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Abstract
We propose a novel tournament design that incorporates some properties of a round-
robin tournament, a Swiss tournament, and a race. The new design includes an all-
play-all structure with endogenous scheduling and a winning threshold. Consider-
ing a standard round-robin tournament as a baseline model, we first characterize the 
equilibrium strategies in round-robin tournaments with exogenous and endogenous 
schedules. Afterward, following an equilibrium analysis of the new tournament 
design, we compare thirty-six tournament structures inherent in our model with 
round-robin tournaments on the basis of expected equilibrium effort per battle. We 
show that a round-robin tournament with an endogenous schedule outperforms all 
the other tournament structures considered here. We further note that if expected 
total equilibrium effort is used as a comparison criterion instead, then the new tour-
nament design has a potential to improve upon round-robin tournaments.

1 Introduction

A tournament is a type of multi-battle contest game, which is commonly used in 
sports, labor markets, politics, and so on (see Lazear and Rosen 1981; Rosen 1986; 
Prendergast 1999; Szymanski 2003; Harbaugh and Klumpp 2005). Two well-known 
examples are round-robin tournaments and Swiss tournaments. In a round-robin 
tournament, players are pairwise matched in each round to compete in two-player 
component battles. It is an all-play-all tournament in that each player competes with 
all other players in turn. The schedule (i.e., who is matched with whom in which 
round) is exogenously given and common knowledge among all players. In a Swiss 
tournament, as in a round-robin tournament, players are pairwise matched in each 
round to compete in two-player component battles. However, a player does not 
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necessarily compete with all other players, but competes with a selection of them, 
which is determined based on their performances in previous rounds. The latter 
property can be referred to as endogenous scheduling. Finally, although its structure 
is quite different from the tournament types mentioned above, a property of another 
well-known multi-battle contest is worth noting here. In a race, multiple players 
compete in a component battle in each round and a player who reaches a certain 
number of battle victories wins the race (i.e., victory threshold) (see Klumpp and 
Polborn 2006; Konrad and Kovenock 2009; Doğan et al. 2018).

In this paper we propose a novel tournament design with four symmetric players, 
which incorporates some properties of a round-robin tournament, a Swiss tourna-
ment, and a race. In each round, players are pairwise matched to compete in two-
player component battles. The two battles in the same round take place at the same 
time. The winner of each battle is determined by a Tullock contest success function. 
A battle cannot end in a draw. A player competes against each of the other players, 
and in the first-three rounds, no player competes against the same opponent twice 
(similar to a round-robin tournament). Each player aims to win a total of three com-
ponent battles, before another player achieves the same (similar to a race). Moreo-
ver, we implement endogenous scheduling, which means that the order of games 
depends on the outcomes of the earlier component battles (similar to a Swiss tour-
nament). With this assumption, considering all possibilities for second round and 
fourth round match-ups, we obtain 36 different tournament structures.1

Our tournament model is inspired by the following observations. In round-robin 
tournaments, the tournament champions are relatively more successful than the los-
ing players. However, this does not necessarily mean that the champions are suffi-
ciently successful in absolute terms. For instance, in a four-player tournament, three 
players can share the trophy by collecting two battle victories each. The contest 
designer may not be satisfied with such a result, believing that a player who could 
not win a certain number of battles does not deserve to be a champion. In order to 
make sure that a champion is also successful in absolute terms, the designer may 
choose to introduce a threshold number of battle victories, as in a model of race.

Our model can be thought of as an alternative to a round-robin tournament in the 
sense that it implements modifications to a standard round-robin tournament in two 
dimensions: (i)  endogenous scheduling and (ii)  additional tie-braking games.2 We 
structure our paper around this observation. We start with the equilibrium analyses 
of round-robin tournaments with exogenously-given and endogenously-determined 
schedules. Afterward, we formally introduce the alternative tournament model, ana-
lyze its equilibria for all possible versions, and compare all these tournament struc-
tures on the basis of expected equilibrium effort per battle.

1 A detailed explanation about the number of tournament structures is provided in Sect. 3.
2 The latter is a direct consequence of introducing a victory threshold into a standard round-robin tour-
nament.
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The comparison analysis requires the calculation of expected total equilibrium 
effort and expected number of battles.3 Refraining from going into the technical 
details, here we provide a brief intuition for the versions with the maximum expected 
total equilibrium effort. In the second round, a winner of the first round competes 
against the non-played loser of the first round. Normally, this would have resulted 
in a discouragement effect for the latter side, but then the fourth round match-ups 
are optimally selected such that if the player who lost in the first round wins in the 
second round, she will be incentivized to exert even more effort in the third round. 
Furthermore, independent of the outcomes of the second round battles, there will 
always be at least two players who are very motivated to exert high efforts in the 
third round, and all players would do that in case each player collects one battle vic-
tory in the first two rounds. Due to similar incentives, it turns out that many versions 
of our alternative tournament model yield relatively higher expected total equilib-
rium efforts compared to round-robin tournaments. However, this comes with a cost. 
Unlike any version of a round-robin tournament with four players that always ends 
in three rounds, any version of the alternative tournament model has a potential to 
proceed to the fourth round. Accordingly, expected number of battles turns out to be 
above six for each version of the alternative tournament model, and the comparison 
results depend on whether the increase in expected total equilibrium effort is enough 
to compensate for the increase in expected number of battles. Our main result shows 
that when expected equilibrium effort per battle is used as a comparison criterion, 
a round-robin tournament with an endogenous schedule outperforms all the other 
tournament structures considered in this paper.

Now, we relate the research carried out in this paper to the existing literature. 
Round-robin tournaments are extensively studied in the operations research litera-
ture (see Fleurent and Ferland 1993; Russel and Leung 1994; Nemhauser and Trick 
1998; Henz et al. 2004; Rasmussen and Trick 2008 among others). Yet, those stud-
ies mostly assume non-strategic players, and thus they ignore the effects of players’ 
strategic effort choices on the tournament outcome. On the other hand, possibly due 
to the complexity of the respective equilibrium analysis (see Krumer et al. 2017b, 
pg. 634), there are only a few papers in the game theory literature that contribute a 
new perspective to the discussion by considering strategic players.

Among those papers, Krumer et  al. (2017b) analyze a three-player round-robin 
tournament with one strong player and two equally-weak players. They report that 
in  order to maximize expected total equilibrium effort, the designer should use a 
round-robin tournament rather than a one-shot contest if the asymmetry between 
the strong player and the weak players is sufficiently high. Krumer et  al. (2017a) 

3 The maximization of expected total equilibrium effort is, arguably, the most frequently-used objective 
criterion in contest theory. It is especially relevant in sport contests where higher total effort is related 
to higher attendance and greater revenue. A second rationale for total effort maximization is related to 
fairness: when higher efforts are exerted in component battles, one would expect an improvement in the 
tournament’s ability to reveal the best team. See Dasgupta and Nti (1998), Moldovanu and Sela (2001), 
Borland and MacDonald (2003), Szymanski (2003), Nti (2004) among others. On the other hand, since 
the expected number of battles is not the same among all tournament models considered here, it can be 
argued that the maximization of expected equilibrium effort per battle is a more suitable objective crite-
rion for the current paper.
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examine round-robin tournaments with three or four symmetric players. In case of 
four players, they assume that two battles in a round are scheduled one after the 
other. Using an all-pay contest success function, they show that a player who com-
petes in the first game of each of the first two rounds ends up with a higher equilib-
rium winning probability. Later, utilizing a similar model, Sahm (2019) investigates 
fairness when the winner of each battle is determined by a Tullock contest success 
function and shows that the discrimination is weaker in Tullock contests compared 
to all-pay contests. Following this result, the author also analyzes endogenous 
scheduling in a three-player round-robin tournament. Krumer et al. (2020) study an 
optimal tournament design problem for a round-robin tournament with three sym-
metric players and either one prize or two prizes. They find that the designer should 
allocate only one prize if she aims to maximize expected total equilibrium effort. 
Finally, Laica et  al. (2021) examine round-robin tournaments with three or more 
players and under a more generalized contest success function, showing that mul-
tiple prizes can maximize expected total equilibrium effort in three-player tourna-
ments if the discriminatory power of the success function is sufficiently high.4

The paper is organized as follows. In Sect. 2, we provide equilibrium analyses of 
four-player round-robin tournaments with exogenous and endogenous schedules. In 
Sect. 3, we formulate a new tournament design. Section 4 presents our results that 
compare all these tournament structures. Sect. 5 concludes.

2  A round‑robin tournament

Following Dagaev and Zubanov (2017), we define a round-robin tournament by 
ΓRR =

(

N,
(

Mt

)

,P(⋅),V
)

 , where N = {1,… , n} is the set of players, 
(

Mt

)

 consists of 
all pairwise matching of players representing a total of n(n−1)

2
 component battles, P(⋅) 

denotes the contest success function, and V is the prize collected by the tournament 
champion.

To elaborate, consider four symmetric players in N = {1, 2, 3, 4} competing in 
a round-robin tournament. The procedure is as follows. In each round, players are 
pairwise matched. For each pair of players, there is a component battle in which 
the players choose how much effort to exert, a Tullock contest success function 
determines who wins the battle, and the winning player collects one point from this 
round. For example, assuming that players i, j ∈ N are matched in a given round, 
player i wins the battle with a probability of

where ei, ej ∈ [0,∞) denote the respective efforts exerted. If both players exert zero 
effort, then a tie-breaker rule applies: the player with more battle victories wins with 

ei

ei + ej
,

4 We are also aware of a recent working paper, by Sela et al. (2020), which analyzes a round-robin tour-
nament with four symmetric players and two prizes.
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a probability of 1,5 but if both players have the same number of battle victories, then 
each player would have a winning probability of 1/2. The two battles in the same 
round take place at the same time. We also assume that the marginal cost of effort is 
one for every player and in each round.

A player competes against each of the other players and no player competes 
against the same opponent twice. The tournament always ends in three rounds. At 
the end, whichever player has more battle victories becomes the tournament cham-
pion and collects a winning prize of V > 0 . If there are multiple such players, they 
become co-champions and share the winning prize equally.6

To illustrate, in a component battle between players 1 and 2 in any given round, 
player 1 aims to maximize

where Wj

1
 is the continuation payoff for player 1 in case players 1 and j ∈ {3, 4} win 

their battles this round, and Lj
1
 is the same in case players 2 and j ∈ {3, 4} win their 

battles this round.
The standard round-robin tournament as studied in the literature considers an 

exogenously-given schedule. This means that who will be matched with whom in 
each round is known before the tournament starts. A different specification may con-
sider a tournament with an endogenously-determined schedule: depending on the 
results of the first round battles, it is possible for player i ∈ N to compete against 
either of the other two players in the second round. Notice that once the second 
round battles are set, there is only one possible match-up for the third round battles. 
In this specification, there are two versions to be considered: (a) winners of the first 
round compete against each other, or (b) a winner of the first round competes with 
the non-played loser of the first round.7 

Before proceeding further, we introduce the following notation. A node is 
denoted by a quadruple (a, b, c, d) where each entry represents the total number of 
battle victories achieved by the respective player before the start of the given round. 
Though, when we refer to a specific node (a, b, c, d), it does not necessarily mean 
that player 1 has a battle victories, player 2 has b battle victories, and so on. Instead, 
such a node represents all cases in which one player has a battle victories, another 
player has b battle victories, and so on. That is to say, we consider anonymity among 
players when reporting our results.

e3

e3 + e4

(

e1

e1 + e2
W3

1
+

e2

e1 + e2
L3
1

)

+
e4

e3 + e4

(

e1

e1 + e2
W4

1
+

e2

e1 + e2
L4
1

)

− e1,

5 This assumption helps us to avoid the nonexistence of a best response for a non-discouraged player 
against a totally discouraged player. It does not make a significant impact on our results. An alternative 
assumption is to assume that each player’s strategy set in a battle is {0} ∪ [�,∞) rather than [0,∞) , so 
that for a sufficiently small 𝜀 > 0 , a non-discouraged player puts � amount of effort as a response to zero 
effort, which in turn implies that the player wins for sure (see Sahm 2019).
6 For risk-neutral players, this is equivalent to assuming that the winning prize is randomly awarded to 
one of those players with equal probabilities.
7 Notice that such a round-robin tournament with an endogenously-determined schedule is a natural 
combination of a round-robin tournament and a Swiss tournament.
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Figure 1 illustrates which nodes are followed in either version of a round-robin 
tournament with an endogenous schedule. It is worth noting that the game starts on 
the left, ends on the right, and each movement from one node to another is due to 
the outcomes of two component battles that simultaneously take place in the respec-
tive round. Furthermore, a round-robin tournament with an exogenous schedule can 
take either of the two forms, i.e., Fig. 1a or b, depending on the outcomes of the first 
round battles.

Below we report the unique subgame perfect Nash equilibrium (SPNE) in each 
version with an endogenously-determined schedule. As it will be revealed later, this 
result makes it easier to analyze the unique SPNE in the standard round-robin tour-
nament with an exogenously-given schedule.

Proposition 1 There exists a unique SPNE in either version of a round-robin tour-
nament with an endogenously-determined schedule. The expected total effort that 
will be exerted in equilibrium is 0.7407 V if the winners of the first round compete 
against each other in the second round and 0.7585 V if each winner of the first round 
competes with the non-played loser of the first round in the second round.

Proof We analyze SPNE via backward induction.8
⧫ First, we consider the version in which the winners of the first round compete 

against each other in the second round, which is illustrated in Fig. 1.

Fig. 1  Round-robin tournaments with an endogenous schedule

8 In the following, by an abuse of notation, we omit the current round or state when denoting players’ 
effort choices. Moreover, in all utility maximization problems considered below, the respective second-
order conditions hold.
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Round 3: Consider node (2,  1,  1,  0). Without loss of generality, assume that 
player 1 has two battle victories, players 2 and 3 have one battle victory each, so that 
player 4 could not win any battle in the first two rounds.

For a subcase, assume that player 1 competes against player 4 in the third round. 
The result is trivial: since player 4 is totally discouraged, she exerts zero effort. 
Thus, player 1 wins this battle for sure even when she exerts zero effort herself (due 
to the tie-breaking assumption). As a result, player 1 becomes a champion with an 
expected payoff of V. Anticipating the outcome of that battle, and knowing that there 
is no possibility that they will become a champion, players 2 and 3 exert zero effort 
in their own component battle.

For another subcase, assume that player 3 competes against player 4 in the third 
round. The result is again trivial: since player 4 is totally discouraged, she exerts 
zero effort. Thus, player 3 wins this battle for sure even when she exerts zero effort 
herself (due to the tie-breaking assumption). As a result, player 3 becomes one of 
the three co-champions in case player 2 wins against player 1 in their own battle. 
Anticipating this outcome, player 1 maximizes

whereas player 2 maximizes

We find that e1 = 4V∕27 and e2 = 2V∕27 , which yields an expected payoff of 
17V/27 to player 1 and an expected payoff of V/27 to player 2. Furthermore, player 3 
has an expected payoff of 3V/27.

Round 2: Consider node (1, 1, 0, 0). Without loss of generality, assume that play-
ers 1 and 2 have one battle victory each, so that players 3 and 4 could not win in the 
first round. In the current version, players 1 and 2 compete in a component battle.

Assuming that player 1 played against player 3 in the first round, player  1 
maximizes

in this round. Player 2’s maximization problem can be written symmetrically. Fur-
thermore, player 3 maximizes

in this round. Player 4’s maximization problem can be written symmetrically. Tak-
ing the first-order conditions and solving the respective system of equations, we find 
e1 = e2 = 41V∕216 ≈ 0.1898V  and e3 = e4 = V∕216 ≈ 0.0046V  . This yields an 
expected payoff of 53V∕216 ≈ 0.2454V  to players 1 and 2 and an expected payoff of 
V∕216 ≈ 0.0046V  to players 3 and 4.

e1

e1 + e2
V +

e2

e1 + e2

V

3
− e1,

e2

e1 + e2

V

3
− e2.

e3

e3 + e4

(

e1

e1 + e2
V +

e2

e1 + e2

3V

27

)

+
e4

e3 + e4

e1

e1 + e2

17V

27
− e1,

e2

e1 + e2

e3

e3 + e4

V

27
− e3,
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Round 1: Consider node (0, 0, 0, 0). Each player can anticipate that her continu-
ation payoff would be 0.2454V if she wins now and 0.0046V if she loses now. One 
can find that ei ≈ 0.0602V  for each player i ∈ N in the first round. This completes 
the equilibrium analysis for the current version.

Given these results, the expected total effort that will be exerted in equilibrium is

⧫ Second, we consider the version in which each winner of the first round competes 
with the non-played loser of the first round in the second round, which is illustrated 
in Fig. 1a.

Round 3: There are three possible nodes to analyze.
Consider node (2, 2, 0, 0). Without loss of generality, assume that players 1 and 2 

have two battle victories each, so that players 3 and 4 could not win any battle in 
the first two rounds. Now, the laggards compete against each other. Since there is 
no possibility that they will become a champion, both players exert zero effort in 
equilibrium.

In the battle between players 1 and 2, player i ∈ {1, 2} maximizes

In the equilibrium, we find e1 = e2 = V∕4 . This yields an expected payoff of V/4 to 
each player i ∈ {1, 2}.

Consider node (1, 1, 1, 1). In this symmetric node, a player i ∈ N maximizes

in her respective battle. Then, we find ei = V∕8 for each i ∈ N in the equilibrium. 
This yields an expected payoff of V/8 to each player i ∈ N.

Finally, consider node (2, 1, 1, 0). The equilibrium analysis follows the same as in 
the version in which the winners of the first round compete against each other in the 
second round.

Round 2: Consider node (1, 1, 0, 0). Without loss of generality, assume that play-
ers 1 and 2 have one battle victory each, so that players 3 and 4 could not win in the 
first round. Further assume that player 1 played against player 3 in the first round. 
Then, in the current version, players 1 and 4 compete in a component battle now.

Then, player 1 maximizes

in this round. Furthermore, player 3 maximizes

(4 × 0.0602V) + (2 × 0.1898V) + (2 × 0.0046V) +
1

4

(

2 ×
6V

27

)

= 0.7407V .

ei

e1 + e2
V − ei.

ei

e1 + e2

V

2
− ei,

e2

e2 + e3

(

e1

e1 + e4

V

4
+

e4

e1 + e4

V

27

)

+
e3

e2 + e3

(

e1

e1 + e4

17V

27
+

e4

e1 + e4

V

8

)

− e1,

e1

e1 + e4

e3

e2 + e3

3V

27
+

e4

e1 + e4

e3

e2 + e3

V

8
− e3,
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in this round. The maximization problems for players 2 and 4 can be written sym-
metrically. Taking the first-order conditions and solving the respective system 
of equations, we find e1 = e2 ≈ 0.0595V  and e3 = e4 ≈ 0.0232V  . This yields an 
expected payoff of 0.2143V to players 1 and 2 and an expected payoff of 0.0091V to 
players 3 and 4.

Round 1: Consider node (0, 0, 0, 0). Each player can anticipate that her continu-
ation payoff would be 0.2143V if she wins now and 0.0091V if she loses now. One 
can find that ei ≈ 0.0513V  for each player i ∈ N in the first round. This completes 
the equilibrium analysis for the current version.

Given these results, the expected total effort that will be exerted in equilibrium is

where p ≈ 0.0595∕(0.0595 + 0.0232) = 0.7195 . This completes the proof.   ◻

To analyze the standard round-robin tournament with an exogenous schedule, we 
start with the following observation. The equilibrium analysis for the last two rounds 
follow similarly as in the proof of Proposition 1 above. As for the first round battles, 
the equilibrium analysis would be different because of the changes in the continua-
tion payoffs. To be more precise, those payoffs would be written as convex combina-
tions of the continuation payoffs from the two versions of the model with an endog-
enous schedule. Then, the next result follows.

Proposition 2 There exists a unique SPNE in a round-robin tournament with an 
exogenously-given schedule. The expected total effort that will be exerted in this 
equilibrium is 0.7496 V.

Proof Utilizing our observation above, we focus on the analysis of the first round 
battles. Without loss of generality, assuming that player 1 competes with player 2 in 
the first round and that player 1 will compete with player 3 in the second round, we 
know that player 1 maximizes

The maximization problems for the other players can be written symmetrically. Tak-
ing the first-order conditions and solving the respective system of equations, we find 
ei ≈ 0.0557V  for each player i ∈ N.

Given these results, the expected total effort that will be exerted in equilibrium is

4 × 0.0513V) + (2 × 0.0595V) + (2 × 0.0232V)

+ p2
(

2 ×
V

4

)

+ p(1 − p)
(

2 ×
6V

27

)

+ (1 − p)2
(

4 ×
V

8

)

= 0.7585V ,

e3

e3 + e4

(

e1

e1 + e2
0.2454V +

e2

e1 + e2
0.0091V

)

+
e4

e3 + e4

(

e1

e1 + e2
0.2143V +

e2

e1 + e2
0.0046V

)

− e1.

(4 × 0.0557V) +
1

2
��W +

1

2
��L = 0.7496V ,
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where

is the expected total equilibrium effort (after the first round) in case winners of the 
first round compete against each other and

is the expected total equilibrium effort (after the first round) in case each win-
ner of the first round competes with the non-played loser of the first round, where 
p ≈ 0.7195 as calculated earlier.   ◻

Krumer et al. (2017a) and Sahm (2019) report that a sequential round-robin tour-
nament (in which no pair of component battles take place at the same time) is dis-
criminatory in the sense that symmetric players end up with different winning prob-
abilities in the equilibrium. However, it is left as a conjecture that a round-robin 
tournament would be fair if the battles in the same round were scheduled to take 
place at the same time. This conjecture is proven by our Propositions 1 and 2: the 
unique SPNE is symmetric, so that each player has the same winning probability in 
the equilibrium.9

Another related observation is that the expected total equilibrium effort in a 
sequential round-robin tournament is 0.7299V (see Sahm 2019). Given the expected 
total equilibrium effort reported in our Proposition  2 above, it can be seen that a 
round-robin tournament with simultaneous battles is more intense than a round-
robin tournament with sequential battles.

In the following two sections, we formally introduce various versions of our 
alternative tournament model and identify the optimal one(s) after reporting their 
expected total equilibrium efforts and expected equilibrium efforts per battle.10

3  An alternative tournament model

Consider four symmetric players in the player set N = {1, 2, 3, 4} . In a similar man-
ner, we define an alternative tournament model by ΓAT =

(

N,
(

M∗
t

)

,P(⋅),V
)

 , where 
(

M∗
t

)

 now represents a potentially longer sequence of component battles. The tourna-
ment procedure is as follows. In each round, players are pairwise matched. For each 
pair of players, there is a component battle in which the players choose how much 
effort to exert, a Tullock contest success function determines who wins the battle, 

��W ≈ (2 × 0.1898V) + (2 × 0.0046V) +
1

4

(

2 ×
6V

27

)

,

��L ≈ (2 × 0.0595V) + (2 × 0.0232V)

+ p2
(

2 ×
V

4

)

+ p(1 − p)
(

2 ×
6V

27

)

+ (1 − p)2
(

4 ×
V

8

)

,

9 We thank an anonymous reviewer for bringing this to our attention.
10 The “per battle” adjustment we make here is similar to the one in Laica et al. (2017), who used aggre-
gate effort per unit of prize money per match as a measure of intensity to correct for the differing number 
of matches while comparing tournaments with different number of players.
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and the winning player collects one point from this round. Similar to a round-robin 
tournament, assuming that players i, j ∈ N are matched in a given round, player  i 
wins the battle with a probability of

where ei, ej ∈ [0,∞) denote the respective efforts exerted. If both players exert zero 
effort, then a tie-breaker rule applies: the player with more battle victories wins with 
a probability of 1, but if both players have the same number of battle victories, then 
each player would have a winning probability of 1/2. The two battles in the same 
round take place at the same time. We also assume that the marginal cost of effort is 
one for every player and in each round.

Each player’s objective is to collect a total of three battle victories before any of 
the other players succeeds the same. If a player achieves this on her own, then the 
tournament ends, that player is declared to be the tournament champion, and she 
collects a winning prize of V > 0 . Given the tournament design, there may be two 
players who achieve this at the same time, and for that, we consider two specifica-
tions of the model: (i)  both three-victory players win the tournament and equally 
share a total prize of V;11 and (ii) there is an additional round where the three-vic-
tory players compete in a final game to determine the tournament champion who 
will then collect a prize of V.

This tournament design displays some similarities with a round-robin tour-
nament, a Swiss tournament, and a race. The first three rounds are played as in a 
round-robin tournament with a Swiss-type endogenous schedule. Notice that if one 
player wins three component battles in three rounds, the tournament ends exactly in 
three rounds with that player becoming the champion. However, it is also possible 
that such a player does not exist, in which case we either have two or three play-
ers with two battle victories.12 In this latter case, our alternative model allows for 
tie-braking games to be played in additional rounds. This is a direct consequence of 
defining a victory threshold, which is an apparent similarity to a race model.

Before proceeding further, it is essential to recall the anonymity assumption on 
notation: a node is denoted by a quadruple (a, b, c, d), which represents all cases in 
which one player has a battle victories, another player has b battle victories, and so 
on. As such, the players’ identities do not matter when reporting our results.

As it was the case earlier, we consider two versions for the second round match-
ups: (a) winners of the first round compete against each other, or (b) each winner 
of the first round competes with the non-played loser of the first round. But now, if 
the tournament is not finalized in three rounds, there are two possible nodes in the 
fourth round: (2, 2, 1, 1) or (2, 2, 2, 0). For the former node, there are three versions: 
(a) the leaders compete against each other, (b) the leader who defeated the other 
leader competes with the laggard who defeated the other laggard, or (c) the leader 

ei

ei + ej
,

11 Compared to a round-robin tournament, this specification tries to break the tie after the first three 
rounds, but if tie is not broken, there will be two co-champions.
12 It is worth reminding here that in any version of round-robin tournaments considered in Sect. 2, all 
two-victory players become co-champions.
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who defeated the other leader competes with the laggard who was defeated by the 
other laggard. For the latter node, there are three versions: (a)  the leader who lost 
in the first round competes with the laggard, (b) the leader who lost in the second 
round competes with the laggard, or (c) the leader who lost in the third round com-
petes with the laggard. Furthermore, in case the tournament is not finalized in four 
rounds, (2, 2, 2, 2) would be the only possible node in the fifth round. Given that it 
is a symmetric node, we do not make any specific assumption here. This leads to 
2 × 3 × 3 = 18 tournament structures. And considering the two specifications men-
tioned earlier, we have a total of 36 alternative tournament structures.

Finally, Fig. 2 illustrates which nodes are followed in this alternative tournament 
model, with versions differing in the second round battles. Similarly as in the previ-
ous figure, the game starts on the left, ends on the right, and each movement from 
one node to another is due to the outcomes of two component battles that simultane-
ously take place in the respective round. It is worth noting that the figure does not 
distinguish between the fourth round match-ups, and as such, not all nodes are pos-
sible in all 36 alternative tournament structures.

4  The results

In this section, we compare different tournament structures mentioned above on the 
basis of expected equilibrium effort per battle. This comparison criterion is defined 
as the expected total equilibrium effort divided by the expected number of battles. 
Thus, the comparison analysis requires the calculation of expected total equilibrium 
effort and expected number of battles for each tournament structure. The follow-
ing two lemmas are concerned with the tournament structures that yield the highest 

Fig. 2  Two versions of the alternative tournament model
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expected total equilibrium effort under each specification of our tournament model: 
(i) two three-victory players equally share V and (ii) those three-victory players com-
pete in a final game after which the winner collects V. In that regard, the complete 
characterization of equilibrium strategies in each version of our model is necessary. 
Considering the length of the equilibrium analyses for all 36 tournament structures, 
we do not report them in the main body of the paper. The equilibrium efforts and 
winning probabilities are reported in a supplementary file.13

Lemma 1 In the alternative tournament model, consider the first specification with 
co-champions. Among the 18 possible versions, expected total equilibrium effort is 
maximized when (i) in the second round, a winner of the first round competes with 
the non-played loser of the first round; (ii) on node (2, 2, 1, 1) of the fourth round, 
a leader competes with either laggard; and (iii) on node (2, 2, 2, 0) of the fourth 
round, the leader who lost in the second round competes with the laggard. The 
respective expected total equilibrium effort is 0.7929 V.

Proof The equilibrium analysis follows as in the proof of Proposition 1. For each 
version of the tournament, by performing backward induction, starting from the fur-
thest decision node (2,2,2,2) and ending at the first decision node (0,0,0,0), we char-
acterize the unique stationary subgame perfect Nash equilibrium of the model.

The interested reader is referred to the supplementary material for the respective 
equilibrium efforts and equilibrium winning probabilities on each possible node. 
Here we summarize the expected total equilibrium efforts in Table 1.   ◻

Table 1  The expected total 
equilibrium efforts under 
specification C

Specification: co-champion

4th round 2nd round (i.e., Node (1,1,0,0))

Node  
(2,2,1,1)

Node 
(2,2,2,0)

Winner vs. winner Winner vs. loser

a a CW1: 0.7732 V CL1: 0.7539 V
a b CW2: 0.7515 V CL2: 0.7775 V
a c CW3: 0.7612 V CL3: 0.7480 V
b a CW4: 0.7732 V CL4: 0.7558 V
b b CW5: 0.7515 V CL5: 0.7929 V
b c CW6: 0.7612 V CL6: 0.7520 V
c a CW7: 0.7732 V CL7: 0.7558 V
c b CW8: 0.7515 V CL8: 0.7929 V
c c CW9: 0.7612 V CL9: 0.7520 V

13 The online supplementary file is available on the corresponding author’s web page, https:// sites. 
google. com/ site/ emink arago zoglu/ home/ resea rch.

https://sites.google.com/site/eminkaragozoglu/home/research
https://sites.google.com/site/eminkaragozoglu/home/research
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The intuition is that if in the second round, a winner of the first round competes 
with the non-played loser of the first round (as specified in (i)), then a possible third 
round battle is between a player with two battle victories and a player who won the 
first round battle but lost the second round battle. The latter player knows that if she 
wins in the third round, she will be playing against a totally discouraged player in 
the fourth round (as specified in (iii)). This creates an additional incentive for that 
player to exert a higher effort in the third round against her opponent who already 
has a strong incentive to exert high effort due to her two battle victories.

As for (ii), on node (2,2,1,1), if the leaders compete against each other, then they 
would exert V/4 and end up with an expected payoff of V/4 each; but if a leader 
competes with a laggard, then the laggards would be totally discouraged, so that 
even the leaders would have no reason to exert any effort, but then they would end 
up with an expected payoff of V/2 each. Since the latter expected payoff is much 
higher, it creates an additional incentive to exert higher efforts in the earlier rounds. 
Note also that although some positive amount of total effort would be exerted in the 
former case, as it turns out, its overall effect is not dominant due to the fact that node 
(2,2,1,1) will not be visited with a high probability.

Lemma 2 In the alternative tournament model, consider the second specifica-
tion with a final game. Among the 18 possible versions, expected total equilibrium 
effort is maximized when (i) in the second round, winners of the first round compete 
against each other; and (ii) on node (2, 2, 2, 0) of the fourth round, the leader who 
lost in the first round competes with the laggard. The respective expected total equi-
librium effort is 0.7851 V.

Proof The equilibrium analysis follows as in the proof of Proposition 1. For each 
version of the tournament, by performing backward induction, starting from the 
final game and ending at the first decision node (0,0,0,0), we characterize the unique 
stationary subgame perfect Nash equilibrium of the model.

Table 2  The expected total 
equilibrium efforts under 
specification F

Specification: final Game

4th round 2nd round (i.e., Node (1,1,0,0))

Node  
(2,2,1,1)

Node 
(2,2,2,0)

Winner vs. winner Winner vs. loser

a a FW1: 0.7851 V FL1: 0.7447 V
a b FW2: 0.7582 V FL2: 0.7560 V
a c FW3: 0.7619 V FL3: 0.7473 V
b a FW4: 0.7851 V FL4: 0.7460 V
b b FW5: 0.7582 V FL5: 0.7604 V
b c FW6: 0.7619 V FL6: 0.7479 V
c a FW7: 0.7851 V FL7: 0.7460 V
c b FW8: 0.7582 V FL8: 0.7604 V
c c FW9: 0.7619 V FL9: 0.7479 V
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The interested reader is referred to the supplementary material for the respective 
equilibrium efforts and equilibrium winning probabilities on each possible node. 
Here we summarize the expected total equilibrium efforts in Table 2.   ◻

The intuition is quite similar to the one we provided for Lemma 1. The match-ups 
specified in (i) and (ii) aim to motivate the player who will be competing against 
an opponent with two victories in the third round. There are two differences. First, 
given the current second round battles, we see that node (2,2,1,1) is not reached 
in equilibrium.14 Accordingly, the match-ups on node (2,2,1,1) will not have any 
effect on the expected total equilibrium effort. Second, there is now an important 
final game in which players would exert a total contest effort of V/2. Thus, the ver-
sion where the probability of reaching node (3,3,2,0)15 is the highest turns out to be 
the total-effort-maximizing one.

This brings us to the calculation of expected number of battles. Notice that 
although there are always six component battles in a round-robin tournament with 
four players (as analyzed in Sect. 2), the expected number of battles varies in each 
version of our alternative tournament model. The following proposition considers 
all those expected values and reports the tournament structures that yield the highest 
expected equilibrium efforts per battle under each specification.

Proposition 3 Considering all versions of the alternative tournament model, CL5 
and CL8 maximize the expected equilibrium effort per battle in the co-champion 
specification, while FL5 and FL8 maximize the expected equilibrium effort per bat-
tle in the final game specification. The respective maximum values are 0.1249V for 
the former pair and 0.1251V for the latter pair.

Proof See Tables 3 and 4 for all calculated values.

Table 3  The expected number 
of battles

CW CL FW FL

1 6.3636 6.1193 6.3158 6.0289
2 6.1250 6.2748 6.0938 6.0761
3 6.2000 6.0806 6.1154 6.0113
4 6.3636 6.1439 6.3158 6.0326
5 6.1250 6.3490 6.0938 6.0795
6 6.2000 6.1012 6.1154 6.0118
7 6.3636 6.1439 6.3158 6.0326
8 6.1250 6.3490 6.0938 6.0795
9 6.2000 6.1012 6.1154 6.0118

14 This is because the player with no victory is totally discouraged on node (2,1,1,0) in equilibrium.
15 This is the only reachable node that leads to a final game.
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The interested reader is referred to the supplementary material for details.   ◻
Given the expected total equilibrium efforts presented in Propositions 1 and 2 for 

three versions of a round-robin tournament and the expected equilibrium efforts per 
battle reported in Proposition 3 for all versions of the alternative tournament model, 
we are now ready to state our main result in the following proposition. In short, we 
show that a version of the round-robin tournament with an endogenous schedule 
outperforms the other tournament structures considered here.

Proposition 4 Among all the tournament structures considered in this paper, the 
round-robin tournament with an endogenous schedule in which each winner of the 
first round competes with the non-played loser of the first round in the second round 
maximizes the expected equilibrium effort per battle.

Proof There are six component battles in any version of a round-robin tournament 
with four players. Given the expected total equilibrium efforts reported in Proposi-
tions 1 and 2, we can find that the maximum expected equilibrium effort per bat-
tle is reached in the version in which each winner of the first round competes with 
the non-played loser of the first round in the second round. The maximum value 
is 0.1264V. This completes the proof since this value is greater than any expected 
equilibrium effort per battle reported in Table 4.   ◻

As observed in Tables 1 and 2, there is no big difference between the expected 
total equilibrium efforts in our alternative model and in round-robin tourna-
ments. And as observed in Table  3, the versions of the alternative model that 
yield higher total efforts mostly have higher expected number of battles. Accord-
ingly, when our comparison criterion normalizes the total effort by dividing it by 
the expected number of battles, a round-robin tournament with an endogenous 
schedule comes out as the best performer. However, it is worth noting that the 
second-best performer is FL5 or FL8, which yields a higher expected equilib-
rium effort per battle compared to a standard round-robin tournament with an 
exogenous schedule (also to the other tournament structures considered here). 
This indicates that switching to an endogenous schedule improves the model’s 

Table 4  The expected 
equilibrium efforts per battle

CW CL FW FL

1 0.1215 V 0.1232 V 0.1243 V 0.1235 V
2 0.1227 V 0.1239 V 0.1244 V 0.1244 V
3 0.1228 V 0.1230 V 0.1246 V 0.1243 V
4 0.1215 V 0.1230 V 0.1243 V 0.1237 V
5 0.1227 V 0.1249 V 0.1244 V 0.1251 V
6 0.1228 V 0.1233 V 0.1246 V 0.1244 V
7 0.1215 V 0.1230 V 0.1243 V 0.1237 V
8 0.1227 V 0.1249 V 0.1244 V 0.1251 V
9 0.1228 V 0.1233 V 0.1246V 0.1244 V
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performance, whereas adding a winning threshold and as such creating a poten-
tially longer tournament structure decreases the performance, when the objec-
tive is to maximize expected equilibrium effort per battle.

We conclude our comparison results by returning back to expected total equi-
librium effort and using it as another comparison criterion. Since all necessary 
calculations are already made above, we can directly state that among all the 
tournament structures considered in this paper, CL5 and CL8 maximize the 
expected total equilibrium effort. At this point, noting that which comparison 
criterion is more appealing is a matter of debate, we provide a brief discussion 
on the pros and cons of the two criteria. While expected total equilibrium effort 
would be useful as a comparison criterion especially when the contest designer 
is concerned with the total revenue generated, expected equilibrium effort per 
battle is arguably more useful in case the designer is mostly concerned with the 
competitiveness of the tournament. Another important issue is that expected 
total equilibrium effort may be considered undesirable, since it favors longer 
(but, possibly less exciting) tournaments. On the other hand, it can also be 
argued that expected equilibrium effort per battle is undesirable, as it favors very 
short tournaments with one or two battles, which may be difficult to implement 
due to fairness concerns.

Finally, while conducting our analysis we made some further observations on 
the equilibrium path, which we think are worthy of presenting here.

• If node (2, 2, 1, 1) is reached and if the leaders do not compete against each 
other in the current round, then the laggards are totally discouraged in their 
respective contests. The game moves to node (3,  3,  1,  1) for sure. That is, 
the game never reaches node (2, 2, 2, 2) in equilibrium: a maximum of four 
rounds will be played (neglecting the final game).

• A player who won at most once in the first three rounds is totally discour-
aged. In particular, a player who lost the first two rounds is totally discour-
aged.

• If node (2,  1,  1,  0) is reached and (a) if the leader competes with the lag-
gard, then the game moves to node (3, 2, 1, 0) for sure; but (b) if the leader 
competes with a one-victory player, then the game moves either to node 
(3, 2, 1, 0) or to node (2, 2, 2, 0). The game never reaches node (3, 1, 1, 1) in 
equilibrium.

5  Conclusion

In this paper we propose a novel tournament design that incorporates some prop-
erties of a round-robin tournament, a Swiss tournament, and a race. We conduct 
equilibrium analyses for various versions of our alternative model as well as three 
versions of a round-robin tournament. Afterward, we compare all those tournament 
structures on the basis of expected equilibrium effort per battle. We find that many 
versions of the alternative tournament model yield higher expected total equilib-
rium efforts compared to round-robin tournaments. However, due to the fact that 
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the alternative model has relatively higher expected number of battles than round-
robin tournaments, it turns out that a round-robin tournament with an endogenous 
schedule yields the highest expected equilibrium effort per battle. At the very end, 
some further observations on the equilibrium behavior in our tournament design are 
presented. Future work may study fairness properties of our tournament, conduct 
comparisons using different objective criteria, and develop computational methods 
to extend it to more than four players and/or three battle victories.
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