence, fduple is the
uniform lottery rule, which contradicts our previous observations. Therefore, faupie
must also be the uniform lottery.

Next, we turn to f,,;. First, we note that f,,; must be anonymous, 0-randomly
dictatorial, and %—ex post efficient since f satisfies these axioms and fy,pie is the
uniform lottery rule. Now, since f,,; is anonymous, there is a unilateral f* such that
funi(R) = Zie N %f *(>i). This follows from the following averaging argument:
given some weights A; > 0 and unilaterals ' such that fum = > ;cyMif', we
can construct a new representation of f,,,; by averaging the f’ over all permutations
7 : N — N,ie, fi = h— n,f”(’) Since f,,; is anonymous, it holds that

funi(R) = cn %funi(n(R)) =D ieN nfl Finally, it can be checked that f! = f/
foralli, j € N, which shows that f,,;(R) =Y .y nf (>i).

1
m(m—1)°

the definition of supporting size schemes requires that by 4+ b, =
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For showing that f,,,; = fu, we will prove that f* always returns the uniform
lottery. Hence, we focus from now on a single voter i. Note here that f™* is %—ex
post efficient and O-randomly dictatorial as otherwise, f;; fails these properties, too.
Hence, there are alternatives x, y € A and a preference relation >; with r(x, >;) = 1

and r(y, >;) = 2 such that f*(>;) = f*(>§.:yx). Moreover, strategyproofness shows
that this equality also holds if voter i reorders the alternatives z € A\{x, y}. Now,
let >'= a1 > ..., >"=a; > ap = ..., and >""*P=a; = a» >; a3 =
... denote the preference relations in which voter i prefers the alternatives in the
superscript the most. In particular, note that f*(>;",a) = f*(=:", a) fora € {x, y}.

Now, consider an arbitrary preference relation ;. We will show that f*(>7, z) = %

because %-ex post efficiency then requires that f*(>7) is the uniform lottery. Note
for this that this axiom immediately entails that f *(>f, z) > % because otherwise,
there is a Pareto-dominated alternative z’ such that f*(>;,z") > % First, suppose
that z = x. Then, it holds that f*(>7,x) = f*(=;",x) = f*(=",x) < L, where

m
the first equality follows from strategyproofness, the second one from the definition

of x and y, and the final inequality from %-ex post efficiency. Together with our lower
bound, we thus have that f *(>;‘, Xx) = % An analogous argument also holds for all
preference relations >iy .

Hence, suppose now that z ¢ {x, y} and consider the preference relations >fz
7, =77, and =", By the last case, it holds that f*(=;",a) = f*(=""
,a) = % for all a € A. Localizedness thus implies that f*(>fxy, y) = f*(>;cZy
,y) = Loand f*=7".x) = f*(=7",x) = L. On the other hand, non-

. . %/ ZXY % VX _ 1 . : * X2y
perversity requires that f*(>;"", x) > f*(>;"", x) = . Finally, since f*(>;"", a)

_ 1 : xzy Xy .
for all a and since we can go from >;™ to >;"~ by only swapping x and z,

m
localizedness requires that f*(>;""
that f*(>5) = f*(=;",2) = %, which proves that f* always returns the uniform
lottery. Thus, funi = fu.

Since faupie and f,; are both the uniform lottery rule, g itself is also the uniform
lottery rule. So, the original SDS f is indeed a mixture of the uniform lottery rule and
the uniform random dictatorship. O

y
i

>~

,2) < % Hence, our lower bounds requires again

Remark 5 All axioms of the characterization in Theorem 5 are independent of each
other if ¢ € (0, 1). Mixtures of the uniform random dictatorship and the Condorcet
rule (choose the Condorcet winner if there is one, otherwise return the uniform lottery)
satisfy all axioms except strategyproofness. Without anonymity, the uniform random
dictatorship can be replaced with other random dictatorships. If we drop the constraint
that ¢ = y or when m = 3 the randomized Copeland rule also satisfies all required
axioms and the uniform lottery rule thus is not the unique choice.

Remark 6 Theorem 5 shows that the uniform lottery rule is the only strategyproof
SDS that is O-randomly dictatorial, %-ex post efficient, and anonymous. This insight
strengthens the negative consequences of Proposition 1 as it demonstrates that every
other anonymous and strategyproof O-random dictatorship is strictly less efficient than
the uniform lottery rule. We interpret this (as well as Proposition 1) as an impossibility
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result stating that no strategyproof and O-randomly dictatorial SDS performs well with
respect to B-ex post efficiency.

Remark 7 Another natural variant of 8-ex post efficiency is to bound the sum of prob-
abilities assigned to Pareto-dominated alternatives. When requiring anonymity and
neutrality, it is easy to show that every strategyproof and O-randomly dictatorial SDS
assigns at least a total probability of % to Pareto-dominated alternatives. Based on
such a result, one can then also generalize Theorem 5. On the other hand, if we drop
anonymity and neutrality, things become much more difficult, and the bound of %
does no longer hold. For example, consider the following SDS f for m alternatives
and n = ("21) voters: each voter is associated with a unique pair of alternatives x, y
and if x or y is his first choice, the voter assigns probablhty to both his best and

second best alternative; otherwise, he assigns probability 1 o to hlS best alternative. It
can be checked that f is strategyproof, O-randomly dictatorial, and always assigns
strictly less than probability % to Pareto-dominated alternatives. Thus, contrary to all
of our results, the availability of anonymity and neutrality plays an important role for
a bound on the sum of probabilities of Pareto-dominated alternatives.

3.3 B-expost efficiency and a-Condorcet-consistency

As our last result, we identify a tradeoff between a-Condorcet-consistency and S-ex
post efficiency: every a-Condorcet-consistent and strategyproof SDS fails 8-ex post
efficiency for 8 < Zz—ja. Or, put differently, every stategyproof and «-Condorcet-
consistent SDS satisfies 8-ex post efficiency only for f > 2= 20{ This result follows
essentially from the correlation between S-ex post efﬁmency and y-random dicta-
torships identified in Theorem 5: since every lm;s-ex post efficient SDS f is at least
e-randomly dictatorial and since random dictatorships are 0-Condorcet-consistent,
it follows immediately that f is at most (1 — ¢)-Condorcet-consistent. In our next
theorem, we thus determine the exact tradeoff between o-Condorcet-consistency and
B-ex post efficiency. Moreover, we also characterize the anonymous, neutral, and
strategyproof SDSs that optimize this tradeoff as mixtures of the uniform random dic-
tatorship and the randomized Copeland rule. This result highlights the antipodal roles
of the randomized Copeland rule and the uniform random dictatorship.

Theorem 6 Every strategyproof SDS that satisfies anonymity, neutrality, «-Condorcet-
consistency, and B-ex post efficiency with B = %a is a mixture of the uniform
random dictatorship and the randomized Copeland rule ifm > 4, n > 5. Furthermore,
no strategyproof SDS satisfies a-Condorcet-consistency and (-ex post efficiency for
B <= 2ottfm>4n>5

Proof We again show the two claims of the theorem separately and start with the upper
bound on S-ex post efficiency.

Claim 1: No strategyproof SDS is «-Condorcet-consistent and S-ex post effi-
cient for 8 < :’n“—:%a.

Let f be a strategyproof SDS that satisfies «-Condorcet-consistency for some
a € [0, %] and let B € [0, 1] denote the minimal value such that f is B-ex post
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efficient. As the first step, we apply Lemma 2 to construct an SDS f* that satis-
fies strategyproofness, anonymity, neutrality, «-Condorcet-consistency, and S-ex post
efficiency. We will show that 8 > 2= 2

For this, we apply Theorem 3 to represent f* as a mixture of a supporting size
SDS fup and a point voting SDS fyoins, i.€., f* = X fpoint + (1 — L) fup for some
A € [0, 1]. Let (ay, ..., ay) and (b, ..., b,) denote the scoring vectors describing
Jpoint and fy,p, respectively. Next, we derive a lower bound for o and an upper bound
for B by considering specific profiles. First, consider the profile R!' in which every
voter reports x as his best alternative and y as his second best alternative; the remaining
alternatives can be ordered arbitrarily. It follows from the definition of point voting
SDSs that fpg,',,,(Rl, y) = nay and from the definition of supporting size SDS that
fSup(Rl, y) = (m — 2)b, + bg. Since x Pareto-dominates y in R', it holds that
B = f(R'.y) =inar+ (1 — 1)((m — )b, + bo).

For the upper bound on «, we will construct a profile R? in which alternative x is the
Condorcet winner, wins all pairwise comparisons by a minimal margin, and is never
ranked first. For this, we denote the alternatives as A = {x, x1, ..., X;;—1}. Now, R%is
defined as follows: the voters i € {1, 2, 3} rank the alternatives X; := {x; € A\{x}: k
mod 3 = i — 1} above x and all other alternatives below. The exact order of the
alternatives in A \ {x} does not matter. Since m > 4, no voter i € {1, 2, 3} ranks
x first. Next, if the number of voters n is even, we duplicate voters 1, 2, and 3.
As the last step, we add pairs of voters with inverse preferences such that no voter
prefers x the most until R? consists of n voters. Since alternative x is never top-
ranked in RZ, it follows that fpo,-m(Rz, x) < nap. Furthermore, nxy(Rz) = [”—erll
for all y € A\{x} and therefore fmp(Rz,x) = (m — Dbf”T“ 1 Finally, we derive

thate < f(R%, x) < Anar + (1 — A)(m — l)b(%] because x is by construction the

Condorcet winner in R.

Using these bounds, we finally show that 8 > :,"1—:%01, which proves our first claim.
In the subsequent calculation, the first and last inequality follow from our previous
analysis. The second inequality is true since —2 < land ;= l(m —1) =m —2.The

third inequality uses the definition of supportmg size SDSs

B = inaz + (1 — 1)((m — 2)by, + bo)

-2 m—2
rnay + —— (1 = A)((m — 1)b,, + bo)
—1 m—1

-2 m—2
aay+ ——A = A (m — Dbprt
-1 m—1 M1

m—2

- Za (1

m—1

v

Claim 2: Every strategyproof SDS that satisfies anonymity, neutrality, o-
Condorcet-consistency, and S-ex post efficiency with 8 = ﬁja is a mixture
of the uniform random dictatorship and the randomized Copeland rule.

Next, suppose that f is a strategyproof SDS that satisfies anonymity, neutrality,
a-Condorcet-consistency, and S-ex post efficiency with § = z:j Theorem 3,
f can be represented as mixture of a point voting scheme fjins and a supporting
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size scheme fy,p, i.e., there is A € [0, 1] such that f = A fpoins + (1 — A) foup. Now,
by considering the profiles R' and R? of Claim 1, we infer that Equation (1) must
also hold for f. Even more, since 8 = Z—ja, all inequalities must be tight. For the
second inequality, this is only the case if a = 0 and by = 0, and for the third one if
b, = b[% 1 These observations fully specify the scoring vectors of fjoin; and fiyp,. For
the point voting SDS, ay = O impliesa; = Oforalli > 2anda; = % i.e., fpoint is the

2
m(m—1)

foralli € {(%],...,bn} and b; = Oforalli € {0, ..., L%J}. Moreover, if n is

even, the definition of supporting size SDSs requires that bn = m Hence, f is

a mixture of the uniform random dictatorship and the randomized Copeland rule. O

uniform random dictatorship. Next, by = 0 and b, = b[% ] imply that b; =

Remark 8 All axioms of the characterization in Theorem 6 are independent of each
other. Every mixture of a non-uniform random dictatorship and the randomized
Copeland rule only violates anonymity. An SDS that only violates neutrality can
be constructed by using a variant of the randomized Copeland rule that does not split
the probability equally if there is a majority tie. Finally, the correlation between o-
Condorcet-consistency and S-ex post efficiency is required since the uniform lottery
rule satisfies all other axioms. Moreover, all bounds on m and n in Theorem 6 are
tight. If there are only n = 2 voters, m = 3 alternatives, or m = 4 alternatives and
n = 4 voters, the uniform random dictatorship is not 0-Condorcet-consistent since a
Condorcet winner is always ranked first by at least one voter. Hence, the bound on
does not hold in these cases. By contrast, our proof shows that Theorem 6 is also true
when n = 3.
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A Omitted proofs

In the following, we present the proofs of Lemma 1 and Proposition 1. Since the proof
of the latter lemma is rather involved, we organize the appendix in two subsections:
Appendix A.1 discusses the proof of Lemma 1 and Appendix A.2 the proof of Propo-
sition 1. Proof sketches explaining the main ideas for these proofs can be found in the
main body.
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A.1 Proof of Lemma 1

We start with the proof of Lemma 1. Recall for this proof that R is the profile
derived from R by letting voter i reinforce y against x.

Lemma 1 A strategyproof SDS f is y -randomly dictatorial if and only if there are non-
negative values yi, ..., v, such that Y ;,.n vi = ¥, and y; = miny yes Ming iy
F(R™* y) — f(R, y) where R'**Y C R" denotes the set of profiles in which voter i
prefers x the most and y the second most.

Proof We first note that y; = miny yeq Minpcgicxy F(RUY y) — f(R, y) if and only
if the following two conditions hold:

(G f(R™¥,y) — f(R,y) > y; for all alternatives x, y € A and preference profiles
R in which voter i prefers x the most and y the second most, and

(i) there are alternatives x, y € A and a profile R such that voter i prefers x the most
and y the second most in R, and f(R*¥*,y) — f(R,y) = y;i.

We use these equivalent conditions in this proof.

“«<": Assume that f is a strategyproof SDS for which there are values y1, ..., v,
such that f(Riiyx, y) — f(R,y) > yi > 0 for all alternatives x,y € A, voters
i € N, and profiles R such that voter i prefers x the most and y the second most
in R. Furthermore, we assume that for every voter i € N, this inequality is tight for
at least one pair of alternatives x, y € A and one profile R. We show next that f is
y-randomly dictatorial for y =),y ¥i-

As the first step, note that f (R, x) > ) ics Vi forevery profile R, alternative x € A,
and set of voters S € N such that all voters in S report x as their favorite alternative.
This follows by letting the voters i € S one after another swap x with their second best
alternative y (note that y might be a different alternative for every voter i € §). Using
our assumption on f, the probability of y has to increase by at least y; during such a
step, which means that the probability of x decreases by y; because of localizedness.
Furthermore, it holds that f(R’, x) > 0, where R’ is the profile derived by letting all
voters in S swap their best two alternatives. Combining these two facts then implies
that f(R, x) > Zie s Yi- Moreover, this observation also shows that y < 1 because
f fails the definition of an SDS otherwise. Moreover, f is a random dictatorship if
y = 1. This follows from the following reasoning: for all profiles R and alternatives
x € A, it holds that f(R, x) > ZieSx yi, where Sy denotes the set of voters who
prefer x the most in R. Since the sets S, partition N and y = 1, this inequality
must be tight for every alternative; otherwise, > 4 f(R,X) > D 4D ics Vi =1,
contradicting the definition of an SDS. Hence, if y = 1, f is 1-randomly dictatorial
as f = Zi <N Yidi, where d; denotes the dictatorial SDS of voter i.

As next case, suppose thaty < 1anddefineg = 1= (f — Y,y id:). Note that g

I-y
is a well-defined SDS: for all profiles R and alternatives x € A, itholds that g(R, x) >

0 because f(R,x) > Ziesx Yi- Moreover, ) ., g(R, x) = ﬁ Y ovea f(R Xx) —

Yvea Lien Ty di(R, x) = ﬁ — 155 = 1 forall profiles R. Next, we show that g
is strategyproof, which implies that f is y’-randomly dictatorial for y’ > y because

f = Y ien vidi + (1 — y)g. For this, it suffices to prove that g is localized and
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non-perverse because of Theorem 2. Now, g is localized because the SDS f and all
SDSs d; are localized. Hence, swapping two alternatives in the preferences of a voter
only affects the probabilities of these alternatives. For seeing that g is non-perverse,
consider a voter i, two alternatives x, y € A and a profile R such that x is voter i’s k-th
best alternative and y is his k + 1-th best one. We will show that g(R*Y*, y) > g(R, y).
Note for this that d; (RIY*) = dj(R)forall j € N\{i} because the preferences of these
voters did not change, and f(R'>*, y) — f(R, y) > 0because f is strategyproof. If x
and y are not the two best alternatives of voter i, then d; (R'>*) = d; (R) = 0. Hence, it

immediately follows that g (RI, y) — g(R, y) = ﬁ( F(R™%, y)— f(R, y)) > 0.
On the other hand, if x and y are voter i’s best and second best alternatives, we
have that d; (R">*,y) = 1 and d;(R,y) = 0. Moreover, our assumptions imply
that f(R™*,y) — f(R,y) > y;. Thus, we calculate that g(R'>*, y) — g(R,y) =
5 (R 3) = F(RY) = (i (R, y) = di(R, ) = 15 (v = v) = 0.
This means that g is non-perverse.

Finally, we show that f cannot be y’-randomly dictatorial for y" > . If this
was the case, we can represent f as f = ) ..y v/di + (1 — y")g’, where y/ >
0 are values such that ), ¥/ = ¥’ and g’ is a strategyproof SDS. Since y’ >
y. there is a voter i with y/ > y;. Furthermore, our assumptions state that there
are a profile R and alternatives x, y such that voter i prefers x the most and y the

second most in R, and f(R**,y) — f(R, y) = y;. This means that (f(R":yx, y) —

ZjeN y]/-dj(R“y", y)) — (f(R, y) — ngN )’]{dj(R, y)) = ¥ — v/ < 0 because
di(R™*,y) —d;(R,y) = 1 and d;(R™*, y) —d;(R,y) = Oforall j € N\ {i}.
Consequently, g’ (R, y)—g’(R, y) < 0which means that g’ violates non-perversity
and therefore also strategyproofness. Hence, the assumption that f is y’-randomly
dictatorial for ' > y is wrong and f is y-randomly dictatorial.

“=": Let f be a strategyproof y-randomly dictatorial SDS. We show next that
there are values y; that satisfy the requirements of the lemma. Since f is y-randomly
dictatorial, itcan be represented as f = yd+(1—y)g, whered is arandom dictatorship
and g is another strategyproof SDS. Moreover, as d is a random dictatorship, there are
values 81, ...,8, such that §; > Oforalli e N, ) , .y & = l,andd = ),y did;.
Combining these two equations, we derive that f = y Y,y 8idi + (1 — y)g. We
will show in the sequel that the values y; = y §; satisfy all requirements of our lemma.
First, note that the conditions y; > O foralli € N and ) ;_y i = y are obviously
true.

Next, consider two alternatives x, y € A, an arbitrary voter i € N, and a profile
R in which voter i reports x as his best alternative and y as his second best one. It
holds that g(R'™>*, y) — g(R, y) > 0 because g is strategyproof and therefore non-
perverse, d;(R™,y) —d;(R,y) = 0 for all j € N\{i} because >'nyx = >, and
d; (R, y) —d;(R,y) = 1 as y is voter i’s best alternative in R**** but not in R.
Hence, f(Ri:yx, y)— f(R,y) > yé; = y; forall votersi € N, alternatives x, y € A,
and preference profiles R in which voter i reports x as his best and y as his second
best alternative.
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Finally, it remains to show that there is for every voter i € N a pair of alternatives
x,y € A and a profile R such that voter i prefers x the most and y the second most
in R and f(R"*,y) — f(R,y) = y;. Assume this is not the case for some voter
i,ie., that f(R™*, y) — f(R,y) > y; for all alternatives x, y € A and profiles R
in which x is voter i’s best alternative and y his second best one. Hence, let y/ >
¥i denote y/ = miny yc4 ming gisy f(R™ y) — f(R,y). Moreover, we define
Y =v+> jeN\(i} Vi- We can now apply the arguments for the inverse direction to
derive that f is y”-randomly dictatorial for some y” > y’ > y. This contradicts our
assumption that f is y-randomly dictatorial as y must be the maximal value such that
f can be represented as f = yd + (1 — y)g, where d is a random dictatorship and
g is another strategyproof SDS. Hence, it follows that for every voter i € N, there
are a profile R and two alternatives x, y € A such that f(R™*,y) — f(R,y) = y;
and voter i reports x as his best alternative and y as his second best one in R. So, our
choice of y; satisfies all requirements of the lemma. O

A.2 Proofs of Proposition 1

Finally, we present proof of Proposition 1, i.e., we discuss our lower bound for the B-ex
post efficiency of strategyproof O-randomly dictatorial SDSs. Since Theorem 1 allows
us to represent strategyproof SDSs as mixtures of duples and unilaterals, we focus
next on these two classes. To simplify the proof we put these two cases in auxiliary
lemmas.

First, we investigate the 8-ex post efficiency of duples. Recall therefore that a duple
is a strategyproof SDS fyy such that fyy (R, z) = 0 for all alternatives z € A\{x, y}.
Moreover, a mixture of duples f is defined as f(R, x) = Z},GA\{X} Axy fxy (R, X),
where fy, = fyx and Ay, = Ay, denote non-negative weights that sum up to 1.
Finally, note that one duple for every pair is sufficient to represent every mixture of
duples because two duples fy, and f;y can be merged into one.
Lemma 5 No SDS that can be represented as a mixture of duples satisfies -ex post
efficiency for B < % ifm > 3.

Proof Let f(R,x) = Y ,ca\(x} bxy fry(R, x) be an SDS represented as a convex
combination of duples, where fy, = f) is the duple SDS for the pair x and y and
Axy = Ay is the weight of fy,. Furthermore, we define R*-Y as a profile where all
voters report x as best alternative and y as worst one; all other alternatives can be ranked
arbitrarily. First, note that f(R*”, x) = f(R*?,x) and f(RY*, x) = f(R>¥, x) for
all distinct x, y, z € A. Thus, we also write R*" and R* to indicate that alternative
x is unanimously top-ranked or bottom-ranked, respectively.

As first step, we want to bound the average probability f(R*Y, x) + f(R*7Y, y)
overallx, y € A.In more detail, the subsequent equation shows that >~ ., >° yeA\(

(FR™ .0+ FRTY, ) =20m = 1),

x}

DN FRY.x) 4 f(RY,y)

x€A yeA\{x}
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=m-1DY FR™. )+ m—1Y f(R.Yy)

x€A yeA

=m—=1Y " Y Ay Loy (R™, %) + dy fry (RVY, )

xeA yeA\{x}

=m—=1) > hy

xeA yeA\{x}
=2(m—1)

The first equality follows because f(R*Y,x) = f(R"",x), f(R*Y,y) =
f(R>Y,y) for all alternatives x,y € A and every alternative x is both unan-
imously top-ranked and unanimously bottom-ranked in exactly (m — 1) of the
considered preferences profiles. For the second equality, we replace f(R*, x) with
ZyeA\{x} Axy fry(R*Y, x) and f(R"Y, y) with erA\{y} Axy fry(R™7, y) according
to the definition of f. Furthermore, we swap the order of the sum for the second term.
We derive the third equality from the fact that fy, (R, x)+ fiy (R, y) = 1forall profiles
R. Finally, the last equality uses that 3, c 4 >~ c 4\ (x) Axy = 2, which follows from
erA f(R,x) = erA ZyeA\{x} Axy fry(R, x) = Tand fxy (R, x)+ fiy(R, y) =1
for all profiles R.

As a consequence of this observation, there is a pair of alternatives x, y € A such

) 2 . .
that f (R™Y, x)+f (R*Y, y) < ;. Otherwise, itholdsthat Y .y 3\ c g\ (x) £ (RTY, X)

m
F R V) > D ca Dyeain) % = 2(m — 1) contradicting our previous equation.
Hence, ZzeA\{x,y} f(RYY,z2) > % Since all alternatives z € A\ {x, y} are Pareto-
dominated by x, this entails that one of these alternative receives a probability of at
least m(mm—_EZ) = % We conclude therefore that f fails S-ex post efficiency for 8 < %

O

Next, we aim to show that no O-randomly dictatorial SDS that can be represented
as a mixture of unilaterals satisfies B-ex post efficiency for 8 < % For this, we will
first discuss a construction that allows us to construct a strategyproof, O-randomly
dictatorial, and B-ex post efficient SDS that satisfies several symmetry properties
based on another strategyproof, O-randomly dictatorial, and S-ex post efficient SDS.
Unfortunately, we cannot use Lemma 2 here as this lemma does not preserve the 0-
random dictatorship of an SDS. For demonstrating this point, let A = {x1, ..., X;}
denote the alternatives and consider the SDS f forn > 3 voters and m = n alternatives
in which every voter i € N assigns probability % to his favorite alternative in A \
{x;}. Lemma 1 shows that this SDS is O-randomly dictatorial because for all i € N,
the probability of x; does not increase if voter i reinforces it to his best alternative.
However, applying the construction of Lemma 2 to f results in the point voting
SDS defined by the scoring vector (":l;ll , ﬁ, 0, ...,0). This SDS is not O-randomly
dictatorial as pushing an alternative from second place to first place increases its
probability always by ”,'1—;12 > 0.

Therefore, we discuss another construction in the next lemma that preserves 0-
random dictatorships while introducing new symmetries. Note that we require some
additional terminology for Lemma 6: we say that voter i or his unilateral SDS f; is
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0-randomly dictatorial for alternatives x, y if f(R) = f(R'>*) for all preference
profiles R in which x is voter i’s best alternative and y is his second best alternative.

Lemma 6 Let f be a strategyproof and O-randomly dictatorial SDS that satisfies B-
ex post efficiency for some B € [0, 1] and that can be represented as a mixture of
unilaterals. Then, there is a strategyproof and 0-randomly dictatorial SDS f* for (g’)
voters that can be represented as a mixture of unilaterals and that is B-ex post efficient
for the same B as f. Moreover, f* satisfies the following conditions:

(i) For every voter i € N, there is a set {x;, y;} such that voter i is 0-randomly
dictatorial for x;, y; and {x;, y;i} # {xj, y;j}ifi # j.

(ii) There is a constant 8 such that f*(R"?, c) — f*(R, ¢) = 8 for all votersi € N,
alternatives {a, b} = {xi, yi}, c € A\{xi, yi}, and preference profiles R such that
voter i reports a as his best alternative, b as his second best one, and c as his third

best one.
(iii) If every voter i € N reports x; and y; as their two best alternatives, there is a
scoring vector a = (ay, ..., ay) suchthata; =ay > 0,a3 > --- > a, > 0, and

FHRx) =D ey @r(x-)-

Proof Let 8 € [0, 1] and let f denote a strategyproof O-randomly dictatorial SDS that
is B-ex post efficient and that can be represented as a mixture of unilaterals. In the
sequel, we use f to construct the SDS f* that satisfies all requirements of the lemma.
Note that this proof is quite involved and therefore, we use some auxiliary claims that
are proven in the end.

We start by representing f as f(R) = ),y Aifi(>i), where f; denotes the
unilateral SDS of voter i and A; > 0 is its weight. Note that we interpret unilaterals in
this proof as SDSs that take a single preference relation as input. This is possible as
unilaterals only rely on the preferences of a single voter. Claim 1 states that for every
voter i € N there are alternatives x, y such that f; is O-randomly dictatorial for x and
y. Even though a voter can be O-randomly dictatorial for multiple pairs of alternatives,
we associate from now on every voter i with exactly one such pair x;, y;. This pair
can be chosen arbitrarily as it will not affect the rest of the proof.

Next, we define the unilaterals f;' as f(R,x) = fi(r(R), t(x)) for all voters
i € N and permutations 7 : A — A. Claim 2 states that every SDS f" is strategyproof
and O-randomly dictatorial for T~ (x;), = (y;), where 7! is the inverse permutation
of 7 and x; and y; are the alternatives associated with f;. Just as the SDSs f;, each
f;¥ can be O-randomly dictatorial for multiple pairs of alternatives, but we associate
f;¥ from now on only with the pair 7 1(x;), 771 (y;). Then, we partition the SDSs fi
with respect to the alternatives 7 1(x;), T (). In more detail, let Foy={fl:ic€
N,t € T,{t ' (x;), 77" (y))} = {x, y}} denote the multi-set of SDSs f¥ that are
associated with x and y. Note that all unilaterals in Fy, are O-randomly dictatorial for
x, y. Furthermore, these multi-sets partition the SDSs f;* as each f;* is only associated
with a single pair of alternatives. Even more, there are for every f; exactly 2(m — 2)!
permutations 7 such that (t7 (), 1 (i)} = {x, y}. Hence, we derive that each set
Fyy contains 2n(m — 2)! unilaterals.

In the next step, we merge all unilaterals in a multi-set F), into a single unilateral.

Thus, we define the unilateral f,,(>;) as fy,(>;) = Zf.rEny z(mk—iz)!ff(>j), ie.,
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fxy chooses each SDS f e F,, with a probability proportional to ;. Observe that
Sy is strategyproof because it is a mixture of strategyproof SDSs and it is O-randomly
dictatorial for x, y because all unilaterals in F, are O-randomly dictatorial for these
alternatives. Based on the SDS f,, we can finally define the SDS f* for n* = (’;)
voters. To this end, let N* denote the electorate of f*. We associate each voter j € N*
with a different pair of alternatives x, y € A and set f J?* = fxy. Then, the SDS f*
chooses one of the voters j € N* uniformly atrandom and returns f ]?“ (=) = fry(>=)),

ie., f*(R) = ni* Z;’*:l f;(>-/)' Clearly, f* is strategyproof because it is a mixture of
strategyproof SDSs. Moreover, itis O-randomly dictatorial because every voter j € N*
is O-randomly dictatorial for the pair of alternatives x, y with which he is associated.
Furthermore, Claim 3 shows that f* is B-ex post efficient for the same 8 as f.

It remains to show that the SDS f* satisfies the properties (i), (ii), and (iii). First, note
that it satisfies (i) by construction as every voter is O-randomly dictatorial for a different
pair of alternatives. For (ii) and (iii), we show first the auxiliary claim that fy,(R, x) =
Jroe)(T(R), T(x)) for all permutations T : A — A, preference profiles R, and
alternatives x € A. Hence, we fix two arbitrary alternatives x, y and a permutation
T : A — A.Moreover, consider an arbitrary SDS fif, € Fyy and note that fi’/(R, X) =

i@ (R),T'(x)) = f(' (M x(R)). T/ (x 7 (x(x)))) = J"f/"fl(f(R), 7(x)). Next,
observe that fT/OT_] € Fr(x),z(y)- This is true because fit/ € Fyy implies that
{z'7Y(x), 7Y (y)} = {x, y} orequivalently that {t’(x), T’(y)} = {xi, y;}. Therefore,
(7@ @), T @ ())) = {xi, v} which shows that f7°7 ' € Frior(y).
Finally, we derive the following equality for all profiles R and alternatives x € A.

)\.1’ ‘L',
Sy (R, x) = Z mfl (R, x)

’
ST €Fxy

Ai /o1
= Y 7 (R). ()

La 2(m—2)!
[ €Fxy
- Y e )
. 2(m — 2)!7" ’
J€F

= frrymn(T(R), T(x)).

In the third step of this equation, we define £ = 7/ o T~!. Moreover, we use here
the fact that T/ o 7! # t” o vV if T/ # ¢, which implies that every SDS I € Fyy
is mapped to a unique element fl.f € Fr(x)z(y). This proves the auxiliary claim.

Subsequently, we show that f* satisfies condition (ii) and consider therefore an
arbitrary voteri € N*. Moreover, let x;, y; denote the alternatives associated with fl-*,
i.e., fi* = fyy Finally, consider a profile R in which voter i prefers x; the most, y; the
second most, and some arbitrary alternative z; € A\ {x;, y;} the third most. We define
§ = f*(R"Y z;) — f*(R, z;). First, note that R'"%Y and R only differ in the prefer-
ences of voter i and thus, f*(R¥Y, z;) — f*(R, z;) = f*(=: ", zi) — £ (=i, 2i).
Next, consider a second voter j € N* (j = i is possible), let x; and y; denote
the alternatives which are associated with f}, and let z; € A\ {x;, y;} denote
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another alternative. Moreover, define R’ as a profile such that voter j ranks x |
first, y; second, and z; third in R’, and let Rt = (R’)/*%/%. We show in the
sequel that f*(R™,z;) — f*(R’,zj) = 8, which proves claim (ii). Thus, note that
FHRT, zj) — MR, zj) = f]f“(>j, Zj) — fj?"(>/j, zj) because f* is a mixture of
unilaterals and only voter j changes his preference relation. Next, let T denote a permu-
tation such that t(>’j) = >;, which means in particular that 7 (x;) = x;, T(y;) = yi,
and 7(z;) = z;. Now, our auxiliary claim proves (ii) since

f;(>;r’ Zj) = f/*(yj’ 2j) = Jajy ((>/j)j:mj’ 2j) = ij)’j(>/]" zj)
= fz(x,-)r(y,-)(f((>})j:zjyf), T(z;)) — fr(xj)r(yj)(f(>’j), 7(z;))

i:7; i
=fx,~y,-(>i lylazi)_fxiyi(>ivzi)
=4.

Finally, we discuss why f* satisfies condition (iii). For this, consider two voters
i,j € N*and let x;, y; and x;, y; denote the alternatives associated with fl* and
]T“, respectively. We explicitly allow that i = j. Furthermore, consider two prefer-
ence relations >; and >; such that x; and y; are top-ranked in >; and x; and y; are
top-ranked in >~ ;. Finally, let T denote a permutation such that >; = 7(>;) and let
Zf and z]; denote the k-th ranked alternative of voter i and j, respectively. Our aux-
iliary claim shows immediately that f*(>;, zf‘) = f;‘(> s z’;). This means that for
every k € {1, ..., m}, the k-th ranked alternative receives the same probability from
every voter if they report the alternatives x;, y; as their favorite choice. Hence, there
is a scoring vector @ = (ay, ..., dy) such that f*(R, x) = ZieN ar(x,>;) for such
profiles. Moreover, it follows from strategyproofness that a3 > a4 > ... a,, and from
the definition of an SDS thata; > 0 for alli € {1, ..., m}. Finally, a; = a; since for
all i € N*, the unilateral fl* is O-randomly dictatorial for x; and y;. Hence, there is a
scoring vector that meets all requirements of (iii).

Claim 1: For every voter i, there exists a pair of alternatives x;, y; such that
f(R) = f(R*) for all preference profiles R in which voter i reports x; as best
alternative and y; as second best one.

Since f is a strategyproof and O-randomly dictatorial SDS, Lemma 1 shows that
for every voter i € N, there is a pair of alternatives x;, y; and a preference profile
R such that f(R,y) = f(R'™i%  y), voter i top-ranks x; in R, and second-ranks y;.
First, note that localizedness immediately generalizes this claimto f(R) = f (REYixiY,
Moreover, since only voter i’s preference changes and f is a mixture of unilaterals,
we also infer that f;(R) = f;(R'™Yi*i) where f; is the unilateral of voter i. We show
in the sequel that f(R) = f(R'¥) for all preference profiles R in which voter i
reports x; and y; as his best and second best alternatives.

Since f is a mixture of unilaterals, it follows that f(R) = f(R™™) if
fi(Z) = fi(=77™) because =; = =" for all j € N\{i}. Moreover, it follows
from strategyproofness, which entails localizedness, that f;(>;,z) = fi(>i,2) =
[ ) = f;(=;7, 2) for z € {x;,y;} since =; and >=; only differ in the

order of the alternatives in A \ {x;, y;}. On the other hand, =; and ;fzy ™ differ only
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in the preference over x; and y;, so another application of localizedness shows that
i) = fi(>;"). Hence, it holds indeed that f(R) = f (R"%) for all preference
profiles in which voter i reports x; and y; as his two best alternatives.

Claim 2: The SDS " (R, x) = fi(t(R), t(x)) is strategyproof and 0-randomly
dictatorial for 7! (x;), " (y)).

First, note that f is strategyproof as every manipulation of f;* can be mapped
to a manipulation of f;. In more detail, if voter i can manipulate f;* by switching
from R to R’, he can also manipulate f; by deviating from 7(R) to 7(R’). This is
true because a manipulation requires an alternative x such that Zy>l- JIRLY) >
Zy>,~x fT (R, y), which entails by definition of f;7 that Zy>,-x fi(z(R),1(y)) >
Zy>;x fi(r(R), 7(y)). Finally, since y >; x in R if and only if t(y) >; t(x) in 7(R),
we derive that voter i can manipulate f; by deviating from 7(R) to t(R’) if he can
manipulate f; by deviating from R to R’.

Furthermore, f;° is a O-randomly dictatorial SDS because f; is one: Claim 1
shows that for every voter i, there exists a pair of alternatives x;, y; such that
f(R) = f (R for all preference profiles R in which voteri prefers x; the most and
i the second most. It follows from this claim that f;* Y R), T (x)) = fi(R, x) =
fi(RIYi%i x) = fi (r~Y(R™i%iy, t=1(x)) forall x € A, where ! is the inverse per-
mutation of 7, i.e., 7! (t(x)) = x for all x € A. Therefore, fi (Y R), v (%)) =
SR, T ) and [T R, T ) = ST @R, e ().
Moreover, the preference profiles t=1(R) and T (RIVi%i) only differ in the order of
the two best alternatives 71 (x) and t—!(y) of voter i and the proof of Claim 1 entails
thus that f;* is O-randomly dictatorial for these two alternatives.

Claim 3: The SDS f* = ni* Zf’; fi* is B-ex post efficient for the same f as f.

To prove this claim, we construct first another SDS f * and show that this SDS is
B-ex post efficient for the same 8 as f. As the second step, we show that f* can also
be derived from f by merging voters, and thus f* inherits the -ex post efficiency of
/. Before defining f, we introduce the SDS f7: just as the SDSs /7, it is defined
as fT(R,x) = f(r(R), t(x)). In particular, f7 is B-ex post efficient for the same S
as f. This follows by considering an arbitrary profile R in which an alternative x is
Pareto-dominated. It is easy to see that t(x) is then Pareto-dominated in t(R), and
we derive therefore that f*(R, x) = f(t(R), T(x)) < B because f is B-ex post effi-
cient. Next, we define the SDS £ for nm! voters as follows: we partition the voters
{1,...,nm!} into m! sets Ny, ..., N, with |N;| = n and associate with every set a
different permutation 7; : A — A. Then, f*(R) = % Z:”:'l f%(Rn,), where Ry,
denotes the restriction of R to the voters in N;. Observe that f is B-ex post efficient
for the same B as f because an alternative x that is Pareto-dominated in R is also
Pareto-dominated in all Ry, and all % are 8-ex post efficient. Hence, it follows that
FYR) = oy S0 fT (R, ) < S B =B

Next, we show that fT and f* satisfy B-ex post efficiency for the same B.
Therefore, we change the representation of f+. The central observation here is that
fr= ZiGN A; ;7. Hence, we can also associate every voter j € {1, ..., nm!} with
anindex i € N and a permutation t such that each index-permutation pair is assigned
exactly once. Thus, define f;r = f and A;“ = % (i.e., the weight of f is the
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proportional to the weight of f; in the original SDS f). Then, we can write fT as
fT(R) = Z;’Z'l Ajf fj.+(> j)- Next, note that every f;' appears once in the defini-

tion of f* and once in the union of all F)y. Therefore, we derive that f T(R) =
1

7 2ixye(d) Y freky Tms 2),f (>i), where n* = (}). Next, we restrict our atten-
tion to profiles R such that for all {x, y} € ( 2), all voters j with f; € Fy, submit the
same preference relation. In this case, we may replace the preferences of all voters j
with f; € Fy, with a single preference relation. Then, there are exactly (';') voters left,
each of which is associated with a different pair of alternatives. In particular, we can use
the definition of fy,(>;) = > r 2(mkiz)! fi¥ (>i) now as we apply all unilateral

SDSs in Fyy to the same preference relation >;. Hence, f returns the same outcomes

€Fyy

as f* if for each {x, y} € ( ) all voters j with f; € Fyy report the same preferences.
Since [T is B-ex post efficient, it follows therefore also that f* is B-ex post efficient. 0

Next, we use Lemma 6 to prove that no O-randomly dictatorial SDS that can be
represented as a mixture of unilaterals is B-ex post efficient for 8 < %

Lemma 7 No 0-randomly dictatorial SDS that can be represented as a mixture of
. . . 1 .
unilaterals satisfies B-ex post efficiency for B < - if m > 3.

Proof Let the SDS f denote a mixture of unilaterals. First, we apply Lemma 6 to
construct the SDS f* as specified by this lemma. In the sequel, we show that f* is
B-ex post efficient for § > ”ll and the same therefore holds for f. In our proof, we
will construct a profile R* in which every alternative must receive a probability of at
most B which leads to a contradiction if 8 < L. Let N with |N| = (}) be the set of
voters of f*. Furthermore, Lemma 6 (i) states that every voter j € N is associated
with a different pair of alternatives {x;, y;} for which he is O-randomly dictatorial.
First, we explain the construction of an auxiliary profile R. For this profile, we
choose an arbitrary pair of alternatives a, b and assume without loss of generality
that voter 1 is O-randomly dictatorial for a, b, i.e., {a, b} = {x1, y1}. Voter 1 submits

the preference relation >; = b >1 a >1 ... in R. Furthermore, there are m — 2
other voters j € N witha € {x;,y;} and b ¢ {x;, y;}. We assume without loss of
generality that these are the votersin {2, ..., m — 1} and that a = x;. The preferences
of the voters j € {2,...,m —2}inRis>; = y; =ja >j b >; .... Also, there
are m — 2 voters j witha ¢ {x;, y;} and b € {x;, y;}. We assume that these voters
are the ones in {m, ...,2m — 3} and that b = y;. The preferences of these voters
is>; =b > xj >J a >; ....Finally, a,b ¢ {x;, y;} for the remaining voters

€ {2m—2,...,( )} Thesevotersreport =i =Xxj>jyi>jb>=ja>;...in

R. Note that if m = 3, there are no voters of the fourth type. Furthermore, every voter
J € N ranks the alternatives x;, y; for which he is 0-randomly dictatorial at the top.
The full profile for m = 4 is shown in Fig.4.

We show next that f*(R,a) < B by constructing a new preference profile R’
such that f*(R,a) = f*(R’,a) < B. For the construction of R’, let all voters in
the second group j € {2,...,m — 1} swap a and b, and all voters in the third group
Jj €{m,...,2m—3}swapa and x;. The resulting preference profile is shown in Fig. 5
for the case that m = 4. It is easy to see that b Pareto-dominates @ in R’ and, as f* is
B-ex post efficient, f*(R’, a) < B. Alternative a was moved from third to second and
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1 1 1 1 1 1
b ¢ d b b ¢
a a a c¢c d d
c b b a a b

d d ¢ d ¢ a

Fig. 4 The preference profile R from the proof of Lemma 7 for m = 4. There are four groups of voters.
The first group contains only the first voter who is O-randomly dictatorial for @ and b. The next two groups
have both m — 2 voters and are O-randomly dictatorial for one of @ and b. The last group contains the
remaining (m 2) voters that are not O-randomly dictatorial a or b. All voters have the pair for which they
are 0-randomly dictatorial ranked at the top

1 1 1 1 1 1

b ¢ d b b c

a b b a a d

c a a ¢ d b

d d ¢ d c
Fig. 5 The preference profile R’ for m = 4 alternatives that results from R by swapping the second and
third alternatives of voters j € {2, ...,2m — 3}. Alternative a is Pareto-dominated by alternative b

from second to third place by m — 2 voters. It follows therefore from Lemma 6 (ii) and
localizedness that the probability that alternative a gains when m — 2 voters swap it
from third to second place is the same as the probability that a looses when m — 2 voters
swap it from second to third place. Thus, we derive that f*(R, a) = f*(R’,a) < B.

Finally, note that in R, all voters j € N report the pair x;, y; for which they are
O-randomly dictatorial as their two best alternatives. Hence, Lemma 6 (iii) entails the
existence of a scoring vector (ay, ..., ay) suchthata; =a; > 0,a3 > --- > a, >0,
and f*(R,x) =Y jeN Ar(x,-)) forallx € A.Inparticular, observe that the probability
of an alternative only depends on its rank vector r*(x, R), which contains the rank of
x with respect to every voter in increasing order. The rank vector of alternative @ in R
is

m—1 m—2 (mz_ 2)
— P —P——
ra,R)=2,...,2,3,...,3,4,..., 4.

Furthermore, observe that f*(R,x) < f*(R,a) in every profile R in which (i)
each voter j € N reports the alternatives x;, y; as his two best alternatives and (ii)
r*(x, R)x > r*(a, R); forallk € {m, ..., (’;’)} Condition (i) implies that f* can be
computed based on the scoring vector (ay, . .., a,,). Furthermore, it implies that every
alternative x € A is among the two best alternatives of exactly m — 1 voters, and since
a) = ay, it follows that we can ignore these entries when comparing the probability
of a in R with the probability of x in R. Finally, the claim follows as a3 > - -- > a,
and r*(x, R)x > r*(a, R); forall k € {m, . (5}

We use this fact to construct a new proﬁle R* where f*(R*,x) < f*(R,a) < B
for every x € A. Let every voter j € N report the alternatives x;, y; for which he
is O-randomly dictatorial as his two best alternatives. Furthermore, we distribute all
other alternatives such that no alternative is ranked third by more than m — 2 voters.
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This is possible as there are m > 3 alternatives and w voters. It follows from

the construction that r*(x, R*); > r*(a, R); forevery k € {m, ..., ('5’)} and every
x € A. Hence, we derive that f*(R*, x) < f*(R,a) < Bforeveryx € A. If B < %,
this entails that ), _, f*(R*, x) < 1, a contradiction. Thus, f* cannot satisfy S-ex
post efficiency for B < % and f therefore violates this axiom, too. This shows that
there exists no O-randomly dictatorial SDS that can be represented as a mixture of

unilaterals and that satisfies 8-ex post efficiency for 8 < % when m > 3. O

Finally, we use Lemmas 5 and 7 to prove that there are no O-randomly dictatorial
SDSs that satisfy S-ex post efficiency for 8 < %

Proposition 1 No strategyproof SDS that is O-randomly dictatorial satisfies f-ex post
efficiency for B < % ifm > 3.

Proof Let f denote a strategyproof SDS for n voters and m > 3 alternatives that is
O-randomly dictatorial. Our argument focuses mainly on the profiles R*>Y, in which
all voters report x as their best choice and y as their second best choice. The reason
for this is that if f(R,y) > B for some profile R in which y is Pareto-dominated
by x, then f(R*”,y) > B. This is a direct consequence of strategyproofness as we
can transform R into R*>Y by reinforcing x and y. Hence, non-perversity implies that
f(R*Y,y) > f(R,y) > B. Moreover, localizedness entails that the order of the
alternatives z € A\{x, y} in R*” is not important as it does not affect the probabilities
of x and y.

Next, we use Theorem 1 to represent f as mixture of duples and unilaterals, i.e.,
S = A funi+(1=2) faupie, where A € [0, 1], funi is amixture of unilaterals, and fgype is
amixture of duples. While Lemmas 5 and 7 imply that f,,,; and faupie are not 8-ex post
efficient for 8 < %, this does not imply that f violates B-efficiency for g < %, too.
The reason for this is that f,,; and fy,p may violate B-ex post efficiency for different
profiles or alternatives. We solve this problem by constructing a strategyproof SDS
ff=Af+ A =0 jupl . that is O-randomly dictatorial and B-ex post efficient

for the same B as f, and for which f;*. and f;uple denote mixtures of unilaterals

and duples such that £ .(R*Y,y) = f*.(RT®-T®) 1(y)) and Lo R, y) =
f;uple(RT(x)’T(”, 7(y)) for all permutations 7 : A — A.

For this construction, we define f* as f*(R, x) = f(z(R), t(x)) for every permu-
tation T : A — A. We construct the SDS f* for m!n voters as follows: we partition
the electorate in m! sets Ny with |[N;| = n and associate each of these sets with a
different permutation 74 : A — A. Then, we choose one of these sets Ny uniformly
at random and consider from now on only the preference profile Ry, defined by the
voters in Ni. Finally, return f™ (Ry, ), where 7 denotes the permutation associated
with Ny. More formally, f*(R) = ”—11, Z’:'l F™(Rn,).

First, note that f* is O-randomly dictatorial because of Lemma 1. In more detail,
since f is O-randomly dictatorial, there is for every voter i a profile R and alternatives
x, y such that voter i prefers x the most and y the second most in R, and f(R, y) =
f(R"Yy). Consequently, there are such profiles and alternatives for every voter in
each SDS f7. Finally, we derive that such profiles and alternatives exist also for f*.
For a voter i € Ny, the corresponding alternatives x, y and the preferences of the
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voters in Ny are the same as for f%. The preferences of the remaining voters do not
matter. If f* does not choose Ny in the first step, the preferences of voter i do not
matter, and if f* chooses Ny, it only computes f™ (Ry, ). Hence, if voter i now swaps
x and y, the outcome of f* does not change as the outcome of f% does not change.
Consequently, Lemma 1 implies that f* is 0-randomly dictatorial.

Next, observe that f*(R) = % ZZ’; 1 f™®(Ry,) is strategyproof as it is a mixture
of strategyproof SDSs. In particular, we can interpret each term f ™ (Ry, ) as SDS forn
voters that ignores the preferences of the voters not in Ng. It follows immediately from
this interpretation that f* is strategyproof because all f% are strategyproof. Hence, we
canuse Theorem I torepresent f*as f* = A f +(1—21) fd*uple, where f - is amixture
of unilaterals and fju 1o 18 @ mixture of duples. In more detail, the followmg equation

shows that fu*m(R) ni! Z;(nz'l f;rlzci(RNk) and f;uple(R) m' Z duple(RNk)

where fum and f¥ duple A€ defined analogously to f.

m!

SRy = — Z F™(Ry,)

1 & 7
ﬁ Z)‘fur]:i(RNk) +d- )‘)fduple(RNk

m!

= x— Z wi(Rv) + (1= 2)— Z it (RN
= xfmm) + (1= 1) fpie (R)

Note that the definitions of /-, and f7 , entail that £* (R, y) = fo,(RP®-P0),

um
o(y)) and fduple(Rx’y, y) = fduple(Rp(")’p(Y), 0(y)) for every permutation p : A —
A.For f ., this follows from the following equations and a symmetric argument holds

for fa’uple
1 m!
) X,
Fai(R™, ) = — 3 fun Ry, )
k=1
1 m!
=— Z Funi (T (RN, (1))

= —qumuk(p(R ), w ()

= fu,,,-(Rp“‘)*p(”, p())
The first two equations rely only on our definitions. The third equation follows

because {top: 7€ T} =T = {1: k € {1, ..., m!}} for every permutation p : A —
A, where T is the set of all permutations on A.
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Finally, we show that f* violates 8-ex post efficiency for every 8 < %, which
entails that f also violates this axiom. We use Lemma 5 and Lemma 7 for this as these

lemmas imply that f ;uple and f, . violate B-ex post efficiency. Note for this that f" .

is O-randomly dictatorial as otherwise, f* cannot be 0-randomly dictatorial. Hence,
there are profiles R! and R?, and alternatives xj, y1, X2, and y> such that x; Pareto-

dominates y; in R’ fori € {1,2}, £ (R, y1) > %,and f;uple(Rz, y2) > %.We now
1

derive from strategyproofness that f, .(R*"1, y;) > % and f;uple(sz'yz, y2) > .

m
Finally, it follows from the symmetry of f* - and f ;”p 1. With respect to the profiles R*"”

that f* .(R*Y,y) > % and f;uple(Rx'-V, y) > % for all alternatives x, y € A. Conse-

uni

quently, we conclude that f*(R*Y, y) = A fr . (R, ) +(1=1) fi 1, (R¥Y, y) = %

uni
for all x, y € A. This means that f* and therefore also f violate B-ex post efficiency

for every B < % O
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