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Abstract
In this study, we consider the problem of fairly allocating a fixed amount of a per-
fectly divisible resource among agents with single-dipped preferences. It is known 
that any efficient and strategy-proof rule violates several fairness requirements. 
We alternatively propose a simple and natural mechanism, in which each agent 
announces only whether he or she demands a resource and the resource is divided 
equally among the agents who demand it. We show that any Nash equilibrium allo-
cation of our mechanism belongs to the equal-division core. In addition, we show 
that our mechanism is Cournot stable. In other words, from any message profile, any 
path of better-replies converges to a Nash equilibrium.
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1 Introduction

We consider the problem of fairly allocating a fixed amount of a perfectly divisible 
resource among agents with single-dipped preferences. An agent’s preference rela-
tionship is said to be single-dipped if there is a least preferred amount, called a dip, 
and his or her welfare increases as the allotment moves away from the dip in either 
direction.

While Klaus et  al. (1997) and Klaus (2001) provided several examples of this 
problem, we introduce another economically meaningful instance. This problem is 
closely related to the common-pool resource allocation problem under increasing 
returns to scale.1 Consider the situation where no more than a certain amount of fish 
can be caught from a lake to sustain the ecosystem of the lake. When each fisher’s 
fixed cost of catching fish is sufficiently large and his or her marginal cost is suf-
ficiently small, his or her total cost function is concave. When the total amount of 
fish that can be caught is fixed, no fisher can influence the price of the fish, so that 
his or her revenue function is linear. In this situation, each fisher’s profit function is 
convex, so he or she has a single-dipped preference over the amount of fish he or she 
catches.

In the literature of mechanism design, strategy-proofness, which requires that no 
agent can benefit from misrepresenting his or her true preference, is a key concept. 
Klaus et  al. (1997) and Klaus (2001) showed that any strategy-proof and Pareto 
efficient rule must allocate the whole resource to one agent. Therefore, such a rule 
violates several fairness requirements, such as envy-freeness, anonymity, and equal-
division lower boundedness. 2Ehlers (2002) extended the deterministic model by 
allowing the use of probabilistic rules. He characterized all probabilistic rules satis-
fying strategy-proofness, Pareto efficiency, and envy-freeness.

When it is shown that designing a strategy-proof, efficient and fair rule is impos-
sible, implementation in Nash equilibria is often considered. Doghmi (2013a) 
showed that in this problem, Maskin monotonicity is a necessary and sufficient con-
dition for Nash implementation and examined the Nash implementability of several 
solutions.3 However, which mechanism should be used in practice remains an open 
question, because Doghmi’s (2013a) results are derived from indirectly utilizing 
Maskin’s (1999) canonical mechanism, whose message space is quite large and has 
some unnatural features.4

In this study, we propose a simple and natural mechanism for this problem. In our 
mechanism, each agent announces only whether he or she demands a resource. If 
some agents do, then the resource is divided equally among the agents who demand 

1 See, for example, Roemer (1989) and Moulin (2003).
2 Contrary to the allocation problem with single-dipped preferences, there are several strategy-proof, 
Pareto efficient, and fair rules in the location problem of a public facility with single-dipped preferences. 
See, for example, Barberà et al. (2012) and Manjunath (2014).
3 Doghmi (2013b, 2016) and Doghmi and Ziad (2013) investigated Nash implementation in the alloca-
tion problem in more general preference domains.
4 Abreu and Matsushima (1992) and Jackson (1992) pointed out some drawbacks of Maskin’s (1999) 
canonical mechanism .
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it; otherwise, the resource is equally divided among all agents. We call this mecha-
nism the binary mechanism.

We confirm the existence of Nash equilibria of the binary mechanism, and then 
show that in the binary mechanism, (1) if there are at least three agents, then any 
Nash equilibrium allocation is weakly Pareto efficient and (2) if there are at least 
four agents, then any Nash equilibrium allocation belongs to the equal-division 
core.5 In addition, we show that the solution implemented by the binary mechanism 
satisfies equal-division lower boundedness and anonymity.

While these properties of Nash equilibrium allocations might be attractive, the 
use of Nash equilibrium as an equilibrium concept usually requires the assumption 
that all agents are fully rational and have complete information about the game being 
played. In response, we show that the set of Nash equilibria of the strategic form 
game associated with the binary mechanism is stable in the sense of Cournot–Nash 
equilibrium. In other words, starting from any message profile, any path of better-
replies converges to the set of Nash equilibria. This stability property ensures that 
myopic learning process based on better-replies to the other agents’ messages results 
in choosing a Nash equilibrium, even if we do not assume complete information or 
full rationality of agents.

The remainder of this paper is organized as follows. Section 2 introduces nota-
tion and definitions. Section 3 proposes several properties of solutions and notes the 
difficulties associated with Nash implementation. Section 4 investigates the perfor-
mance of the binary mechanism. Section  5 shows that the Nash equilibria of the 
binary mechanism are Cournot stable. Section 6 concludes the study. Some proofs 
are relegated to the Appendix.

2  Basic definitions

We consider the problem of allocating one unit of an infinitely divisible and non-
disposal resource among a set N = {1, ..., n} of agents. Let 
A =

�
(x1, ..., xn) ∈ ℝ

n
+
� ∑i∈N xi = 1

�
 be the set of allocations. For each i ∈ N and 

each x = (x1, ..., xn) ∈ A , we call xi the allotment of agent i at x. For each S ⊆ N, |S| 
denotes the cardinality of the set S and xS denotes the allocation such that (1) if 
S ≠ �, then for each i ∈ S, xS

i
=

1

|S| and for each i ∉ S, xS
i
= 0 and (2) if S = �, then 

xS = (
1

|N| , ...,
1

|N| ).
Each agent i ∈ N has a complete and transitive preference Ri over the interval 

[0, 1] , whose symmetric and asymmetric parts are denoted by Ii and Pi , respectively. 
A preference Ri is single-dipped if there is d(Ri) ∈ [0, 1] , called i’s dip, such that for 
each pair a, b ∈ [0, 1] , a < b ≤ d(Ri) or a > b ≥ d(Ri) implies a Pi b . Let R be the set 

5 However, the solution implemented by the binary mechanism does not satisfy strong Pareto efficiency 
or envy-freeness. It is impossible to design a mechanism that Nash implements a solution, satisfying 
strong Pareto efficiency and envy-freeness (Remarks 1 and 2).
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of all single-dipped preferences and RN =
∏
i∈N

R be the set of all single-dipped pref-

erence profiles.
A solution is a mapping F ∶ R

N
→ 2A�{�} that associates with each preference 

profile R ∈ R
N a non-empty subset of allocations F(R) ⊆ A. These allocations are 

interpreted as socially desirable allocations for R.
A mechanism is a pair Γ = (

(
Mi

)
i∈N

, g), where Mi denotes agent i’s message 
space, and g ∶

∏
i∈N

Mi → A denotes the outcome function that associates with each 

message profile m ≡
(
mi

)
i∈N

∈ M ≡ 
∏
i∈N

Mi an allocation g(m) ∈ A . A message pro-

file m ∈ M is a Nash equilibrium of Γ for R if, for each i ∈ N and each m�

i
∈ Mi , 

gi(m)Ri gi(m
�

i
,m−i) . Let NE(Γ,R) be the set of Nash equilibria of Γ for R and

be the set of Nash equilibrium allocations of Γ for R. A mechanism Γ Nash imple-
ments a solution F, if, for each R ∈ R

N , F(R) = NEA(Γ,R).

A rule is a single-valued solution f ∶ R
N
→ A . A rule is strategy-proof if for 

each i ∈ N , each Ri,R
�
i
∈ R , and each R−i ∈

∏
j∈N�{i}

R , fi(Ri,R−i)Ri fi(R
�
i
,R−i) . A rule 

is group strategy-proof if for each S ⊆ N and each R ∈ R
N , there is no R�

S
∈
∏
i∈S

R 

such that for each i ∈ S, fi(R
�
S
,RN�S)Ri fi(R

�
S
,RN�S) and for some 

j ∈ S, fj(R
�
S
,RN�S)Pj fj(R

�
S
,RN�S).

3  Axioms

We introduce several properties of solutions as axioms. The first two axioms refer to 
efficiency.

Definition 1 An allocation x ∈ A is strongly Pareto efficient for R ∈ R
N if there is 

no y ∈ A such that for each i ∈ N, yi Ri xi , and for some j ∈ N, yj Pj xj . Let SP(R) 
denote the set of strongly Pareto efficient allocations for R. A solution F satisfies 
strong Pareto efficiency if for each R ∈ R

N , F(R) ⊆ SP(R) .

Definition 2 An allocation x ∈ A is weakly Pareto efficient for R ∈ R
N if there is no 

y ∈ A such that for each i ∈ N, yi Pi xi . Let WP(R) denote the set of weakly Pareto 
efficient allocations for R. A solution F satisfies weak Pareto efficiency if, for each 
R ∈ R

N , F(R) ⊆ WP(R).
Following this, we introduce several axioms having to do with fairness.6 The sim-

plest way to achieve fairness is to allocate the resource equally among all agents. 
However, the equal division xN = (

1

|N| , ...,
1

|N| ) ∈ A might not be desirable from the 
perspective of weak Pareto efficiency. We then treat equal division as a reference 

NEA(Γ,R) = {g(m) ∈ A | m ∈ NE(Γ,R)}

6 For surveys on several criteria for fair allocation, see Young (1995), Roemer (1996), Moulin (2003) 
and Thomson (2011).
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point. The following axiom requires that each agent’s allotment should be at least as 
desirable as equal division.

Definition 3 An allocation x ∈ A satisfies the equal-division lower bound for 
R ∈ R

N if for each i ∈ N , xi Ri
1

|N| . Let ELB(R) denote the set of allocations meeting 
the equal-division lower bound for R . A solution F satisfies equal-division lower 
boundedness if for each R ∈ R

N , F(R) ⊆ ELB(R).
Equal-division lower boundedness can be generalized by permitting reallocation 

of the resource among coalitions. The following axiom requires that no coalition can 
make each of its members better off by reallocating among themselves the resource 
allotted to them at equal division.

Definition 4 An allocation x ∈ A belongs to the equal-division core for R ∈ R
N if 

there is no S ⊆ N and y ∈ A such that (1)
∑

i∈S yi =
�S�
�N� and (2) for each i ∈ S, yi Pi xi . 

Let EC(R) denote the set of equal-division core allocations for R. A solution F satis-
fies the equal-division core property if for each R ∈ R

N
, F(R) ⊆ EC(R).

We define two alternative axioms pertaining to fairness. The following axiom 
requests that the set of socially desirable allocations should be independent of the 
names of agents.

Definition 5 A solution F satisfies anonymity if for each R ∈ R
N , and each permuta-

tion � of N, if x ∈ F(R) , then (x�(1),… , x�(n)) ∈ F(R�(1),… ,R�(n)).

The following axiom is a well-known property of fair allocation: each agent’s 
allotment is at least as desirable as any other agent’s allotment.

Definition 6 An allocation x ∈ A is envy-free for  R ∈ R
N if for each i, j ∈ N , xi Ri xj . 

Let EF(R) denote the set of envy-free allocations for R. A solution F satisfies envy-
freeness if for each R ∈ R

N , F(R) ⊆ EF(R).
Finally, we define an axiom of implementability. A solution F is  Nash imple-

mentable if there is a mechanism Γ such that for each R ∈ R
N , NEA(Γ,R) = F(R).

Maskin (1999) showed that any Nash-implementable solution satisfies Maskin 
monotonicity. Before introducing the axiom formally, we introduce the following 
notation. For each R ∈ R , and each a ∈ [0, 1], let L(R, a) = {b ∈ [0, 1] | aR b} be 
the set of points of [0, 1] which are less desirable than or at least as desirable as a at 
R.

Definition 7 A solution F satisfies Maskin monotonicity if for each pair R,  R ∈ R
N
, 

and each x ∈ F(R), if for each i ∈ N, L(Ri, xi) ⊇ L(Ri, xi), then x ∈ F(R).

There are several fundamental difficulties in implementing an efficient and fair 
solution in the allocation problem with single-dipped preferences.

Remark 1 Doghmi and Ziad (2013) pointed out that the strong Pareto solution does 
not satisfy Maskin monotonicity. As a corollary of their result, it is shown that if 
there are at least two agents, then any solution satisfying strong Pareto efficiency 
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does not satisfy Maskin monotonicity, and thus it is not Nash implementable. 
In other words, if F is Nash implementable, then there is R ∈ R

N be such that 
F(R) ⊈ SP(R). See Appendix for details.

Remark 2 Weak Pareto efficiency is not compatible with envy-freeness. In other 
words, there is R ∈ R

N such that WP(R) ∩ EF(R) = �. See Appendix for details.

Remark 3 Klaus et al. (1997) and Klaus (2001) show that no (group) strategy-proof 
and weak Pareto efficient rule satisfies equal-division lower boundedness, equal-
division core property, anonymity, or envy-freeness.

4  The binary mechanism

Faced with the difficulties noted in Remarks 1, 2 and 3, our second-best goal is to 
design a mechanism that Nash implements a solution satisfying weak Pareto effi-
ciency, equal-division lower boundedness, equal-division core property, and ano-
nymity. We propose the following mechanism.

The binary mechanism, ΓB. For each i ∈ N, Mi = {0, 1} , and for each m ∈
∏
i∈N

Mi , 

g(m) = x{i∈N |mi=1}.

Since Mi contains only two messages, the binary mechanism is bounded (Jack-
son 1992).7 Also, it is natural in the sense that each agent’s message consists only 
of an economically meaningful announcement (Saijo et  al. 1996, 1999). For each 
i ∈ N, mi = 1 can be interpreted as if agent i demands the resource and mi = 0 as if 
agent i does not demand the resource. When some agents demand a resource, then 
ΓB allocates the resource equally among the agents who demand it. When no agent 
demands the resource, then ΓB allocates the resource equally among all agents.

The basic structure of the binary mechanism is similar to Yamamura’s (2016) 
mechanism for the problem of locating a public facility over a street when agents’ 
preferences are single-dipped. According to Yamamura’s (2016) mechanism each 
agent announces only whether he or she wants to move the location in a certain 
direction or not, and the location is chosen according to the set of agents who want 
it.

We first identify the set of Nash equilibria of the binary mechanism. For each 
S ⊆ N, let mS ∈

∏
i∈N

Mi be such that for each i ∈ S, mS
i
= 1 and for each i ∉ S, mS

i
= 0. 

Notice that for each mS ∈
∏
i∈N

Mi , each agent’s allotment is either 1|S| or 0. Hence, cap-

turing the set of agents who prefer 1|S| to 0 is crucially important to identify the set of 

7 Agent i’s message mi is dominated by m′
i
  at Ri if for each m−i ∈ M−i, g(m�

i
,m−i)Ri g(mi,m−i), and for 

some m�
−i

∈ M−i, g(m�
i
,m�

−i
)Pi g(mi,m

�
−i
). Agent i’s message mi is dominated at Ri if there is m�

i
∈ Mi 

which dominates mi at Ri. A mechanism Γ is bounded if for each R ∈ R
N
, each i ∈ N, and each mi ∈ Mi, 

if mi is dominated at Ri , then there is m�
i
∈ Mi, such that m′

i
 dominates mi and there is no m��

i
∈ Mi which 

dominates m′
i
 at Ri.



653

1 3

Binary mechanism for the allocation problem with single‑dipped…

Nash equilibria. We then introduce the following notation. For each 
k ∈ {0, 1, ..., n, n + 1} , and each R ∈ R

N
, define Nk(R),N

�
k
(R) ⊆ N as follows.

Intuitively, Nk(R) denotes the set of agents who like to be allocated the resource 
when k agents demand the resource, and N�

k
(R) denotes the set of agents who do not 

dislike to be allocated the resource when k agents demand the resource.
Note that by the definitions of Nk(R) and N�

k
(R) , for each k, k� ∈ {0, 1, ..., n, n + 1} , 

such that k > k′ , we have

Theorem  1 For each R ∈ R
N
, and each S ⊆ N, mS ∈ NE(ΓB,R) if and only if  

N|S|+1(R) ⊆ S ⊆ N
�

|S|(R).

Proof See Appendix. ■
Theorem 1 identifies agents’ behavior in Nash equilibria. It states that at a Nash 

equilibrium mS of the binary mechanism (1) all members of N|S|+1 announce mi = 1 , 
(2) all members of N∖N ′

|S| announce mi = 0 , (3) |S| − |||N|S|+1(R)
||| members of 

N
�

|S|(R)�N|S|+1(R) announce mi = 1 , and (4) |||N
�

|S|(R)
||| − |S| members of 

N
�

|S|(R)�N|S|+1(R) announce mi = 0. As a corollary of Theorem 1, we know the num-
ber of agents who receive the resource at a Nash equilibrium of the binary mecha-
nism. For each R ∈ R

N
, define k∗ ∈ {0, 1,… , n} as

8The following proposition states that the number of agents who receive the resource 
at a Nash equilibrium is either k∗ or k∗ + 1.

Proposition 1 

Nk(R) =

⎧
⎪⎪⎨⎪⎪⎩

N if k = 0�
i ∈ N � 1Pi

1

n

�
if k = 1�

i ∈ N � 1

k
Pi 0

�
if 2 ≤ k ≤ n

� if k = n + 1,

N�
k
(R) =

⎧
⎪⎪⎨⎪⎪⎩

N if k = 0�
i ∈ N � 1Ri

1

n

�
if k = 1�

i ∈ N � 1

k
Ri 0

�
if 2 ≤ k ≤ n

� if k = n + 1.

Nk(R) ⊆ N�
k
(R) ⊆ Nk� (R) ⊆ N�

k�
(R).

k∗ ≡ max
{
k ∈ {0, 1,… , n} | ||Nk(R)

|| ≥ k
}
.

8 Since for each k, k� ∈ {0, 1,… , n, n + 1} , such that k > k�, Nk(R) ⊆ Nk� (R) , we have 

 Since ||N0(R)
|| = n > 0 and ||Nn+1(R)

|| = 0 < n + 1, there is k∗ ∈ {0, 1,… , n} such that for each 
k ∈ {0, 1,… , k∗}, ||Nk(R)

|| ≥ k, and for each k ∈ {k∗ + 1,… , n + 1}, ||Nk
(R)|| < k..

n = ||N0(R)
|| ≥ ||N1(R)

|| ≥ … ≥ ||Nn+1(R)
|| = 0.
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(1) For each R ∈ R
N
, there is mS ∈ NE(ΓB,R) such that |S| = k∗.

(2)  For each R ∈ R
N
, if mS ∈ NE(ΓB,R), then |S| = k∗ or k∗ + 1.

Proof First, we show that for each R ∈ RN , there is mS ∈ NE(ΓB,R) such 
that |S| = k∗. For each R ∈ R

N
, since ||Nk∗ (R)

|| ≥ k∗ , ||Nk∗+1(R)
|| < k∗ + 1 , and 

Nk∗+1(R) ⊆ Nk∗ (R) , there is S ⊆ N such that |S| = k∗ and

Hence, by Theorem 1, mS ∈ NE(ΓB,R).

Next, we show that for each R ∈ RN , if mS ∈ NE(ΓB,R) , then |S| = k∗ or k∗ + 1. If 
|S| ≤ k∗ − 1, then since N|S|+1(R) ⊇ Nk∗ (R), we have that

Hence, N|S|+1(R) ⊆ S does not hold. By Theorem 1, mS ∉ NE(Γ
B
,R).

If |S| ≥ k∗ + 2, then since N�
|S|(R) ⊆ Nk∗+1(R) , we have that

Hence, S ⊆ N�
|S|(R) does not hold. By Theorem 1, mS ∉ NE(Γ

B
,R). ■

We next investigate the properties of the Nash equilibrium allocations of the 
binary mechanism. Let FB ∶ R

N
⟶ 2A ⧵

{
�
}
 denote the solution implemented by 

the binary mechanism. In other words, for each R ∈ R
N , FB(R) = NEA(ΓB,R) . The 

following theorem exhibits several desirable properties of the solution implemented 
by the binary mechanism.

Theorem 2 

(1)  Suppose |N| ≥ 4. Then,  FB satisfies the equal-division core property.
(2)  Suppose |N| ≥ 3. Then,  FB satisfies weak Pareto efficiency.
(3) FB satisfies equal-division lower boundedness and anonymity.

Proof See Appendix. ▪

According to Theorem 2, if there are at least four agents, then any Nash equilib-
rium allocation of the binary mechanism belongs to the equal-division core. Since 
for each R ∈ R

N , EC(R) ⊆ WP(R) and EC(R) ⊆ ELB(R), the equal-division core 
property must imply weak Pareto efficiency and equal-division lower boundedness.9 
Also, Theorem 2 says that if there are three agents, then while FB does not satisfy the 
equal-division core property, FB satisfies weak Pareto efficiency and equal-division 

Nk∗+1(R) ⊆ S ⊆ Nk∗ (R) ⊆ N�
k∗
(R).

|||N|S|+1(R)
||| ≥ ||Nk∗ (R)

|| ≥ k∗ > |S|.

|||N
�
|S|(R)

||| ≤ ||Nk∗+1(R)
|| < k∗ + 1 < |S|.

9 However, the equal-division core property does not imply anonymity. For example, let 
F(R) =

{
x ∈ EC(R) | x1 ≥ x�

1
, ∀x� ∈ EC(R)

}
. Then, while this F satisfies the equal-division core prop-

erty, it does not satisfy anonymity.
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lower boundedness. In addition, the solution implemented by the binary mechanism 
satisfies equal-division lower boundedness and anonymity. As seen in Remarks 1 
and 2, whenever a solution is weakly Pareto efficient and Nash implementable, it 
violates envy-freeness and strong Pareto efficiency, respectively. Since FB satisfies 
all the axioms defined in Sect. 3, other than strong Pareto efficiency and envy-free-
ness, we can achieve our second-best goal through the binary mechanism.10

We end this section by noting that (1) if |N| < 3 , then FB does not satisfy weak 
Pareto efficiency, (2) if |N| < 4 , then FB does not satisfy the equal-division core 
property, and (3) if |N| ≥ 4, then the binary does not fully implement WP ∩ ELD or 
EC in Nash equilibria.

Remark 4 If |N| = 2 , then there are R ∈ R
N and S ⊆ N such that xS ∈ FB(R) and 

xS ∉ WP(R) . Let N = {1, 2} and R = (R1,R2) ∈ R
N be such that (1) d(R1) =

1

2
 and 

0P1 1, and (2) d(R2) =
1

2
 and 1P2 0. We can easily check that m{1} ∈ NE(ΓB,R), and 

thus, x{1} ∈ FB(R) . However, for y = (0, 1) ∈ A, we must have y1 = 0P1 1 = x
{1}

1
 , 

and y2 = 1P2 0 = x
{1}

2
. Therefore, x{1} ∉ WP(R).

Remark 5 If |N| = 3 , then there are R ∈ R
N and S ⊆ N such that xS ∈ FB(R) and 

xS ∉ EC(R) . Let N = {1, 2, 3} and R = (R1,R2,R3) ∈ R
N be such that (1) for i = 1, 

d(Ri) =
1

3
 and 0Pi 1, and (2) for each i ∈ {2, 3}, d(Ri) =

1

2
 and 2

3
Pi 0. We can easily 

show that m{1} ∈ NE(ΓB,R), and thus, x{1} ∈ FB(R) . However, for y = (0,
2

3
,
1

3
) ∈ A, 

we must have y1 = 0P1 1 = x
{1}

1
 , y2 =

2

3
P2 0 = x

{1}

2
 , and y1 + y2 =

2

3
. Therefore, 

x{1} ∉ EC(R).

Remark 6 If |N| ≥ 4 , then there is R ∈ R
N such that x ∈ EC(R) ⊆ WP ∩ ELB(R) and 

x ∉ FB(R). Let R = (R1,R2,… ,Rn) ∈ R
N be such that (1) for i = 1, d(Ri) = 1, and 

for each i ∈ {2,… , n}, d(Ri) = 0. We can easily check that (0,
2

n
,
1

n
,… ,

1

n
)

∈ EC(R) ⊆ WP ∩ ELB(R) and (0,
2

n
,
1

n
,… ,

1

n
) ∉ F

B
(R) =

{
(0,

1

n−1
,

1

n−1
,… ,

1

n−1
)
}

 . 
Hence, FB(R) ⊊ EC(R) ⊆ WP ∩ ELB(R).

5  Better‑reply dynamics

In the previous section, we show several attractive properties of Nash equilibrium 
allocations of the binary mechanism. When we employ the concept of Nash equilib-
rium for the analysis of a game, we usually impose the assumption that preferences 

10 Doghmi (2013a) showed that the weak Pareto solution WP, the equal-division lower bound solution 
ELB, and WP ∩ ELB satisfies Maskin monotonicity, so that they can be implemented by Maskin’s canoni-
cal mechanism. While FB is a subcorrespondence of WP ∩ ELD, the binary mechanism does not fully 
implement WP ∩ ELD in Nash equilibria (Remark 6).
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be common knowledge. However, when a game additionally has some dynamic sta-
bility properties, the agents who follow some adjustment process learn to choose a 
Nash equilibrium, even if preferences are not common knowledge.

The class of ordinal potential games, introduced by Monderer and Shapley 
(1996), is a well-known class of games in which the set of Nash equilibria is sta-
ble in the following sense. Let G ≡

(
N,

(
Si
)
i∈N

,A, f ,
(
Ri

)
i∈N

)
 be a strategic form 

game, in which N is the set of agents, Si is the set of i’s strategies, A is the set of 
outcomes, f ∶

∏
i∈N

Si → A is the outcome function, and Ri is i’s preference  over A. 

A game G is finite if for each i ∈ N , ||Si|| < ∞ and ordinal potential if there is 
P ∶

∏
i∈N

Si → ℝ , called a potential function, such that for each i ∈ N, each 

pairsi, s�i ∈ Si, and each s−i ∈ S−i, f (si, s−i)Ri f (s
�
i
, s−i) if and only if 

P(si, s−i) ≥ P(s�
i
, s−i).

A path is a sequence of strategy profiles (st)t∈ℕ . A path (st)t∈ℕ is a better-reply 
path of G if for each pair t, t + 1 ∈ ℕ, st+1 ≠ st if and only if there is i ∈ N such 
that st+1 = (st+1

i
, st

−i
) and f (st+1

i
, st

−i
)Pi f (s

t
i
, st

−i
) . A better-reply path 

(
st
)
t∈ℕ

 is finite 
if there is t ∈ ℕ such that for each t′ > t, st� = st . Monderer and Shapley (1996) 
showed that in a finite ordinal potential game, any better-reply path is finite.

For each R ∈ R
N and each mechanism Γ = (

(
Mi

)
i∈N

, g), let 
G(Γ,R) ≡

(
N,

(
Mi

)
i∈N

,A, g,
(
Ri

)
i∈N

)
 denote the strategic form game associated 

with Γ and R. We show that any better-reply path of the binary mechanism is 
finite by proving that for each R ∈ R

N , G(ΓB,R) is an ordinal potential game.

Theorem 3 For each R ∈ R
N, any better-reply path of G(ΓB,R) is finite.

Proof See Appendix. ■
In order to prove Theorem  3, we introduce the following potential function 

P ∶
∏
i∈N

{0, 1} → ℝ. We need some notation. For each Ri ∈ R , define �(Ri) ∈ [0, 1] 

as follows. When 1Ri 0, let �(Ri) ∈
[
0,

1

2

]
 be such that 2�(Ri) Ii 0 . Here, 

2�(Ri) ∈ [0, 1] denotes the allotment that is indifferent to 0. When 0Pi 1 , let 
�(Ri) ∈

(
1

2
, 1

]
 be such that (2�(Ri) − 1) Ii 1 . Here, (2�(Ri) − 1) ∈ (0, 1] denotes the 

allotment that is indifferent to 1 (see Fig. 1).
For each R ∈ R

N
, define P ∶

∏
i∈N

{0, 1} → ℝ as

Fig. 1  Definition of �(R)
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We show in the appendix that P ∶
∏
i∈N

{0, 1} → ℝ is a potential function of G(ΓB,R).

The proof of Theorem  3 relies on the properties of potential games. Once we 
prove that G(ΓB,R) is a finite ordinal potential game, we also know that any better-
reply path of G(ΓB,R) is finite (Monderer and Shapley 1996). This method was also 
used by Sandholm (2002, 2005, 2007), who considered economies with externali-
ties, and Yamamura and Kawasaki (2013), who considered economies with one pub-
lic good when agents’ preferences are single-peaked.

The main difference between these studies and ours stems from the different con-
cepts of potential games used, which results in different adjustment processes that 
are considered in showing the stability of Nash equilibria. Since Sandholm (2002, 
2005, 2007) applied the “exact” potential games of Monderer and Shapley (1996), 
his results imply stability for more general dynamic processes, but they require the 
specification of cardinal utility functions. Meanwhile since Yamamura and Kawa-
saki (2013) applied the “best-reply” potential games of Voorneveld (2000) and 
Jensen (2009), which is weaker than the notion of ordinal potential games, their 
results imply stability for more specific dynamic processes.11

6  Conclusion

In the allocation problem with single-dipped preferences, no Pareto efficient and 
strategy-proof rule satisfies equal-division lower boundedness, the equal-division 
core property, and anonymity. Also, envy-freeness is incompatible with weak Pareto 
efficiency and strong Pareto efficiency is incompatible with Maskin monotonicity. 
We alternatively propose a mechanism that we call the binary mechanism and show 
that it Nash implements a solution satisfying weak Pareto efficiency, equal-division 
lower boundedness, the equal-division core property, and anonymity. Moreover, we 
show that the binary mechanism is Cournot stable in the sense that from any mes-
sage profile, any path of better-reply converges to a Nash equilibrium.

As the next step, we plan to conduct a laboratory experiment to explore whether 
the binary mechanism works well in practice. In the context of public goods econ-
omies, several experimental studies, such as Chen and Gazzale (2004) and Healy 
(2006) suggested that supermodularity is a sufficient condition for subjects to learn 

P(m) =

⎧
⎪⎨⎪⎩

∑
i∈N

m2

i

�(Ri)
− 2

∑
i∈N

mi − 2
∑
i∈N

∑
j∈N�{i}

mimj if there is i ∈ N, mi = 1

2n

1+n
− 2 otherwise.

11 A path (st)t∈ℕ is a best-reply path of G if for each pair t, t + 1 ∈ ℕ, st+1 ≠ st if and only if there is i ∈ N 
such that st+1 = (st+1

i
, st

−i
) , f (st+1

i
, st

−i
)Pi f (s

t
i
, st

−i
), and for each si ∈ Si , f (st+1i

, st
−i
)Ri f (si, s

t
−i
) . Voorneveld 

(2000) and Jensen (2009) showed that in a finite best-reply potential game, any best-reply path is finite. 
Since any best-reply path is a better-reply path, stability in better-reply dynamics implies stability in best-
reply dynamics.
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to choose a Nash equilibrium. Since all games induced by the binary mechanism 
are ordinal potential games, experiments on the binary mechanism might suggest 
that potential games are another sufficient conditions for the convergence to a Nash 
equilibrium. While the theory of potential games tells us that any path of better reply 
is convergent, how rapid the convergence speed is remains an open question. Experi-
mental studies might help us investigate the actual speed of agents’ learning under 
mechanisms inducing potential games.

Appendix

Proof of Theorem 1

Claim 1 For each R ∈ R
N
, and each S ⊆ N, if mS ∈ NE(ΓB,R), then S ⊆ N

�

|S|(R).

Proof We distinguish three cases.

Case 1: |S| = 0. Since S = � , S = 𝜙 ⊆ N
�

|S|(R).
Case 2: |S| = 1. Suppose there is i ∈ S such that i ∉ N

�

1
(R). Since 

i ∉ N
�

1
(R) =

{
i ∈ N | 1Ri

1

n

}
,

Hence, mS ∉ NE(Γ,R).

Case 3: |S| = k ≥ 2. Suppose there is i ∈ S such that i ∉ N
�

k
(R). Since 

i ∉ N
�

k
(R) =

{
i ∈ N | 1

k
R
i
0

}
,

Hence, mS ∉ NE(Γ
B
,R).

Claim 2 For each R ∈ R
N
, and each S ⊆ N, if mS ∈ NE(ΓB,R), then N|S|+1 ⊆ S.

Proof We distinguish three cases.

Case 1: |S| = 0. Suppose there is i ∈ N1(R) such that i ∉ S . Since 
i ∈ N1(R) =

{
i ∈ N | 1Pi

1

n

}

Hence, mS ∉ NE(Γ
B
,R).

Case 2: |S| = k ∈ {1,… , n − 1}. Suppose there is i ∈ Nk+1(R) such that i ∉ S . 
Then, since i ∈ Nk+1(R) =

{
i ∈ N | 1

k+1
Pi 0

}

gi
(
0,mS

−i

)
=

1

n
Pi 1 = gi

(
mS

)
.

gi
(
0,mS

−i

)
= 0Pi

1

k
= gi

(
mS

)
.

gi
(
1,mS

−i

)
= 1Pi

1

n
= gi

(
mS

)
.
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Hence, mS ∉ NE(Γ
B
,R).

Case 3: |S| = n . Since Nn+1(R) = � , Nn+1 = 𝜙 ⊆ S. ■

Claim 3 For each R ∈ R
N
, and each S ⊆ N , if N|S|+1(R) ⊆ S ⊆ N

�

|S|(R), then 
mS ∈ NE(ΓB,R).

Proof We distinguish four cases. 
Case 1: |S| = 0.  For each j ∈ N�S = N , since j ∉ N1(R) =

{
i ∈ N | 1Pi

1

n

}
,

Hence, mS ∈ NE(ΓB,R).

Case 2: |S| = 1. For each i ∈ S, since i ∈ N
�

1
(R) =

{
i ∈ N | 1Ri

1

n

}
,

For each j ∈ N�S , since j ∉ N2(R) =
{
i ∈ N | 1

2
Pi 0

}
,

Hence, mS ∈ NE(ΓB,R).

Case 3: |S| = k ∈ {2,… , n − 1}. For each i ∈ S, since 
i ∈ N

�

k
(R) =

{
i ∈ N | 1

k
Ri 0

}
,

For each j ∈ N�S , since j ∉ Nk+1(R) =
{
i ∈ N | 1

k+1
Pi 0

}
,

Hence, mS ∈ NE(ΓB,R).

Case 4: |S| = n. For each i ∈ S = N, since i ∈ N
�

n
(R) =

{
i ∈ N | 1

n
Ri 0

}
,

Hence, mS ∈ NE(ΓB,R). ■

gi
(
1,mS

−i

)
=

1

k + 1
Pi 0 = gi

(
mS

)
.

gj
(
mS

)
=

1

n
Rj 1 = gj

(
1,mS

−j

)
.

gi
(
mS

)
= 1Ri

1

n
= gi

(
0,mS

−i

)
.

gj
(
mS

)
= 0Rj

1

2
= gj

(
1,mS

−j

)
.

gi
(
mS

)
=

1

k
Ri 0 = gi

(
0,mS

−i

)
.

gj
(
mS

)
= 0Rj

1

k + 1
= gj

(
1,mS

−j

)
.

gi
(
mS

)
=

1

n
Ri 0 = gi

(
0,mS

−i

)
.
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Proof of Theorem 2

Claim 4 Suppose |N| ≥ 3. Then, for each R ∈ R
N
, and each S ⊆ N,  if 

mS ∈ NE(ΓB,R), then xS ∈ WP(R).

Proof We distinguish three cases.
Case 1: |S| = 0. Suppose that mS ∈ NE(ΓB,R). By Theorem  1, since for each 

i ∈ N�S = N, i ∉ N1(R) =
{
i ∈ N | 1Pi

1

n

}
, we obtain xS

i
=

1

n
Ri 1 . Hence, by sin-

gle-dippedness of Ri , for each i ∈ N, if yi Pi x
S
i
 then yi <

1

n
 . Suppose there is y ∈ A 

such that for each i ∈ N, yi Pi x
S
i
 . Then, since for each i ∈ N, yi <

1

n
,

which contradicts y ∈ A =
�
(x1, ..., xn) ∈ ℝ

n
+
� ∑i∈N xi = 1

�
. Therefore, 

xS ∈ WP(R).

Case 2: |S| = 1. Let S = {j}. Suppose that mS ∈ NE(ΓB,R). By Theorem 1, since 
for each i ∈ N�{j}, i ∉ N2(R) =

{
i ∈ N | 1

2
Pi 0

}
, xS

i
= 0Ri

1

2
 . Hence, by single-

dippedness of Ri , for each i ∈ N�{j}, if yi Pi x
S
i
 then yi >

1

2
 . Suppose that there is 

y ∈ A such that for each i ∈ N, yi Pi x
S
i
 . Then, since for each i ∈ N�{j}, yi >

1

2
,

which contradicts y ∈ A. Therefore, xS ∈ WP(R).

Case 3: |S| ≥ 2. Let k = |S| ≥ 2. Suppose that mS ∈ NE(ΓB,R
N) . By Theorem 1, 

since for each i ∈ S, i ∈ N�
k
(R) =

{
i ∈ N | 1

k
Pi 0

}
, xS

i
=

1

k
Ri 0 . Hence, by single-

dippedness of Ri , for each i ∈ S , if yi Pi x
S
i
 , then, yi >

1

k
 . Suppose there is y ∈ A such 

that for each i ∈ N, yi Pi x
S
i
 . Then, since for each i ∈ S, yi >

1

k
,

which contradicts y ∈ A. Therefore, xS ∈ WP(R). ■

Claim 5 Suppose |N| ≥ 4. Then, for each R ∈ R
N, and each S ⊆ N,  if 

mS ∈ NE(ΓB,R), then xS ∈ EC(R).

Proof We distinguish four cases.
Case 1: |S| = 0. Suppose that mS ∈ NE(ΓB,R) and that there are T ⊆ N and y ∈ A 

such that for each i ∈ T , yi Pi x
S
i
 and 

∑
i∈T yi =

�T�
n

 . We know from the proof of Claim 
4 that for each i ∈ N , if yi Pi x

S
i
 , then yi <

1

n
 . Hence,

∑
i∈N

yi <
|N|
n

= 1,

∑
i∈N

yi ≥
∑

i∈N�{j}

yi >
|N| − 1

2
≥ 1,

∑
i∈N

yi ≥
∑
i∈S

yi >
|S|
k

= 1,

∑
i∈T

yi <
|T|
n

,
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which is a contradiction. Therefore, xS ∈ EC(R).

Case 2: |S| = 1. Suppose that mS ∈ NE(ΓB,R) and that there are T ⊆ N and y ∈ A 
such that for each i ∈ T , yi Pi x

S
i
 and 

∑
i∈T yi =

�T�
n

 . If T = {j}, then since 
j ∈

{
i ∈ N | 1Ri

1

n

}
, we have xS

i
= 1Ri

1

n
=

|T|
n

 , which is a contradiction. Hence, 
T�{j} ≠ � . We know from the proof of Claim 4 that for each i ∈ N�{j} , if yi Pi x

S
i
 

then yi >
1

2
 . Hence,

Since n ≥ 4 and |T|
n

>
1

2
 , we have |T| ≥ 3 . Hence, |T�{j}| ≥ 2 , so that

which is a contradiction. Therefore, xS ∈ EC(R).

Case 3: |S| ∈ {2,… , n − 1}. Let k = |S| ≥ 2. Suppose that mS ∈ NE(ΓB,R
N) and 

that there are T ⊆ N and y ∈ A such that for each i ∈ T , yi Pi x
S
i
 and

∑
i∈T yi =

�T�
n

 . We 
know from the proof of Claim 4 that for each i ∈ S, if yi Pi x

S
i
 , then yi >

1

k
 . By Theo-

rem  1, since for each i ∈ N�S, i ∉ N
k+1(R) =

{
i ∈ N | 1

k+1
P
i
0

}
, we obtain 

xS
i
= 0Ri

1

k+1
 . By single-dippedness of Ri , for each i ∈ N�S, if yi Pi x

S
i
 , then yi >

1

k+1
 . 

Hence,

which is a contradiction. Therefore, xS ∈ EC(R).

Case 4: |S| = n. Let mS ∈ NE(ΓB,R). Suppose there are T ⊆ N and y ∈ A such 
that for each i ∈ T , yi Pi x

S
i
 and 

∑
i∈T yi =

�T�
n

 . We know from the proof of Claim 4 
that for each i ∈ N , if yi Pi x

S
i
 , then yi >

1

n
 . Hence,

which is a contradiction. Therefore, xS ∈ EC(R). ■

Claim 6 For each R ∈ R
N, and each S ⊆ N, if mS ∈ NE(ΓB,R), then xS ∈ ELB(R).

Proof Obvious. ■

Claim 7 FB satisfies anonymity.

Proof Obvious. ■

|T|
n

=
∑
i∈T

yi ≥
∑

i∈T�{j}

yi >
|T�{j}|

2
≥

1

2
.

∑
i∈T

yi ≥
∑

i∈T�{j}

yi >
|T�{j}|

2
≥ 1 ≥

|T|
n

,

∑
i∈T

yi =
∑
i∈T∩S

yi +
∑
i∈T�S

yi >
|T ∩ S|

k
+

|T�S|
k + 1

≥
|T ∩ S|

n
+

|T�S|
n

=
|T|
n

,

∑
i∈T

yi >
|T|
n

,
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Proof of Theorem 3

Let us recall some notation. For each Ri ∈ R , define �(Ri) ∈ [0, 1] as follows. If 1Ri 0, 
then let �(Ri) ∈

[
0,

1

2

]
 be such that 2�(Ri) Ii 0 . If 0Pi 1 , then let �(Ri) ∈

(
1

2
, 1

]
 be such 

that (2�(Ri) − 1) Ii 1 . For each R ∈ R
N
, let P ∶

∏
i∈N

{0, 1} → ℝ be such that for each 

m ∈
∏
i∈N

{0, 1},

We show that for each R ∈ R
N
, P is a potential function of G(R,ΓB).

We distinguish two cases.
Case 1 There is j ∈ N�{i} such that mj = 1.

In this case, gi(0,m−i) = 0 and gi(1,m−i) =
1

1+
∑

j∈N�{i} mj

. By the definition of 
�(Ri), gi(1, x−i)Ri gi(0, x−i) if and only if 2�(Ri) ≤

1

1+
∑

j∈N�{i} mj

.

The potential function can be written as

where Q1 and Q2 represent the collective terms that do not depend on mi . We know 
from this equation that P(1,m−i) ≥ P(0,m−i) if and only if

This inequality can be transformed into

Therefore, gi(1,m−i)Ri gi(0,m−i) if and only if P(1,m−i) ≥ P(0,m−i).

Case 2 For each j ∈ N�{i} , mj = 0.

In this case, gi(0,m−i) =
1

n
 and gi(1,m−i) = 1. By the definition of �(Ri), 

gi(1,m−i)Ri gi(0,m−i) if and only if 2�(Ri) − 1 ≤
1

n
.

Since P(0,m−i) =
2n

1+n
− 2 and P(1,m−i) =

1

�(Ri)
− 2 , P(1,m−i) ≥ P(0,m−i) if and 

only if

P(m) =

⎧
⎪⎨⎪⎩

∑
i∈N

m2

i

�(Ri)
− 2

∑
i∈N

mi − 2
∑
i∈N

∑
j∈N�{i}

mimj if there is i ∈ N, mi = 1

2n

1+n
− 2 otherwise

P(mi,m−i) =
m2

i

�(Ri)
− 2mi

(
1 +

∑
j∈N�{i}

mj

)
+ Q1

(
m−i

)

=
1

�(Ri)

(
mi − �(Ri)

(
1 +

∑
j∈N�{i}

mj

))2

+ Q2

(
m−i

)

�(Ri)

(
1 +

∑
j∈N�{i}

mj

)
≤

1

2
.

2�(Ri) ≤
1

1 +
∑

j∈N�{i} mj

.
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This inequality can be transformed into

Therefore, gi(1,m−i)Ri gi(0,m−i) if and only if P(1,m−i) ≥ P(0,m−i). ■

Logical relationships among axioms

Here we investigate several relationships among axioms and check whether FB 
satisfies several well-known axioms.

Example 1 As mentioned in Remark 1, strong Pareto efficiency is incompatible with 
Maskin monotonicity. To confirm this, suppose |N| ≥ 2 and let R ∈ R

N be such that 
for each i ∈ N, d(Ri) =

1

2
 and 1Pi 0. We can easily check that

Suppose there is a solution F ∶ R ⟶ 2A ⧵
{
�
}
 satisfying both strong Pareto effi-

ciency and Maskin monotonicity. Then, there is i ∈ N such that x{i} ∈ F(R). Let 
R ∈ R

N be such that (1) for i ∈ N, d(Ri) =
1

2
 and 1 Ii 0 , and (2) for each j ∈ N�{i}, 

Rj = Rj. Since for each j ∈ N�{i}, L(Rj, 0) = L(Rj, 0), and for i ∈ N,

by Maskin monotonicity of F, we have x{i} ∈ F(R). However, since 
SP(R) =

{
x{j} ∈ A |j ∈ N�{i}

}
 , x{i} ∉ SP(R) . Therefore, F(R) ⊈ SP(R).

Example 2 As mentioned in Remark 2, envy-freeness is incompatible with weak 
Pareto efficiency. To confirm this, let R ∈ R

N be such that for each i ∈ N, d(Ri) =
1

2
 

and 1Pi 0. We first show that if x ∈ WP(R), then there is i ∈ N such that xi = 0. If 
for each i ∈ N, xi > 0 , then there is j ∈ N such that 1 > xj > 0 and for each i ≠ j, 
0 < xi ≤

1

2
. By single-dippedness of Ri, for j ∈ N, 1Pj xj and for each i ≠ j, 0Pi xi . 

Hence, x ∉ WP(R). Therefore,

Let x� ∈
{
x ∈ A |∃i ∈ N, xi = 0

}
 be such that there are distinct i, j, k ∈ N such that 

x�
i
= 0 , x′

j
> 0 , and x′

k
> 0 . If x� ∈ EF(R), then x�

j
Rj x

�
i
= 0 and x�

k
Rk x

�
i
= 0 . By sin-

gle-dippedness of Rj and Rk , we have x′
j
>

1

2
 and x′

k
>

1

2
. Hence,

1

�(Ri)
− 2 ≥

2n

1 + n
− 2.

2�(Ri) − 1 ≤
1

n
.

SP(R) =
{
x{i} ∈ A |i ∈ N

}
=
{
x ∈ A |∃i ∈ N, xi = 1

}
.

L(Ri, 1) =[0, 1]

⊇L(Ri, 1),

WP(R) ⊆
{
x ∈ A |∃i ∈ N, xi = 0

}
.
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which contradicts x� ∈ A. Therefore, whenever x ∈ WP(R) ∩ EF(R) , there is i ∈ N 
such that xi = 1, so that

For each x{i} ∈ A, since for each j ≠ i, 1 = xi Pj xj = 0 , we have x{i} ∉ EF(R). 
Therefore,

Remark 7 A solution F satisfies welfare-domination under preference replacement if 
for each R ∈ R

N
, each x ∈ F(R), each i ∈ N, each R�

i
∈ R , and each x� ∈ F(R�

i
,R−i), 

either xj Rj x
′
j
 , for each j ∈ N�{i} or x′

j
Rj xj , for each j ∈ N�{i} (Thomson 1993; 

Klaus et  al. 1997). Note that if F satisfies weak Pareto efficiency, anonymity, and 
Maskin monotonicity, then F does not satisfy welfare-domination under preference 
replacement. Hence, FB also violates welfare-domination under preference 
replacement.

To confirm this, suppose |N| ≥ 3 and F satisfies weak Pareto efficiency, anonym-
ity, and Maskin monotonicity. Let R ∈ R

N be such that for each i ∈ N, d(Ri) =
1

2
 and 

1Pi 0 Ii
9

10
. As seen in Example 2, since

there is i ∈ N such that xi = 0. Let x ∈
{
x ∈ A |∃i ∈ N, xi = 0

}
 be such that xi = 0 

and for each j ∈ N�{i}, xj ∈
(
0,

9

10

)
. Then, for x{i} ∈ A, we have x{i}

i
= 1Pi 0 = xi 

and for each j ∈ N�{i}, x
{i}

j
= 0Pj xj, so that x ∉ WP(R). Hence, for each 

x ∈ F(R) ⊆ WP(R), either (1) there are distinct i, j ∈ N such that xi = 0 and xj >
9

10
, 

(2) there are distinct i, j, k ∈ N such that xi = 0, xj =
9

10
, and xk ∈

(
0,

1

10

]
 , or (3) 

there are distinct i, j, k ∈ N such that xi = xj = 0 and xk ∈
(
0,

9

10

)
 holds. Let 

x ∈ F(R). We distinguish three cases.
Case 1: There are distinct i, j ∈ N such that xi = 0, and xj >

9

10
. Let x� ∈ WP(R) 

be such that x�
i
= xj, x�j = xi, and for each k ∈ N�{i, j}, x�

k
= xk. Since F satisfies ano-

nymity, x� ∈ F(R). For k ∈ N�{i, j}, let R�
k
∈ R be such that 9

10
P′
k
0 and 

L(Rk, xk) = L(R�
k
, xk). Then, by Maskin monotonicity of F, x, x� ∈ F(R�

k
,R−k). For 

x ∈ F(R) and x� ∈ F(R�
k
,R−k), we must have x′

i
Pi xi, and xj Pj x

′
j
. Therefore, F does 

not satisfy welfare-domination under preference replacement.
Case 2: There are distinct i, j, k ∈ N such that xi = 0, xj =

9

10
, and xk ∈

(
0,

1

10

]
. 

Let x� ∈ WP(R) be such that x�
j
= xk, x�k = xj, and for each i ∈ N�{j, k}, x�

i
= xi. Since 

F satisfies anonymity, x� ∈ F(R). Let R�
i
∈ R be such that d(R�

i
) = 1. Since 

L(Ri, 0) ⊆ L(R�
i
, 0) = [0, 1], by Maskin monotonicity of F, x, x� ∈ F(R�

i
,R−i). For 

x ∈ F(R) and x� ∈ F(R�
i
,R−i), we must have xj Pj x

′
j
, and x′

k
Pk xk. Therefore, F does 

not satisfy welfare-domination under preference replacement.

∑
i∈N

x�
i
≥ x�

j
+ x�

k
>

1

2
+

1

2
= 1,

WP(R) ∩ EF(R) ⊆
{
x{i} ∈ A |i ∈ N

}
.

WP(R) ∩ EF(R) = �.

WP(R) ⊆
{
x ∈ A |∃i ∈ N, xi = 0

}
,
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Case 3: There are distinct i, j, k ∈ N such that xi = xj = 0 and xk ∈
(
0,

9

10

)
 . Let 

x� ∈ WP(R) be such that x�
j
= xk, x�k = xj, and for each i ∈ N�{j, k}, x�

i
= xi. Since F 

satisfies anonymity, x� ∈ F(R). Let R�
i
∈ R be such that d(R�

i
) = 1. Since 

L(Ri, 0) ⊆ L(R�
i
, 0) = [0, 1], by Maskin monotonicity of F, x, x� ∈ F(R�

i
,R−i). For 

x ∈ F(R) and x� ∈ F(R�
i
,R−i), we must have xj Pj x

′
j
, and x′

k
Pk xk. Therefore, F does 

not satisfy welfare-domination under preference replacement.

Remark 8 A solution F satisfies weak non-bossiness if for each R ∈ R
N
, each 

x ∈ F(R), each i ∈ N, each R�
i
∈ R , and each x� ∈ F(R�

i
,R−i), if xi = x�

i
 , then x = x� 

(Klaus 2001; Thomson 2016). Note that if F satisfies weak Pareto efficiency, ano-
nymity, and Maskin monotonicity, then F does not satisfy weak non-bossiness. 
Hence, FB also violates weak non-bossiness.

To confirm this, suppose |N| ≥ 3 and F satisfies weak Pareto efficiency, anonym-
ity, and Maskin monotonicity. Let R ∈ R

N be such that for each i ∈ N, d(Ri) =
1

2
 and 

1Pi 0 Ii
9

10
. As seen in Example 3, if x ∈ F(R) ⊆ WP(R), then either (1) there are dis-

tinct i, j ∈ N such that xi = 0, and xj >
9

10
, (2) there are distinct i, j, k ∈ N such that 

xi = 0, xj =
9

10
, and xk ∈

(
0,

1

10

]
 , or (3) there are distinct i, j, k ∈ N such that 

xi = xj = 0 and xk ∈
(
0,

9

10

)
 holds. Let x ∈ F(R). We distinguish three cases.

Case 1: There are distinct i, j ∈ N such that xi = 0, and xj >
9

10
. Let x� ∈ WP(R) 

be such that x�
i
= xj, x�j = xi, and for each k ∈ N�{i, j}, x�

k
= xk. Since F satisfies ano-

nymity, x� ∈ F(R). For k ∈ N�{i, j}, let R�
k
∈ R be such that 9

10
P′
k
0 and 

L(Rk, xk) = L(R�
k
, xk). Then, by Maskin monotonicity of F, x, x� ∈ F(R�

k
,R−k). For 

x ∈ F(R) and x� ∈ F(R�
k
,R−k), we must have xk = x�

k
, and xi ≠ x′

i
. Therefore, F does 

not satisfy weak non-bossiness.
Case 2: There are distinct i, j, k ∈ N such that xi = 0, xj =

9

10
, and xk ∈

(
0,

1

10

]
. 

Let x� ∈ WP(R) be such that x�
j
= xk, x�k = xj, and for each i ∈ N�{j, k}, x�

i
= xi. Since 

F satisfies anonymity, x� ∈ F(R). Let R�
i
∈ R be such that d(R�

i
) = 1. Since 

L(Ri, 0) ⊆ L(R�
i
, 0) = [0, 1], by Maskin monotonicity of F, x, x� ∈ F(R�

i
,R−i). For 

x ∈ F(R) and x� ∈ F(R�
i
,R−i), we must have xi = x�

i
, and xj ≠ x′

j
. Therefore, F does 

not satisfy weak non-bossiness.
Case 3: There are distinct i, j, k ∈ N such that xi = xj = 0 and xk ∈

(
0,

9

10

)
 . Let 

x� ∈ WP(R) be such that x�
j
= xk, x�k = xj, and for each i ∈ N�{j, k}, x�

i
= xi. Since F 

satisfies anonymity, x� ∈ F(R). Let R�
i
∈ R be such that d(R�

i
) = 1. Since 

L(Ri, 0) ⊆ L(R�
i
, 0) = [0, 1], by Maskin monotonicity of F, x, x� ∈ F(R�

i
,R−i). For 

x ∈ F(R) and x� ∈ F(R�
i
,R−i), we must have xi = x�

i
, and xj ≠ x′

j
. Therefore, F does 

not satisfy weak non-bossiness.
Finally, we extend the model so that changes in the set of agents and the amount 

to be allocated are allowed. We introduce some notation. Let ℕ be the set of potential 
agents indexed by natural numbers. Let N  be the class of non-empty and finite sub-
sets of ℕ . Each agent i ∈ ℕ has a single-dipped preference Ri over ℝ+. Let R+ denote 
the set of single-dipped preferences over ℝ+. Let Ω ∈ ℝ+ denote the amount of the 
resource.
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An economy is defined by e ≡
(
N,

(
Ri

)
i∈N

,Ω
)
 , in which N ∈ N  is the set of 

agents, Ri ∈ R+ is i’s preference over ℝ+ , and Ω ∈ ℝ+ is the amount of the resource 
to be allocated among N. For each N ∈ N, let EN denote the set of economies in 
which the set of agents is denoted by N. For each e ∈ E

N , an allocation x ∈ ℝ
N
+

 is 
feasible for e if 

∑
i∈N xi = Ω. A solution is a mapping F which associates with each 

economy e ∈ E
N , a non-empty subset of feasible allocations for e.

For each e ∈ E
N
, the binary mechanism ΓB is defined such that for each i ∈ N, 

Mi = {0, 1} , and for each m ∈
∏
i∈N

Mi,

Let FB denote the solution implemented by the binary mechanism.

Remark 9 A solution F satisfies consistency if for each N ∈ N  , each 
e =

(
N,

(
Ri

)
i∈N

,Ω
)
∈ E

N , each x ∈ F(e) , each N′ ⊂ N, and each 
e� =

�
N,

�
Ri

�
i∈N� ,Ω −

∑
i∈N�N� xi

�
∈ E

N�

, we have 
(
xi
)
i∈N� ∈ F(e�) (Thomson 1994). 

Here we show that FB satisfies consistency.

Without loss of generality let |N| ≥ 3, e =
(
N,

(
Ri

)
i∈N

, 1
)
∈ E

N
, and xS ∈ FB(e). 

It suffices to show that for each i ∈ N, and each 
e� =

(
N�{i},

(
Rj

)
i∈N�{i}

, 1 − xS
i

)
∈ E

N�{i}
, we have 

(
xS
j

)
j∈N�{i}

∈ FB(e
�). We distin-

guish six cases.
Case 1: |S| = 0. Since mS is a Nash equilibrium of ΓB for e ∈ E

N , for each 
j ∈ N�{i},

so that by single-dippeness of Rj, 
1

|N| Rj
|N|−1
|N| . Since xS

i
=

1

|N| , for each j ∈ N�{i},

so that 
(
mS

j

)
j∈N�{i}

 is a Nash equilibrium of ΓB for e� ∈ E
N�{i} . Hence, (

xS
j

)
j∈N�{i}

∈ FB(e
�).

Case 2: |S| = 1 and i ∈ S. Since xS
i
= 1, the set is feasible allocations for 

e� =
(
N�{i},

(
Rj

)
i∈N�{i}

, 1 − xS
i

)
 is a singleton. Hence, by non-emptiness of FB, (

xS
j

)
j∈N�{i}

∈ FB(e
�).

Case 3: |S| = 1 and i ∉ S. Let |S| = {j}. Since mS is a Nash equilibrium of ΓB for 
e ∈ E

N , for j ∈ N�{i}, we have

gi(e,m) =

⎧
⎪⎨⎪⎩

Ω

�{i∈N �mi=1}� if mi = 1

0 if mi = 0 and
�
i ∈ N �mi = 1

�
≠ �

Ω

�N� if mi = 0 and
�
i ∈ N �mi = 1

�
= �.

gj

(
e, 0,mS

N�{j}

)
=

1

|N| Rj 1 = gj

(
e, 1,mS

N�{j}

)
,

gj

(
e�, 0,mS

N�{i,j}

)
=

1

|N| Rj

|N| − 1

|N| = gj

(
e�, 1,mS

N�{i,j}

)
,
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so that by single-dippeness of Rj, 1Pj
1

|N|−1 . Since xS
i
= 0, for j ∈ N�{i},

Since mS is a Nash equilibrium of ΓB for e ∈ E
N , for each k ∈ N�{i, j}, we have

Since xS
i
= 0, for each k ∈ N�{i, j},

so that 
(
mS

j

)
j∈N�{i}

 is a Nash equilibrium of ΓB for e� ∈ E
N�{i} . Hence, (

xS
j

)
j∈N�{i}

∈ FB(e
�).

Case 4: |S| = 2 and i ∈ S. Let |S| = {i, j}. Since mS is a Nash equilibrium of ΓB for 
e ∈ E

N , for j ∈ S�{i}, we have

so that by single-dippeness of Rj, 
1

2
Rj

1

|N|−1 . Since xS
i
=

1

2
, for j ∈ S�{i},

Since mS is a Nash equilibrium of ΓB for e ∈ E
N , for each k ∈ N�{i, j}, we have

so that by single-dippedness of Rk, 0Pk
1

4
. Since xS

i
=

1

2
, for each k ∈ N�{i, j},

so that 
(
mS

j

)
j∈N�{i}

 is a Nash equilibrium of ΓB for e� ∈ E
N�{i} . Hence, (

xS
j

)
j∈N�{i}

∈ FB(e
�).

Case 5: |S| ≥ 2 and i ∉ S. Since mS is a Nash equilibrium of ΓB for e ∈ E
N , for each 

j ∈ S, we have

Since xS
i
= 0, for each j ∈ S,

gj

(
e, 1,mS

N�{j}

)
= 1Rj

1

|N| = gj

(
e, 0,mS

N�{j}

)
,

gj

(
e�, 1,mS

N�{i,j}

)
= 1Pj

1

|N| − 1
= gj

(
e�, 0,mS

N�{i,j}

)
.

gk

(
e, 0,mS

N�{k}

)
= 0Rk

1

2
= gk

(
e, 1,mS

N�{k}

)
.

gk

(
e�, 0,mS

N�{i,k}

)
= 0Rk

1

2
= gk

(
e�, 1,mS

N�{i,k}

)
,

gj

(
e, 1,mS

N�{j}

)
=

1

2
Rj 0 = gj

(
e, 0,mS

N�{j}

)
,

gj

(
e�, 1,mS

N�{i,j}

)
=

1

2
Rj

1

|N| − 1
= gj

(
e�, 0,mS

N�{i,j}

)
.

gk

(
e, 0,mS

N�{k}

)
= 0Rk

1

3
= gk

(
e, 1,mS

N�{k}

)
,

gk

(
e�, 0,mS

N�{i,k}

)
= 0Pk

1

4
= gk

(
e�, 1,mS

N�{i,k}

)
,

gj

(
e, 1,mS

N�{j}

)
=

1

|S| Rj 0 = gj

(
e, 0,mS

N�{j}

)
.
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Since mS is a Nash equilibrium of ΓB for e ∈ E
N , for each k ∈ N�S, k ≠ i , we have

Since xS
i
= 0, for each for each k ∈ N�S, k ≠ i , we have, 

so that 
(
mS

j

)
j∈N�{i}

 is a Nash equilibrium of ΓB for e� ∈ E
N�{i} . Hence, (

xS
j

)
j∈N�{i}

∈ FB(e
�).

Case 6: |S| ≥ 3 and i ∈ S. Since mS is a Nash equilibrium of ΓB for e ∈ E
N , for 

each j ∈ S�{i}, we have

Since xS
i
= 0, for each j ∈ S�{i},

Since mS is a Nash equilibrium of ΓB for e ∈ E
N , for each k ∈ N�S, k ≠ i , we have

so that by single-dippedness of Rk, 0Pk
|S|−1
|S| ×

1

|S| .
12 Since xS

i
=

1

|S| , for each for each 
k ∈ N�S, k ≠ i , we have, 

so that 
(
mS

j

)
j∈N�{i}

 is a Nash equilibrium of ΓB for e� ∈ E
N�{i} . Hence, (

xS
j

)
j∈N�{i}

∈ FB(e
�).
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