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Abstract
In Arrovian social choice theory assuming the independence of irrelevant alternatives,
Murakami (Logic and social choice, Dover Publications, New York, 1968) proved
two theorems about complete and transitive collective choice rules satisfying strict
non-imposition (citizens’ sovereignty), one being a dichotomy theorem about Pare-
tian or anti-Paretian rules and the other a dictator-or-inverse-dictator impossibility
theorem without the Pareto principle. It has been claimed in the later literature that a
theorem of Malawski and Zhou (Soc Choice Welf 11(2):103–107, 1994) is a general-
ization of Murakami’s dichotomy theorem and that Wilson’s impossibility theorem (J
Econ Theory 5(3):478–486, 1972) is stronger thanMurakami’s impossibility theorem,
both by virtue of replacing Murakami’s assumption of strict non-imposition with the
assumptions of non-imposition and non-nullness. In this note, we first point out that
these claims are incorrect: non-imposition and non-nullness are together equivalent
to strict non-imposition for all transitive collective choice rules. We then generalize
Murakami’s dichotomy and impossibility theorems to the setting of incomplete social
preference. We prove that if one drops completeness from Murakami’s assumptions,
his remaining assumptions imply (i) that a collective choice rule is either Paretian, anti-
Paretian, or dis-Paretian (unanimous individual preference implies noncomparability)
and (ii) that adding proposed constraints on noncomparability, such as the regularity
axiom of Eliaz and Ok (Games Econ Behav 56:61–86, 2006), restores Murakami’s
dictator-or-inverse-dictator result.
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1 Introduction

In an innovative monograph applying multi-valued logic to social choice theory,
Murakami (1968) proved the first theorems in what has become a subgenre of the
social choice literature on “social choice without the Pareto principle” (see, e.g.,
Wilson 1972; Fountain and Suzumura 1982; Border 1983; Kelsey 1984; Campbell
1989; Malawski and Zhou 1994; Miller 2009; Cato 2012, 2016; Coban and Sanver
2014; Holliday and Pacuit 2018). Working in the setting of Arrovian social choice
assuming the independence of irrelevant alternatives, Murakami’s method was to first
prove a dichotomy theorem for Paretian or anti-Paretian rules and then, by analyzing
each case, to prove a dictator-or-inverse-dictator theorem without the Pareto princi-
ple. In this note, we first correct a misconception in the literature about the strength of
Murakami’s theorems relative to later results ofWilson (1972) andMalawski andZhou
(1994). We do so by proving an equivalence between strict non-imposition, assumed
in Murakami’s theorems, and the combination of non-imposition and non-nullness,
assumed in the later results, where this equivalence holds not only for the complete and
transitive collective choice rules to which the cited results apply but more generally
for all transitive collective choice rules. We then generalize Murakami’s theorems to
the setting of possibly incomplete social preference (see, e.g., Sen 1970; Barthelemy
1983; Weymark 1984; Pini et al. 2008; Cato 2013, 2018). Under the assumptions
of his dichotomy theorem except for completeness, we prove a trichotomy theorem:
a collective choice rule is either Paretian, anti-Paretian, or dis-Paretian (unanimous
individual preference implies noncomparability). Finally, by analyzing each case of
the trichotomy theorem, we prove a dictator-or-inverse-dictator theorem first under
the assumption of regularity of social preference (Eliaz and Ok 2006) and then under
the weaker assumption of minimal comparability (Cato 2018).

Let us briefly recall the setup of Arrovian social choice. Fix a nonempty set X of
alternatives and a nonempty set V of voters. We assume that |X | ≥ 3 and V is finite
(thoughwewill lift this finiteness assumption in the next section). For a binary relation
R on some Y ⊆ X , we write ‘x Ry’ for (x, y) ∈ R and define binary relations P(R),
I (R), and N (R) on Y by: x P(R)y if and only if x Ry and not yRx ; x I (R)y if and
only if x Ry and yRx ; and xN (R)y if and only if neither x Ry nor yRx . We say that
R is complete if for all x, y ∈ Y , x Ry or yRx ; R is transitive if for all x, y, z ∈ Y ,
if x Ry and yRz, then x Rz; and R is quasi-transitive if P(R) is transitive. If R is
transitive, then it is quasi-transitive and satisfies the following for all x, y, z ∈ Y :

PR-transitivity: if x P(R)y and yRz, then x P(R)z; (1)

RP-transitivity: if x Ry and yP(R)z, then x P(R)z. (2)

Let B(Y ) be the set of all binary relations on Y and O(Y ) the set of all complete and
transitive binary relations on Y . A profile on Y ⊆ X is a function R : V → O(Y ).
For i ∈ V , we write ‘Ri ’ for R(i). We call a profile on X simply a profile, and for any
profile R and Y ⊆ X , we define R|Y to be the profile on Y assigning to each i ∈ V
the relation Ri ∩ Y 2. A collective choice rule (CCR) is a function f : D → B(X)
where D is some nonempty set of profiles. A CCR f satisfies universal domain (UD)
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A note on Murakami’s theorems and incomplete social choice… 245

if D is the set of all profiles; f is complete (resp. transitive) if for all R ∈ dom( f ),
f (R) is complete (resp. transitive); f is a social welfare function (SWF) if for all
R ∈ dom( f ), f (R) is complete and transitive; f is null if for all x, y ∈ X and
R ∈ dom( f ), not x P( f (R))y; f is Paretian (resp. anti-Paretian) if for all x, y ∈ X
and R ∈ dom( f ), if x P(Ri )y for all i ∈ V , then x P( f (R))y (resp. yP( f (R))x);
and f is dictatorial (resp. inversely dictatorial) if there is an i ∈ V such that for all
x, y ∈ X and R ∈ dom( f ), if x P(Ri )y, then x P( f (R))y (resp. yP( f (R))x). The
first result in Sect. 2 concerns a logical relation between the following axioms for
CCRs:

• free triple property (FT): for any Y = {x, y, z} ⊆ X and profile Q on Y , there is
an R ∈ dom( f ) such that R|Y = Q.

• independence of irrelevant alternatives (IIA): for all R,R′ ∈ dom( f ) and
x, y ∈ X , if R|{x,y} = R′|{x,y}, then x f (R)y if and only if x f (R′)y.

• non-nullness (NN): f is not null.
• non-imposition (NI): for all x, y ∈ X , there is an R ∈ dom( f ) such that x f (R)y.
• strict non-imposition (SNI) (called ‘citizens’ sovereignty’ in Arrow 1951): for all

x, y ∈ X with x �= y, there is an R ∈ dom( f ) such that x P( f (R))y.
For the sake of simplicity, we state all theorems in this section in terms of the same
domain condition, UD, rather than FT or other domain conditions used in the original
theorems or later refinements (see Campbell and Kelly 2002). But for the sake of
generality, we prove several results in Sect. 2 under the weaker assumption of FT.

Arrow’s (1951) original impossibility theorem1 states that any SWF satisfying UD,
IIA, SNI, and an additional axiom of positive association of social and individual
values (PA) is dictatorial. Later Arrow (1963, p. 97, Theorem 2) replaced SNI and PA
by the assumption that the SWF is Paretian, resulting in the statement usually quoted
as Arrow’s Theorem today: any Paretian SWF satisfying UD and IIA is dictatorial.

Murakami (1968) clarified the relation between Arrow’s theorems and the Pareto
principle with the following results.

Theorem 1 (Murakami 1968, p. 101, Theorem 6-1) Any SWF satisfying UD, IIA, and
SNI is either Paretian or anti-Paretian.

Theorem 2 (Murakami 1968, p. 103, Theorem 6-2) Any SWF satisfying UD, IIA, and
SNI is either dictatorial or inversely dictatorial.

Murakami originally stated the second theorem as an impossibility theorem: there
is no SWF satisfying UD, IIA, SNI, non-dictatorship, and non-persecution ( f is not
inversely dictatorial). The logically equivalent form in Theorem 2 is the form given
in Cato 2012.2

It has been suggested in the subsequent literature that Murakami’s theorems were
“generalized” or “strengthened” by the following results (with Theorem 3 stated
in the form given in Cato 2012).

1 As corrected by Blau (1957) to use UD.
2 Note that Theorem 2 immediately implies Theorem 1, as dictatorial (resp. inversely dictatorial) implies
Paretian (resp. anti-Paretian). Conversely, Theorem 2 can be proved from Theorem 1 and Arrow’s theorem
as follows: if f is Paretian, then it is dictatorial by Arrow’s theorem, while if f is anti-Paretian, then it is
inversely dictatorial—for if not, then the SWF f 	 defined by x f 	(R)y if and only if y f (R)x is Paretian
and non-dictatorial, contradicting Arrow’s theorem.
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246 W. H. Holliday, M. Kelley

Theorem 3 (Malawski and Zhou 1994) Any SWF satisfying UD, IIA, and NI is either
null, Paretian, or anti-Paretian.

Theorem 4 (Wilson 1972) Any SWF satisfying UD, IIA, and NI is either null, dicta-
torial, or inversely dictatorial.

Concerning the logical relation between Theorems 1 and 3, Malawski and Zhou
(1994, p. 107) claim that their result is “slightlymore general” thanMurakami’s.Where
P and AP stand for the Paretian and anti-Paretian properties, respectively, they write:

Using the notations developed in the paper, Proposition 1 [Theorem 3] can be
stated as: [FT, IIA, and NI] ⇒ [P, or AP, or nullness], while Murakami’s result
is: [FT, IIA, and SNI] ⇒ [P or AP]. Since SNI is a condition stronger than
NI and excludes the possibility of nullness, Murakami’s result is implied by
Proposition 1. (p. 107)

Similarly, Cato (2012, p. 874) writes, “Malawski and Zhou (1994) establish a gener-
alization of Murakami’s Theorem 6-1.”

But these claims of generalization are incorrect. For the implication

[FT, IIA, and NI] ⇒ [P, or AP, or nullness]

is logically equivalent to

[FT, IIA, NI, and NN] ⇒ [P or AP],

which is not a generalization of Murakami’s implication

[FT, IIA, and SNI] ⇒ [P or AP],

due to the following fact (implied by Proposition 5 below):

[FT and IIA] ⇒ [(NI and NN) ⇔ SNI].

Concerning the logical relation between Theorems 2 and 4, Campbell and Kelly
(2002, p. 53) write thatMurakami’s theorem “is in the same vein asWilson’s Theorem,
but not as strong”. Similarly, Cato (2012, p. 874) writes: “Wilson (1972) imposes NI
instead of SNI, and obtains a stronger result” thanMurakami (and in Cato 2010, p. 269:
“Murakami’s theorem (1968, Theorem 6.2, p. 103) is weaker thanWilson’s theorem”).
But these statements are incorrect for the same reason as noted above. Where D and
ID stand for the dictatorial and inversely dictatorial properties, respectively, Wilson’s
implication

[UD, IIA, and NI] ⇒ [D, or ID, or nullness]

is logically equivalent to

[UD, IIA, NI, and NN] ⇒ [D or ID],
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A note on Murakami’s theorems and incomplete social choice… 247

which is not stronger than Murakami’s implication

[UD, IIA, and SNI] ⇒ [D or ID],

due to the fact that NI and NN are together equivalent to SNI relative to UD and IIA
(again, by Proposition 5 below).

In fact, Wilson’s own theorem refutes the claim that Theorem 4 is stronger than
Theorem 2. For Wilson proves

[UD, IIA, NI, and NN] ⇒ [D or ID],

and clearly

[UD and (D or ID)] ⇒ SNI,

so we see that Murakami’s assumptions are implied by Wilson’s:

[UD, IIA, NI, and NN] ⇒ [UD, IIA, and SNI].

Hence Wilson’s theorem is not a stronger result. By analogous reasoning, Malawski
and Zhou’s own theorem refutes the claim that Theorem 3 is a generalization of
Theorem 1, as clearly [FT and (P or AP)] ⇒ SNI.

Moreover, the equivalence between SNI, on the one hand, and the combination of
NI and NN, on the other, holds in an even more general setting than that of Murakami
(1968), Wilson (1972), and Malawski and Zhou (1994). Since at least Sen (1970),
there has been interest among social choice theorists in dropping the requirement that
the social preference relation be complete (Barthelemy 1983; Weymark 1984; Pini
et al. 2008; Cato 2013, 2018). In this setting, all of the theorems cited above fail (see
Remark 7). Yet we will prove that the equivalence of SNI and the combination of NI
and NN holds in the incomplete setting, in which we then prove generalizations of
Theorems 1 and 3 and Theorems 2 and 4 .

2 Results

We now let V be of arbitrary cardinality, so the next two results apply to social choice
with infinite electorates, where Wilson’s theorem does not hold without additional
assumptions (see, e.g., Fishburn 1970;Kirman andSondermann 1972;Campbell 1990)
and hence cannot be used to prove even the special case of Proposition 5 for SWFs.

Proposition 5 If f is a transitive CCR satisfying FT and IIA, then f satisfies NI and
NN if and only if f satisfies SNI.

Proof For any CCR f , SNI clearly implies NI and NN. So we are left to show that
if f is a transitive CCR that satisfies FT, IIA, NI, and NN, then f satisfies SNI. Fix
z, w ∈ X such that z �= w. We show there is an R ∈ dom( f ) such that zP( f (R))w.
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248 W. H. Holliday, M. Kelley

By NN, there are some x �= y and Rx,y ∈ dom( f ) such that x P( f (Rx,y))y. There
are six cases to consider:

1. z = y and w = x; 4. z = y and w �= x, y;
2. z �= x, y and w = y; 5. z �= x, y and w = x;
3. z = x and w �= x, y; 6. z �= x, y and w �= x, y.

For case 2, by NI, let R1 ∈ dom( f ) be such that z f (R1)x . For each i ∈ V , define
a binary relation Q0

i on {x, y, z} by:

aQ0
i a for all a ∈ {x, y, z};

xQ0
i z ⇔ xR1

i z, and zQ0
i x ⇔ zR1

i x;
xQ0

i y ⇔ xRx,y
i y, and yQ0

i x ⇔ yRx,y
i x;

yQ0
i z ⇔ [yRx,y

i x & xR1
i z], and zQ0

i y ⇔ [zR1
i x & xRx,y

i y].

Then Q0
i is a transitive relation on {x, y, z}. It follows (see Szpilrajn 1930; Arrow

1963, p. 64) that there is a complete and transitive relation Qi on {x, y, z} such that
Q0

i ⊆ Qi and P(Q0
i ) ⊆ P(Qi ). Let Q be the profile on {x, y, z} that assigns Qi to

voter i . Then by FT, there is anR ∈ dom( f ) such thatR|{x,y,z} = Q. By IIA, z f (R1)x
implies z f (R)x , and x P( f (Rx,y))y implies x P( f (R))y, so zP( f (R))y by (2).

For case 3, by NI, take R1 ∈ dom( f )with y f (R1)w. Then, as in case 2, there is an
R ∈ dom( f ) with R|{x,y} = Rx,y |{x,y} and R|{y,w} = R1|{y,w}. By IIA, x P( f (R))y
and y f (R)w, so x P( f (R))w by (1).

For case 4, by NI, takeR1 ∈ dom( f )with y f (R1)x . By case 3, takeR2 ∈ dom( f )
with x P( f (R2))w. Then, as above, there is an R ∈ dom( f ) with R|{x,y} = R1|{x,y}
and R|{x,w} = R2|{x,w}. By IIA, y f (R)x and x P( f (R))w, so yP( f (R))w by (2).

We now prove case 1. By case 4, take R1 ∈ dom( f ) with yP( f (R1))w. By NI,
take R2 ∈ dom( f ) with w f (R2)x . Then, as above, there is an R ∈ dom( f ) with
R|{y,w} = R1|{y,w} and R|{w,x} = R2|{w,x}. By IIA, yP( f (R))w and w f (R)x , so
yP( f (R))x by (1).

For case 5, by case 1, take R1 ∈ dom( f ) with yP( f (R1))x . By NI, take
R2 ∈ dom( f ) with z f (R2)y. Then, as above, there is an R ∈ dom( f ) with
R|{y,x} = R1|{y,x} and R|{z,y} = R2|{z,y}. By IIA, z f (R)y and yP( f (R))x , so
zP( f (R))x by (2).

For case 6, by case 5, take R1 ∈ dom( f ) with zP( f (R1))x . By case 3, take
R2 ∈ dom( f ) with x P( f (R2))w. Then, as above, there is an R ∈ dom( f ) with
R|{z,x} = R1|{z,x} and R|{x,w} = R2|{x,w}. By IIA, zP( f (R))x and x P( f (R))w, so
zP( f (R))w. �
Remark 6 Our definition of NN (there are x, y ∈ X and R ∈ dom( f ) with
x P( f (R))y) follows Campbell and Kelly (2002, p. 43) and Cato (2010, 2012, 2016).
Wilson (1972) and Malawski and Zhou (1994) use a different definition of NN: there
are x, y ∈ X and R ∈ dom( f ) such that not x f (R)y. Let us call our version and their
version strict NN (SNN) andweak NN (WNN), respectively. Then SNN andWNN are
equivalent for SWFs, but WNN is weaker than SNN for arbitrary transitive CCRs. In
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addition, Proposition 5 fails for WNN in place of SNN. To see this, fix a voter i ∈ V .
Define a CCR f such that for all x, y ∈ X and profiles R:

• if x I (Ri )y, then x I ( f (R))y;
• otherwise, xN ( f (R))y.

Then f satisfiesUD, IIA,NI, andWNN, and f is transitive. For if x f (R)y and y f (R)z,
then x I (Ri )y and y I (Ri )z, so x I (Ri )z by the transitivity of Ri . Thus, x f (R)z. But
f does not satisfy SNI. Hence f is neither Paretian nor anti-Paretian, and neither
dictatorial nor inversely dictatorial. Therefore, like Proposition 5, all of the theorems
in Sect. 1 fail if we replace SWFs with transitive CCRs and NN with WNN.

Remark 7 All of the theorems in Sect. 1 fail if we replace SWFs with transitive CCRs
and maintain the assumption of NN, i.e., SNN, discussed in Remark 6. Thus, none of
those theorems can be used to prove Proposition 5. To see that the theorems fail in this
setting, fix distinct voters i, j ∈ V . Define a CCR f such that for all x, y ∈ X and
profiles R:

• if x I (Ri )y and x P(R j )y, then x P( f (R))y;
• if x I (Ri )y and yP(R j )x , then yP( f (R))x ;
• otherwise, xN ( f (R))y (except if x = y, in which case x f (R)x).

Then f satisfies UD, IIA, and SNI, and f is transitive. For if x f (R)y and y f (R)z,
then x I (Ri )y, x P(R j )y, y I (Ri )z, and yP(R j )z, which together imply x I (Ri )z and
x P(R j )z by the transitivity of Ri and R j . Thus, x P( f (R))z. However, f is neither
Paretian nor anti-Paretian and hence neither dictatorial nor inversely dictatorial.

Remark 8 A number of authors have investigated CCRs f for which f (R) is required
to be complete and quasi-transitive but not necessarily transitive (see, e.g., Sen 1969;
Guha 1972; Mas-Colell and Sonnenschein 1972; Hansson 1976; Fountain and Suzu-
mura 1982; Gibbard 2014a, b). For this class of CCRs, the analogue of Proposition 5
does not hold. To see this, fix a voter i ∈ V and distinct alternatives a, b ∈ X . Define
a CCR f such that for all x, y ∈ X and profiles R:

• if {x, y} �= {a, b}, then x f (R)y;
• if {x, y} = {a, b}, then x f (R)y if and only if xRi y.

Then f is complete and quasi-transitive (as there are no x, y, z such that x P( f (R))y
and yP( f (R))z), and f satisfies UD, IIA, NI, and NN, but not SNI.

Next, we use Propositon 5 to show that together NI and NN are sufficient (given
FT and IIA) to prove a generalization of Murakami’s Theorem 1 and hence also of
Malawski andZhou’s Theorem3 to incompleteCCRs.Define aCCR to be dis-Paretian
if for all x, y ∈ X and R ∈ dom( f ), if x P(Ri )y for all i ∈ V , then xN ( f (R))y.

Theorem 9 Any transitive CCR satisfying FT, IIA, NI, and NN is either Paretian,
anti-Paretian, or dis-Paretian.

Proof Let f satisfy the hypothesis of the theorem. We say that V is weakly decisive
(resp. weakly inversely decisive) on x, y ∈ X for f if for any R ∈ dom( f ), if
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x P(Ri )y for all i ∈ V , then x f (R)y (resp. y f (R)x). We say that V is decisive
(resp. inversely decisive) on x, y ∈ X for f if for anyR ∈ dom( f ), if x P(Ri )y for all
i ∈ V , then x P( f (R))y (resp. yP( f (R))x).We first show that if V is weakly decisive
(resp. weakly inversely decisive) on some pair x, y, then f is Paretian (resp. anti-
Paretian).

Suppose V is weakly decisive (resp. weakly inversely decisive) on x, y.
Let a ∈ X\{x, y}. We show that V is decisive (resp. inversely decisive) on x, a.
Let R ∈ dom( f ) be such that x P(Ri )a for all i ∈ V . Since f satisfies NI and
NN, f satisfies SNI by Proposition 5. Thus, there is an Ry,a ∈ dom( f ) such that
yP( f (Ry,a))a (resp. aP( f (Ry,a))y). By FT, there is an R′ ∈ dom( f ) such that:

R′|{x,a} = R|{x,a};
R′|{y,a} = Ry,a |{y,a};
x P(R′

i )y for all i ∈ V .

Since V is weakly decisive (resp. weakly inversely decisive) on x, y, we have
that x f (R′)y (resp. y f (R′))x). By IIA, yP( f (R′))a (resp. aP( f (R′))y). So
by (2) (resp. (1)), x P( f (R′))a (resp. aP( f (R′))x). Hence by IIA, x P( f (R))a
(resp. aP( f (R))x). Therefore, V is decisive (resp. inversely decisive) on x, a. By
similar reasoning, V is decisive (resp. inversely decisive) on any a, b ∈ X , so f is
Paretian (resp. anti-Paretian).

We now prove the trichotomy. Fix x, y ∈ X and let R ∈ dom( f ) be such that
x P(Ri )y for all i ∈ V . If x f (R)y (resp. y f (R)x), then by IIA, V is weakly decisive
(resp. weakly inversely decisive) on x, y and hence f is Paretian (resp. anti-Paretian)
by the previous paragraph. Lastly, suppose xN ( f (R))y, so f is neither Paretian nor
anti-Paretian. Then for any a, b ∈ X and R′ ∈ dom( f ), if aP( f (R′

i ))b for all i ∈ V ,
then aN ( f (R′))b by the previous reasoning. Hence f is dis-Paretian. �
The CCR defined in Remark 7 shows that the third case of the trichotomy is possible.

Remark 10 Inspection of the proofs of Proposition 5 and Theorem 9 shows that full
transitivity is not needed. It suffices that f satisfies the conditions of PR-transitivity
and RP-transitivity from Sect. 1. To see that the combination of these properties is
weaker than transitivity,3 fix distinct alternatives a, b ∈ X and consider the CCR f
defined as follows for any x, y ∈ X and profile R:

• if x P(Ri )y for all i ∈ V , then x P( f (R))y;
• if yP(Ri )x for all i ∈ V , then yP( f (R))x ;
• if {x, y} �= {a, b} and x I (Ri )y for all i ∈ V , then x I ( f (R))y;
• otherwise, xN ( f (R))y (except if x = y, in which case x f (R)x).

Then f satisfies UD, IIA, SNI, and PR- and RP-transitivity. To see that f does not
satisfy transitivity, fix y ∈ X\{a, b} and consider a profile where aI (Ri )y I (Ri )b for
all i ∈ V . Then since aI (Ri )b for all i ∈ V , it follows that aI ( f (R))y and y I ( f (R))b
but aN ( f (R))b.

3 Sen (1969) observes that in the presence of completeness, transitivity is equivalent to the combination of
PR-transitivity and RP-transitivity.
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Finally, as a sample application of Theorem 9, we prove two generalizations of
Murakami’s impossibility theorem, Theorem 2, in the setting of incomplete social
preference. Weymark (1984, Corollary 2) observed that by dropping completeness
from Arrow’s axioms, while retaining the Paretian assumption, Arrow’s conclusion
weakens from a dictatorship to an oligarchy. Below we drop both completeness and
the Paretian assumption, but we add an axiom that distinguishes noncomparability,
N (R), from indifference, I (R). The result is aMurakami-style dictatorship-or-inverse-
dictatorship theorem. The additional axiom comes from the choice-theoretic analysis
of noncomparability vs. indifference by Eliaz and Ok (2006), who propose the follow-
ing property of noncomparability: for all x, y ∈ X , if xN (R)y, then there is a z ∈ X
such that one of the following holds: x P(R)z and zN (R)y; zP(R)x and zN (R)y;
yP(R)z and xN (R)z; or zP(R)y and xN (R)z. They call a binary relation R regular
if N (R) satisfies this property,4 and we call a CCR regular if f (R) is regular for every
R ∈ dom( f ). Intuitively, the key difference between N (R) and I (R) is as follows:
if x and y are equally good, and if we change x to a better alternative x ′ or a worse
alternative x ′, then x ′ should be better than y or worse than y, respectively; whereas
if x and y are noncomparable, then x ′ and y may still be noncomparable in either
case (cf. Chang 1997). Regularity requires that there be a witness to this difference
between N (R) and I (R). For the following result, we again assume that V is finite.

Theorem 11 Any transitive and regular CCR satisfying UD, IIA, NI, and NN is either
dictatorial or inversely dictatorial.

Proof Assume f is a CCR satisfying the hypothesis of the theorem. By Theorem 9, f
is Paretian, anti-Paretian, or dis-Paretian. First, we claim that f cannot be dis-Paretian
in light of regularity. Let L be a linear order on X , and let R be a profile such that
Ri = L for all i ∈ V . Then xN ( f (R))y for all distinct x, y ∈ X , so f is not regular.
Next suppose f is Paretian. Then byCorollary 2 ofWeymark 1984, there is a nonempty
coalition C ⊆ V that is decisive, i.e., for any x, y ∈ X and profile R, if x P(Ri )y for
all i ∈ C , then x P( f (R))y, and such that each i ∈ C has a strong veto, i.e., for any
x, y ∈ X and profile R, if x P(Ri )y, then not y f (R)x . If |C | ≥ 2, then take i, j ∈ C
with i �= j . Fix some linear order L on X , and define a linear order L ′ by xL ′y if
and only if yLx . Let R be a profile with Ri = L and R j = L ′. Then xN ( f (R))y for
all distinct x, y ∈ X , since i, j have strong vetoes. Again this contradicts regularity.
Hence |C | = 1, which with the decisiveness ofC implies that f has a dictator. Finally,
if f is anti-Paretian, then the CCR f 	 defined by x f 	(R)y if and only if y f (R)x is a
transitive and regular CCR satisfying UD, IIA, NI, and NN, which is Paretian. Hence
by the previous reasoning, f 	 has a dictator, so f has an inverse dictator. �
Remark 12 Adding to Theorem 11 the assumption that f is Paretian of course yields
that f is dictatorial. A referee informed us that Cato (2019, Theorem 2) independently
proved this impossibility result assuming Pareto. Our result is therefore a general-
ization of his without the Pareto principle. Note that Cato proves his result using an
ultrafilter approach whereas our proof in the Paretian case uses Weymark’s (1984)
oligarchy theorem.

4 Note that if R is complete, then R is trivially regular.
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We also learned that Cato (2018) proved a related dictatorship result using the
condition of minimal comparability—for all R ∈ dom( f ), there are distinct x, y ∈ X
such that x f (R)y—which is implied by regularity but not vice versa: any transitive and
Paretian CCR satisfying UD, IIA, and minimal comparability is dictatorial. Inspection
of our proof of Theorem 11 shows that it is minimal comparability that is violated if
there is no dictator or inverse dictator. Thus, we obtain the following generalization
of Cato’s (2018) result.5

Theorem 13 Any transitive CCR satisfying UD, IIA, NI, NN, and minimal compara-
bility is either dictatorial or inversely dictatorial.

3 Conclusion

The results of Wilson (1972) and Malawski and Zhou (1994) have not strengthened or
generalized Murakami’s (1968) original theorems. However, we have obtained gen-
uine generalizations of Murakami’s theorems in Theorem 9 and Theorems 11 and 13.
In proving Theorems 11 and 13, we extended what Cato (2012) calls “Murakami’s
method” to the incomplete setting: just as Murakami proved his impossibility theo-
rem by analyzing each case of his dichotomy theorem, we proved an impossibility
theorem by analyzing each case of the trichotomy theorem. A natural next step is to
use Murakami’s method to prove further impossibility results assuming axioms for
social preference other than those considered here. We leave the details of further
applications of Murakami’s method to incomplete social choice for future work.
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