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Abstract
Measuring inequality is a challenging task, particularly when data is collected in 
a coarse manner. This paper proposes a new approach to measuring inequality 
indices that considers all possible income values and avoids arbitrary statistical 
assumptions. Specifically, the paper suggests that two sets of income distributions 
should be considered when measuring inequality, one including the highest income 
per individual and the other including the lowest possible income per individual. 
These distributions are subjected to inequality index measures, and a weighted aver-
age of these two indices is taken to obtain the final inequality index. This approach 
provides more accurate measures of inequality while avoiding arbitrary statistical 
assumptions. The paper focuses on two special cases of social welfare functions, 
the Atkinson index and the Gini index, which are widely used in the literature on 
inequality.

1 Introduction

In recent years, inequality has become a major focus in economics, particularly in 
the aftermath of financial crises, social conflicts, and the pandemic (Atkinson et al. 
2011). However, measuring inequality can be a challenging task due to a coarseness 
of data. While there are various indices such as Atkinson (1970), Gini (1921) and 
Theil (1967) indices.1 that can be used to measure inequality if an economic distri-
bution within a population can be precisely and correctly summarized in a single 
statistic, the reality is that datasets are often not presented in such a straightforward 
manner.

One reason for this is that data is often collected in a way that is not precise, 
such as income data being collected in the form of income bands rather than precise 
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individual income data.2 As an example, the Current Population Survey, which 
serves as the primary source for labor force statistics in the United States, includes 
a question in its questionnaire: “Which category best represents the total combined 
income of all members of your FAMILY over the past 12 months?”.3 Respondents 
are provided with 16 possible intervals to choose from, such as ($5,000 to $7,499) 
or ($7,500 to $9,999). Another reason is that while the data collected may be pre-
cise, it may not be processed in a unique way. For example, equivalised income is a 
measure of household income that is adjusted for differences in household size and 
composition. However, there are a wide range of equivalence scales that exist, mak-
ing it difficult to estimate inequality when the dataset is coarse.4 Therefore, although 
inequality is an important subject in economics, the challenge of dealing with coarse 
data makes measuring it a daunting task.

One common approach is to use a statistical model to impute individual incomes 
based on the reported income band data. This can be done by assuming that indi-
vidual incomes are the group means or median (Heitjan 1989; Henson 1967). The 
imputed individual income data can then be used to calculate inequality measures 
such as the Gini index. These methods involve making strong assumptions about the 
shape of the income distribution and introduce errors and biases into the estimates 
of income inequality, which can affect the accuracy of policy decisions based on the 
data.

To accurately measure inequality parameters when data is coarse, it is impor-
tant to avoid arbitrary statistical model assumptions. Ideally, the inequality measure 
should be independent of these assumptions, ensuring that estimates of inequality 
are consistent across different statistical models. This paper proposes new methods 
for measuring inequality indices that address this issue. We argue that all possible 
income values should be considered when measuring inequality, without ignoring 
any possible distribution. Specifically, we consider two sets of income distributions, 
one including the highest income per individual and the other including the lowest 
possible income per individual. We subject these distributions to inequality index 
measures, and then take a weighted average of these two indices to obtain the final 
inequality index. By using this approach, we can obtain more accurate measures of 
inequality while avoiding arbitrary statistical assumptions. More precisely, consider 
a multi-valued distribution F. Let F ( F ) define the upper (lower) limit distribution. 
We suggest that a society could measure the inequality of F in the following way:

where � is a measure of single-valued distribution. The parameter 0 ≤ �F ≤ 1 can 
be interpreted as a measure of the social attitude toward inequality of upper limit 
distribution of F.

I(F) = �F ⋅ �(F) + (1 − �F) ⋅ �(F),

3 Consult the website of United States Census Bureau for further details.
4 I highly appreciate that an editor suggests this example.

2 Income bands refer to grouping individuals or households into broad categories based on their reported 
income levels. I highly appreciate that one referee suggests this example.
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We begin by adopting the approach of Atkinson (1970), Kolm (1969), and Sen 
(1973) to characterize a class of social welfare functions that induce the desired meas-
urement. Specifically, we focus on two special cases: the Atkinson index and the Gini 
index. These indices are widely used in the literature on inequality and their associ-
ated social welfare functions are theoretically meaningful. The robust Atkinson social 
welfare function is additively separable, which is normatively appealing. In contrast, 
the robust Gini social welfare function is non-additive, but maintains a property known 
as comonotonic additivity à la Schmeidler (1989). Both indices have potential connec-
tions to political economy models, as demonstrated in Salas and Rodríguez (2013) and 
Rodríguez and Salas (2014). We also seek to establish a set of ethical axioms that char-
acterize these robust social welfare functions, reflecting both inequality and impreci-
sion considerations.

This paper provides a complementary approach to studying epistemic uncertainty 
in addition to the existing research on subjective uncertainty by scholars such as Ben-
Porath et al. (1997), Gajdos and Tallon (2002), Gajdos and Maurin (2004), Chew and 
Sagi (2012). Epistemic uncertainty refers to the uncertainty arising from limitations of 
the data or our knowledge of the world, while subjective uncertainty pertains to uncer-
tainty due to chance or randomness. Our study focuses on set-valued problems, which 
fall under the category of epistemic uncertainty. However, it is not yet clear what the 
state space is within our framework. Although studies in psychology suggest that peo-
ple can intuitively distinguish between these two types of uncertainty, research in the 
field of inequality, particularly theoretical studies, has not explicitly focused on epis-
temic uncertainty. Thus, our paper proposes a new inequality index with a theoretical 
foundation under conditions of uncertainty when the state space cannot be naturally 
constructed.

Since Atkinson (1970), the inequality literature has had close connections with deci-
sion theory. Our robust social welfare functions are no exception and are related to con-
cepts such as maxmin expected utility, �-maxmin expected utility of Ghirardato et al. 
(2004), and Hurwicz expected utility of Gul and Pesendorfer (2015). However, our 
focus is on the environment where no state space is present, which makes the objective 
ambiguity model of Olszewski (2007) a closer fit to our approach. Although the con-
cepts are similar, our motivation and application are significantly different. At a techni-
cal level, our main distinction is that we allow for a non-additive measure with respect 
to single-valued distribution.

In the next section, we explore a social welfare approach to construct a robust meas-
ure of inequality. We discuss how to extend two widely used inequality indices, the 
Atkinson and Gini indices, to robust indices. Section 3 focuses on the robust Atkinson 
index and the robust Gini index. We axiomatize the robust Atkinson and Gini social 
welfare functions, which induce the corresponding robust indices. Finally, in Sect. 4, 
we conclude and provide further discussion. All proofs are included in the appendix.
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2  Inequality measurement

2.1  Setup

Consider a society N  consists of n > 2 individuals. Let X = ℝ+ be the set of pos-
sible individual allocations. We denote by X  the collection of all non-empty com-
pact subsets of X. An allocation profile is denoted by F = (F1,… ,Fn) , where each 
Fi ∈ X  contains all possible allocations of individual i. An allocation profile is 
deterministic (also known as a distribution) and is written as f = F , if each Fi is a 
singleton, i.e. Fi ∈ X . Let F  be the collection of all possible allocation profiles and 
let Xn denote the set of all deterministic allocation profiles. We denote 1 ∈ Xn as the 
deterministic profile f where fi = 1 for all i. If there is no confusion, we write deter-
ministic profile f ∈ F if fi ∈ Fi for each i.

For Y , Z ∈ X  , we write Y ≥ Z if y ≥ z for all y ∈ Y  and z ∈ Z . For F ∈ F  , we 
denote F as the upper limit distribution in F if F ∈ F and Fi ≥ Fi for all i. Similarly 
we denote F as the lower limit distribution in F if F ∈ F and F

i
≤ Fi for all i. Also, 

for F,G ∈ F  , we write F ≥ G if Fi ≥ Gi for all i.
For f ∈ Xn , we write �(f ) = 1

n

∑n

i=1
fi for the mean of f. Also, let f̃  be the deter-

ministic allocation profile obtained from f by rearranging the allocation in increasing 
order, i.e. there exist a permutation � ∶ N → N  such that f𝜋(i) = f̃i and f̃1 ≤ … ≤ f̃n.

2.2  Robust inequality index

To construct a robust inequality index, we adopt Atkinson (1970), Kolm (1969), and 
Sen (1973) (AKS) approach, which posits that an inequality index should be a trans-
formation of a social welfare function (SWF) that emphasizes the welfare loss due 
to the inequality in the allocation profile. Formally, a social welfare function (SWF) 
W ∶ F → ℝ maps allocation profiles to real numbers.

To develop a welfare-theoretic approach to the measurement of inequality, we 
focus on the class of SWFs that display the inequality reduction property. To this 
end, we assume that the SWF should satisfy the following three assumptions. We 
say a SWF W is Schur-concave on deterministic profiles if for all f ∈ Xn and all 
bistochastic matrices M of order n,5 W(fM) ≥ W(f ) . We say a SWF W is monotonic 
if for all F,G ∈ F  , W(F) ≥ W(G) whenever F ≥ G . We refer to a SWF as regular if 
it is continuous with respect to Hausdorff distance,6 monotonic and Schur-concavity 
on deterministic profiles. We assume throughout this section that W is regular.

Given a regular SWF W, for any allocation profile F, we define the equally dis-
tributed equivalent �(F) ∈ ℝ as follows:

5 A n × n matrix M with nonnegative entries is called a bistochastic matrix order n if each of its rows and 
columns sums to unity.
6 For every pair of deterministic allocation profiles f, g, the distance between f and g can be induced by 
a natural topology, written as d(f, g), on ℝn . Therefore, the set of allocation profiles F  can be equipped 
with Hausdorff distance in the following way: for F,G ∈ F ,

dist(F,G) = max
{

max
f∈F

min
g∈G

d(f , g), max
g∈G

min
f∈F

d(f , g)
}

.
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Therefore, �(F) is the level of allocation that, if given to each individual, will make 
the existing profile F socially indifferent. Since W satisfies regularity conditions, this 
can be used to yield the equally distributed equivalent as a function � ∶ F → ℝ . In 
other words, given a profile F, �(F) can be uniquely extracted from the above equa-
tion. In particular, note � is also regular. Further, it is immediate to see �(c ⋅ 1) = c 
for all c > 0.

Due to monotonicity, for F ∈ F  , we have

So there exists a unique �F ∈ [0, 1] such that

Accordingly, we propose a simple transformation of regular SWF as an index of 
inequality.

Definition 1 A function I ∶ F → ℝ is said to be a robust index of inequality if, for 
all F ∈ F  with F ≠ 0,

The proposed definition of the inequality index coincides with the AKS approach 
when the profile is deterministic. However, it is important to note that the index is 
not defined for profiles where each individual has zero allocation, as this is not a 
feasible allocation. Our proposal is plausible because the index has important prop-
erties that the classical index requires.

Proposition 1 A robust index of inequality I has the following properties: 

 (i) Betweeness: Each I(F) lies between I(F) and I(F).
 (ii) Schur convexity on deterministic profiles: I(f ) ≥ I(fM) for every bistochastic 

matrix M and deterministic profile f.
 (iii) Normalization: Each I(F) lies in [0, 1]; and I(F) = 0 iff F = c ⋅ 1 and F = c� ⋅ 1 

for some c ≥ c′ > 0.

We actually can rewrite index I in a weighted average of I(F) and I(F).

Using this, we can express �(F)as

W(�(F) ⋅ 1) = W(F).

�(F) ≤ �(F) ≤ �(F).

�F�(F) + (1 − �F)�(F) = �(F).

(1)I(F) = 1 −
{

�F
�(F)

�(F)
+ (1 − �F)

�(F)

�(F)

}

.

I(F) = �FI(F) + (1 − �F)I(F).

�(F) = �F
[

�(F)(1 − I(F))
]

+ (1 − �F)
[

�(F)(1 − I(F))
]

.
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As previously mentioned, the function � itself or any increasing transformation func-
tion of it can be regarded as a regular SWF, and thus implies and is implied by other 
inequality indices. Thus, � implies and is implied inequality indices. However, �(F) 
is not directly implied by I(F), but rather through I(F) , I(F) and I(F). The welfare 
function used in the index is represented as an increasing function of a weighted 
sum of two products: the mean of the upper limit distribution and the shortfall of 
its inequality index from unity, and the mean of the lower limit distribution and the 
shortfall of its inequality index from unity. This type of welfare function is referred 
to as a boundary reduced-form welfare function because its arguments summarize 
the entire distribution in terms of the mean and inequality of the upper and lower 
limit distributions.

2.3  Lorenz dominance and coarse inequality

Lorenz (1905) uses a Lorenz curve to present deterministic allocation profile in an 
illuminating fashion. The Lorenz domination criterion is widely acknowledged as a 
fundamental principle to rank alternative profiles in terms of comparative inequality. 
In this subsection, we explore the extension of Lorenz domination from determinis-
tic profiles to general profiles and develop its relation with SWF.

Recall that a deterministic profile f is said to Lorenz dominate g,7 if

Fig. 1  {f , f �} Lorenz dominates 
g 

7 The classic definition of Lorenz domination, such as Atkinson (1970) and Dasgupta et  al. (1973), 
assumed that the compared profiles have the same mean, which does not fit in our setting. Therefore, our 
definition is an extension of their concept, which has referred to as generalized Lorenz dominance by 
Shorrocks (1980).
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for all k = 1, 2,… , n . That is, f Lorenz dominates g if the Lorenz curve of f is 
nowhere below the Lorenz curve of g. Now we extend this definition on determinis-
tic profiles to the general profiles.

Definition 2 A profile F Lorenz dominates another profile G, write as F ≿L G , if for 
every f ∈ F and g ∈ G , f Lorenz dominates g (Fig. 1).

A profile F Lorenz dominates G if every feasible deterministic profile in F Lorenz 
dominates every deterministic allocation in G. Thus, as we can see in Figure (1), if 
F = {f , f �} and G = {g} , then F Lorenz dominates G. However, the ranking of pro-
files generated by the Lorenz domination comparison is incomplete since, assuming 
F� = {f , g} and G� = {f �, g} , we cannot rank F′ and G′ by the Lorenz domination 
criterion. Though, ≿L is incomplete, but it satisfies transitivity. Below we state the 
relation between the Lorenz domination criterion and social welfare functions.

Proposition 2 Suppose that social welfare function W is regular. Let F and G be 
two profiles such that minf∈F �(f ) ≥ maxg∈G �(g) . Then F ≿L G if and only if 
W(F) ≥ W(G) , and W(f ) ≥ W(g) for each f ∈ F and g ∈ G.

This result states that a regular SWF will rank a profile and any deterministic 
profiles within it higher than another profile and any deterministic profiles within it, 
respectively, if and only if the Lorenz curves of the first profile are nowhere lower 
than those of the latter profile. This implies that a regular SWF is compatible with 
the Lorenz domination criterion. Therefore, it is reasonable to focus on regular 
SWFs when developing a robust inequality index.

2.4  Two robust indices

In this section, we extend two of the most popular indices, namely, the Atkinson 
index and the Gini index, to the robust indices.8 To discuss about the two specific 
indices, we need to restrict our robust inequality index I further. An inequality index 
I is a relative or scale invariant index if for all F ∈ F  and c > 0 , I(cF) = I(F) . To 
make I a relative index,9 further assumption on SWF W is required. We say W is 
homothetic if for all F, W(F) = Φ(Ŵ(F)) , where Ŵ is linear homogeneous, i.e. 
Ŵ(cF) = cŴ(F) for c > 0 , and Φ is an increasing transformation.

1

n𝜇(f )

k
∑

i=1

f̃i ≥
1

n𝜇(g)

k
∑

i=1

g̃i,

8 We refer to chapter  2 of Moulin (1991) for a discussion of two classic indices developed on AKS 
approach.
9 We refer to Blackorby and Donaldson (1980) for detailed discussion about relative index.
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Proposition 3 A robust index of inequality I defined as in eq (1) is a relative index if 
and only if W is homothetic.

Since the following indices we consider are relative, we restrict our attention to SWF 
that is both regular and homothetic.

Robust Atkinson index
We first consider a regular and homothetic SWF, so-called robust Atkinson SWF, 

which would characterize a robust Atkinson index, namely,

where 0 ≤ � ≤ 1 and u ∶ X → ℝ is defined by

with constant number a and positive number b. Using the SWF above, we get the 
explicit form of the robust Atkinson index according to eq (1):

The Gini index is perhaps the most commonly used measure of inequality, and our 
robust Gini index offers a means of measuring the Gini index when the allocation 
profile is not deterministic. Once again, the parameter � can be interpreted as the 
weight of confidence that society places on the upper limit distribution in a given 
profile.

Robust Gini indexWe now consider a SWF that characterizes a robust Gini index.

where 0 ≤ � ≤ 1 . Hence, the robust Gini index defined below corresponds to the 
above SWF.

(2)WA(F) = �

n
∑

I=1

u(Fi) + (1 − �)

n
∑

i=1

u(F
i
).

(3)u(x) =

{

a + b ⋅
xr

r
for 0 < r < 1,

a + b ⋅ log x for r = 0;

(4)

IA(F) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 − 𝛼
�

1

n
⋅

n
�

i=1

� Fi

𝜇(F)

�r
�1∕r

− (1 − 𝛼)
�

1

n
⋅

n
�

i=1

� F
i

𝜇(F)

�r
�1∕r

for 0 < r < 1,

1 − 𝛼
�

n
�

i=1

� Fi

𝜇(F)

�1∕n
�

− (1 − 𝛼)
�

n
�

i=1

� F
i

𝜇(F)

�1∕n
�

for r = 0.

(5)

WG(F) = �
�

�(F) −

∑n

i=1

∑n

j=1
�Fi − Fj�

2n2

�

+ (1 − �)
�

�(F) −

∑n

i=1

∑n

j=1
�F

i
− F

j
�

2n2

�

= � ⋅

∑n

i=1

�

2(n − i) + 1
�

⋅
̃
Fi

n2
+ (1 − �) ⋅

∑n

i=1

�

2(n − i) + 1
�

⋅ F̃
i

n2
,
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The Gini index might be the most widely used index of inequality and our robust 
Gini index provides a way to measure Gini index whenever allocation profile is not 
deterministic. The parameter � , once again, can be regarded as the confident weight 
that society assigns to upper limit distribution in a profile.

3  Axiomatization

In this section, we will discuss the axioms that must be satisfied by a society in order 
to have a robust Atkinson or a robust Gini SWF. We will use the characterization 
and transformation method introduced in the previous section to derive the robust 
Atkinson index and the robust Gini index.

Formally, let ≿⊂ F × F  be a social preference over a set of allocation profiles. We 
say that a SWF W ∶ F → ℝ represents the social preference ≿ if for all F,G ∈ F  , 
W(F) ≥ W(G) if and only if F ≿ G.

3.1  Regular axioms

We first state five regular axioms. These axioms with respect to deterministic pro-
files are widely assumed in the inequality literature. Also the five axioms are neces-
sary for both robust Atkinson and robust Gini SWF. 

A1 (Weak order) ≿ is complete and transitive.
A2 (Continuity) For all F ∈ F  , the sets {G ∶ G ≿ F} and {G ∶ F ≿ G} are closed in 

F  with respect to Hausdorff distance.

A1 is commonly required conditions and do not need further elaboration. A2 gen-
eralizes traditional continuity for deterministic profiles and can be interpreted in a 
similar manner.

For a permutation � ∶ N → N  and F ∈ F  , define �◦F ∈ F  by (�◦F)i = F�(i) for 
every i ∈ N  . 

A3 (Symmetry) For all F,G ∈ F  , if there is a permutation � such that F = �◦G , then 
F ∼ G.

A3 states that any permutation of individual labels should be considered allo-
cation-equivalent. This axiom ensures that the social ranking depends solely 
on the allocated variable and not on any other characteristic that might be 

(6)

IG(F) = � ⋅

∑n

i=1

∑n

j=1
�Fi − Fj�

2n2�(F)
+ (1 − �) ⋅

∑n

i=1

∑n

j=1
�F

i
− F

j
�

2n2�(F)

= 1 − � ⋅

∑n

i=1

�

2(n − i) + 1
�

⋅
̃
Fi

n2�(F)
− (1 − �) ⋅

∑n

i=1

�

2(n − i) + 1
�

⋅ F̃
i

n2�(F)
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distinguishable among members of society. Therefore, under symmetry, the iden-
tities of individuals are entirely irrelevant to the social decision-making process. 
Although not self-evident, this axiom is widely accepted in the literature. 

A4 (Unanimity) For all F,G ∈ F  , if Fi ≥ Gi for all i, then F ≿ G . Furthermore, if 
Fj > Gj for some j, then F ≻ G.

A4 states that if, for every individual, the worst allocation in F is better than the 
best allocation in G, then society prefers F to G. Moreover, if there exists an indi-
vidual for whom the worst allocation in F is strictly better than the best allocation 
in G, then society strictly prefers F to G.

We say that profile F dominates profile G if (i) for every f ∈ F , there exists 
a g ∈ G such that f ≿ g , and (ii) for every g ∈ G , there exists f ∈ F such that 
f ≿ g . In other words, if profile F dominates G, then for any deterministic allo-
cation in F, there must exist a worse deterministic allocation in G, and for any 
deterministic allocation in G, there must exist a better deterministic profile in 
F. The next axiom simply states that a dominant profile is always preferred to a 
dominated profile. 

A5 (Dominance.) If profile F dominates profile G, then F ≿ G.

The above five axioms are intuitive assumptions in the inequality literature. Below 
we discuss further the very axioms that would characterize either robust Atkinson 
SWF or robust Gini SWF.

3.2  Robust Atkinson SWF

We now want to state the required axioms that characterize robust Atkinson SWF. 
To state next axiom, we need some notation first. If F ∈ F  and T ⊂ N  , we write 
FT = (Fi)i∈T and FTc = (Fi)i∈N⧵T . 

A6  (Separability) For all F,G ∈ F  and nonempty T ⊂ N  , if (FT ,FTc) ≿ (GT ,FTc) , 
then (FT ,GTc) ≿ (GT ,GTc)

 Separability basically means that when considering social welfare ordering, if two 
profiles only differ in a subset T of individuals, then the allocation of the rest of 
the individuals would not affect social ordering. In other words, social rankings are 
independent of non-concerned individuals. Along with the first four axioms, sepa-
rability implies that the social welfare function has an additively separable form, 
which is defined as follows.

Definition 3 We say a SWF W ∶ F → ℝ is additively separable if there exist an 
increasing function u ∶ X → ℝ      (i.e. Y , Y � ∈ X  and Y ≥ Y ′ imply u(Y) ≥ u(Y �) ), 
such that, for all F ∈ F ,
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Proposition 4 A social preference ≿ satisfies A1-4 and A6 if and only if social pref-
erence ≿ is represented by an additively separable SWF.

This result says that a social preference that satisfies A1-4 and A6 is equivalent 
to the existence of a utility function defined on a set of possible allocation X  such 
that any allocation profile is evaluated by the utility sum over every individual 
allocation. Furthermore, this utility function is increasing in X  . In contrast, the 
classic additively separable SWF is defined over deterministic allocation profile. 
Our result can be regarded as a direct extension of classic one.

Moreover, together with A5 (Dominance), it turns out that function u(X) only 
depends on the maximum and minimum values of X. In fact, if A4 is replaced by 
an axiom saying that F ≥ G implies F ≿ G , then function u(X) only depends on 
the minimum values of X. Similarly axiom can makes u(X) only depends on the 
maximum values of X.

Actually, robust Atkinson SWF is additively separable in which function u has 
the following form: there exists � ∈ [0, 1] such that for Y ∈ X ,

Along with A5, the next axiom will characterize function u with the above expres-
sion. The last two axioms will guarantee function u on X has the expression as in eq 
(3).

W(F) =

n
∑

i=1

u(Fi).

u(Y) = �max
x∈Y

u(x) + (1 − �)min
x∈Y

u(x).

Fig. 2  Commutativity
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For Y ∈ X  , we say an allocation e(Y) ∈ X is equivalent to Y, if profile 
(Y ,… , Y) ∼ (e(Y),… , e(Y)) . In words, if a profile has the same allocation Y for 
every individual, then a deterministic profile with allocation e(Y) for every indi-
vidual is socially equivalent. 

A7  (Commutativity.) For x1, x2, y1, y2 ∈ X , if x1 ≥ {x2, y1} ≥ y2 , then F ∼ G 
whenever Fi = {e(x1, x2), e(y1, y2)} and Gi = {e(x1, y1), e(x2, y2)} for all i.

 To better understand the commutativity, see Fig.  2 for the indifference curves 
over profiles (Y ,… , Y) in which Y contains at most two values. Any point (x, y) in 
the quadrant represents profile (Y ,… , Y) where Y = {x, y} . Therefore, the diago-
nal represents the deterministic profiles (c,… , c).

Consider a coarse dataset consisting of four possible allocations: x1 , x2 , y1 , and 
y2 , where x1 represents the best allocation and y2 represents the worst allocation. 
How should society evaluate such a coarse dataset? One possible approach is to 
first divide the coarse dataset into two groups: a “good” group containing the 
best allocation and a “bad” group containing the worst allocation. Then, the two 
groups are evaluated separately to find their respective equivalent allocations. 
Finally, society finds deterministic allocations that are equivalent to these two 
group-based equivalent allocations.

A7 requires that in this situation, the way in which the two groups are formed 
should not affect how society evaluates this coarse dataset, as long as the good 
group contains the best allocation and the bad group contains the worst alloca-
tion. In other words, A7 states that society’s evaluation of the coarse dataset 
should be independent of the division of groups. 

A8 (Scale Invariance) For all deterministic profiles f , g ∈ Xn and all 𝜆 > 0 , if f ≿ g , 
then 𝜆f ≿ 𝜆g.

Under scale invariance axiom, it does not matter whether we measure allocation 
in euros or dollars as long as the unit is the same for each individual allocation. 

A9 (Pigou-Dalton principle) For all deterministic profiles f , g ∈ Xn , if there are 
i, j ∈ N  such that fk = gk for k ∉ {i, j} and fi + fj = gi + gj and |fi − fj| < |gi − gj| , 
then f ≻ g.

A9 simply states that a transfer between two individual allocation, in such a way 
that their allocation difference is reduced, will result in a strictly social preferred 
allocation profile. This principle demonstrates that redistributions from the rich 
to the poor would improve the social welfare.

Theorem 1 A social preference ≿ on F  satisfies A1-9 if and only if social preference 
≿ is represented by a robust Atkinson SWF as in eq. (2).
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This result presents a characterization of the robust Atkinson Social Welfare 
Function (SWF) in cases where individual allocation may not be deterministic. As 
a result, a social preference that respects the A1-9 criteria considers the welfare loss 
due to both inequality and imprecision in each allocation profile. Additionally, by 
applying a mathematical transformation to the SWF as shown in eq. (1), a robust 
Atkinson index can be derived, as depicted in eq. (4).

Now, let’s briefly examine how this result is established, which allows us to 
observe the independence of each axiom. Firstly, axioms 1-3 and axiom 6 collec-
tively imply that the SWF is additively separable, a result corresponds to the theo-
rem by Debreu (1960). Axiom 4 necessitates that the SWF must exhibit monotonic-
ity. Axiom 5 focuses on the utility function u defined on the set Y ∈ X  . Dominance 
suggests that u depends solely on the maximal and minimal equal distributions 
within set Y. Subsequently, Axiom 7 stipulates that u is the weighted sum of the 
values associated with maximal and minimal equal distributions. Finally, when com-
bined with Scale Invariance and the Pigou-Dalton Principle, this implies that u con-
forms to the desired function defined in eq. (3).

3.3  Robust Gini SWF

We now want to characterize robust Gini SWF. As we see from eq. (5), robust Gini 
SWF is not additively separable. It is additive with respect to order-preserving. 
Formally, two deterministic allocation profiles f , g ∈ Xn are order-preserving if 
fi ≥ fj ⇔ gi ≥ gj for all i, j ∈ N  . For F,G ∈ F  , we say F and G are order-preserv-
ing (in boundary) if both F,G and F,G are order-preserving. For every F, G, we 
define F + G by for each i ∈ N ,

Note that if F, G, H are pairwisely order-preserving profiles, then F + H and G + H 
are also pairwisely order-preserving. 

A6’ (Order-preserving Independence.) For all F,G,H ∈ F  , if F, G, H are pairwisely 
order-preserving, then F ≿ G ⇔ F + H ≿ G + H.

This axiom states that the social ranking of two profiles F and G, which agree on 
the ordering of upper and lower limits, respectively, should be invariant to the 
addition of another order-preserving profile H. The inspiration for it may best be 
seen through the cases it precludes: if, for instance, two profiles F + H and G + H 
are the addition of a common profile H; and F and G are not order-preserving, 
then the overall judgement between F + H and G + H is not completely deter-
mined by a comparison of F and G. Suppose individual i is the richest in F, but 
the poorest in G. On the contrary, individual j is the poorest in F, but the richest 
in G. If H is a profile with high allocation for i, but low allocation for j, then addi-
tion of F and H may make the difference between i and j even larger. As a result, 
profile F + H is more unequal than F. At the same time, the addition of G and H 
would reduce the difference between i and j and is more equal than H. Therefore, 

(F + G)i = {fi + gi ∶ fi ∈ Fi and gi ∈ Gi}.
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it is not promising to insist the invariance to addition of the common profile. This 
asymmetric impact on inequality may give rise to preference reversal. A6’ only 
requires that if the profiles are order-preserving, then preference reversal should 
not occur. Also, this axiom can be regarded as a generalization of traditional 
order-preserving independence over deterministic profiles (See Weymark (1981)).

We state the last three axioms to derive classic Gini SWF defined on deter-
ministic profiles. The next two axioms are first proposed by Elchanan and Itzhak 
(1994). For f ∈ Xn and i, j ∈ N  , we say i precedes j in f if fi ≤ fj and there is no 
k ∈ N  such that fi < fk < fj . 

A7’ (Transfer Invariance.) For all f , g, f �g� ∈ Xn and i, j ∈ N  , if the following are 
satisfied: 

 (i) i precedes j in f , g, f ′g′;
 (ii) fi = f �

i
+ c , fj = f �

j
− c and gi = g�

i
+ c , gj = g�

j
− c for some c > 0;

 (iii) fk = f �
k
 and gk = g�

k
 for k ∉ {i, j},

   then f ≿ g if and only if f ′ ≿ g′.

A7’ requires that there is no preference reversal if there is same amount of trans-
fer between two preceded individuals i,  j. However, it is indeed a strong claim 
since it is possible that i, j are poor in f, but rich in g. 

A8’ (Inequality Aversion.) For all f , g ∈ Xn and i ∈ N  , if f̃i = g̃i + c and f̃i+1 = g̃i+1 − c 
for some c > 0 and f̃j = g̃j for j ∉ {i, i + 1} , then f ≻ g.

A8’ simply says that it is socially preferred that if we transfer an amount of 
money from an individual to the next richest one without changing the ordering. 
This axiom is a weaker version of Dalton-Pigou principle, in which any transfer 
from rich to poor is preferred. 

A9’ (Tradeoff.) For all c > 0 and k ∈ N  , 

Let’s consider a scenario where a society initially possesses a wealth of c. There 
exist two methods for distributing this wealth: (i) Equally dividing it among k indi-
viduals, thereby leaving nothing for the remaining n − k individuals. (ii) Entrusting 
all the wealth to a single individual, who would then generate wealth that is k times 
greater, but the remaining n − 1 individuals would receive nothing. In A9’, it is dem-
onstrated that the society regards both of these distribution methods as equally valid. 
However, it becomes apparent that the equality of the first method increases as k 
grows larger, while the second method requires the creation of additional wealth for 
the society to remain indifferent between the two alternatives.

(kc, 0,… , 0) ∼ (
c

k
,… ,

c

k
⏟⏞⏟⏞⏟
k individuals

, 0,… , 0)
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Theorem 2 A social preference ≿ on F  satisfies A1-5 and A6’-9’ if and only if social 
preference ≿ is represented by a robust Gini SWF as in eq. (5).

This result provides a complete characterization of the robust Gini Social Welfare 
Function (SWF). This SWF is not additively separable but order-preserving additive. 
It is worth noting that when restricted to deterministic profiles, it becomes the clas-
sic Gini SWF. However, our characterization improves upon the results of Elchanan 
and Itzhak (1994) since their findings are restricted to deterministic profiles with 
fixed total income.

Aaberge (2001) suggests an axiomatic characterization of the classic Gini SWF 
based on Lorenz curve orderings, which was initiated by Yaari (1988). However, 
his result is built on the assumption that the Lorenz curve is convex, which may not 
hold in our framework. Hence, we provide the first complete characterization of the 
classic Gini index as a by-product.

4  Concluding remark

In recent years, there has been a growing recognition that inequality affects nearly 
every aspect of economics. Numerous studies have been conducted over the past 
few decades to measure inequality, but they have typically assumed that each indi-
vidual allocation can be precisely estimated. However, many widely used datasets 
only provide imprecise estimations, which poses conceptual and practical challenges 
in measuring inequality.

This paper presents a novel approach to measuring inequality in the face of inde-
terministic allocation profiles. Our methodology extends the classic Atkinson and 
Gini indices to their robust counterparts, and we provide an axiomatic justification 
for the associated SWFs. While this innovation corrects some of the shortcomings 
of traditional methods, it also has some limitations. Continuing to improve upon 
these measures is important and needs more work on it.

Appendix: Proofs

A Proof of Section 2

A.1 Proof of Proposition 1

To prove Proposition 1, suppose that function I ∶ F → ℝ is defined as in eq. (1) and 
the associated SWF W is regular.

Proof of (i) By definition, for F ∈ F ,
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Since �F ∈ [0, 1] , it is immediate to see that min{I(F), I(F)} ≤ I(F) ≤ max{I(F), I(F)}

.

Proof of (ii) For F ∈ F  , W(F) = W(�(F) ⋅ 1) . By continuity of W, � is also a continu-
ous function. By monotonicity of W, for any F,G ∈ F ,

Since W is Schur concave with respect to deterministic profiles, for any bistochastic 
matrix M of order n,

For any c > 0 , W(c ⋅ 1) = c . So, we have

Note that �(fM) = �(f ) . Therefore,

Proof of (iii) Consider bistochastic matrix M̂ = (mij) with mij = 1∕n for all i, j ∈ N  . 
Then for any f ∈ F  , Schur concavity implies that

Therefore, for F ∈ F  , we have

Therefore, according to the definition of I,

So, for any �F ∈ [0, 1],

I(F) = �FI(F) + (1 − �F)I(F).

W(F) ≥ W(G) ⟺ �(F) ≥ �(G).

W(fM) ≥ W(f ).

W(fM) = �(fM) ≥ W(f ) = �(f ).

I(fM) = 1 −
�(fM)

�(fM)

= 1 −
�(fM)

�(f )

≤ 1 −
�(f )

�(f )

= I(f )

W(f M̂) = 𝜇(f ) ≥ W(f ).

0 ≤
�(F)

�(F)
,
�(F)

�(F)
≤ 1.

0 ≤ I(F), I(F) ≤ 1.

I(F) = �FI(F) + (1 − �F)I(F) ∈ [0, 1].
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Furthermore, if I(F) = 0 , then I(F) = I(F) = 0 . This means that �(F) = �(F) , which 
leads to F = c ⋅ 1 for some c > 0 . Conversely, if F = c ⋅ 1 , we have �(F) = �(F) , 
which leads to I(F) = 0.

A.2 Proof of Proposition 2

Since the proof of necessity part is straightforward, we only prove sufficiency part. 
Suppose F ≿L G . By definition, for all f ∈ F and g ∈ G , f ≿L g . Lorenz dominance 
requires that for all k = 1, 2,… , n

Since �(F) = minf∈F �(f ) ≥ maxg∈G �(g) = �(G) , we have

which implies

Now, according to Marshall et  al. (1979) (64 pp.), there must exist a bistochastic 
matrix M such that f̃ ≥ g̃M . Then, monotonicity of W implies W(f̃ ) ≥ W(g̃M) . Fur-
thermore, Schur-concavity implies that W(g̃M) ≥ W(g̃) . Notice that Schur-concav-
ity implies symmetry, hence, W(f̃ ) = W(f ) and W(g̃) = W(g) . As a result, we have 
W(f ) ≥ W(g) . Since this inequality holds for any f ∈ F and g ∈ G,

Monotonicity requires that W(F) ≥ minf∈F W(f ) and maxg∈G W(g) ≥ W(G) , which 
implies W(F) ≥ W(G).

A.3 Proof of Proposition 3

We first show the necessity part: suppose that I is a relative index. By definition, we 
have

Since index I is homogeneous of degree zero, linear homogeneity of mean � implies 
linear homogeneity of �.

1

n𝜇(f )

k
∑

i=1

f̃i ≥
1

n𝜇(g)

k
∑

i=1

g̃i.

𝜇(F)

n𝜇(f )

k
∑

i=1

f̃i ≥
𝜇(G)

n𝜇(g)

k
∑

i=1

g̃i,

1

n

k
∑

i=1

f̃i ≥
1

n

k
∑

i=1

g̃i.

min
f∈F

W(f ) ≥ max
g∈G

W(g).

�(F) = �F�(F) + (1 − �F)�(F)

= �F�(F)(1 − I(F)) + (1 − �F)�(F)(1 − I(F))
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where Φ is increasing in its argument. Hence, W is homothetic.
Now we show the sufficiency part: suppose that W is homothetic. Then, there 

exist an increasing function Φ and a linearly homogeneous function Ŵ such that for 
F ∈ F ,

Since Ŵ is linearly homogeneous, we have

Therefore, � is also linearly homogeneous. Since � is also linearly homogeneous, 
robust index I defined as above becomes homogeneous of degree zero. Thus, I is a 
relative index.

B Proof of Section 3

B.1 Proof of Proposition 4

The necessity part is straightforward. We only prove the sufficiency part. Suppose ≿ 
satisfies A1-4 and A6.

First, restricted ≿ to set of deterministic profiles Xn . Since X is connected and 
separable, and ≿ satisfies conditions of Debreu (1960) separable Theorem, there 
exists a continuous function ui ∶ X → ℝ such that the sum of ui represents ≿ . Sym-
metry further requires that each ui has to be identical. Therefore, there is a continu-
ous function u ∶ X → ℝ such that f ≿ g ⇔

∑n

i=1
u(fi) ≥

∑n

i=1
u(gi) . Furthermore, 

A4 unanimity implies that u is also increasing in X.
Now, we extend u from domain X to X  in the following way. For Y ∈ X  and 

c ∈ X , we define u(Y) = u(c) if F ∼ f  whenever Fi = Y  and fi = c for all i. Since Y 
is compact, there exist a, b ∈ X such that a ≥ Y ≥ b . Unanimity implies that equally 
distributed profiles must satisfy the preferences: (a,… , a) ≿ (Y ,… , Y) ≿ (b,… , b) . 
Therefore, by continuity, there exists a unique c such that (c,… , c) ∼ (Y ,… , Y) . 
Hence, u on X  is well-defined.

Pick any F = (Y1,… , Yn) ∈ F  . Let c1,… , cn in X be such that u(Yi) = u(ci) for 
all i. To prove the additive separability, it suffices to show that F ∼ (c1,… , cn) . We 
prove it by induction.

Claim 1 For any i ∈ N  , (c1,… , ci−1, Yi, ci+1,… , cn) ∼ (c1, c2,… , cn).

Proof of Claim By A3 symmetry, it suffices to prove that (Y1, c2,… , cn) ∼ (c1,… , cn) . 
Furthermore, by separability, we only need to show the case where 

W(F) = W(�(F) ⋅ 1)

= Φ(�(F)),

W(F) = Φ(Ŵ(F)).

𝜉(F) =
Ŵ(F)

Ŵ(1)
.
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(Y1, c1,… , c1) ∼ (c1, c1,… , c1) . Suppose such indifference relation does not hold. 
Assume first that

Then, separability implies that (Y1,… , Y1) ≻ (c1, Y1,… , Y1) . According to defini-
tion, (c1,… , c1) ∼ (Y1,… , Y1) , which implies that

By symmetry, it is equivalent to (c1, Y1, c1,… , c1) ≻ (c1, Y1,… , Y1) . Applying sepa-
rability again, we have

Similarly, we can use separability and symmetry again to get

Repeat this process, we finally have (Y1,… , Y1, c1) ≻ (Y1,… , Y1, Y1) , which contra-
dicts to our assumption.

Now, if we assume the other possibility that (c1,… , c1) ≻ (Y1, c1,… , c1) , it is 
similar to show the contradiction.  ◻

Claim 2 If (Y1,… , Yt, ct+1,… , cn) ∼ (c1,… , cn) , then 
(Y1,… , Yt+1, ct+2,… , cn) ∼ (c1,… , cn).

Proof of Claim By separability, it suffices to prove that if 
(Y1,… , Yt, c,… , c) ∼ (c1,… , ct, c,… , c) for some t, then it holds for t + 1 . Since 
(Y1,… , Yt, c,… , c) ∼ (c1,… , ct, c,… , c) , separability implies that

By Claim 1, (c1,… , ct, Yt+1, c,… , c) ∼ (c1,… , ct+1, c,… , c) . Hence, this claim 
holds.  ◻

By Claim 1 and 2, for any F ∈ F  , we define W ∶ F → ℝ by W(F) =
∑n

i=1
u(Fi) , 

which clearly represents ≿.

B.2 Proof of Theorem 1

Sufficiency Part:
Suppose that ≿ on F  satisfies A1-9. Our strategy to prove that robust Atkinson 

SWF represents ≿ is following: First, we consider only the profiles that every 
individual have identical and binary values. We show that there exists unique 
� ∈ (0, 1) such that for any x > y in X, u({x, y}) = �u(x) + (1 − �)u(y) . Second, we 
consider the profiles that every individual have identical, but arbitrarily many 

(Y1, c1,… , c1) ≻ (c1,… , c1).

(Y1, c1,… , c1) ≻ (c1, Y1,… , Y1).

(Y1, Y1, c1,… , c1) ≻ (Y1,… , Y1, Y1) ≻ (c1, Y1,… , Y1).

(Y1, Y1, Y1, c1 … , c1) ≻ (Y1,… , Y1, Y1) ≻ (c1, Y1,… , Y1).

(Y1,… , Yt+1, c,… , c) ∼ (c1,… , ct, Yt+1, c,… , c).
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outcomes. We show that for any Y ∈ X  , 
u(Y) = �u(max

x∈Y
x) + (1 − �)u(min

y∈Y
y)

 . 
Third, we show that A8 scale invariance and A9 Pigou-Dalton principle imply 
that u on X has either power function or log function form. Finally, combined 
with Proposition 4, A5 dominance implies that for any F ∈ F ,

represents ≿.
To start, notice that proposition 4 implies the existence of u on X  . Define ≿∗ 

on X2 by

Lemma B1 For all a, b, c ∈ X , if a ≥ b , then (a, c) ≿∗ (b, c).

Proof Take a, b, c ∈ X with a ≥ b . Let Y = {a, c} and Z = {b, c} . So profile 
(Y ,… , Y) dominates profile (Z,… , Z) . By A5, (Y ,… , Y) ≿ (Z,… , Z) . Proposition 4 
implies u(Y) ≥ u(Z) . Hence, by definition, (a, b) ≿∗ (b, c) .   ◻

Let 0 < � ≤ �
� < ∞ . Consider ≿∗ restricted to [0,�] × [��,+∞) . We show that 

this restricted preference has an additive conjoint structure, hence has a additively 
separable utility representation.

Lemma B2 ≿∗ restricted to [0,�] × [��,+∞) satisfies the following conditions: 

A1∗  (weak order): ≿∗ is complete and transitive.

A2∗  (Independence): (x, b�) ≿∗ (y, b�) implies (x, x�) ≿∗ (y, x�) ; also, (b, x�) ≿∗ (b, y�) 
implies (x, x�) ≿∗ (x, y�).

A3∗  (Thomsen): (x, z�) ∼∗ (z, y�) and (z, x�) ∼∗ (y, z�) imply (x, x�) ∼∗ (y, y�).

A4∗  (Essential): There exist b, c ∈ [0,�] and a ∈ [��,+∞) such that (b, a) ≁∗ (c, a) , 
and b� ∈ [0,�] and a�, c� ∈ [��,+∞) such that (b�, a�) ≁∗ (b�, c�).

A5∗  (Solvability): If (x, x�) ≿∗ (y, y�) ≿∗ (z, x�) , then there exist a ∈ [0,�] such that 
(a, x�) ∼ (y, y�) ; if (x, x�) ≿∗ (y, y�) ≿∗ (x, z�) , then there exists a� ∈ [��,+∞) 
such that (x, a�) ∼∗ (y, y�).

A6∗  (Archimedean): For all x, x� ∈ [0,�] and y, z ∈ [��,+∞) , if (x, y) ≿∗ (x�, z) , then 
there exists a, b in [0,�] satisfying (x, y) ≿∗ (a, y) ∼∗ (b, z) ≻∗ (b, y) ≿∗ (x�, z) . 
A similar statement holds with the roles of [0,�] and [��,+∞) reversed.

W(F) = �
∑

i

u(Fi) + (1 − �)
∑

i

u(F
i
)

(a, b) ≿∗ (c, d) ⇔ u({a, b}) ≥ u({c, d}).
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Proof By definition, ≿∗ is a weak order. It is easy to show all the axioms except 
Thomsen condition. Below, we show Thomsen condition.

Suppose that (x, z�) ∼∗ (z, y�) and (z, x�) ∼∗ (y, z�) . By definition, this is equivalent 
to u(x, z�) = u(z, y�) and u(z, x�) = u(y, z�) . To show that u(x, x�) = u(y, y�) , there are 
three cases to consider: z� ≥ {x�, y�} , y� ≥ {x�, z�} and x� ≥ {y�, z�}.

Suppose first that z� ≥ {x�, y�} . Since {x�, y�} ≥ {x, y, z} , Lemma B1 implies that 
(x�, z�) ≿∗ (x, z�) and (y�, z�) ≿∗ (y, z�) . Thus, A7 commutativity implies

Note that (x, z�) ∼∗ (z, y�) implies e(x, z�) = e(z, y�) . Therefore,

Applying commutativity again, we have

Note again that (z, x�) ∼∗ (y, z�) implies e(z, x�) = e(y, z�) . Therefore,

Commutativity implies that

Therefore, we have u(e(x, x�), e(z�, z�)) = u(e(y, y�), e(z�, z�)) , which implies, by 
Lemma B1, e(x, x�) = e(y, y�) . That is, u(x, x�) = u(y, y�).

For the other two cases, similar arguments will lead to the same results.   ◻

Lemma B3 There exist two real-valued functions � and � on X such that for all 
x, x�, y, y� ∈ X with x ≤ y and x′ ≤ y′,

Furthermore, if there are �′,�′represents ≿∗ instead of �,� , respectively, then there 
exist 𝛾 > 0 and �1, �2 such that �� = �� + �1 and �� = �� + �2.

Proof Let a > 0 . Lemma B2 implies that ≿∗ restricted to [0, a] × [a,+∞) is an addi-
tive conjoint structure. Thus, by Theorem 2 of Chapter 6 in Krantz et al. (2006), there 
exist two function �a on [0, a] and �a on [a,+∞) represent ≿∗⊂ [0, a] × [a,+∞) , i.e. 
for all x, x� ∈ [0, a] and y, y� ∈ [a,+∞)

By uniqueness of representation, we can normalize �a and �a such that

If b > a , since ≿∗⊂ [0, b] × [b,+∞) is also an additive conjoint structure, then there 
exist functions �b on [0, b] and �b on [b,+∞) that represent such preferences. Due 

u(e(x, x�), e(z�, z�)) = u(e(x, z�), e(x�, z�)).

u(e(x, z�), e(x�, z�)) = u(e(z, y�), e(x�, z�)).

u(e(z, y�), e(x�, z�)) = u(e(z, x�), e(y�, z�)).

u(e(z, x�), e(y�, z�)) = u(e(y, z�), e(y�, z�)).

u(e(y, z�), e(y�, z�)) = u(e(y, y�), e(z�, z�)).

(x, y) ≿∗ (x�, y�) ⟺ 𝜙(x) + 𝜑(y) ≥ 𝜙(x�) + 𝜑(y�).

(x, y) ≿∗ (x�, y�) ⟺ 𝜙a(x) + 𝜑a(y) ≥ 𝜙a(x
�) + 𝜑a(y

�).

u(a) = �a(a) + �a(a).
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to the uniqueness of representation, we can normalized �b in the way such that 
�b(a) = �a(a) . By similar method, if c ∈ (0, a) , since ≿∗⊂ [0, c] × [c,+∞) is also 
an additive preference structure, then there exist functions �c on [0, c] and �c on 
[c,+∞) that represent such preferences. Again, �c is normalized in the way that 
�c(a) = �a(a).

Now, define � ∶ X → ℝ by

Similarly, define � ∶ X → ℝ by

Therefore, � and � on X are uniquely specified. According to continuity and una-
nimity, 𝜑(0) < 𝜑(y) for all y > 0 . Take arbitrary 0 < y ≤ x . There always exists a, b 
such that x < a and 0 < b < y . Therefore,

Similarly, we have

Therefore x ≥ y ⇔ �(x) + �(x) ≥ �(y) + �(y) . We show that � and � have the prop-
erties above. Let x ≤ y and x′ ≤ y′ . Suppose that (x, y) ≿∗ (x�, y�) . There are two 
cases: either x ≥ y′ or x < y′ . First, assume that x ≥ y′ . Then, continuity and unanim-
ity imply that there exists a and b such that (x, y) ∼∗ (a, a) and (b, b) ∼∗ (x�, y�).

Note that a ≥ b , which is �(a) + �(a) ≥ �(b) + �(b) . Therefore,

The uniqueness of representation follows immediately from the definition of � and 
� .   ◻

Lemma B4 There exists 0 ≤ � ≤ 1 such that for all x ≥ y,

𝜙(x) =

{

𝜙x(x) if x > 0;

𝜙a(0) if x = 0.

𝜑(y) =

{

𝜑y(y) if y > 0;

u(0) − 𝜙a(0) if y = 0.

x ≥ y ⇔ (x, a) ≿∗ (y, a)

⇔ 𝜙a(x) + 𝜑a(a) ≥ 𝜙a(y) + 𝜙a(a)

⇔ 𝜙x(x) ≥ 𝜙y(y)

⇔ 𝜙(x) ≥ 𝜙(y)

x ≥ y ⇔ (b, x) ≿∗ (b, y)

⇔ 𝜙b(b) + 𝜑b(x) ≥ 𝜙b(b) + 𝜙b(y)

⇔ 𝜑b(x) ≥ 𝜑b(y)

⇔ 𝜑(x) ≥ 𝜑(y)

(x, y) ∼∗ (a, a) ⇔ �(x) + �(y) = �(a) + �(a),

(x�, y�) ∼∗ (b, b) ⇔ �(x�) + �(y�) = �(b) + �(b).

(x, y) ≿∗ (x�, y�) ⇔ 𝜙(x) + 𝜑(y) ≥ 𝜙(x�) + 𝜑(y�).
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Proof It suffices to show that there are constants 𝛽 > 0 such that �(x) = ��(x) . If 
a > 0 , define

For {x, y, z,w} ≥ a , if x ≤ y and z ≤ w , then (a, y) ≿∗ (a, x) and (a,w) ≿∗ (a, z) . 
Therefore,

The last equivalence is implied by Lemma B1. Commutativity implies that 
(a, e(z,w)) ∼∗ (e(a, z), e(a,w)) and (a, e(x, y)) ∼∗ (e(a, x), e(a, y)) . Therefore,

If x ≤ y ≤ a and z ≤ w ≤ a , then similarly we have

Thus �1a and �2a represent ≿∗ on [0, a] × [a,+∞) . By uniqueness of representation, 
there are k1, k2 > 0 and k11 and k12 such that for a, b > 0,

Notice that if � is constant, then it is trivially that u({x, y}) = �(x) = u(x) , which is 
� = 1 . Similarly, if � is constant, then u({x, y}) = u(y) , which is � = 0 . Now, sup-
pose both � and � are non-constant. Take w ≥ {y, z} ≥ x . Lemma B1 implies that 
(z,w) ≿∗ (x, y) and (y,w) ≿∗ (z, x) . According to commutativity,

Since the above equations are satisfied for all x, y, z, w with w ≥ {y, z} ≥ x , there 
exist positive constants �, � such that

Thus, for all y, z > 0,

u({x, y}) = �u(x) + (1 − �)u(y).

�1a(x) = �(e(a, x)) and �1a(x) = �(e(a, x)), for x ≥ a;

�2a(x) = �(e(x, a)) and �2a(x) = �(e(x, a)), for x ≤ a.

(z,w) ≿∗ (x, y) ⇔ 𝜙(z) + 𝜑(w) ≥ 𝜙(x) + 𝜑(y)

⇔ e(z,w) ≥ e(x, y)

⇔ (a, e(z,w)) ≿∗ (a, e(x, y))

(z,w) ≿∗ (x, y) ⇔ 𝜙(z) + 𝜑(w) ≥ 𝜙(x) + 𝜑(y)

⇔ (e(a, z), e(a,w)) ≿∗ (e(a, x), e(a, y))

⇔ 𝜙(e(a, z)) + 𝜑(e(a,w)) ≥ 𝜙(e(a, x)) + 𝜑(e(a, y))

⇔ 𝜙1a(z) + 𝜑1a(w) ≥ 𝜙1a(x) + 𝜑1a(y).

(z,w) ≿∗ (x, y) ⇔ 𝜙2a(z) + 𝜑2a(w) ≥ 𝜙2a(x) + 𝜑2a(y).

�1a(x) = k1(a)�(x) + k11(a) and �2b(y) = k2(b)�(y) + k12(b).

(e(x, y), e(z,w)) ∼∗ (e(x, z), e(y,w))

⇔ �(e(x, y)) + �(e(z,w)) = �(e(x, z)) + �(e(y,w))

⇔ k1(x)�(y) + k11(x) + k2(w)�(z) + k12(w) = k1(x)�(z) + k11(x) + k2(w)�(y) + k12(w)

⇔ k1(x)(�(y) − �(z)) = k2(w)(�(y) − �(z)).

k1(x) = � and k2(y) = �.
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Hence, there are 𝛽 > 0 such that �(x) = ��(x) for all x. Let � =
1

1+�
 . Clearly 

0 < 𝛼 < 1 . According to unique representation, we can normalize u(x) = �(x)

�
 . There-

fore, for x ≤ y,

  ◻

Lemma B5 There exist a ∈ ℝ and b > 0 such that for every x ∈ X,

Proof Restricted ≿ to deterministic profiles. Since ≿ is continuous and separable on 
Xn , Roberts (1980) demonstrates that scale invariance implies that function u has the 
following forms: there are constant a and positive b such that

Note that Pigou-Dalton principle means that for x, y, z,w ∈ X , if x + y = z + w and 
|x − y| < |z − w| , then u(x) + u(y) ≥ u(z) + u(w) . This is equivalent to for all x < y 
and all c > 0

which implies that u is concave on X. Thus, concavity of u requires that r ≤ 1 . Fur-
thermore, unanimity requires that r ≥ 0 . Therefore, u must have the expression 
stated at this lemma.   ◻

For Y ∈ X  , denote y∗ = max
y∈Y

y and y∗ = min
y∈Y

y.

Lemma B6 For Y ∈ X  , u(Y) = u(y∗, y∗).

Proof Take Y ∈ X  . Since {y∗, y∗} ⊆ Y  , we know (Y ,… , Y) dominates 
({y∗, y∗},… , {y∗, y∗}) . By definition of y∗ and y∗ , it is immediate that 
({y∗, y∗},… , {y∗, y∗}) also dominates (Y ,… , Y) . Therefore, according to dominance 
axiom, ({y∗, y∗},… , {y∗, y∗}) ∼ (Y ,… , Y) . This is equivalent to u(y∗, y∗) = u(Y) .  
 ◻

Necessity Part:

�(�(y) − �(z)) = �(�(y) − �(z)).

�(x) + �(y) = �u(x) + (1 − �)u(y).

u(x) =

{

a + b ⋅
xr

r
for 0 < r < 1

a + b ⋅ log x for r = 0.

u(x) =

⎧

⎪

⎨

⎪

⎩

a + b ⋅
xr

r
for r > 0

a − b ⋅
xr

r
for r < 0

a + b ⋅ log x for r = 0.

u(x + c) − u(x) ≥ u(y + c) − u(y),
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Suppose that ≿ is represented by a robust Atkinson SWF W. We want to prove 
that this preference satisfies A1-9. We only demonstrate commutativity axiom 
since the rest axioms are straightforward.

Consider x1, x2, y1, y2 ∈ X where x1 ≥ {x2, y1} ≥ y2 . Let F ∈ F  be 
such that Fi = {e(x1, x2), e(y1, y2)} for all i. Also, let G ∈ F  be such that 
Gi = {e(x1, y1), e(x2, y2)} for all i. According to the representation function, we have

B.3 Proof of Theorem 2

Since the necessity part is straightforward, we only show the sufficiency part. Sup-
pose that ≿ satisfies A1-5 and A6’-9’. Our strategy is first to show that ≿ restricted 
to deterministic profile have Gini SWF. Then we show that if ≿ restricted to the 
profiles in which individual 1 has binary values and all the rest individuals have 
singleton value, then ≿ has a robust Gini SWF representation. Finally, we extend this 
result to the whole set of profiles.

Lemma C1 Let ≿ restrict to Xn . Then there exists � on Xn such that

represents ≿ on Xn.

Proof It is clear to see that ≿ on Xn
c
 also satisfies A1-4 and A6’-8’. Therefore, 

according to Theorem D of Elchanan and Itzhak (1994), there exist 0 < 𝛿 < 1

n(n−1)
 

and � on Xn such that for f ∈ Xn

represents ≿ on Xn . Pick c > 0 and k ∈ N  . By A9’ tradeoff, we know 
(kc, 0,… , 0) ∼ (c∕k,… , c∕k, 0,… , 0) . The above � function implies that

Therefore, the only solution is

u(e(x1, x2), e(y1, y2)) = �u(x1, x2) + (1 − �)u(y1, y2)

= �[�u(x1) + (1 − �)u(x2)] + (1 − �)[�u(y1) + (1 − �)u(y2)]

= �[�u(x1) + (1 − �)u(y1)] + (1 − �)[�u(x2) + (1 − �)u(y2)]

= �u(x1, y1) + (1 − �)u(x2, y2)

= u(e(x1, y1), e(x2, y2)).

�(f ) = �(f ) −

∑

i

∑

j �fi − fj�

2n2
,

�(f ) = �(f ) − � ⋅
∑

i

∑

j

|fi − fj|,

kc

n
− �(n − 1)kc =

c

n
− � ⋅ 2k(n − k)

c

k
.

� =
1

2n2
.
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  ◻

We denote

the set of all profiles in which individual 1 is the richest with two possible allo-
cations in the society, and the rest in the society have deterministic and equalized 
allocation. Note that for F ∈ F

1 , if a = b , then F is a deterministic profile; and if 
a = b = c , then F is a deterministic equally distributed profile.

Lemma C2 If F,G ∈ F
1 , then F and G are order-preserving.

Proof This follows immediately from the definition of order-preserving.   ◻

Lemma C3 For F, f ∈ F
1 , if F ∼ f  , then �F + (1 − �)f ∼ f  for all � ∈ (0, 1).

Proof Pick F ∈ F
1 be such that F1 = {a, b} , Fi = {c} for i ≠ 1 and a ≥ b ≥ c . If 

there is a deterministic profile f ∈ F
1 be such that F ∼ f  , we should have F

2
∼

f

2
 . 

To see this, suppose not. Assume that F
2
≻ f

2
 . Since F

2
,
f

2
∈ F

1 , A6’ order-preserving 
independence implies that

Notice that

Recall that the representation of ≿ restricted on deterministic profile can also be 
written as

Therefore, F = (a, c,… , c) is the most preferred deterministic profile in both F and 
F

2
+

F

2
 , i.e.

and F = (b, c,… , c) is the least preferred deterministic profile in both F and F
2
+

F

2
 . 

Hence, F and F
2
+

F

2
 dominates each other. According to A6’, F ∼

F

2
+

F

2
 , which con-

tradicts the assumption that F ∼ f  . Now assume that f
2
≻ F

2
 . We repeat the similar 

process as above and lead to a contradiction. Hence, F ∼ f  implies F
2
∼

f

2
.

Proceeding with induction, we have for every integer k = 1, 2,…

F
1 = {F ∈ F ∶ F1 = {a, b} and Fi = {c},∀i ≠ 1 and a, b, c ∈ X with a, b ≥ c}.

F

2
+

F

2
≻

F

2
+

f

2
≻

f

2
+

f

2
= f .

(

F

2
+

F

2

)

1
=
{

a,
a + b

2
, b
}

and
(

F

2
+

F

2

)

i
= c.

𝜙(f ) =
1

n2

n
∑

i=1

[(2(n − k) + 1]f̃i

F = (a, c,… , c) ∈ argmax
f∈F

�(f ) and F = (a, c,… , c) ∈ arg max
f∈

F

2
+

F

2

�(f );
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Also, by A6’,

Observe that (2F)1 = {2a, 2b} , (F + F)1 = {2a, a + b, 2b} and 
(2F)i = (F + F)i = {2c} for i ≠ 1 . Since a ≥ b , it is immediate that 2F and F + F 
dominates each other, therefore, 2F ∼ F + F . Hence F ∼ f  implies 2F ∼ 2f  . By 
induction, we have for every integer k,

Combine the results abover, for every positive rational number � , we have

Continuity implies that the above result holds for every positive real number � . Now, 
take any � ∈ (0, 1) and apply A6’,

  ◻

Recall that for F ∈ F  , F and F represents the upper limit and lower limit distri-
bution in F, respectively.

Lemma C4 There exists � ∈ [0, 1] such that for all F ∈ F
1,

Proof If x ∈ X , we define F1(x) = {F ∈ F
1 ∶ Fi = {x} for all i ≠ 1} denote the col-

lection of profiles in F1 in which, except individual 1, every individual have equal 

F

k
∼

f

k
.

F ∼ f ⇒ F + F ∼ F + f ∼ f + f = 2f .

kF = kf .

�F ∼ �f .

�F ∼ �f ⇔ �F + (1 − �)f ∼ f .

F ∼ �F + (1 − �)F.

Fig. 3  Indifference curve on F1(0)
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allocation. Therefore, F1 = ∪x∈ℝF(x) . We first show that the result holds on the 
restricted domain F1(0).

Referring to Fig. 3. For f ∈ F
1(0) with F1 = {a, b} , F can be identified by the 

point (a, b) if a > b . Similarly, for F ∈ F
1(0) with F1 = {c} , F can be identified by 

the point (c,  c). Therefore, there is one-to-one correspondence between set F1(0) 
and the points between horizontal axis and diagonal. For every F,G ∈ F

1(0) , where 
F1 = {a, b} and G1 = {c, d} , we define

Take a > b . We have

By definition, we know that profile (a,  a) dominates (a,  b) and (a,  b) dominates 
(b, b). Therefore, A6’ implies

Continuity implies that there exists � ∈ [0, 1] such that

Let �a + (1 − �)b = c . Lemma C3 implies that any points on the straight line 
between (c, c) and (a, b) are indifferent. Therefore, every indifferent curve must be a 
straight line.

Now, we need to show that every indifferent lines parallel to each other. Take 
any point (a�, b�) . Connect points (a�, b�) and (0, 0) by a straight line. Without loss of 
generality, suppose this line intersects the indifference curve, line between (c, c) and 
(a, b), at point (a, b). Therefore, there exists unique 𝛽 > 0 such that

Since (a, b) ∼ (c, c) , Lemma C3 implies that

Therefore, (a�, b�) ∼ (�c, �c) , which means that two indifferent curves �1,�2 parallel 
to each other.

To finish our proof, we now extend the result from domain F1(0) to F1 . Pick 
any a,  b,  c such that a ≥ b ≥ c > 0 . Consider a profile F ∈ F

1 being such that 
F1 = {a − c, b − c} and Fi = {0} for i ≠ 1 . Clearly, such F belongs to F1(0) and, 
therefore,

Now, adding constant deterministic profile (c,… , c) on both proifles, A6’ implies 
that

(a, b) ≿ (c, d) ⇔ F ≿ G.

(a, a) ≻ (b, b).

(a, a) ≿ (a, b) ≿ (b, b).

(�a + (1 − �)b, �a + (1 − �)b) ∼ (a, b).

(a�, b�) = (�a, �b).

(�a, �b) ∼ (�c, �c).

(a − c, b − c) ∼ (�(a − c) + (1 − �)(b − c), �(a − c) + (1 − �)(b − c)).

F ∼ (�a + (1 − �)b, c,… , c).
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Since F = (a, c,… , c) and F = (b, c… , c) , we have F ∼ �F + (1 − �)F .   ◻

We now define a real valued function W on F1 by, for F ∈ F ,

It is immediate to see that W represents ≿ restricted on F1 . Notice that for each 
F ∈ F  , F and F are order-preserving. By the order-preserving additivity and homo-
geneity of � , we have

represents ≿ on F1.

Lemma C5 For F ∈ F  and G ∈ F
1 , if F ∼ G and F ∼ G , then F ∼ G.

Proof Since both F and G dominate each other, it is immediate that F ∼ G accord-
ing to A5.   ◻

Now, we can extend real-valued function W to the whole set F  by for F ∈ F  if 
there is G ∈ F

1 such that F ∼ G and F ∼ G , then

We claim that W represents the ≿ on F  . To see this, note that by continuity, for every 
F ∈ F  , there must exist F1 ∈ F

1 such that F ∼ F1 and F ∼ F1 . Take any F,G ∈ F  . 
According to Lemma C5, we have
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