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Abstract
Our objective is to analyze the relationship between the Shapley value and the core 
of cooperative games with transferable utility. We first characterize balanced games, 
i.e., the set of games with a nonempty core, through geometric properties. We show 
that the set of balanced games generates a polyhedral cone and that a game is bal-
anced if and only if it is a nonnegative linear combination of some simple games. 
Moreover, we show that the set of games whose Shapley value lies in the core also 
yields a polyhedral cone and that a game obeys this property if and only if it is a 
nonnegative linear combination of simple games satisfying certain properties. By-
products, we also show that the number of games that correspond to the extreme 
rays of the polyhedron coincides with the number of minimal balanced collections.
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1 Introduction

One of the objectives of cooperative game theory is to explore a “desirable” solu-
tion: How to allocate the surplus that players obtain from their cooperation. The 
Shapley value (Shapley 1953b) and the core should be the most well-known solution 
concepts. The Shapley value is a single-valued solution, which assigns a payoff to 
each player based on his/her contributions to a coalition. Since the seminal study 
of Shapley (1953b), many studies have been devoted to analyzing the properties of 
the Shapley value.1 The Shapley value has not only normative properties but also 
a variety of applications and strategic foundations.2 In contrast, the core is a set-
valued solution, which is a set of payoff allocations from which no groups of players 
have an incentive to deviate. Its axiomatic properties and strategic foundations have 
also been intensively studied.3 The concept of the core is, because of its simplicity 
and generality, used in a wide range of fields including microeconomics, bargaining 
theory, and matching theory.

If the Shapley value lies in the core, it can be seen as a stable allocation that is 
robust against any coalitional deviations. In this sense, the Shapley value should be 
an attractive core selection. However, in general, the Shapley value may be outside 
the core. Hence, it is important to identify the condition that guarantees the Shapley 
value lies in the core. One of the most eminent conditions is convexity, introduced 
by Shapley (1971). He shows that if a game is convex, the Shapley value lies in the 
core. Inarra and Usategui (1993) and Izawa and Takahashi (1998) propose a weaker 
condition called average convexity and show that it is also a sufficient condition.4 
In addition to the sufficient conditions above, they provide some necessary and suf-
ficient conditions. Although these necessary and sufficient conditions are important 
steps toward understanding the Shapley value and the core, because of their com-
plexity, it is not straightforward to derive applicable insights from the conditions.5 
Therefore, in this paper, we attempt to provide a new necessary and sufficient condi-
tion for the Shapley value to be in the core.

1 See Young (1985), and, for recent studies, Casajus (2011, 2014), and Casajus and Yokote (2017) and 
references therein.
2 Shapley and Shubik (1954) apply the Shapley value to evaluate the distribution of power among the 
members of a committee system. Hart and Moore (1990) use the Shapley value as each agent’s payoff to 
analyze the incomplete contract model. Gul (1989), Pérez-Castrillo and Wettstein (2001) and McQuillin 
and Sugden (2016) provide implementation procedures for obtaining the Shapley value as the subgame 
perfect equilibrium outcome of the game.
3 Consistency properties play a central role in axiomatic characterizations of the core. Davis and 
Maschler (1965), Moulin (1985), Peleg (1986), and Tadenuma (1992) introduce different types of con-
sistencies and axiomatize the core. Abe (2017) axiomatically characterizes the core for games with exter-
nalities. Perry and Reny (1994) offer a noncooperative game in which a core element is implemented.
4 Average convexity is also analyzed by Sprumont (1990). He calls it quasiconvexity in his work. How-
ever, his approach is totally different from those of Inarra and Usategui (1993); Izawa and Takahashi 
(1998). He defines the Shapley value for every subset of the grand coalition and considers an allocation 
scheme for all possible coalitions. He shows that an allocation scheme is population monotonic for every 
quasiconvex game.
5 We discuss their conditions in Sect. 4.
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To this end, we first consider a geometric property of the set of balanced games, 
namely, the set of games with a nonempty core.6 Bondareva (1963) and Shapley 
(1967) show that a game is balanced if and only if a weighted sum of the worth 
of every coalition is less than that of the grand coalition. These weights are called 
balanced vectors, and it can be shown that the set of balanced vectors is convex. 
Based on this result, we show that the set of balanced games yields a polar cone of 
a polyhedral cone that is generated from extended balanced vectors. Moreover, we 
obtain the explicit representation of the generating matrix for the polyhedral cone. 
Then, by applying Minkowski-Weyl’s theorem, which is often used in the theory 
of convex polyhedra, we obtain the explicit characterization of the extreme rays of 
the set of balanced games. As a result, we also show that a game is balanced if and 
only if the game has a nonnegative linear combination of the games, each of which 
corresponds to the extreme rays: singleton unanimity games, negative singleton una-
nimity games, and negative standard basis games with strict subsets of the grand 
coalition. This result is a generalization of the decomposition result of Abe (2019), 
which describes the relationship between the nonemptiness of the core and the class 
of zero-normalized nonnegative games.

Building on the decomposition result of the balanced games, we characterize the 
set of games whose Shapley value is an element of the core. We show that the set 
of such games also generates a certain polyhedral cone. To obtain the extreme rays 
of the set, we adopt the following two steps. First, we decompose an arbitrary game 
into the sum of two classes of games: singleton unanimity games and the games 
whose Shapley value is a zero vector. As elaborated below, the Shapley value (of 
the original game) lies in the core if and only if the core of the latter class of games 
contains the zero vector as its element. Considering that the latter class of games 
can be decomposed into a nonnegative linear combination of negative standard basis 
games with strict subsets of the grand coalition, we identify the condition by which 
the Shapley value of the latter class of games coincides with the zero vector. Second, 
we show that the games that correspond to the extreme rays of the set of extended 
balanced vectors constitute the extreme rays of the set of the latter class of games. 
Combining these two steps, we conclude that the Shapley value of a game belongs 
to the core if and only if it is decomposed into a nonnegative linear combination 
of some “easy” games. Moreover, by-products, we also show that the number of 
the above-mentioned extreme rays coincides with the number of minimal balanced 
collections.

The remainder of this paper is organized as follows. Section 2 provides basic defi-
nitions. In Sect. 3, we introduce key results for the polyhedral cone and provide a 
characterization result of balanced games. Based on the results discussed in Sect. 3, 
we provide our main result in Sect. 4. In Sect. 5, we provide some discussions. In 
particular, in Subsection 5.3, we attempt to replace the Shapley value in our condi-
tions with an arbitrary linear solution. Section 6 summarizes the results.

6 Shapley (1971) provides the geometric characterization of the core in convex games. Marinacci and 
Montrucchio (2004) provide a similar characterization by means of the Choquet integral with respect to 
the underlying game.
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2  Preliminaries

Let N = {1,… , n} be the set of players and a function v ∶ 2n → ℝ with v(�) = 0 
denote a characteristic function. A coalition of players is a nonempty subset of the 
player set S ⊆ N . We denote the cardinality of coalition S by |S|. We use n to denote 
|N|. A cooperative game with transferable utility (a TU-game) is a pair (N, v). We fix 
the player set N throughout this paper and typically use v instead of (N, v) to denote a 
game. Let GN be the set of all TU-games with the player set N. We now define a nega-
tive standard basis game as follows: For every nonempty S ⊆ N,

Similarly, for each nonempty T ⊆ N , a unanimity game uT ∈ GN is defined as

Shapley (1953a) shows that a game v ∈ GN is represented as a unique linear com-
bination of unanimity games: For every game v ∈ GN , there are unique values �v

T
 , 

∅ ≠ T ⊆ N such that

where 𝜆v
T
=
∑

�≠R⊆T (−1)
�T�−�R�v(R) . For simplicity, we omit v and write �T instead 

of �v
T
 when there is no ambiguity. We use � to denote the vector (𝜆T )�≠T⊆N ∈ ℝ

2n−1.
Let � be a permutation of N. For every game v, player i’s marginal contribution in 

� is mci,�(v) = v(��
i
∪ {i}) − v(��

i
) where ��

i
 is the set of predecessors of player i in 

� . Let Π be the set of all permutations. The Shapley value Sh(v) is given as follows: 
For every i ∈ N,

For every unanimity game, Sh(v) satisfies

Moreover, in view of the linearity of Sh(v) and (1), it follows that

u−
S
(T) =

{
−1 if T = S,

0 otherwise.

uT (S) =

{
1 if T ⊆ S,

0 otherwise.

(1)v(S) =
∑

�≠T⊆N

𝜆v
T
uT (S) =

∑
�≠R⊆S

𝜆v
R
,

Shi(v) =
1

n!

∑
�∈Π

mci,�(v).

Shi(uT ) =

{
1∕|T| if i ∈ T ,

0 otherwise.

(2)Shi(v) =
∑

T⊆N,i∈T

𝜆T∕|T|
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where �T∕|T| is called Harsanyi’s dividend to the members of T.7
The core C(v) is the set of allocations given by

A game is said to be balanced if it has a non-empty core. Let GB
N
= {v ∈ GN|C(v) ≠ �} 

be the set of balanced games. Bondareva (1963) and Shapley (1967) provide the fol-
lowing characterization of balanced games.

Theorem 1 (Bondareva 1963; Shapley 1967) v ∈ G
B
N

 if and only if

for every � ∈ ℝ
2n−2
+

 such that

for every i ∈ N.

The condition in Theorem 1 is called the Bondareva-Shapley condition. A vector 
� ∈ ℝ

2n−2
+

 that satisfies the above condition (∗) is called a balanced vector, and the 
set B(𝛾) = {S ⊊ N|𝛾S > 0} is called a balanced collection corresponding to � . Note 
that the set of balanced vectors is convex so that each balanced vector is a convex 
combination of its extreme points (see, for example, Peleg and Sudhölter 2007). A 
balanced collection corresponding to an extreme point of the set of balanced vectors 
is called a minimal balanced collection. Let Kn be the total number of minimal bal-
anced collections of an n-player game.8

3  Decomposition of balanced games

In this section, we provide a geometric characterization of the set of balanced games 
G
B
N

 and show that each balanced game can be decomposed into some simple games. 
First, the following observation is useful.

Lemma 1 For every x ∈ ℝ
N and v ∈ GN , x ∈ C(v) if and only if

C(v) =

{
x ∈ ℝ

n

||||||
∑
j∈N

xj = v(N) and
∑
j∈S

xj ≥ v(S) for allS ⊆ N

}
.

∑
�≠S⊊N

𝛾Sv(S) ≤ v(N)

∑
�≠S⊊N,i∈S

𝛾S = 1.⋯ (∗)

7 A solution f ∶ GN → ℝ
n is linear if for every c, c� ∈ ℝ and v, v� ∈ GN , f (cv + c�v�) = cf (v) + c�f (v�) . 

Harsanyi’s dividend was proposed by Harsanyi (1959).
8 The explicit description of each extreme point in general n-player games is still open. This is because it 
is generally difficult to construct extreme points of a convex polyhedron. Peleg (1965) provides an algo-
rithm to calculate all extreme points.
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where (𝛼−
S
)S⊊N ≥ 0.

Proof By definition, x ∈ C(v) if and only if

and

For any S ⊊ N , let �−
S
=
∑

i∈S xi − v(S) ≥ 0 . Then, by construction, the above ine-
qualities hold if and only if v(S) ≡

∑
i∈S xi − 𝛼−

S
=
∑

i∈N xiu{i}(S) +
∑

�≠T⊊N 𝛼−
T
u−
T
(S) 

for all S ⊊ N and v(N) =
∑

i∈N xi =
∑

i∈N xiu{i}(N) +
∑

�≠S⊊N 𝛼−
S
u−
S
(N) , which is the 

desired expression.   ◻

This observation immediately implies the following characterization of bal-
anced games.

Theorem 2 We have v ∈ G
B
N

 if and only if it is a sum of a linear combination of sin-
gleton unanimity games and a non-negative linear combination of negative standard 
basis games with S ⊊ N:

where (�i)i∈N ∈ ℝ
n and (𝛼−

S
)S⊊N ≥ 0.

Proof By Lemma 1, C(v) ≠ � if and only if there is x ∈ ℝ
N such that

where �−
S
=
∑

i∈S xi − v(S) ≥ 0 for any S ⊊ N . Letting �i = xi completes the proof.  
 ◻

This result can also be interpreted in terms of extreme rays of the set. Each ray 
coincides with a game as follows.

Corollary 1 The number of the extreme rays of GB
N

 is 2n + 2n − 2 . Each of them cor-
responds to a singleton unanimity game, a negative singleton unanimity game, or a 
negative standard basis game with S ⊊ N.

v =
∑
i∈N

xiu{i} +
∑

�≠S⊊N

𝛼−
S
u−
S

∑
i∈S

xi ≥ v(S), ∀ S ⊊ N,

∑
i∈N

xi = v(N).

v =
∑
i∈N

𝛼iu{i} +
∑

�≠S⊊N

𝛼−
S
u−
S

v =
∑
i∈N

xiu{i} +
∑

�≠S⊊N

𝛼−
S
u−
S



529

1 3

Core stability of the Shapley value for cooperative games  

We can explain why the above result is true in terms of the Bondareva-Shapley 
condition. Indeed, we show that the above decomposition result and the Bondareva-
Shapley condition can be seen as a dual characterization of the balanced games. To 
see this, we reformulate the Bondareva-Shapley condition as follows.

Proposition 1 We have v ∈ G
B
N

 if and only if

for every � ∈ ℝ
2n−1 such that

Proof The Bondareva-Shapley condition is equivalent to the following:

for every � ∈ ℝ
2n−1 such that

Since � ∈ ℝ
2n−1 satisfying (b) satisfies (a), the set of vectors satisfying (b) is a sub-

set of the set of vectors satisfying (a). Hence, if � ⋅ v ≤ 0 for every � ∈ ℝ
2n−1 satisfy-

ing (a), it also holds for all � ∈ ℝ
2n−1 satisfying (b).9

Now, suppose that � ⋅ v ≤ 0 for every � ∈ ℝ
2n−1 satisfying (b). Take any � ∈ ℝ

2n−1 
satisfying (a). Note that �N ≤ 0 because �S ≥ 0 for all S ⊊ N . If �N = 0 , then � = 0 , 
and � ⋅ v ≤ 0 holds. If 𝛾N < 0 , let 𝛾 �

S
=

𝛾S

−𝛾N
> 0 for all S ⊊ N and � �

N
= −1 . Then, 

𝛾 � = (𝛾 �
S
)S⊆N satisfies (b). Moreover, by the assumption,

Hence, if � ⋅ v ≤ 0 for every � ∈ ℝ
2n−1 satisfying (b), it also holds for all � ∈ ℝ

2n−1 
satisfying (a).   ◻

∑
�≠S⊊N

𝛾Sv(S) + 𝛾Nv(N) ≤ 0

(a)⋯

⎧
⎪⎨⎪⎩

∑
�≠S⊆N,i∈S 𝛾S ≤ 0,∀i ∈ N,

−
∑

�≠S⊆N,i∈S 𝛾S ≤ 0,∀i ∈ N,

−𝛾S ≤ 0,∀S ⊊ N.

∑
�≠S⊊N

𝛾Sv(S) + 𝛾Nv(N) ≤ 0

(b)⋯

⎧
⎪⎪⎨⎪⎪⎩

∑
�≠S⊊N,i∈S 𝛾S ≤ 1,∀i ∈ N,

−
∑

�≠S⊊N,i∈S 𝛾S ≤ −1,∀i ∈ N,

−𝛾S ≤ 0,∀S ⊊ N,

𝛾N ≤ −1,

−𝛾N ≤ 1.

∑
S⊊N

𝛾Sv(S) + 𝛾Nv(N) = (−𝛾N)
(∑
S⊊N

(
𝛾S

−𝛾N
)v(S) − v(N)

)
= (−𝛾N)(𝛾

�
⋅ v) ≤ 0.

9 For every a, b ∈ ℝ
k , a ⋅ b =

∑k

i=1
aibi is a standard inner product in ℝk.
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The set P = {x ∈ ℝ
d|Ax ≤ 0} for some matrix A ∈ ℝ

m×d is called a polyhedral 
cone, and the Po = {y ∈ ℝ

d|x ⋅ y ≤ 0,∀x ∈ P} is called a polar cone of P. Note that 
the set of vectors � ∈ ℝ

2n−1 satisfying the condition (a) is a polyhedral cone rep-
resented as a matrix Rt ∈ ℝ

(2n+2n−2)×(2n−1) such that P = {� ∈ ℝ
2n−1|Rt� ≤ 0} . The 

set of balanced vectors, which is given as (∗) in Theorem 1, is a cross-section of the 
polyhedral cone with �N = −1 . Proposition 1 shows that we can identify the set of 
balanced games with a polar cone of P by enlarging the set of balanced vectors. The 
following result plays an important role in finding another representation of a cone.

Theorem 3 (Minkowski-Weyl’s Theorem) For P ⊆ ℝ
d , the following two statements 

are equivalent: 

(1) There exists a matrix A ∈ ℝ
m×d for some m such that P = {x ∈ ℝ

d|Ax ≤ 0}.
(2) There exists a matrix R ∈ ℝ

d×k for some k such that P = {x ∈ ℝ
d|x = R�,� ≥ 0}

.

A matrix A is called a generating matrix of P. The representation of cone 
P in the manner of (1) is called its H-representation and that of (2) is called 
its V-representation.10 A pair of matrices (A,  R) that represents the same 
cone P ⊆ ℝ

d is called a double description pair (DD-pair). For a DD-pair 
(A,  R), as a corollary of Theorem  3, (Rt,At) is also a DD-pair, and the cone 
Po = {y ∈ ℝ

d|Rty ≤ 0} = {y ∈ ℝ
d|y = At�,� ≥ 0} is the polar cone of P.

Applying the above discussion to the set of balanced games, we obtain the result 
that v ∈ G

B
N

 if and only if v is represented as

Table 1  Extreme points of 
balanced games for n = 3

Rt ⧵ S 1 2 3 1, 2 1, 3 2, 3 N

Rt
1

1 0 0 1 1 0 1
Rt
2

0 1 0 1 0 1 1
Rt
3

0 0 1 0 1 1 1
Rt
4

−1 0 0 −1 −1 0 −1

Rt
5

0 −1 0 −1 0 −1 −1

Rt
6

0 0 −1 0 −1 −1 −1

Rt
7

−1 0 0 0 0 0 0
Rt
8

0 −1 0 0 0 0 0
Rt
9

0 0 −1 0 0 0 0
Rt
10

0 0 0 −1 0 0 0
Rt
11

0 0 0 0 −1 0 0
Rt
12

0 0 0 0 0 −1 0

10 In this result, (1) ⇒ (2) is known as Minkowski’s Theorem, and the converse, (2) ⇒ (1), is known as 
Weyl’s Theorem. For details, see Ziegler (1995).
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By this expression, we can see that the column vectors of R correspond to extreme 
rays of GB

N
 and, because of (a), each of them corresponds to a singleton unanimity 

game, a negative singleton unanimity game, or a negative standard basis game with 
S ⊊ N . Therefore, we obtain the decomposition result in Theorem 2.

Table 1 shows Rt for n = 3 where Rt
i
 is the i-th row vector of Rt . This decomposi-

tion result is also useful for considering a certain subclass of balanced games. If 
we consider 0-normalized games,11 then Rt

4
,Rt

5
,Rt

6
,Rt

7
,Rt

8
 and Rt

9
 are excluded as 

extreme rays and Rt
1
+ Rt

4
,Rt

2
+ Rt

5
,Rt

3
+ Rt

6
 appear as new extreme rays. In general, 

it can be obtained by considering the condition for the existence of nonnegative core 
allocations. In the same manner, as in Proposition 1, the problem reduces to

for every � ∈ ℝ
2n−n−1 such that

Then, 0-normalized balanced games can be written as

where R̃ is the generating matrix of the cone corresponding to (b)� . Table 2 shows R̃t 
for n = 3 where R̃t

i
 is the i-th row vector of R̃t.

In addition, every nonnegative 0-normalized game is represented as the nonnegative 
linear combination of 0-normalized simple N-monotonic veto-controlled games, which 
is first shown by Abe (2019).12 We can straightforwardly prove this characterization 
result as a corollary of Theorem 2. Since the case of v(N) = 0 is obvious, without loss 

v = R�,� ≥ 0.

∑
�≠S⊊N,|S|≥2

𝛾Sv(S) + 𝛾Nv(N) ≤ 0

(b)� ⋯

�∑
�≠S⊆N,�S�≥2,i∈S 𝛾S ≤ 0,∀i ∈ N,

−𝛾S ≤ 0,∀S ⊊ N, �S� ≥ 2.

v = R̃𝜇,𝜇 ≥ 0,

Table 2  Extreme points of 
0-normalized balanced games 
for n = 3

R̃t ⧵ S 1 2 3 1, 2 1, 3 2, 3 N

R̃t
1

0 0 0 1 1 0 1

R̃t
2

0 0 0 1 0 1 1

R̃t
3

0 0 0 0 1 1 1

R̃t
4

0 0 0 −1 0 0 0

R̃t
5

0 0 0 0 −1 0 0

R̃t
6

0 0 0 0 0 −1 0

11 A game v is 0-normalized if v({i}) = 0 for all i ∈ N.
12 A game v is simple if v(S) = 0 or 1 for all S ⊆ N . A player i ∈ N is a veto player in v if v(S) = 0 for 
every S ⊂ N ⧵ {i} . A game v is veto-controlled if there is a veto player in v. A game v is N-monotonic if 
v(S) ≤ v(N) for all S ⊆ N . See also Derks (1987) and discussions in Sprumont (1990).
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of generality, we assume that v(N) = 1 . Then, by Theorem 2, v is balanced if and only 
if

Since the set of vectors 𝛼 =
(
(𝛼i)i∈N , (𝛼

−
S
)S⊊N

)
∈ ℝ

2n+n−2 satisfying the above con-
ditions is convex, it is sufficient to consider its extreme points. Then, we can see that 
� is an extreme point if and only if there is i ∈ N such that

Notice that i is a veto player in the game corresponding to such � so that it is a veto-
controlled game. Moreover, we can see that the game is 0-normalized, simple, and 
N-monotonic. Table 3 shows the extreme points in the case of n = 3.

4  The Shapley value and the core

Let GSh
N

= {v ∈ GN|Sh(v) ∈ C(v)} be the set of games whose Shapley value lies in 
the core. It follows that GSh

N
⊊ G

B
N
 . In this section, we characterize the set GSh

N
 given the 

decomposition result of GB
N
 discussed in Theorem 2.

For each balanced vector � ∈ ℝ
2n−2
+

 , let us define

Then, Shi(v� ) = 1 for every i ∈ N because, by (2), for every i ∈ N,

⎧
⎪⎨⎪⎩

𝛼{i} − 𝛼−
{i}

= 0,∀i ∈ N,∑
i∈N 𝛼{i} = 1,∑
i∈S 𝛼{i} − 𝛼−

S
∈ [0, 1],∀S ⊊ N,

𝛼i, 𝛼
−
S
≥ 0,∀i ∈ N, S ⊊ N.

⎧⎪⎨⎪⎩

𝛼{i} = 𝛼−
{i}

= 1, 𝛼{j} = 0,∀j ≠ i,

𝛼−
S
= 0,∀S ⊆ N ⧵ {i},

𝛼−
S
∈ {0, 1},∀S ⊊ N, with i ∈ S.

v𝛾 =
∑
S⊊N

|S|𝛾SuS.

Table 3  Extreme points of 
0-normalized nonnegative 
balanced games for n = 3

⧵S 1 2 3 1, 2 1, 3 2, 3 N

v1 0 0 0 1 1 0 1

v2 0 0 0 1 0 1 1

v3 0 0 0 0 1 1 1

v12 0 0 0 1 0 0 1

v13 0 0 0 0 1 0 1

v23 0 0 0 0 0 1 1
vN 0 0 0 0 0 0 1
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In other words, the balanced vector � yields a game v� in which the Shapley value 
assigns 1 to every player.13 In the same vein, we construct another game that is use-
ful for our further analysis. We say that the vector 𝛽 =

(
(𝛽S)S⊊N , 𝛽N

)
∈ ℝ

2n−2
+

×ℝ is 
an extended balanced vector if for every i ∈ N,

Note that this condition is equivalent to (a): � with �N = −1 being a balanced vector. 
For every extended balanced vector 𝛽 =

(
(𝛽S)S⊊N , 𝛽N

)
∈ ℝ

2n−2
+

×ℝ , let us define

Lemma 2 For every extended balanced vector 𝛽 =
(
(𝛽S)S⊊N , 𝛽N

)
∈ ℝ

2n−2
+

×ℝ , the 
game v�− has the following properties. 

 (i) Shi(v
�−) = 0 for every i ∈ N.

 (ii) There is (𝛼−
S
)S⊊N ≥ 0 such that v𝛽− =

∑
�≠S⊊N 𝛼−

S
u−
S
.

 (iii) v�− is a nonnegative linear combination of (v�k−)Kn

k=1
 where �k = (�k,−1) and 

B(�k) is a minimal balanced collection. That is, there is � ∈ ℝ
Kn

+  such that 
v�− =

∑Kn

k=1
�kv

�k−.

Proof (i) It follows by construction: For every i ∈ N,

(ii) we have

Shi(v
𝛾 ) =

∑
�≠S⊊N,i∈S

|S|𝛾S
|S| =

∑
�≠S⊊N,i∈S

𝛾S = 1.

∑
�≠S⊊N,i∈S

𝛽S + 𝛽N = 0.

v𝛽− = −
∑
S⊊N

|S|𝛽SuS − n𝛽NuN .

Shi(v
𝛽−) = −

∑
�≠S⊆N,i∈S

|S|𝛽S
|S| = −

( ∑
�≠S⊊N,i∈S

𝛽S + 𝛽N
)
= 0.

13 In the decision theory literature, Dillenberger and Sadowski (2019) propose a similar concept, which 
they call generalized partition.
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since 
�∑

T⊆N �T�𝛽T
�
=
∑

i∈N

�∑
�≠T⊊N,i∈T 𝛽T + 𝛽N

�
= 0 . Then, 

𝛼−
S
=
�∑

T⊆S �T�𝛽T
�
≥ 0 follows because (𝛽S)S⊊N ∈ ℝ

2n−1
+

.
(iii) For each balanced vector � , let �(�) = (� ,−1) . Since the set of extended bal-

anced vectors is a polyhedral cone whose extreme rays are �(�k) = �k where B(�k) 
is a minimal balanced collection, for every extended balanced vector � , the cor-
responding game v�− can be represented as a nonnegative linear combination of 
(v�k−)

Kn

k=1
 , namely, v�− =

∑Kn

k=1
�kv

�k− where (�k)
Kn

k=1
≥ 0 .   ◻

Lemma 2 provides a representation of the games in a strict subset of

Moreover, by (ii) of Lemma 2, there is a one-to-one relationship between each 
v ∈ G

−
N

 and v�− with � ∈ ℝ
2n−1 such that

for every S ⊊ N , which is a weaker condition than (𝛽S)S⊊N ∈ ℝ
2n−1
+

 . We call vec-
tors � ∈ ℝ

2n−1 that satisfy the above condition weakly extended balanced vectors. 
The following Lemma shows that there is also a one-to-one relationship between an 
extreme ray of the set of weakly extended balanced vectors and that of extended bal-
anced vectors. Moreover, we can provide an explicit linear transformation between 
them.

Lemma 3 For every v ∈ G
−
N

 , there is � ∈ ℝ
Kn

+  such that v =
∑Kn

k=1
𝜇kv

𝛽k− where each 
jear transformation of an extended balanced vector �k = (�k,−1) such that B(�k) is a 
minimal balanced collection.

Proof For every � ∈ ℝ
2n−2 , the condition � ≥ 0 is equivalent to

v𝛽− = −
∑
T⊊N

|T|𝛽TuT − n𝛽NuN

=
∑
T⊊N

|T|𝛽T
(∑
T⊆S

u−
S

)
− n𝛽NuN

=
∑
S⊆N

(∑
T⊆S

|T|𝛽T
)
u−
S

=
∑
S⊊N

(∑
T⊆S

|T|𝛽T
)
u−
S

=
∑
S⊊N

𝛼−
S
u−
S

G
−
N
=
{
v ∈ ℝ

2n−1|v = ∑
�≠S⊊N

𝛼−
S
u−
S
, (𝛼−

S
)S⊊N ≥ 0, Sh(v) = �

}
.

�∑
�≠S⊊N,i∈S 𝛽S + 𝛽N = 0,∑
T⊆S �T�𝛽T ≥ 0,⋯ (∗∗)
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where E2n−2 ∈ ℝ
(2n−2)×(2n−2) is the identity matrix. Similarly, the condition (∗∗) is 

represented by

where A ∈ ℝ
(2n−2)×(2n−2) and it has full rank. Since an extreme ray of a polyhedral 

cone in ℝk is characterized by the k − 1 linearly independent equations of its generat-
ing matrix, an extreme ray of extended balanced vectors must satisfy

and that of the set of weakly extended balanced vectors must satisfy

where both (E2n−2)I ,AI ∈ ℝ
|I|×(2n−2) are sub-matrices of E2n−2 and A for some index 

set I ⊆ {1,… 2n − 2} , respectively.
Then, we can see that, for every index set I ⊆ {1,… 2n − 2} and � satisfying 

(E2n−2)I� = 0 , we have

E2n−2� ≥ 0,

A� ≥ 0,

(E2n−2)I� = 0

AI� = 0,

Table 4  v𝛽k− for n = 3 B(�k) �k v𝛽k−

{1, 2, 3} (1, 1, 1) u−
{1}

+ u−
{2}

+ u−
{3}

{1, 23} (1, 1) u−
{1}

+ u−
{2,3}

{2, 13} (1, 1) u−
{2}

+ u−
{1,3}

{3, 12} (1, 1) u−
{3}

+ u−
{1,2}

{12, 13, 23} (1/2, 1/2, 1/2) u−
{1,2}

+ u−
{1,3}

+ u−
{2,3}

Table 5  v𝛽k− for n = 4 . Each B is symmetric under permutation

B(�k) �k v𝛽k−

{12, 34} (1, 1) u−
{1,2}

+ u−
{3,4}

{123, 4} (1, 1) u−
{1,2,3}

+ u−
{4}

{12, 3, 4} (1, 1, 1) 2u−
{1,2}

+ u−
{3}

+ u−
{4}

{123, 124, 34} (1/2, 1/2, 1/2) u−
{1,2,3}

+ u−
{1,2,4}

+ 2u−
{3,4}

{1, 2, 3, 4} (1, 1, 1, 1) u−
{1}

+ u−
{2}

+ u−
{3}

+ u−
{4}

{12, 13, 23, 4} (1/2, 1/2, 1/2, 1) u−
{1,2}

+ u−
{1,3}

+ u−
{2,3}

+ u−
{4}

{123, 14, 24, 3} (1/2, 1/2, 1/2, 1/2) u−
{1,2,3}

+ 2u−
{1,4}

+ 2u−
{2,4}

+ u−
{3}

{123, 14, 24, 34} (2/3, 1/3, 1/3, 1/3) u−
{1,2,3}

+ u−
{1,4}

+ u−
{2,4}

+ u−
{3,4}

{123, 124, 134, 234} (1/3, 1/3, 1/3, 1/3) u−
{1,2,3}

+ u−
{1,2,4}

+ u−
{1,3,4}

+ u−
{2,3,4}
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where 𝛽 = A−1𝛽 , and, conversely, for every index set I ⊆ {1,… 2n − 2} and � satis-
fying AI� = 0 , we have

where 𝛽 = A𝛽 . Therefore, there is a one-to-one relationship between an extreme 
ray of the extended balanced vectors and that of weakly extended balanced vectors, 
which implies the result.   ◻

Tables 4 and 5 show v𝛽k− for n = 3, 4 respectively. In each column of �k , we only 
describe the weight on each S ∈ B(�k).

Now, we state our main result of the decomposition of GSh
N

 . In the following state-
ment, the definition of 𝛽k is the same as that in Lemma 3.

Theorem 4 Let v ∈ GN . We have Sh(v) ∈ C(v) if and only if v is the sum of (i) a lin-
ear combination of singleton unanimity games and (ii) a nonnegative linear combi-
nation of (v𝛽k−)Kn

k=1
:

where (�i)i∈N = Sh(v) and (�k)
Kn

k=1
≥ 0.

Proof By the proof of Lemma 1, Sh(v) ∈ C(v) if and only if

where (𝛼−
S
)S⊊N ≥ 0 . Then, by construction, Sh(

∑
�≠S⊊N 𝛼Su

−
S
) = � . Since ∑

�≠S⊊N 𝛼Su
−
S
∈ G

−
N

 , by Lemma 3, it can be represented as

where (�k)
Kn

k=1
≥ 0 . Therefore, v is decomposed as follows:

0 = (E2n−2)I𝛽

= (AA−1)I𝛽

=AIA
−1𝛽

=AI𝛽

0 =AI𝛽

= (E2n−2)IA𝛽

= (E2n−2)I𝛽

v =
∑
i∈N

𝛼iu{i} +

Kn∑
k=1

𝜇kv
𝛽k−

v =
∑
i∈N

Shi(v)u{i} +
∑

�≠S⊊N

𝛼−
S
u−
S

∑
�≠S⊊N

𝛼Su
−
S
=

Kn∑
k=1

𝜇kv
𝛽k−

v =
∑
i∈N

Shi(v)u{i} +

Kn∑
k=1

𝜇kv
𝛽k−,
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which completes the proof.   ◻

This result and Lemma 3 suggest that we can count the number of extreme rays of 
G
Sh
N

 . The number of nontrivial extreme rays is equal to the number of minimal balanced 
games as follows.

Corollary 2 The number of extreme rays of GSh
N

 is 2n + Kn . Each of them corresponds 
to a singleton unanimity game, a negative singleton unanimity game, or a game v𝛽k− 
corresponding to minimal balanced collections as in Lemma 3.

Before closing this section, we compare our result with other conditions studied in 
the literature. Inarra and Usategui (1993) show that v ∈ G

Sh
N

 if and only if for every 
T ⊆ N,

where

Izawa and Takahashi (1998) show that v ∈ G
Sh
N

 if and only if for every T ⊆ N,

where vi(S) = v(S) − v(S ⧵ {i}) . Since both conditions are written as a lin-
ear transformation of v, we can observe that there is A ∈ ℝ

m×(2n−1) such that 
G
Sh
N

= {v ∈ GN|Av ≥ 0} . Hence, these conditions also show that GSh
N

 is a polyhedral 
cone. However, both conditions neither provide any information about its extreme 
rays nor any reduced expression of the generating matrix. In contrast, our approach 
has the following three advantages. First, we can explicitly construct each extreme 
ray. Second, we can decompose every game in the class GSh

N
 into simple games, each 

of which corresponds to an extreme ray. Finally, and more importantly, we can apply 
our method to other linear solutions, whereas the two conditions above are appli-
cable only for the Shapley value. In the next section, we conclude our results and 
elaborate on the third advantage, i.e., applicability, mentioned above.

∑
�≠S⊆N

(n − s)!(s − 1)!

n!
hT (S)(v(S) − v(S ⧵ T) − v(S ∩ T)) ≥ 0,

hT (S) =

{
|S| ⋅ ( |S∩T|

|S| −
|T⧵S|
|N⧵S|

)
if S ≠ N,

|T| if S = N.

∑
S⊂N

∑
i∈S∩T

(n − s)!(s − 1)!

n!
(vi(S) − vi(S ∩ T)) ≥ 0,
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5  Discussion

5.1  Convex games

Convexity and average convexity are two widespread sufficient conditions for 
the Shapley value to lie in the core.14 In particular, if a game v ∈ GN is convex, 
Edmond (1970) and Shapley (1971) independently show that the vector of marginal 
contributions, (mci,�(v))i∈N , is in the core for every ordering � ∈ Π and thus that 
Sh(v) ∈ C(v) . Moreover, Ichishi (1981) shows its converse: (mci,�(v))i∈N ∈ C(v) for 
every � ∈ Π only if v is convex. By associating their results with our Theorem 2, we 
can observe that a game v ∈ GN is convex if and only if for every � ∈ Π there are 
(��

i
)i∈N ∈ ℝ

n and (𝛼𝜎−
S
)S⊊N ≥ 0 such that

and mci,𝜎(
∑

�≠S⊊N 𝛼𝜎−
S
u−
S
) = 0 for all i ∈ N . Since the set of convex games is also a 

polyhedral cone, a convex game can be further decomposed into the sum of simple 
games as in Theorem 4. A similar observation holds for average convex games.

In the Online Appendix, which is available on the authors’ webpages, we provide 
the H-representation of GSh

N
 and that of the sets of convex games and average convex 

games. Moreover, we demonstrate the relationship among these sets based on the 
representations. However, obtaining V-representations of those sets is not necessar-
ily straightforward. For example, one of the difficulties is to obtain extreme rays of 
the set of convex games. In this case, we must consider not only the set

for all � ∈ Π but also the consistency of the representations for all � ∈ Π in the 
above sense, which is not covered by Theorems 2 and 4. To deal with such difficulty 
is still an open question. However, our methods provided in this paper would be a 
useful tool.

5.2  Allocation schemes and decompositions

Our decomposition approach is closely related to the notion of allocation schemes. 
An allocation scheme is a collection of allocations that assigns an S-dimensional 
allocation to every coalition S, i.e., (xS)S⊆N where xS ∈ ℝ

s . Sprumont (1990) intro-
duces a concept called a population monotonic allocation scheme (PMAS), defined 

v =
∑
i∈N

𝛼𝜎
i
u{i} +

∑
�≠S⊊N

𝛼𝜎−
S
u−
S

G
𝜎−
N

=
{
w ∈ ℝ

2n−1|w =
∑

�≠S⊊N

𝛼−
S
u−
S
, (𝛼−

S
)S⊊N ≥ 0, mci,𝜎(w) = �

}

14 Formally, a game v ∈ GN is convex if for every S,T ⊆ N , v(S ∪ T) + v(S ∩ T) ≥ v(S) + v(T) , 
and is average convex if for every nonempty S,T ⊆ N with S ⊆ T  , ∑

j∈S(v(T) − v(T⧵{j})) ≥
∑

j∈S(v(S) − v(S⧵{j})) . Note that convexity implies average convexity. For a 
counter-example of the opposite direction, see examples in Inarra and Usategui (1993) and Izawa and 
Takahashi (1998).
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as follows: For every S, T ⊆ N , S ⊇ T  ⇒ xS
j
≥ xT

j
 for every j ∈ T  . He shows that a 

game has a PMAS if and only if it can be decomposed into the sum of singleton una-
nimity games and nonnegative linear combinations of simple monotonic veto-con-
trolled games and that if a game is convex, then (an extended version of) the Shapley 
value generates a PMAS.

We emphasize that our decomposition result for GSh
N

 and Sprumont’s (1990) result 
are independent, i.e., each one does not imply the other. Indeed, the Shapley value 
of a simple monotonic veto-controlled game does not always lie in the core, which 
suggests that possessing a PMAS is not a sufficient condition for the Shapley value 
to be in the core. Moreover, a game v ∈ G

Sh
N

 may lack a PMAS. To see this, we con-
sider an exact assignment game (Hoffmann and Sudhölter 2007). A game is exact 
if for every S ⊆ N , there is a core element x such that 

∑
j∈S xj = v(S) . For instance, 

an assignment game with two buyers and two sellers, where a pair of one buyer and 
one seller produces surplus 1, is an exact assignment game. Hoffmann and Sudhölter 
(2007) show that the Shapley value of an exact assignment game is in the core, i.e., 
an exact assignment game is in GSh

N
 , while as demonstrated by Sprumont (1990), 

this assignment game has no PMAS. Therefore, Sprumont’s decomposition does not 
apply to this game.

Although a game v ∈ G
Sh
N

 does not have any PMAS in general, it may have an 
allocation scheme satisfying less demanding properties. For example, the definition 
of exact games enables an allocation scheme to consist of core elements, which is 
less demanding than population monotonicity. We conjecture that some properties 
of allocation schemes may lead to another decomposability of games.15 Combining 
such properties and our Theorem 4 must be helpful to understand the reason why an 
exact assignment game is in GSh

N
 in terms of the decomposition of games. In addition, 

every average convex game is in GSh
N

 and is decomposed as demonstrated in Subsec-
tion 5.1. Therefore, if there is a general connection between the decomposability and 
the notion of allocation schemes, it must be a key to answering the long-standing 
open question; “Does an average convex game have a PMAS?”

5.3  Generalization to linear solutions

Our results can be a more powerful method when we consider the relationship 
between the core and arbitrary linear solutions including the Shapley value.16 We 
elaborate on this point below by borrowing the arguments by Yokote et al. (2016).

For each nonempty T ⊆ N , a commander game ūT ∈ GN is defined as

15 We would like to thank an anonymous referee for suggesting that we consider this issue.
16 Various linear solutions are intensively studied as a complement to or a counterpart of the Shapley 
value: for example, weighted Shapley values (Shapley 1953a; Chun 1988, 1991; Kalai and Samet 1987; 
Nowak and Radzik 1995; Yokote 2015), egalitarian Shapley values and their generalization (Joosten 
1996; Casajus and Huettner 2013, 2014; van den Brink et al. 2013; Abe and Nakada 2019; Yokote and 
Funaki 2018), and the CIS/ENSC value (Driessen and Funaki 1991). See also Yokote et al. (2017) for 
other solutions.
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Yokote et al. (2016) show that {ūT}�≠T⊆N is another basis of GN : A game v is rep-
resented as v =

∑
�≠T⊆N dT ūT , where d = (dT )�≠T⊆N is the coefficient of the corre-

sponding ūT . Note that ū{i} = u{i} for every i ∈ N . Moreover, Yokote et  al. (2016) 
show that, for every i ∈ N , d{i} = Shi(v) , that is, the coefficients of singleton com-
mander games coincide with the Shapley value and commander games (ūT )T ,|T|≥2 
span the null space of the Shapley value; Sh(ūT ) = 0 for every T ⊆ N with |T| ≥ 2 . 
Hence, each game v is uniquely represented as

Since game v is uniquely represented as the linear combination of commander 
games by (3), we write

where Shi(w) = 0 for every i ∈ N . Therefore, Sh(v) ∈ C(v) if and only if 
Sh(w) = 0 ∈ C(w).

If a solution f is linear, in view of (1), fi(v) =
∑

�≠T⊆N 𝜆T fi(uT ) for every i ∈ N . 
Hence, if we can identify a new basis 

(
(u{i})i∈N , (u

f

S
)S⊆N,|S|≥2

)
 such that f (uf

S
) = 0 

for every S ⊆ N with |S| ≥ 2 , then, by the same argument as above, we have 
f (v) ∈ C(v) if and only if f (wf ) = 0 ∈ C(wf ) where v =

∑
i∈N fi(v)u{i} + wf  . To 

find the condition for 0 ∈ C(wf ) , suppose that fi(uT ) is written as fi(uT ) =
fi,T

fT
 for 

some fi,T ∈ ℝ and fT > 0 . For instance, if f = Sh,

Now, consider the following constraints: For every 𝛽 f =
(
(𝛽

f

S
)S⊊N , 𝛽

f

N

)
∈ ℝ

2n−2
+

×ℝ 
and every i ∈ N,

A vector � f  satisfying the above condition can be seen as a weighted generalized 
balanced vector. Now, define a game

In the same manner as Lemma 2, fi(v�
f−) = 0 for all i ∈ N . Moreover, each v� f− can 

be decomposed into a nonnegative linear combination of the games derived from the 

ūT (S) =

{
1 if |T ∩ S| = 1,

0 otherwise.

(3)v =
∑
i∈N

Shi(v)u{i} +
∑

�≠T⊆N,|T|≥2
dT ūT .

v = v+ + w

fi,T =

{
1 if i ∈ T ,

0 otherwise.
fT = |T|.

∑
S⊊N

fi,S𝛽
f

S
+ fi,N𝛽

f

N
= 0.

v𝛽
f− = −

∑
S⊊N

fT𝛽SuS − fT𝛽NuN

=
∑
S⊊N

(∑
T⊆S

fT𝛽
f

T

)
u−
S
.
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extreme rays of weighted generalized balanced vectors. Hence, the remaining step is 
to consider the extreme rays of the following polyhedral cone

Since the matrix that constitutes the inequality constraints has full rank (i.e, ignor-
ing �N and consider the constraints in dimension ℝ2n−2 ) by fT > 0 for all T ⊆ N , the 
same argument as in Lemma 3 generates the extreme rays as desired.

As a special case, Yokote et  al. (2016) propose a basis 
(
(u{i})i∈N , (u

f

S
)S⊆N,|S|≥2

)
 

when f is a weighted Shapley value and a (extended version of) discounted Shapley 
value. We can straightforwardly apply the above procedure even to these cases. In 
addition, since our method is applicable for every linear solution as long as a suit-
able basis is obtained, we can similarly obtain the core selection result for every 
linear solution.

6  Summary

In this paper, we provide the geometric characterization of balanced games and a 
new necessary and sufficient condition for the Shapley value to be in the core. To be 
more specific, we show that all balanced games are decomposed into some simple 
games. This decomposition approach is applied to the characterization of the class 
of games whose core contains the Shapley value. We show that all games whose 
Shapley value lies in the core can be decomposed into some simple games with cer-
tain conditions. This result shows that (i) different classes of games may have some 
common geometric properties and that (ii) we can apply the common properties to 
the analysis of the relationship among solution concepts in the classes. Moreover, 
the attempt to generalize the Shapley value to an arbitrary linear solution is also 
provided.

Supplementary Information The online version contains supplementary material available at https:// doi. 
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