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Abstract
We consider restricted domains where each individual has a domain of preferences 
containing some partial order. This partial order might differ for different individu-
als. Necessary and sufficient conditions are formulated under which these restricted 
domains admit unanimous, strategy-proof and non-dictatorial choice rules.

1  Introduction

One attempt to avoid the well-known impossibility theorems of Arrow (1978), Gib-
bard (1973), and Satterthwaite (1975) on collective decision rules is along the line 
of restricted domains. For instance, the agents’ set of admissible preferences con-
tains only orders of a certain type. In the vast majority, these domain restrictions 
are considered the same for all agents. Indeed, there are many cases where this sym-
metric approach is appealing. There are also situations where agents can be mod-
elled asymmetrically. This paper is one of the very few where the sets of admissible 
preferences per agent may differ. We presume that per agent over all his admissible 
preferences some parts are constant. These parts as well as the actual preferences 
on these parts may differ per agent. Actually, this part of the agents’ preference is 
known in advance and therefore referred to as the a priori information. We deter-
mine the a priori information that is needed to allow for non-dictatorial, unanimous 
and strategy-proof choice rules.

For an agent i, let partial order Pi represent those pairs which are constant over 
all the admissible preferences of this agent i. This information on that agent may for 
instance stem from religious backgrounds, strong political engagement, cultural her-
itage, (internet) behavior in the past, or because the agent has indicated so before-
hand. Agent i’s set of admissible preferences consists of all preferences extend-
ing this a priori information Pi to a weakly complete linear order. Note that this 
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information may range from a weakly complete partial order to an empty set. In the 
former case, the preference of the agent is known in which case his set of admissible 
preferences is a singleton consisting of precisely this weakly complete partial order. 
In the latter case the set of admissible preferences equals the set of all linear orders.

We analyze precisely which a priori information leads to domains of preference 
profiles allowing for unanimous, strategy-proof and non-dictatorial choice rules. 
The necessary and sufficient conditions for such a priori information are based on 
the union of all the partial orders Pi , i.e. P∗ =

⋃
i∈N

Pi. Of particular interest is its set 

of undominated alternatives1. Roughly speaking, in this framework a priori informa-
tion leads to a domain of profiles allowing for unanimous, strategy-proof and non-
(image-)dictatorial choice rules, if there are at most two such undominated alterna-
tives on which, for at least two agents the preference is not fixed. As unanimity has 
no bite on dominated alternatives, in such cases voting between these two possibly 
undominated alternatives yields a strategy-proof, non-image-dictatorial, and unani-
mous choice rule. But whether the above condition describes all the situations 
allowing for such choice rules, is less straightforward. Theorem  1 states that the 
range of such choice functions consists of precisely two alternatives. As every 
undominated alternative is in the range of a unanimous choice rule, Theorem  1 
implies that there are at most two undominated alternatives. To avoid image-dicta-
torship now, at least two agents should be able to order these two alternatives freely.

To the best of the authors knowledge Storcken (1985) is the only study on similar 
domain restrictions. That paper determines those domains based on a priori infor-
mation allowing for (Arrow-like) welfare functions, which are Pareto-optimal, non-
dictatorial, positively associated, and pairwise anonymous. Roughly speaking such 
domains admit such welfare functions precisely when there is a partial order, say P, 
contained, in P∗ such that at every profile the outcome of the welfare function is a 
linear extension of this partial order P . Here, at each profile this extension is deter-
mined as follows. For alternatives x and y , such that (x, y) ∉ P and (y, x) ∉ P the col-
lective ordering is determined by voting based on thresholds. That is, x is preferred 
to y if the number of agents in favor of x against y exceeds a given threshold which is 
depending on the pair (x, y). These thresholds satisfy certain conditions to guarantee 
completeness, anti-symmetry and transitivity. In addition, P has to satisfy certain 
conditions to guarantee non-dictatorship for certain (degenerated cases) as well as 
pairwise anonymity for cases where some agents can freely order three alternatives. 
Now consider cases where the following three are satisfied: (i) All these conditions 
related to P as meant above, (ii) there are precisely two undominated alternatives 
with respect to P, and (iii) for at least two agents those preferences between these 
two alternatives are not fixed. For those cases there exist such welfare functions 
as well as there exist unanimous, strategy-proof, and non-image-dictatorial choice 
rules. Moreover, it is not hard to see that every such welfare function relates to such 
a choice rule in the following way. The best collectively ordered alternative at the 
welfare function is the chosen alternative at the choice rule.

1  Alternative x is undominated if there is no y different from x such that (y, x) is in P∗.



587

1 3

Collective choice rules on restricted domains based on a priori…

Besides this relation, the results are independent from each other. In case of wel-
fare functions, the non-dictatorship may be achieved via the collective preference 
tails. For instance, in case there is one unique undominated alternative, say x, in 
all the Pi , then the conditions of Storcken (1985) may still be satisfied. This means 
that in such a case the domain allows for such welfare functions. As, however, x is 
ordered best by every agent at every preference a unanimous choice rule in this case 
chooses x at every profile. Therefore, in that case the choice rule is a constant rule at 
which all agents are (image)-dictators.

On the other hand, pairwise anonymity imposes conditions on the tails of P∗, 
which are immaterial for the results deduced here. Example 3 is based on this. It dis-
cusses a domain based on a priori information that allows for unanimous, strategy-
proof, and non-image-dictatorial choice rules. It does not allow for Pareto-optimal, 
non-dictatorial, positively associated, and pairwise anonymous welfare functions. 
This example shows that the results discussed here are not a logical consequence of 
those of Storcken (1985). Further, as discussed in more detail in the discussion of 
Sect. 6, Theorem 1 entails a novel impossibility theorem on restricted domains.

There have been many studies on domain restrictions (See e.g. Gaertner (2002)). 
Some studies look at the situations where restricting the domain leads to impos-
sibility results. These studies intend to strengthen the impossibility result (without 
being far from complete), see for instance Sanver (2009), Aswal et  al. (2003) or 
Sato (2010). While, other studies discuss domain restrictions allowing for non-dic-
tatorial, unanimous and strategy-proof choice rules. Well known is the restriction 
to single peaked preferences starting with Black (1948) and developed further by 
Moulin (1980), which leads to domains for anonymous and strategy-proof choice 
rules based on majority decisions. However, as previously mentioned, our approach 
differs from a vast majority of previous such studies because our domain restrictions 
are not uniform over all agents.

The paper is organized as follows. Besides some basic concepts on preferences, 
Sect. 2 discusses partial orders, social choice functions and its properties. Section 3 
is on the betweenness relation of linear orders. We show that every linear order that 
is between two admissible ones is also admissible. Sect. 4 is on that the range of 
unanimous, strategy-proof and non-image-dictatorial choice rules. We prove that in 
the present framework this range consists of precisely two alternatives. In Sect. 5, 
we discuss which a priori information leads to domains of preference profiles allow-
ing for such choice rules. In Sect. 6, we provide concluding remarks and consider an 
application to a model where alternatives belong on a Euclidean plane.

2 � Restricted domains and partial orders

Let A denote a non-empty and finite set of alternatives and R a relation on 
A. For distinct alternatives x and y, (x, y) ∈ R means x is preferred to y at R. 
For a non-empty subset B of A the restriction of R to B is denoted by R|B , i.e. 
R|B = {(x, y) ∈ R ∶ x ∈ B and y ∈ B} . The best alternatives  with respect to R and a 
subset B of A are defined by best(R,B) = {x ∈ B ∶ (x, y) ∈ R for all y ∈ B} . In many 
cases best(R, B) is a singleton and we abuse notation by identifying the singleton 
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set with its element. The undominated alternatives with respect to R are defined by 
undom(R) = {x ∈ A ∶ (y, x) ∉ R for all y ∈ A�{x}} . Relation R on A is said to be

•	 irreflexive, if (x, x) ∉ R for all alternatives x in A, 
•	 asymmetric, if (x, y) ∉ R or (y, x) ∉ R for all distinct alternatives x and y in A, 
•	 weakly complete, if (x, y) ∈ R or (y, x) ∈ R for all distinct alternatives x and y in 

A,  and
•	 transitive, if for all distinct alternatives x,  y, and z in A

 Cardinality of a set S is denoted by #S.
Let N = {1, 2, ..., n} denote a finite set of n agents. The individual preferences of 
agents are modelled by linear orders: irreflexive, transitive, weakly complete and 
asymmetric relations on A. We denote the set of all linear orders on A by �(A). To 
an agent i we associate a partial order Pi , i.e. transitive, irreflexive and asymmet-
ric. We interpret Pi as the part of agents i’s preference that is fixed and therewith 
"known". This means that agent i’s preference contains Pi. So, as Pi is not neces-
sarily weakly complete i’s preference is an extension of Pi to a linear order on A. 
Let �(Pi,A) = {R ∈ �(A) ∶ Pi ⊆ R} denote the set of all these extension of Pi. As 
we assume to “know” exactly Pi about agent i’s preference, that is no more and no 
less, agent i’s set of admissible preferences equals �(Pi,A). Note that, if Pi is weakly 
complete, meaning that i’s preference is completely “known”, then �(Pi,A) = {Pi} . 
Further, if Pi is empty, meaning that nothing is “known” about i’s preference, then 
�(Pi,A) = �(A). In the latter case agent i’s set of admissible preferences is called 
unrestricted. In all other cases it is called  restricted.

Let P∗ =
⋃

i∈N Pi be the union of all a priori information. Related to P∗ we will 
formulate necessary and sufficient conditions for these restricted domains such that 
these are possibility domains. Let PN represent the vector of all individuals’ a priori 
information.

A profile p assigns to every individual i a preference p(i) in �(Pi,A) . Let 
�(PN ,A) = {p ∈ �(�)N ∶ p(i) ∈ �(Pi,A) for all i in N } denote the set of pro-
files. We call �(PN ,A) a domain based on a priori information (PN). Let p and 
q be profiles in �(PN ,A) and j be an agent in N. Profile q is a j -deviation of p if 
p(i) = q(i) for all agents i ∈ N�{j}. Further, let x and y be two distinct alterna-
tives such that agent j prefers x consecutively above y,   i.e. (x, y) ∈ p(j) and 
(x, z) ∈ p(j) ⟺ (y, z) ∈ p(j) for z ∈ A�{x, y}. Then pj,yx denotes the j-deviation 
of p such that pj,yx(j) = (p(j)�{(x, y)}) ∪ {(y, x)}. So, pj,yx(j) is obtained from p(j) by 
swapping the positions of x and y. At pj,yx(j) alternative y is consecutively preferred 
to x. In case q = pi,yx the profiles p and q are called an elementary change in {x, y}. 
A sequence r0 , r1, r2, ..., rk of profiles in �(PN ,A) is called a path (of elementary 
changes) from p to q (in �(PN ,A) ), if r0 = p, rk = q and for all t ∈ {0, 1, 2, ..., k − 1} 
profiles rt and rt+1 form an elementary change, say in {xt, yt}. That means, for some 
agent it the profile rt+1 = (rt)i

t ,xtyt.

(x, y) ∈ R and (y, z) ∈ R implies (x, z) ∈ R.
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For a non-empty subset B of A and a profile p, the restriction of p to B is defined 
agent wise for an agent i in N by (p|B)(i) = p(i)|B. Further, for an arbitrary set of pro-
files � let �|B = {p|B ∶ p ∈ �} denote the set of profiles restricted to B.

Next, we introduce some representations for preferences and profiles. Let a,   b 
and c be alternatives. Let p denote a profile. Let i be an agent. Then ...ab... = p(i) 
denotes that a is consecutively preferred to b by agent i. Further, ab... = p(i) means 
that a is best and b second best for agent i at p(i). In case A = {a, b, c} the prefer-
ence at which a is best, b second best and c is worst is denoted by abc. Further, 
((abc)j, p|N�{j}) denotes the j-deviation, say q,   of p where q(j) = abc. Here, p|N�{j}
denotes the restriction of p to N�{j}. Similar notations like ...yz1z2...zlx... = p(1) or 
(p(1), r(2), p|N�{1,2}) have the obvious interpretations.

A (collective) choice rule is a function f from �(PN ,A) to A. It assigns to every 
profile p, a collective choice f(p) in A.

Hereafter we study choice rules f with respect to the following six conditions:
Unanimity: f (p) = a for all profiles p and alternatives a such that for all individu-

als i, best(p(i),A) = {a},
Surjectivity: For all alternatives x in A there are profiles p in �(PN ,A) such that 

f (p) = x,
Strategy-proofness: (f (p), f (q)) ∈ p(j) for all individuals j and all the j-deviations 

q of p,
Maskin Monotonicity: for all profiles p and q such that (f (p), x) ∈ p(i) implies 

(f (p), x) ∈ q(i) for all individuals i and all alternatives x, we have that f (q) = f (p),
Non-dictatorship: for all individuals j there are profiles p such that f (p) ≠ 

best(p(j), A),
Non-image-dictatorship: for all individuals j there are profiles p such that f (p) ≠ 

best(p(j), f (�(PN ,A))) , where f (�(PN ,A)) = {f (p) ∶ p ∈ �(PN ,A)} is the range of f.
Strategy-proofness, Maskin monotonicity, unanimity and non-dictatorship are 

standard in literature. Surjectivity is a well-known property for functions also known 
as “onto”. We will not comment on these further.

The following Example 1 shows that, in the setting at hand, non-dictatorship is 
not sufficient to ensure that the outcome of the choice rule is completely determined 
by one single agent.

Example 1  A non-dictatorial choice rule.

Let i and j be distinct agents and a and b be distinct alternatives. Let (a, b) ∈ Pi 
and b ∈ undom(Pj) . In that case, define f for an arbitrary profile as follows

This choice rule is strategy-proof, unanimous and image-dictatorial with image-dic-
tator j, but it is non-dictatorial as b is not chosen if it is j’s best alternative. 	�  ◻

The above example shows that a domain based on a priori information allows for 
non-dictatorial, unanimous, and strategy-proof choice rules if there are agents i and 
j such that undom(Pi) ≠ undom(Pj). At these choice rules, however, the agents in 

f (p) = best(p(j),A�{b}).
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N�{j} are immaterial for the outcome, which we think is not according to the spirit 
of a possibility result.

To avoid rules like in Example 1 we impose non-image-dictatorship. Clearly non-
image-dictatorship is a stronger condition than non-dictatorship, because f (p) = 
best(p(j),  A) implies best(p(j),A) ∈ f (�(PN ,A)) and therefore f (p) = best(p(j),  A) 
implies f (p) = best(p(j), f (�(PN ,A))) . Lemma  1 shows that under strategy-proof-
ness, non-image-dictatorship of a choice rule f is equivalent to non-dictatorship of 
choice rule h,   where h is the restriction of f to its range. Further, in Sect. 6, from 
the results on non-image-dictatorship we derive in a few lines a characterization of 
those domains allowing for non-dictatorial, unanimous, and strategy-proof choice 
rules.

3 � Betweenness

In Kemeny and Snell (1962) the following notion of betweenness on linear orders 
is discussed. Let R1, R2 and R3 be linear orders. We say that an order R3 is between 
R1 and R2 , if (R1 ∩ R2) ⊆ R3 ⊆ (R1 ∪ R2) . For example, for alternatives a,  b,  c, 
an order R3 = acb is in between R1 = abc and R2 = cab . In general, by succes-
sively swapping consecutively ordered pairs of alternatives linear order R2 can be 
obtained from linear order R1 . The minimal number of swaps needed is equal to 
#(R1�R2) = #(R2�R1). All intermediate orders on this swap path are between R1 and 
R2. Reversely, it is well-known that all orders, being between R1 and R2, are on such 
a shortest swap path.

We call an arbitrary set of linear orders � betweenness closed, if for all R1, R2 ∈ � 
and all R3 ∈ �(A)

Hence, set � of linear orders is betweenness closed if for any two orders, R1 and R2 
in � all linear orders on any shortest swap path from R1 to R2 are in �. The follow-
ing Proposition 1 shows that to each non-empty betweenness closed set � of linear 
orders, we may associate a partial order P such that � consists precisely of all linear 
extensions of P.

Proposition 1  Let � be a non-empty set of linear orders. Then � is betweenness 
closed if, and only if, there is a partial order, say P,  on A, such that

Proof  (if-part) Let � = {R ∈ �(A) ∶ P ⊆ R} . Furthermore, let R1 , R2 ∈ � and 
R3 in �(A) such that R3 is between R1 and R2 . It is sufficient to prove that R3 is 
in � . Because R3 is between R1 and R2 we have (R1 ∩ R2) ⊆ R3 . As R1 , R2 ∈ 
� = {R ∈ �(A) ∶ P ⊆ R} it follows that P ⊆ R1 and P ⊆ R2 . So, P ⊆ (R1 ∩ R2) ⊆ R3 . 
Therefore, R3 ∈ {R ∈ �(A) ∶ P ⊆ R} = �.

(R1 ∩ R2) ⊆ R3 ⊆ (R1 ∪ R2) implies R3 ∈ �.

� = {R ∈ �(A) ∶ P ⊆ R}.
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(only-if-part) Let � be a betweenness closed set of linear orders. Define 
P = ∩{R ∶ R ∈ �} . As all relations in � are irreflexive, transitive and asym-
metric, P has these three properties. Now by definition of P it follows that 
� ⊆ {R ∈ �(A) ∶ P ⊆ R} . We have to prove that {R ∈ �(A) ∶ P ⊆ R} ⊆ � . To the 
contrary, suppose this is not the case. Then we may find distinct linear orders R1 ∈ � 
and R2 ∈ {R ∈ �(A) ∶ P ⊆ R}��, differing only on a single pair of distinct alterna-
tives, say a and b. That is R1 = (R2 ∪{(a, b)})�{(b, a)} . As � ⊆ {R ∈ �(A) ∶ P ⊆ R} 
it follows that both R1 and R2 are in {R ∈ �(A) ∶ P ⊆ R} . Hence, neither (a, b) nor 
(b,  a) is in P. Define �ab = {R ∈ � ∶ (a, b) ∈ R} and �ba = {R ∈ � ∶ (b, a) ∈ R}. 
By the definition of P we would have that (a, b) ∈ P if �ba were empty. Therefore, as 
(a, b) ∉ P, we may conclude that �ab is non-empty. Similarly it follows that �ba is non-
empty. But then, as � is betweenness closed, there are R3 in �ab and R4 in �ba , which 
differ only in the ordering of the pair ab and ba. That is R3 = (R4 ∪{(a, b)})�{(b, a)} . 
Now (R1 ∩ R4) ⊆ R1�{(a, b), (b, a)} ⊆ R2 ⊆ R1 ∪ {(a, b), (b, a)} ⊆ (R1 ∪ R4) , which 
means that R2 is between R1 and R4 . Therefore, as � is betweenness closed we derive 
the contradiction R2 ∈ � . 	�  ◻

The following Remark 1 is an immediate consequence of Proposition 1.

Remark 1  Path connected 

1.	 Let p and q be two profiles in �(PN ,A). Then there is a path of elementary 
changes from p to q in �(PN ,A) , say r0 , r1, r2, ..., rk such that for all numbers 
0 ≤ s ≤ t ≤ u ≤ k and all agents i ∈ N

2.	 Note, because of part 1, a rule is Maskin monotone if for all profiles p and q,  
forming an elementary change in {x, y}, such that ...xy... = p(i) and q(i) = pi,yx , 

 Let f be a strategy-proof rule such that f (p) ≠ f (q) . Strategy-proofness implies that 
...f (p)...f (q)... = p(i) and ...f (q)...f (p)... = q(i). As only preference p(i) between x 
and y is changed when going from p to q,  it follows that f (p) = x and f (q) = y. On 
the restricted domains considered here, strategy-proofness implies Maskin monoto-
nicity. However, in general this does not have to hold (see Klaus and Bochet (2013)).

4 � The range

In this section, we prove that the range of a non-image-dictatorial, strategy-proof, 
and unanimous choice rule on a domain based on a priori information consists of 
precisely two alternatives. We need three basic results. The first one shows that for 
such domains and choice rules, there exists a non-constant, surjective, strategy-proof 
and non-dictatorial choice rule on the preference domains, which are restricted to 
the range of that choice rule.

rt(i) is between rs(i) and ru(i).

f (p) ≠ f (q) implies f (p) = x and f (q) = y.
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Lemma 1  Let �(PN ,A) be a domain based on a priori information. Let f be a 
strategy-proof rule from �(PN ,A) to A,   with f (�(PN ,A)) = B. Define rule h from 
�(PN ,A)|B to B for an arbitrary profile v in �(PN ,A)|B by h(v) = f (q), where q|B = v. 
Then h is a well-defined, surjective, and strategy-proof choice rule from �(PN ,A)|B 
to B. Furthermore, f is not image-dictatorial if and only if h is not dictatorial.

Proof  (well-defined) Let q and r be 1-deviations in �(PN ,A), with q|B = r|B. To prove 
that h is well-defined it is sufficient to show that f (r) = f (q). To the contrary suppose 
f (r) ≠ f (q). We deduce a contradiction. As by assumption f(r) and f(q) are in B and 
q|B = r|B , we have (after a possible renaming of the profiles) ...f (q)...f (r)... = q(1) 
and ...f (q)...f (r)... = r(1) . So, agent 1 profits by reporting q(1) at profile r. This how-
ever contradicts that f is strategy- proof.

(surjectivity) To prove that rule h is surjective let b be an alternative in B. It is suf-
ficient to show that h(q|B) = b for some profile q in �(PN ,A). As b ∈ B = f (�(PN ,A)), 
there are profiles q in �(PN ,A) with f (q) = b. By the definition of h this yields 
h(q|B) = b.

(strategy-proofness) To prove that rule h is strategy-proof consider two 
i-deviations v and w in �(PN ,A)|B. It is sufficient to prove (h(v), h(w)) ∈ v(i). As 
v(j) = w(j) for all j in N�{i}, for all j ∈ N�{i} there are p(j) ∈ �(Pj,A) such that 
v(j) = w(j) = p(j)|B . Moreover, we can find p(i) ∈ �(Pi,A) and q(i) ∈ �(Pi,A) with 
v(i) = p(i)|B and w(i) = q(i)|B. Taking q(j) = p(j) for all agents j in N�{i} results in 
an i-deviation p and q such that p|B = v and q|B = w. As f is strategy-proof we have 
(f (p), f (q)) ∈ p(i). So, (f (p), f (q)) ∈ p(i)|B = v(i). By the definition of h we now have 
h(v) = h(p|B) = f (p) and h(w) = h(q|B) = f (q). So, (h(v), h(w)) ∈ v(i).

(furthermore-part) Choice rule f is not image-dictatorial if and only if for 
all agents j there are profiles p in �(PN ,A) with f (p) ≠ best(p(j)|B,B). Since 
h(p|B) = f (p) , f is not image-dictatorial if and only if for all agents j there are pro-
files p in �(PN ,A) with h(p|B) ≠ best(p(j)|B,B). The latter equivalence can now obvi-
ously be rephrased to f is not image-dictatorial if and only if for all agents j there are 
profiles p|B in �(PN ,A)|B with h(p|B) ≠ best(p(j)|B,B). So, f is not image-dictatorial 
if and only if h is not dictatorial. 	�  ◻

The second basic result proves that for strategy-proof rules dictatorship on certain 
subsets of the domain extends to profiles which are elementary changes of a profile 
in that subset. This result entails the “epidemic" spread of decisiveness often noticed 
in proofs of impossibility theorems.

Lemma 2  Let #B ≥ 3. For agent 2 let P2|B be empty. Let f be a strategy-proof rule 
from �(PN ,A) to A. Let p be a profile in �(PN ,A) such that f (r) = best(r(2)|B,B) for 
all 2-deviations r of p. Let x and y be distinct alternatives in A. Let q = p1,xy . Then 
f (v) = best(v(2)|B,B) for all 2-deviations v of q.

Proof  Let v be a 2-deviation of q. It is sufficient to prove that 
f (v) = f (q(1), v(2), p|N�{1,2}) = best(v(2)|B,B). We distinguish two cases.
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Case 1 best(v(2)|B,B) ≠ y.

As f (p(1), v(2), p|N�{1,2}) = best(v(2)|B,B) , best(v(2)|B,B) ≠ y, and q = p1,xy, 
Maskin monotonicity implies f (q(1), v(2), p|N�{1,2}) = best(v(2)|B,B).

Case 2 best(v(2)|B,B) = y.

So, y ∈ B. Let c ∈ B�{x, y}. Consider r, a 2-deviation of p such that yc... = r(2)|B . 
Thus best(r(2)|B,B) = y . As by case 1, f (q(1), r2,cy(2), p|N�{1,2}) = c , strategy-
proofness implies f (q(1), r(2), p|N�{1,2}) ∈ {y, c} . Note that, by the assumptions 
of this Lemma f (p(1), r(2), p|N�{1,2}) = best(r(2)|B,B) = y . Therefore, strategy-
proofness implies f (q(1), r(2), p|N�{1,2}) ∈ {x, y} . Since c ≠ x , it follows that 
f (q(1), r(2), p|N�{1,2}) = y.

Since q = p1,xy , v is a 2-deviation of q and best(v(2)|B,B) = y , the assump-
tion of our Lemma implies f (p(1), v(2), p|N�{1,2}) = y . Now, as q(1) is a 
1-deviation from yx... to xy..., it follows from Maskin monotonicity, that 
f (q(1), v(2), p|N�{1,2}) ∈ {y, x} . If (q(1), v(2), p|N�{1,2}) = x , then the fact that 
f (q(1), r(2), p|N�{1,2}) = y implies that f is manipulable which is a contradiction as f 
is strategy-proof. Thus f (q(1), v(2), p|N�{1,2}) = best(v(2)|B,B) = y . 	�  ◻

The third basic result shows that at least one Pi is neither weakly complete nor 
empty in case the domain allows for surjective, strategy-proof, and non-dictatorial 
choice rules with a range of at least three alternatives.

Lemma 3  Let �(PN ,A) be a domain based on a priori information and A a set of at 
least three alternatives. Let f be a surjective, non-dictatorial, and strategy-proof rule 
from �(PN ,A) to A. Then at least one Pi is not weakly complete and not empty.

Proof  In case Pj is weakly complete the domain �(Pj,A) = {Pj} is a singleton. In 
that case, agent j is immaterial to the outcome of choice rule f. Now suppose for all 
agents j the a priori information Pj is either empty or weakly complete. Then, by the 
well-known impossibility theorems of Gibbard and Satterthwaite, surjectivity and 
strategy-proofness of f imply the contradiction that f is dictatorial. Therefore we may 
suppose that there are agents j such that his a priori information Pj is neither weakly 
complete nor empty. 	�  ◻

Next, we prove in our setting the range of non-image-dictatorial, strategy-proof 
and unanimous choice rules consists of precisely two alternatives.

Theorem 1  For non-image-dictatorial, strategy-proof, and unanimous choice rules 
f from a domain based on a priori information �(PN ,A) to A, there are two distinct 
alternatives, say a and b, in A such that f (�(PN ,A)) = {a, b}.

Proof  For k ≥ 3. Let P(k) denote the following statement:
For alternative sets A,  with #A = k, and for domains based on a priori informa-

tion, say �(PN ,A), there are no surjective, strategy-proof, and non-dictatorial choice 
rules f from �(PN ,A) to A.
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In view of Lemma 1 it is sufficient to prove P(k) for all k by induction on k ≥ 3.

Let #A = 3 and let �(PN ,A) be a domain based on a priori information. To the 
contrary of P(3) , suppose choice rule f from �(PN ,A) to A is strategy-proof, non-
dictatorial, and surjective. Let a,   b, and c be the distinct alternatives in A. So, 
f (�(PN ,A)) = {a, b, c} = A. Without loss of generality we may assume that we have 
taken Pi inclusion maximal for all agents i. That is for partial orders P̃i, with Pi ⊆ �Pi, 
and domains based on a priori information �(P̃i,A) , there are surjective, strategy-
proof and non-dictatorial choice rules h from �(P̃N ,A) to A,  only if Pi = P̃i for all 
agents i. By Lemma  3 we may assume that for some agents j the a priori informa-
tion Pj is neither weakly complete nor empty. Without loss of generality let P1 be 
neither empty nor weakly complete. We will show the contradiction, that is for some 
partial orders P̃1, with P1 ⊊ �P1 , P̃i = Pi for all i in N�{1} , and domain �(P̃N ,A) , 
there exist surjective, strategy-proof and non-dictatorial choice rules h from �(P̃N ,A) 
to A. As P1 is neither complete nor empty, we may distinguish the following two 
cases.

Case 1  #P1 = 1.

So, after a possible renaming of the alternatives, we have P1 = {(a, b)} and 
�(P1,A) = {abc, acb, cab}. Define P̃j = Pj for j ∈ N�{1} and P̃1 = {abc, acb}. 
As f is surjective, there are profiles, say qa and qb in �(PN ,A) with f (qa) = a and 
f (qb) = b. As a is ranked best at preference abc, by Maskin monotonicity we may 
assume that qa(1) = abc. As b is ranked worst at acb and at cab by Maskin mono-
tonicity we may assume that qb(1) = abc. This means that there are profiles qa and 
qb in �(P̃N ,A) such that a = f (qa) and b = f (qb). We distinguish the following two 
sub-cases.

Sub-case There are profiles r with r(1) ∈ {abc, acb} and f (r) = c.

Define function h = f |
�(P̃N ,A) from �(P̃N ,A) to A as the restriction of f to �(P̃N ,A). 

Clearly h is surjective, as qa, qb, and r are in �(P̃N ,A) and a = f (qa) = h(qa), 
b = f (qb) = h(qb) , and c = f (r) = h(r). Further, h inherits strategy-proofness from f. 
To complete this case we prove that h is not dictatorial. To the contrary suppose h is 
dictatorial with dictator i. For agents j with Pj ≠ ∅ we have that y is not ordered best 
for those agents j when (x, y) ∈ Pj. As the range of f is A, y is chosen at some pro-
file. Therefore, such agents j, with Pj ≠ ∅, cannot be dictator at h. This means that 
the domain �(P̃i,A) of i is unrestricted. So, i ≠ 1 and �(P̃i,A) = � . As all profiles in 
�(PN ,A) are connected via paths of elementary changes, repeated applications of 
Lemma  2 implies that f is dictatorial if h = f |

�(P̃N ,A) is dictatorial. As f is not dictato-
rial it therewith follows that h is not dictatorial.

So, h is a non-dictatorial, strategy-proof, and surjective choice rule from �(P̃N ,A) 
to A. Clearly this contradicts that Pi is inclusion maximal for all agents i.

Sub-case There are no profiles r with r(1) ∈ {abc, acb} and f (r) = c.

Define function h for an arbitrary profile p in �(P̃N ,A) as follows

h(p) = f ((cab)1, p|N�{1}).
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We prove that rule h is surjective, strategy-proof and non-dictatorial.
(surjectivity) Let p in �(P̃N�{1},A) be an arbitrary profile. Further, suppose 

f ((abc)1, p) = a.

Then strategy-proofness implies f ((acb)1, p) = a and f ((cab)1, p) = a or 
f ((cab)1, p) = c. If f ((abc)1, p) = c, then strategy-proofness implies f ((acb)1, p) 
= f ((cab)1, p) = c. And if f ((abc)1, p) = b , then strategy-proofness implies either 
f ((acb)1, p) = f ((cab)1, p) = c or it implies f ((acb)1, p) = f ((cab)1, p) = b. So, all in 
all the outcomes f ((abc)1, p) , f ((acb)1, p), and f ((cab)1, p) are correlated as depicted 
in the table below.

Let us call p of type I if f ((abc)1, p) = a, f ((acb)1, p) = a and f ((cab)1, p) = a. Sim-
ilarly, we define the other four types. According to the sub-case assumption, there 
are no profiles of type III and no profiles of type IV. As f has range A and there are 
no type III and no type IV profiles, there are profiles of type II and type V. There-
fore, by the definition of h we have that c and b are in the range of h.

Consider a profile of type II, say rII , and one of type V, say rV . We claim that 
these cannot form an elementary change. To the contrary assume rII and rV form 
an elementary change. We deduce a contardiction. Using the table we have 
f ((abc)1, rII) = a and f ((abc)1, rV ) = b . Remark  1 implies that rII and rV form an 
elementary change is in {a, b} . By the table we also have f ((cab)1, rII) = c and 
f ((abc)1, rV ) = b. Remark  1 implies that this elementary change is in {c, b} . As 
{a, b} ≠ {b, c} we have a contradiction. So, type II and type V profiles do not form 
elementary chages. As there is a connecting path of elementary changes between rII 
and rV this means that there are profiles of type I implying that a is also in the range 
of h. Hence, h is surjective.

(strategy-proofness) By definition h((abc)1, p) = h((acb)1, p) = f ((cab)1, p) 
for all profiles p in �(P̃N�{1},A) , so agent 1 cannot manipulate at a profile. Con-
sider an i-deviation p and q in �(P̃N�{1},A) . By strategy-proofness of f we 
have (f ((cab)1, p), f ((cab)1, q)) ∈ p(i) . By the definition of h we therefore have 
(h((abc)1, p), h((abc)1, q)) ∈ p(i) and (h((acb)1, p), h((acb)1, q)) ∈ p(i). So, h cannot 
be manipulated by an agent i in N�{1}.

(non-dictatorship) For an agent j,   with (x, y) ∈ Pj and x ≠ y, alterna-
tive y is not ordered best at p(j) for all profiles p in �(P̃N ,A). As at some pro-
files alternative y is chosen under rule h, such agents j cannot be dictator at 
h. Let agent i be such that �(P̃i,A) = �(A) . Hence, P̃i empty and therewith 
i ≠ 1. Assume i is dictator at h. We deduce a contradiction. By the definition 
of h we have that f ((cab)1, (cba)i, p|N�{1,i}) = h((acb)1, (cba)i, p|N�{1,i}) = c . 
The sub-case assumption yields f ((acb)1, (cba)i, p|N�{1,i}) ≠ c. As profiles 
((cab)1, (cba)i, p|N�{1,i}) and ((acb)1, (cba)i, p|N�{1,i}) form elementary change 
in {a, c} and f is strategy-proof, Remark  1 implies f ((acb)1, (cba)i, p|N�{1,i}) 
= a . Furthermore, definition of h and i being dictator at h also implies that 

type I II III IV V

f ((abc)1, p) = a a c b b

f ((acb)1, p) = a a c c b

f ((cab)1, p) = a c c c b

.
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f ((cab)1, (bca)i, p|N�{1,i}) = h((acb)1, (bca)i, p|N�{1,i}) = b . As b is ordered worst 
for agent 1 strategy-proofness implies f ((acb)1, (bca)i, p|N�{1,i}) = b . Comparing 
f ((acb)1, (cba)i, p|N�{1,i}) = a and f ((acb)1, (bca)i, p|N�{1,i}) = b yields a contradic-
tion with strategy-proofness of f. Hence, h is non-dictatorial.

So, h is a non-dictatorial, strategy-proof, and surjective choice rule from �(P̃N ,A) 
to A. Clearly this contradicts that Pi is inclusion maximal for all agents i.

Case 2  #P1 = 2.

By symmetry we may assume that P1 = {(a, b), (a, c)}. So, �(P1,A) = {abc, acb}. 
For arbitrary profiles p in �(P̃N�{1},A) , strategy-proofness imposes that the outcomes 
at f ((abc)1, p) and f ((acb)1, p) are correlated as in one of the following four types 
depicted in the table below.

As f is surjective, it follows that profiles of type II are in �(PN�{1},A). 
Between all profiles p and q in �(PN�{1},A) there is a sequence of profiles in 
�(PN�{1},A) , say r0 = p , r1, r2, ..., rk = q such that for all 0 ≤ t < k the pro-
files rt and rt+1 form elementary change. Let that elementary change be in 
{xt, yt}. Like above, a type IV profile and a type II profile cannot form an ele-
mentary change. So, if profiles of type II and profiles of type IV are present in 
�(PN�{1},A) , then there are also profiles of type III in �(PN�{1},A) or profiles 
of type V in �(PN�{1},A) . As f is surjective this means that profiles of types II, 
III, and IV are present in �(PN�{1},A), or profiles of types II, III, and V are pre-
sent in �(PN�{1},A) , or profiles of types II, IV, and V are present in �(PN�{1},A) . 
In the first two cases it follows that {f ((abc)1, p) ∶ p ∈ �(PN�{1},A)} = {a, b, c} 
, where in the latter case {f ((acb)1, p) ∶ p ∈ �(PN�{1},A)} = {a, b, c}. If 
{f ((abc)1, p) ∶ p ∈ �(PN�{1},A)} = {a, b, c}, then define Pj = P̃j for j ∈ N�{1} and 
P̃1 = abc and if{f ((acb)1, p) ∶ p ∈ �(PN�{1},A)} = {a, b, c}, then define Pj = P̃j for 
j ∈ N�{1} and P̃1 = acb. Define h = f |

�(P̃N ,A). Clearly h is strategy-proof and has 
range {a, b, c} by definition. Next, we prove that it is non-dictatorial.

To the contrary assume that h is dictatorial with dictator i. We prove the contra-
diction that f is dictatorial with dictator i. Because the range of h is A it follows that 
P̃i is empty. Otherwise for some (x, y) ∈ Pi , by surjectivity at some profile y is cho-
sen while it is not i’s best. So, �( P̃i,A) = �(A). As f |

�(P̃N ,A) is dictatorial with dicta-
tor i,  Lemma 2 implies that f is dictatorial with dictator i.

So, h is a non-dictatorial, strategy-proof, and surjective choice rule from �(P̃N ,A) 
to A. Clearly this contradicts that Pi is inclusion maximal for all agents i and con-
cludes the proof of the induction basis.

Induction step Let P(k), with k ≥ 3. Suppose #f (�(PN ,A)) = k + 1. We deduce a 
contradiction. Without loss of generality we may assume that Pi is inclusion maxi-
mal for all agents i . That is for partial orders P̃i, with Pi ⊆ �Pi, and domains based on 

type II III IV V

f ((abc)1, p) = a c b b

f ((acb)1, p) = a c c b

.
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a priori information �(P̃i,A) , there are surjective, strategy-proof and non-dictatorial 
choice rules h from �(P̃N ,A) to A,   only if Pi = P̃i for all agents i. By Lemma   3 
we may assume that for some agents j the a priori information Pj is neither weakly 
complete nor empty. Without loss of generality let P1 be neither empty nor weakly 
complete. Therefore, there exist distinct alternatives x and y that are incomparable at 
P1, that is (y, x) ∉ P1, (x, y) ∉ P1, and for all z ∈ A�{x, y}

2 Let P̃j = Pj for all j ≥ 2 and let P̃1 = P1 ∪ {(x, y)}. Define h = f |
�(P̃N ,A). Then h is 

strategy-proof. There are two cases.
Case 1 h(�(P̃N ,A)) = f (�(PN ,A))

Then h cannot be dictatorial, as by Lemma 2, this would imply that f is dictato-
rial. But then h is a strategy-proof, surjective, and non-image-dictatorial rule contra-
dicting that all Pi are inclusion maximal.

Case 2 #h(�(P̃N ,A)) ≤ k

We prove that the range of h equals A�{y} and that h is non-dictatorial. So, 
#h(�(P̃N ,A)) = k ≥ 3. This then contradicts P(k) by which the proof ends.

(range h(�(P̃N ,A)) = A�{y} ) Consider an alternative a ∈ A�{y}. It is suf-
ficient to prove that h(q) = a for some profile q ∈ �(P̃N ,A). Note that for some 
profile f (p) = a. If p(1) ∈ �(P̃1,A), then we are done as we may take q = p. If 
p(1) ∉ �(P̃1,A), then obviously (y, x) ∈ p(1). Let ...yz1z2...zlx... = p(1). Meaning that 
at p(1) alternative y is consecutively preferred to z1 , z1 is consecutively preferred to 
z2, ...and so on, where this is ending with zl , which is consecutively preferred to x. 
By the choice of x and y for all z ∈ A�{x, y} we have (y, z) ∈ P1 implies (x, z) ∈ P1. 
So, as (z1, x) ∈ p(1) and therewith (x, z1) ∉ P1 , it follows that (y, z1) ∉ P1. So, p1,z1y ∈ 
�(PN ,A) . But then as a ≠ y , Maskin monotonicity of f implies f (p1,z1y) = a. Repeat-
ing this process yields a profile q ∈ �(P̃N ,A) , such that ...z1z2...zlxy... = q(1) and 
f (q) = a. But then h(q) = a.

(non-dictatorial) To the contrary let h be dictatorial on �(P̃N ,A) with dictator i. 
There are two sub-cases.

Sub-case i = 1

As h(�(P̃N ,A)) = A�{y}, agent 1 being dictator of h means for all a ∈ A�{y} 
there is a preference p(1) in �(P1,A), with (x, y) ∈ p(1), such that best(p(1),A) = a. 

(z, x) ∈P1 implies (z, y) ∈ P1

and

(y, z) ∈P1 implies (x, z) ∈ P112.

2  Let B be the set of alternatives b such that for some c ∈ A�{b} both (b, c) ∉ P1 and (c, b) ∉ P1. Take 
x in B such that (b, x) ∉ P1 for all b ∈ B�{x}, i.e. x is a maximal element in B with respect to P1. Let 
Y = {z ∈ A�{x} ∶ (x, z) ∉ P1 and (z, x) ∉ P1} and let y be that alternative in Y such that there are no 
z ∈ Y�{y} with (y, z) ∈ P1. Let z ∈ A�{x, y}. If (z, x) ∈ P1, then (y, z) ∉ P1 as (y, x) ∈ P1 by the choice of 
y and P1 is transitive. Moreover, if (z, x) ∈ P1, then by the choice of x, z ∉ B. So, then either (z, y) or (y, z) 
is in P1. So, if (z, x) ∈ P1 , then (z, y) ∈ P1. This proves the upper implication.
  For the lower implication suppose (y, z) ∈ P1. Then because of the choice of y we have that (x, z) or 
(z, x) is in P1. As P1 is transitive and (y, x) ∉ P1 we cannot have (z, x) ∈ P1. So, (x, z) ∈ P1. This proves 
the lower implication.
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So, P1 ⊆ (A�{y}) × {y}. As P1 is non-empty and (x, y) ∉ P1 , there are b ∈ A�{x, y} 
with (b, y) ∈ P1 . So, y is not a best alternative for all preferences p(1) in �(P1,A). 
As i is dictator of h and P1 ⊆ (A�{y}) × {y} we have f (p) = best(p(1),A) for all 
p ∈ �(PN ,A), with (x, y) ∈ p(1). As y ≠ best(p(1),A) , Maskin monotonicity implies 
that f (r) = best(r(1),A) for all r ∈ �(PN ,A). But then f (�(PN ,A)) = A�{y} which 
contradicts our assumptions.

Sub-case i ≠ 1

Lemma 2 now implies f (p) = best(p(i)|A�{y},A�{y}). Hence, we have a contra-
diction, as the range of f does not contain y. 	�  ◻

5 � Possibility domains

In this section we show that a domain based on a priori information allows for unan-
imous, non-image-dictatorial, and strategy-proof choice rules if an only if there are 
two distinct alternative, such that 

1.	 except for these two, there are no undominated alternatives with respect to P∗ , 
and

2.	 at least two agents can order these two alternatives freely.

The following example shows that these two conditions are sufficient.

Example 2  Voting with a threshold

Let a and b be distinct alternatives such that undom(P∗) ⊆ {a, b}. Let 
nab = #{i ∈ N ∶ (a, b) ∈ Pi} and nba = #{i ∈ N ∶ (b, a) ∈ Pi}. Suppose 
n − (nab + nba) ≥ 2. Consider a fixed (threshold) integer, say �, such that 
nab < 𝜏 < n − nba . Define choice rule f� from �(PN ,A) to A at an arbitrary profile p 
as follows

So, f� chooses a if the support for it compared to b is at least equal to the thresh-
old. Otherwise, f� chooses b. As undom(P∗) ⊆ {a, b} , all alternatives which are not 
equal to a or to b are dominated. Hence, f is unanimous as there are no profiles 
where these alternatives are ordered best by all agents. Since the choice rule can be 
seen as a (Maskin) monotone-voting rule between two alternatives, it is strategy-
proof. Because n − (nab + nba) ≥ 2, threshold � can be chosen strictly between nab 
and n − nba . Therewith the choice rule is not image-dictatorial. 	�  ◻

The following Theorem shows that the sufficient conditions spelled out in Exam-
ple 2 are necessary.

Theorem 2  Let �(PN ,A) be a domain based on a priori information. Let P∗ be the 
united a priori information. Then (1) and (2) are equivalent, where 

f𝜏(p) =a if #{i ∈ N ∶ (a, b) ∈ p(i)} ≥ 𝜏

=b if #{i ∈ N ∶ (a, b) ∈ p(i)} < 𝜏.
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1.	 there exist unanimous, strategy-proof and non-image-dictatorial choice rules f 
from �(PN ,A) to A,

2.	 there are two distinct alternatives a and b,   such that undom(P∗) ⊆ {a, b}, 
a n d  #N − (#Nab + #Nba) ≥ 2,  w h e re  Nab = {i ∈ N ∶ (a, b) ∈ Pi} a n d 
Nba = {i ∈ N ∶ (b, a) ∈ Pi}.

Proof  The implication from (2) to (1) follows by Example 2.
To prove the implication from (1) to (2), assume that f is such a choice rule from 

�(PN ,A) to A. Then Theorem 1 implies that f (�(PN ,A)) = {a, b} for some distinct 
alternatives a and b. Because of unanimity, we have that all alternatives in undom(P∗) 
are in the range of f. So, undom(P∗) ⊆ {a, b}. We prove that #(N�(Nab ∪ Nba)) ≥ 2. 
Consider choice rule h from �(PN ,A)|{a,b} to {a, b} , defined like in Lemma  1. By 
that Lemma, h is surjective, strategy-proof and non-dictatorial. Because of surjec-
tivity we have #(N�(Nab ∪ Nba)) ≥ 1. If (N�(Nab ∪ Nba)) = {i}, then �(PN�{i},A)|{a,b} 
consists of precisely one profile, say r. Then there are two cases. Either case 1, 
h((ab)i, r) = a and h((ba)i, r) = b. Or case 2, h((ab)i, r) = b and h((ba)i, r) = a. 
In case 1, h is dictatorial with dictator i and in case 2, h is not strategy-proof. As 
both are contradicting properties of h, we can conclude that #(N�(Nab ∪ Nba)) ≠ 1. 
Hence, #(N�(Nab ∪ Nba)) ≥ 2. 	�  ◻

6 � Concluding remarks

Among the domains based on a priori information, Theorem  2 specifies those 
domains which allow for unanimous, strategy-proof and non-image-dictatorial 
choice rules. On such domains there are two alternatives for which at least two 
agents have no fixed preference and, further for any other alternative, say z,   there 
are alternatives z′, and some agent, such that in all his admissible preferences z′ is 
preferred to z. To the best of our knowledge Storcken (1985) and the present paper 
are the only two papers on domains based on a priori information. Storcken (1985) 
studies Pareto optimal, non-dictatorial, positively associated and pairwise anony-
mous welfare functions. That is, Theorem 4.7 (page 288) of Storcken (1985) charac-
terizes those domains based on a priori information allowing for welfare functions 
having these four properties. The following Example 3 is based on a domain with 
a priori information that allows for unanimous, strategy-proof and non-image-dic-
tatorial choice rules but not for non-dictatorial positively associated and pairwise 
anonymous welfare functions. Therewith, it shows that this result of Storcken (1985) 
does not logically imply Theorem 2.

Example 3  Non existence of non-dictatorial positively associated and pairwise anon-
ymous welfare functions
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Let A = {x, y, a, b, c} and N = {1, 2}. Let P1 = {(x, a), (x, b), (x, c)} and 
P2 = {(y, a), (y, b), (y, c)}. So, undom(P∗) = {x, y}. Let choice rule f from �(PN ,A) to 
A for an arbitrary profile p in �(PN ,A) be defined by

It is clear that f is voting between x and y with threshold � = 1 (in favor of x against 
y). So, this choice rule is non-image dictatorial, unanimous and strategy-proof. This 
confirms Theorem 2. Next, consider a Welfare function, say F,  on this domain that 
is independent of irrelevant alternatives and Pareto optimal. As both the agents 
can order the alternatives in {a, b, c} in six different ways, such a triple is also 
known as a free triple. Restricting F to this free triple means F|{a,b,c} is defined by 
F|{a,b,c}(p) = F(p)|{a,b,c} ). This restriction F, for any profile p in �(PN ,A), then yields 
by Arrow’s impossibility theorem that F|{a,b,c} is dictatorial. This means that F vio-
lates the pairwise anonymity condition, i.e. for profiles p and q in �(PN ,A) and alter-
natives v and w in A, #{i ∈ N ∶ (v,w) ∈ p(i)} = #{i ∈ N ∶ (v,w) ∈ q(i)} implies 
F(p)|{v,w} = F(q)|{v,w}.

As the independence of irrelevant alternatives is implied by the positive asso-
ciation it follows that this domain does not allow for welfare functions discussed in 
Storcken (1985).

Since conditions allowing for non-image-dictatorial, strategy-proof and unani-
mous choice rules are rather restrictive, Theorem 2 can also be seen as an impos-
sibility theorem. Actually, the same holds for Theorem 1. This theorem, for instance 
implies that on domains based on a priori information a unanimous and strategy-
proof choice rule, having a range of at least three alternatives, is image-dictatorial. 
It therewith relates to classical impossibility theorems such as Gibbard (1973). Here 
we traded the unrestricted domain for the unanimity condition of the choice rule. 
Note that, in all the proofs we only used the fact that between any two profiles there 
is at least one shortest swap path. Our domain restriction condition means that all 
such short paths are present in the domain where we only need one to deduce the 
presented conditions. This means that the domains which just satisfy this existence 
of a shortest swap path will yield the same outcome. Thus on such domains only 
image-dictatorial choice rules, having a range of at least three alternatives, will be 
strategy-proof and unanimous. Therefore, it is worthwhile to note that Theorem 2 
holds for these more general class of domain restrictions.

In general, our finding may have applications in small committee decisions, 
where there are finite numbers of alternatives to decide on. The application then lays 
in deleting those alternatives that are extreme compared to the others. It is therefore 
rather limited. For example, consider the following reorganization of a firm. Within 
some given budget limits, four options are suitable. These options differ mainly 
from each other by the levels of computer support (K), labor force (L) and (fossil) 
energy (E) that is required. In the table below, these levels are given by their relative 
monetary costs.

f (p) =x if (x, y) ∈ p(1) or (x, y) ∈ p(2)

f (p) =y if (y, x) ∈ p(1) and (y, x) ∈ p(2).
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It can be seen that option A is highly automated, while option D involves a low 
level of computer assistance. Both these options require the same energy level. In 
option B, this energy level is higher but the computer support and labor force are 
mediocre. Option C requires the lowest energy level. Thus, the committee members 
in favor of having a higher labor force will prefer D to A whereas those, who pre-
fer to have more computer assistance, would prefer to have A to D. These extreme 
options can then be discarded and a “regular” voting mechanism can be used to 
select the best alternative between B and C (Table 1).

To be specific, let the preferences of the committee members be represented 
by Cobb-Douglas utility functions U, i.e. U(K, L,E) = K�L�E� , where �, �, � 
are strictly positive numbers. Now, a relative large � as compared to � and � , i.e., 
� ≥ � + � , characterizes committee members favoring computer assistance. Those 
favoring labor force can be characterized by relative large � as compared to � and � , 
i.e. � ≥ � + � . By doing so, in all preferences of committee members favoring com-
puter support, option A is strictly preferred to D. In constrast, Option D is strictly 
preferred to option A in all preferences of committee members favoring a high labor 
force. During committee meeting(s), we assume that the discussion on these four 
options has revealed that some agents have such strong preferences for option A and 
some for option D. Hence, assuming Cobb-Douglas utility functions we have that 
Pi = {(A,D)} for those agents i who have a strong preference for option A. Where 
Pj = {(D,A)} for committee members having a strong preference for option D. The-
orem 2 now shows that by considering A and D as outliers a monotone-vote with 
respect to Maskin monotonicity between B and C would yield a unanimous and 
strategy-proof outcome.

Theorem 2 describes the restricted domains based on a priori information, which 
allow for unanimous, non-image-dictatorial and strategy-proof choice rules. It 
shows that by allowing for such choice rules on these domains, there are at most 
two undominated alternatives with respect to the united a priori information, and 
that the range of the rule consists of precisely two alternatives. Having precisely two 
alternatives in the range means that the choice rule boils down to a non-dictatorial 
and Maskin monotone choice rule between these two alternatives. So, apart from the 
domain, even the possible choice rules are determined.

Table 1   Alternatives Computer (K) Labour (L) Fossil 
Energy 
(E)

A 5 1 2
B 2 3 3
C 3 4 1
D 1 5 2
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We end this section with a discussion on alternatives for the two chosen prop-
erties: unanimity and non-image-dictatorship. The condition of anonymity imposes 
that agents are equally strong with respect to their decision power. Usually it does so 
by imposing that the choice rule is symmetric in its arguments. Here this may create 
a problem as the agents’ admissible sets of preferences may differ. Therefore, con-
sider a formulation that ensures that agents have as much as possible an equal influ-
ence on the outcome.3 Excluding constant choice rules, this yields that the choice 
rule is non-image-dictatorial. Therewith the analysis results in Theorems  1 and 2 
with one difference. The choice rules between the two alternatives in the range are 
now, like the choice rules in Example 2, based on the numbers of agents having a 
specific preference between these two.

Relaxing non-image-dictatorship to non-dictatorship leads to the following result.

Corollary 1  Let �(PN ,A) be a domain based on a priori information. Let P∗ be the 
united a priori information. Then (1) and (2) are equivalent, 

1.	 there exist unanimous, strategy-proof and non-dictatorial choice rules f from 
�(PN ,A) to A,

2.	 (a) there are two distinct agents i, j such that undom(Pi) ≠ undom(Pj)

	   or (b) there are two distinct alternatives a, b such that undom(Pi) = {a, b} for 
all agents i in N.

Proof  The implication (2 a) ⟹ (1) follows by Example   1 and the implication 
(2 b) ⟹ (1) follows by Theorem  2, as non-image-dictatorship implies non-dic-
tatorship. To prove the reverse implication (2) ⟹ (1) , assume f is a unanimous, 
strategy-proof and non-dictatorial choice rule from �(PN ,A) to A and undom(Pi) = 
undom(Pj) for all agents i and j in N. It is sufficient to prove that there are two dis-
tinct alternatives a and b with undom(Pi) = {a, b} for all agents i in N.

First, we prove that f is non-image-dictatorial. To the contrary, assume that 
f is image-dictatorial with image- dictator j. So, for all profile p in �(PN ,A), 
f (p) = best(p(j),B), where B = f (�(PN ,A)). Because j is not dictatorial there are 
b ∈ A and profiles q with b = best(q(j),A) and f (q) ≠ b. So, b ∈ undom(Pj). Let 
c = best(q(j),B). Because of the definition of best, b ∉ B. This means that b is domi-
nated, because else by unanimity b ∈ B. So, for some agent i we have (a, b) ∈ Pi. 
This means that undom(Pi) ≠ undom(Pj), which contradicts our assumptions. There-
fore, f is non-image-dictatorial.

As f is non-image-dictatorial Theorem  2 implies undom(P∗) ⊆ {a, b} for some 
distinct alternatives a and b. Because undom(Pi) = undom(Pj) for all agents i and j in 
N,  it follows that undom(Pi) = undom(Pj) = undom(P∗) ⊆ {a, b} for all i and j in N. 
It therefore is sufficient to show that undom(Pi) ⊇ {a, b}. Note that undom(Pi) ≠ � 
as best(Pi,A) is in undom(Pi). Also note that undom(Pi) = {x} for some x in {a, b} 

3  A condition like this could be formalized in terms of effectivity functions.
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implies that x is best for all preferences in �(Pi,A). As undom(Pi) = undom(Pj) , this 
would mean that at all profiles in �(PN ,A) all agents order x best. So, by unanimity 
of f is the constant rule assigning x to all these profiles. Since x is the best alterna-
tive for each agent at all these profiles, thus all these agents are dictator at f. So, f is 
dictatorial in case undom(Pi) = {x} for some x in {a, b}. So, undom(Pi) is not a sin-
gleton and not empty. Hence, undom(Pi) ⊇ {a, b}. 	�  ◻

Another condition frequently imposed on choice rules is Pareto-optimality. It 
means that an alternative x is not chosen when there are alternatives y,   which all 
individuals (strictly) prefer to x. As Pareto-optimality implies unanimity, substitut-
ing Pareto-optimality for unanimity implies by Theorem 1 that the range consists of 
two alternatives. As the rules of Example 2 are not necessarily Pareto-optimal, the 
only implication (1) ⟹ (2) of Theorem 2 holds. So, for Pareto-optimal, strategy-
proof and non-image-dictatorial choice rule f from �(PN ,A) to A there are distinct 
alternatives a and b, such that undom(P∗) ⊆ {a, b}, and #N − (#Nab + #Nba) ≥ 2, 
where Nab = {i ∈ N ∶ (a, b) ∈ Pi} and Nba = {i ∈ N ∶ (b, a) ∈ Pi}. In general, it 
depends on the a priori information whether some of the rules in Example  2 are 
Pareto-optimal. To illustrate this consider the following two examples.

Example 4  No Pareto-optimal choice rules

Let A = {a, b, x, y} be a set of four distinct alternatives. Let #N = 2k + 1 for some 
positive number k. For agents i ≤ k let Pi = {(a, x)} and for agents j ≥ k + 2 , let 
Pj = {(b, y)}. So, Pk+1 is empty. We argue that on a domain based on this a priori 
information there are no Pareto-optimal, strategy-proof and non-image-dictatorial 
choice rules. Suppose there exist such choice rules f. We deduce a contradiction. 
As Pareto-optimality implies unanimity, by Theorem 1 we have that the range of f 
contains precisely two alternatives. As a and b are both undominated at P∗ it follows 
that this range of f equals {a, b}. Next, consider profile p defined as follows

At this profile a is Pareto-dominated by y and b is Pareto dominated by x. So, f vio-
lates Pareto-optimality as its range is {a, b}. However, adding Pk+1 = {(b, y), (a, x)} 
yields a domain based on a priori information, where a and b cannot be Pareto-
dominated simultaneously. Defining f� , like in Example 2, with � = k + 1, yields a 
Pareto optimal, strategy-proof and non-image-dictatorial choice rule. To show this, 
it is sufficient to prove that a is not chosen when it is Pareto-dominated by y. Note 
that in that case all agents j ≥ k + 1 prefer b to y and y to a. So, the support for a 
against b is less than or equal to k. This means that a is not chosen.

Note that for thresholds � ≥ k + 2 , choice rule f� is not Pareto-optimal. For those 
� , there are profiles at which the support for a against b equals k + 1 and b is Pareto-
dominated by x. Similarly, it follows that for thresholds � ≤ k choice rule f� is not 
Pareto-optimal. 	�  ◻

p(i) = yaxb for agents i ≤ k

p(j) = xbya for agents j ≥ k + 2
.
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Next we discuss a domain that allows for Pareto-optimal, strategy-proof, and non-
image-dictatorial choice rules.

Example 5  Pareto-optimal choice rules

Let A denote the set of alternatives, and let a and b be two distinct alternatives in 
A. Assume that (a, c) ∈ P∗ for all c ∈ A�{a, b} . Now the following rule f is defined 
for an arbitrary profile p as follows

Choice rule f is Pareto-optimal, strategy-proof and non-image-dictatorial. 	�  ◻
The two foregoing examples clarify that it is at least not straight forward to find 

necessary and sufficient conditions such that a domain based on a priori information 
allows for Pareto-optimal, strategy-proof and non-image-dictatorial choice rules. 
Given the rather restrictive result spelled out by Theorem  1 we therefore did not 
incorporate an extensive study on this discussion.
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