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Abstract
Bogomolnaia and Moulin (J Econ Theory 100:295–328, 2001) show that there is no
rule satisfying stochastic dominance efficiency, equal treatment of equals and stochas-
tic dominance strategy-proofness for a probabilistic assignment problem of indivisible
objects. Recently, Mennle and Seuken (Partial strategyproofness: relaxing strategy-
proofness for the random assignment problem. Mimeo, 2017) show that stochastic
dominance strategy-proofness is equivalent to the combination of three axioms, swap
monotonicity, upper invariance, and lower invariance. In this paper, we introduce a
weakening of stochastic dominance strategy-proofness, called upper-contour strategy-
proofness, which requires that if the upper-contour sets of some objects are the same
in two preference relations, then the sum of probabilities assigned to the objects in the
two upper-contour sets should be the same. First, we show that upper-contour strategy-
proofness is equivalent to the combination of two axioms, upper invariance and lower
invariance. Next, we show that the impossibility result still holds even though stochas-
tic dominance strategy-proofness is weakened to upper-contour strategy-proofness.

1 Introduction

We consider a problem of allocating indivisible objects to a group of agents when
each agent is supposed to receive exactly one object and monetary compensations are
not allowed. This problem occurs frequently in many real-life situations: dormitory
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allocation in the university,work assignment toworkers, student assignment to primary
schools, etc.

It is obvious that the indivisibility of objects causes a difficulty in achieving fair-
ness. Suppose that there are two objects to be allocated to two agents with the same
preference relation. If agents strictly prefer one object to another, then each of the
two possible allocations will violate any reasonable notion of fairness. To overcome
this difficulty, we follow the literature and use lotteries to assign the objects. This
assignment problem was introduced by Hylland and Zeckhauser (1979).

Bogomolnaia and Moulin (2001) show that there is no rule satisfying three rea-
sonable requirements for the assignment problem, namely, stochastic dominance
efficiency, equal treatment of equals, and stochastic dominance strategy-proofness.
Stochastic dominance efficiency requires that a rule should choose an allocation
which is not stochastically dominated by another allocation. Equal treatment of equals
requires that if two agents have the same preference relation, then they should end up
with the same assignment. Stochastic dominance strategy-proofness requires that an
agent should not gain by misrepresenting her preference relation.1

Recently, Mennle and Seuken (2017) show that stochastic dominance strategy-
proofness is equivalent to the combination of three axioms, swap monotonicity, upper
invariance, and lower invariance.Swapmonotonicity requires that if one agent changes
her preference relation to another adjacent one by swapping two adjacent objects, then
either her assignment remains the same or a higher probability should be assigned to
the object with the higher rank in the revised preference relation. Upper invariance
requires that if one agent changes her preference relation to another adjacent one
by swapping two adjacent objects, then the probabilities of obtaining any object in
the strict upper-contour set of the two objects should not be affected. Finally, lower
invariance requires that if one agent changes her preference relation to another adjacent
one by swapping two adjacent objects, then the probabilities of obtaining any object
in the strict lower-contour set of the two objects should not be affected.

In this paper,we introduce aweakening of stochastic dominance strategy-proofness,
called upper-contour strategy-proofness, which requires that if the upper-contour sets
of some objects are the same in two preference relations, then the sum of probabilities
assigned to the objects in the two upper-contour sets should be the same. First, we
show that upper-contour strategy-proofness is equivalent to the combination of the two
axioms, upper invariance and lower invariance. Next, we investigate an existence of
rules satisfying upper-contour strategy-proofness together with stochastic dominance
efficiency and equal treatment of equals, and show that when the number of agents is
greater than three, the impossibility result still holds even though stochastic dominance
strategy-proofness is weakened to upper-contour strategy-proofness. On the other
hand, if the number of agents is three, we can characterize the random serial dictator
rule by imposing the three axiom. We present our second impossibility result by
deleting upper invariance and strengthening equal treatment of equals to strong equal
treatment of equals, which requires that if two agents have the same preference up to

1 Related impossibility results are given in Chang and Chun (2017), Kasajima (2013), Liu and Zeng (2019),
Mennle and Seuken (2017), Nesterov (2017), and Zhou (1990). On the other hand, possibility results can
be found in Bogomolnaia and Heo (2012), Bogomolnaia and Moulin (2002), Hashimoto et al. (2014), Heo
(2014), and Heo and Yılmaz (2015).
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some object starting from the most preferred object, then they should end up with the
same assignment up to that object.

This paper is organized as follows. Section 2 introduces themodel and basic axioms.
Section 3 introduces upper-contour strategy-proofness, and investigates its logical
relations with other axioms. Section 4 presents our main results.

2 Themodel

Let N = {1, . . . , n} be a finite set of agents. A typical agent is denoted by i ∈ N . Let
A = {a, b, c, d, o5, . . . , on} be a finite set of objects. A typical object is denoted by
k ∈ A. We assume that |N | = |A| = n. Each agent i ∈ N has a complete, transitive,
and antisymmetric binary relation Pi over A and a correspondingweak relation Ri . Let
Pi be the preference relation of agent i and P be the (universal) domain of preference
relations. Let P = (Pi )i∈N be a preference profile and PN be the (universal) domain
of preference profiles. Also, for each i ∈ N , let P−i = (Pj ) j∈N\{i}. Since we do
not vary either N or A, we write an assignment problem (simply, a problem) as a list
P ∈ PN . To simplify our notation, for each i ∈ N , we write Pi : abcd instead of
aPibPi cPid.

For each Pi ∈ P and each a ∈ A, let rank(Pi , a) be the rank of object a in Pi and
rm(Pi ),m = 1, . . . , n, be them-th ranked object according to Pi . Also, letU (Pi , a) =
{k ∈ A|kRia} be the upper contour set of a in Pi and L(Pi , a) = {k ∈ A|aRik} be
the lower contour set of a in Pi . Let Û (Pi , a) = {k ∈ A|kPia} be the strict upper
contour set of a in Pi and L̂(Pi , a) = {k ∈ A|aPi k} be the strict lower contour set of
a in Pi .

Let �(A) be the set of lotteries, or probability distributions over A. For all λ ∈
�(A), λa denotes the probability assigned to object a. A (probabilistic) allocation is
a bi-stochastic matrix L = [Lik]i∈N ,k∈A, namely a non-negative square matrix whose
elements in each row and each column sum to unity. LetL be the set of all bi-stochastic
matrices.

For each Pi ∈ P and each λ, λ′ ∈ �(A), λ stochastically dominates λ′ according
to Pi , denoted by λRsd

i λ′, if
∑t

�=1 λr�(Pi ) ≥ ∑t
�=1 λ′

r�(Pi )
for each t = 1, . . . , n. If

strict inequality holds for some t, then we write λPsd
i λ′. Similarly, for each P ∈ PN ,

an allocation L stochastically dominates another allocation L ′, denoted by LPsd L ′,
if for each i ∈ N , Li Rsd

i L ′
i and for some i ∈ N , Li Psd

i L ′
i . An allocation L satisfies

stochastic dominance efficiency (simply, sd-efficiency) if it is not stochastically dom-
inated by any other allocation. For each P ∈ PN , let Esd(P) be the set of sd-efficient
allocations for P .

A rule is a function which associates with each problem an allocation in L. A
generic rule is denoted by ϕ. For each P ∈ PN , let ϕik(P) be the probability of agent
i receiving object k, and ϕi (P) = (ϕik(P))k∈A be the assignment to agent i by rule
ϕ.

We introduce requirements imposed on rules. Sd-efficiency requires that a rule
should choose an sd-efficient allocation.

sd-efficiency For each P ∈ PN , ϕ(P) ∈ Esd(P).
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Stochastic dominance strategy-proofness (simply, sd-strategy-proofness) requires that
an agent should not gain by misrepresenting her preference relation.

sd-strategy-proofness For each P ∈ PN , each i ∈ N , and each P ′
i ∈ P,

ϕi (Pi , P−i ) Rsd
i ϕi (P ′

i , P−i ).

Next are fairness requirements.Equal treatment of equals requires that if two agents
have the same preference relation, then they should end up with the same assignment.
Strong equal treatment of equals requires that if two agents have the same preference
relation up to some object a starting from the most preferred object, then they should
end up with the same assignment up to the object a.

Equal treatment of equals For each P ∈ PN and each i, j ∈ N , if Pi = Pj , then
ϕi (P) = ϕ j (P).

Strong equal treatment of equals For each P ∈ PN , each i, j ∈ N , and each a ∈ A,

ifU (Pi , a) = U (Pj , a) and for each k ∈ U (Pi , a), rank(Pi , k) = rank(Pj , k), then
for each k ∈ U (Pi , a), ϕik(P) = ϕ jk(P).

Nesterov (2017) shows that strong equal treatment of equals implies equal treatment
of equals. He also shows that the converse does not hold in general.

3 Upper-contour strategy-proofness

Sd-strategy-proofness requires that an agent cannot gain bymisrepresenting her prefer-
ence relation. It is a very demanding requirement since we have to consider all possible
manipulations of preference relations and its consequences in terms of stochastic
dominance. In this paper, we introduce upper-contour stratgy-proofness (simply, uc-
strategy-proofness), which is a significant weakening of sd-strategy-proofness and
investigate its implications in the context of assignment problems. It requires that for
some agent i, and two preference relations Pi and P ′

i , and two objects
2 a and b, if the

upper-contour set of object a in Pi and the upper-contour set of object b in P ′
i are the

same, then the sum of probabilities assigned to the objects in two upper-contour sets
should be the same.

uc-strategy-proofness For each P ∈ PN , each i ∈ N , each P ′
i ∈ P,

and each a, b ∈ A, if U (Pi , a) = U (P ′
i , b), then

∑
k∈U (Pi ,a) ϕik(Pi , P−i ) =∑

k∈U (P ′
i ,b)

ϕik(P ′
i , P−i ).

Suppose that there are agent i ∈ N , preference relations Pi and P ′
i , and objects a and

b such thatU (Pi , a) = U (P ′
i , b). In many situations, an agent might pay an attention

on the probability that she receives an object better than or indifferent to a benchmark
object (in this case, a in Pi and b in P ′

i ). If the sum of probabilities assigned to the
objects in U (P ′

i , b) is greater than the sum of probabilities assigned to the objects
in U (Pi , a), then she has an incentive to report P ′

i instead of Pi . Uc-strategy-proof
prevents such a manipulation by an agent. As we discuss in the following, uc-strategy-
proof is much weaker than sd-strategy-proofness.

2 Note that it is possible to have a = b.
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Example 1 Uc-strategy-proofness does not imply sd-strategy-proofness. Let N =
{1, 2, 3} and A = {a, b, c}. Let P1

1 : abc, P2
1 : acb, P3

1 : bac, P4
1 : bca, P5

1 : cab,
and P6

1 : cba. We assume that the assignment to agent 1 is given as follows and the
assignments to any other agents are fixed regardless of their preference relations.

ϕ1(P
1
1 , P2, P3) =

(
1

4
,
1

2
,
1

4

)

, ϕ1(P
2
1 , P2, P3) =

(
1

4
,
1

4
,
1

2

)

,

ϕ1(P
3
1 , P2, P3) =

(
1

2
,
1

4
,
1

4

)

, ϕ1(P
4
1 , P2, P3) =

(
1

2
,
1

4
,
1

4

)

,

ϕ1(P
5
1 , P2, P3) =

(
1

4
,
1

4
,
1

2

)

, ϕ1(P
6
1 , P2, P3) =

(
1

2
, 0,

1

2

)

.

It is not difficult to show that this rule satisfies uc-strategy-proofness. However, if the
true preference relation of agent 1 is P6

1 , then she has an incentive to misrepresent her
preference relation as P5

1 , so that this rule does not satisfy sd-strategy-proofness.

Next, in Table 1, we calculate how many comparisons we need to verify the state-
ments of sd-strategy-proofness and uc-strategy-proofness. When the number of agents
is 3, sd-strategy-proofness asks to check 10 probability pairs, but uc-strategy-proofness
2 pairs. In Example 1, when the true preference relation of agent 1 is P1

1 , sd-strategy-
proofness asks agent 1 to compare the other five preference relations, P2

1 , P3
1 , P4

1 ,

P5
1 , and P6

1 , and compare ten pairs of probabilities.3 On the other hand, uc-strategy-
proofness asks agent 1 to compare only two preference relations, P2

1 and P3
1 , and

compare two pairs of probabilities.4 In general, if the number of agents is n (n ≥ 3),
then sd-strategy-proofness asks to compare (n! − 1)(n − 1) pairs, but uc-strategy-
proofness {∑n−1

k=1 k!(n − k)!} − (n − 1) pairs. Therefore, the number of pairs needed
to check for sd-strategy-proofness is at least n times greater than the number of pairs
needed to check for uc-strategy-proofness.5

Mennle and Seuken (2017) show that strategy-proofness can be decomposed into
three axioms, swap monotonicity, upper invariance, and lower invariance. For each
pair Pi , P ′

i ∈ P, P ′
i is adjacent to Pi if P ′

i is obtained from Pi by swapping two
consecutively ranked objects without affecting any other objects. Swap monotonicity
requires that if one agent changes her preference relation to another adjacent one, then
either the assignment to the agent remains the same or a higher probability should be
assigned to the object with the higher rank in the revised preference relation. Upper
invariance, introduced by Hashimoto et al. (2014), requires that if one agent changes
her preference relation to another adjacent one, then the probabilities of obtaining any

3 Agent 1 has to compare ϕ1a(P1
1 , P2, P3) with ϕ1a(P2

1 , P2, P3), ϕ1a(P3
1 , P2, P3), ϕ1a(P4

1 , P2, P3),

ϕ1a(P5
1 , P2, P3), and ϕ1a(P6

1 , P2, P3). Also, she has to compare ϕ1a(P1
1 , P2, P3) + ϕ1b(P

1
1 , P2, P3)

with ϕ1a(P2
1 , P2, P3) + ϕ1b(P

2
1 , P2, P3), ϕ1a(P3

1 , P2, P3) + ϕ1b(P
3
1 , P2, P3), ϕ1a(P4

1 , P2, P3) +
ϕ1b(P

4
1 , P2, P3), ϕ1a(P5

1 , P2, P3) + ϕ1b(P
5
1 , P2, P3), and ϕ1a(P6

1 , P2, P3) + ϕ1b(P
6
1 , P2, P3).

4 Agent 1 has to compare ϕ1a(P1
1 , P2, P3)with ϕ1a(P2

1 , P2, P3) and ϕ1a(P1
1 , P2, P3)+ϕ1b(P

1
1 , P2, P3)

with ϕ1a(P3
1 , P2, P3) + ϕ1b(P

3
1 , P2, P3).

5 Since
∑n−1

k=1 k!(n − k)! ≤ (n − 1)(n − 1)!, we have (n!−1)(n−1)
{∑n−1

k=1 k!(n−k)!}−(n−1)
≥ (n!−1)(n−1)

(n−1)(n−1)!−(n−1) =
n!−1

(n−1)!−1 = n · (n−1)!− 1
n

(n−1)!−1 ≥ n.
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Table 1 The numbers of probability pairs needed to check for sd-strategy-proofness and uc-strategy-
proofness

Number of agents sd-strategy-proofness uc-strategy-proofness

3 10 2

4 69 13

5 476 68

n≥ 3 (n! − 1)(n − 1) {
∑n−1

k=1 k!(n − k)!} − (n − 1)

object in the strict upper-contour set of the two objects should not be affected. Finally,
lower invariance requires that if one agent changes her preference relation to another
adjacent one, then the probabilities of obtaining any object in the strict lower-contour
set of the two objects should not be affected.

Swap monotonicity For each P ∈ PN , each i ∈ N , each P ′
i ∈ P, and each a,

b ∈ A, if P ′
i is adjacent to Pi , aPib, and bP ′

i a, then either ϕi (P ′
i , P−i ) = ϕi (Pi , P−i )

or ϕib(P ′
i , P−i ) > ϕib(Pi , P−i ).

Upper invariance For each P ∈ PN , each i ∈ N , each P ′
i ∈ P, and each a, b ∈ A,

if P ′
i is adjacent to Pi , aPib, and bP ′

i a, then ϕik(P ′
i , P−i ) = ϕik(Pi , P−i ) for each

k ∈ Û (Pi , a).

Lower invariance For each P ∈ PN , each i ∈ N , each P ′
i ∈ P, and each a, b ∈ A,

if P ′
i is adjacent to Pi , aPib, and bP ′

i a, then ϕik(P ′
i , P−i ) = ϕik(Pi , P−i ) for each

k ∈ L̂(Pi , b).

Here, we show that uc-strategy-proofness is equivalent to the combination of two
axioms, upper invariance and lower invariance. Therefore, uc-strategy-proofness
requires that if one agent changes her preference relation to another adjacent one,
then the probabilities of obtaining any object either in the strict lower-contour set or
in the strict lower-contour set of the two objects should not be affected.

Proposition 1 A rule satisfies uc-strategy-proofness if and only if it satisfies upper
invariance and lower invariance.

Proof (⇒) First, we show that uc-strategy-proofness implies upper invariance. Let ϕ
be a rule satisfying uc-strategy-proofness. Suppose that there exist P ∈ PN , i ∈ N ,

P ′
i ∈ P, and a, b ∈ A such that P ′

i is adjacent to Pi , aPib, and bP ′
i a. Note that

for each k ∈ Û (Pi , a), U (Pi , k) = U (P ′
i , k). By uc-strategy-proofness, for each

k ∈ Û (Pi , a) = Û (P ′
i , b),

∑

�∈U (Pi ,k)

ϕi�(Pi , P−i ) =
∑

�∈U (P ′
i ,k)

ϕi�
(
P ′
i , P−i

)
,

which implies that
ϕik(Pi , P−i ) = ϕik

(
P ′
i , P−i

)
,

the desired conclusion.
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Next, we show that uc-strategy-proofness implies lower invariance. Suppose that
there exist P ∈ PN , i ∈ N , P ′

i ∈ P, and a, b ∈ A such that P ′
i is adjacent to

Pi , aPib, and bP ′
i a. Note that U (Pi , b) = U (P ′

i , a) and for each k ∈ L̂(Pi , b),
U (Pi , k) = U (P ′

i , k). By uc-strategy-proofness, for each k ∈ L(Pi , b),

∑

�∈U (Pi ,k)

ϕi�(Pi , P−i ) =
∑

�∈U (P ′
i ,k)

ϕi�
(
P ′
i , P−i

)
,

which implies that for each k ∈ L̂(Pi , b) = L̂(P ′
i , a),

ϕik(Pi , P−i ) = ϕik
(
P ′
i , P−i

)
,

the desired conclusion.
(⇐) Now we show that upper invariance and lower invariance together imply uc-
strategy-proofness. Let ϕ be a rule satisfying upper invariance and lower invariance.
Suppose that there exist P ∈ PN , i ∈ N , P ′

i ∈ P, and a, b ∈ A such thatU (Pi , a) =
U (P ′

i , b). We need to show that

∑

�∈U (Pi ,a)

ϕi�(Pi , P−i ) =
∑

�∈U (P ′
i ,b)

ϕi�
(
P ′
i , P−i

)
. (1)

Let P ′′
i ∈ P be such that for each k ∈ U (Pi , a) = U (P ′

i , b), rank(P ′′
i , k) =

rank(Pi , k) and for each k ∈ L̂(Pi , a) = L̂(P ′
i , b), rank(P

′′
i , k) = rank(P ′

i , k). By
swapping two adjacent objects inU (P ′

i , b) finite times, we can construct a sequence of
preference relations {P0

i , P1
i , P2

i , ..., Ph
i } such that P0

i = P ′
i , P

h
i = P ′′

i , and for each

h′ ∈ {0, ..., h−1}, Ph′
i and Ph′+1

i are adjacent and for each k ∈ L̂(Pi , a) = L̂(P ′
i , b),

rank(Ph′
i , k) = L̂(Ph′+1

i , k). By applying lower invariance consecutively along the
path between P ′

i and P ′′
i , agent i has the same probability of obtaining any object in

A \U (Pi , a). Therefore,

1 −
∑

�∈U (P ′
i ,b)

ϕi�
(
P ′
i , P−i

) = 1 −
∑

�∈U (P ′′
i ,a)

ϕi�
(
P ′′
i , P−i

)
,

or equivalently,

∑

�∈U (P ′
i ,b)

ϕi�
(
P ′
i , P−i

) =
∑

�∈U (P ′′
i ,a)

ϕi�
(
P ′′
i , P−i

)
. (2)

Similarly, by swapping two adjacent objects in L̂(P ′′
i , a) finite times, we can con-

struct a sequence of preference relations {P0
i , P1

i , P2
i , ..., Ph

i } such that P0
i = P ′′

i ,

Ph
i = Pi and for each h′ ∈ {0, ..., h − 1}, Ph′

i and Ph′+1
i are adjacent and for each

k ∈ U (P ′′
i , a), rank(Ph′

i , k) = rank(Ph′+1
i , k). By applying upper invariance con-

secutively along the path between P ′′
i and Pi , agent i has the same probability of
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obtaining any object in U (P ′′
i , a). Therefore,

∑

�∈U (P ′′
i ,a)

ϕi�
(
P ′′
i , P−i

) =
∑

�∈U (Pi ,a)

ϕi�(Pi , P−i ). (3)

By substituting (3) into (2), we obtain the desired conclusion. �	

4 Main results

Bogomolnaia and Moulin (2001) show that when the number of agents is greater
than three, there is no rule satisfying sd-efficiency, equal treatment of equals, and sd-
strategy-proofness together. In this section, we show that the incompatibility result still
holds even though sd-strategy-proofness is weakened to uc-strategy-proofness. Note
that sd-strategy-proofness is equivalent to the combination of three axioms, swap
monotonicity, upper invariance, and lower invariance, whereas uc-strategy-proofness
is equivalent to the combination of two axioms, upper invariance and lower invariance.
Our result implies that swap monotonicity is redundant in the impossibility result.

On the other hand, if n = 3, then the random serial dictator rule satisfies sd-
efficiency, equal treatment of equals, and uc-strategy-proofness. This rule is defined
as follows: (1) assign an equal probability to each ordering of agents, (2) for each
ordering, each agent chooses her most preferred object among the available ones when
her turn comes, and (3) take an average of all allocations. Moreover, Bogomolnaia
and Moulin (2001) show that for n = 3, this rule is characterized by the combination
of the three axioms. Here, we show that the characterization can be obtained even if
sd-strategy-proofness is weakened to uc-strategy-proofness.

In the proof, we use the following fact established in Bogomolnaia and Moulin
(2001)

Fact 1 (Bogomolnaia and Moulin 2001) Let N = {1, . . . , n} be such that n ≥ 3 and
P ∈ PN . For each i ∈ N and each a, b ∈ A, if bPia and aPjb for each j 
= i, then sd-
efficiency implies that ϕia(P) = 0. Also, for each I ⊂ N and each a, b ∈ A, if bPia
for each i ∈ I and aPjb for each j /∈ I , then sd-efficiency implies that ϕia(P) = 0
for each i ∈ I and/or ϕ jb(P) = 0 for each j /∈ I .

Theorem 1 If n ≥ 4, then there is no rule satisfying sd-efficiency, equal treatment of
equals, and uc-strategy-proofness together.

Proof Suppose by way of contradiction that there is a rule ϕ satisfying sd-efficiency,
equal treatment of equals, and uc-strategy-proofness. We obtain a contradiction after
considering assignments to problems by the rule ϕ. We first consider the case when
n = 4. Let N = {1, 2, 3, 4} and A = {a, b, c, d}. Also, by Proposition 1, uc-strategy-
proofness can be decomposed into upper invariance and lower invariance.
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Profile 1 P1. For each i ∈ N , Pi : abcd. By equal treatment of equals,

ϕ(P1) =

⎛

⎜
⎜
⎝

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

⎞

⎟
⎟
⎠

Profile 2 P2. For i = 1, 2, 3, Pi : abcd and P4: bacd. By lower invariance, ϕ4c(P2) =
ϕ4c(P1) = 1

4 and ϕ4d(P2) = ϕ4d(P1) = 1
4 , and by Fact 1 applied to a and b,

ϕ4a(P2) = 0, which together imply that ϕ4b(P2) = 1
2 . Finally, by equal treatment of

equals,

ϕ(P2) =

⎛

⎜
⎜
⎝

1
3

1
6

1
4

1
4

1
3

1
6

1
4

1
4

1
3

1
6

1
4

1
4

0 1
2

1
4

1
4

⎞

⎟
⎟
⎠

Profile 3 P3. For i = 1, 2, Pi : abcd, and for i = 3, 4, Pi : bacd. By lower
invariance, ϕ3c(P3) = ϕ3c(P2) = 1

4 and ϕ3d(P3) = ϕ3d(P2) = 1
4 , and by equal

treatment of equals, ϕ4c(P3) = ϕ4d(P3) = 1
4 . Also, by equal treatment of equals,

ϕ1c(P3) = ϕ2c(P3) = 1
4 and ϕ1d(P3) = ϕ2d(P3) = 1

4 . By Fact 1 applied to a and b,
ϕ1b(P3) = ϕ2b(P3) = ϕ3a(P3) = ϕ4a(P3) = 0. Therefore, ϕ1a(P3) = ϕ2a(P3) =
ϕ3b(P3) = ϕ4b(P3) = 1

2 . Altogether,

ϕ(P3) =

⎛

⎜
⎜
⎝

1
2 0 1

4
1
4

1
2 0 1

4
1
4

0 1
2

1
4

1
4

0 1
2

1
4

1
4

⎞

⎟
⎟
⎠

Profile 4 P4. For i = 1, 2, 3, Pi : abcd, and P4: bcad. By lower invariance,
ϕ4d(P4) = ϕ4d(P2) = 1

4 and by upper invariance, ϕ4b(P4) = ϕ4b(P2) = 1
2 . By Fact

1 applied to a and b, ϕ4a(P4) = 0, which together imply that ϕ4c(P4) = 1
4 . By equal

treatment of equals,

ϕ(P4) =

⎛

⎜
⎜
⎝

1
3

1
6

1
4

1
4

1
3

1
6

1
4

1
4

1
3

1
6

1
4

1
4

0 1
2

1
4

1
4

⎞

⎟
⎟
⎠

Profile 5 P5. For i = 1, 2, Pi : abcd, P3: bacd, and P4: bcad. By lower invariance,
ϕ3c(P5) = ϕ3c(P4) = 1

4 and ϕ3d(P5) = ϕ3d(P4) = 1
4 . Also, by upper invariance,

ϕ4b(P5) = ϕ4b(P3) = 1
2 and by lower invariance, ϕ4d(P5) = ϕ4d(P3) = 1

4 . By
Fact 1 applied to a and c, ϕ4a(P5) = 0, which implies that ϕ4c(P5) = 1

4 . By equal
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treatment of equals, ϕ1c(P5) = ϕ1d(P5) = ϕ2c(P5) = ϕ2d(P5) = 1
4 . By Fact 1

applied to a and b, ϕ1b(P5) = ϕ2b(P5) = ϕ3a(P5) = 0. Altogether,

ϕ(P5) =

⎛

⎜
⎜
⎝

1
2 0 1

4
1
4

1
2 0 1

4
1
4

0 1
2

1
4

1
4

0 1
2

1
4

1
4

⎞

⎟
⎟
⎠

Profile 6 P6. For i = 1, 2, Pi : abcd, and for i = 3, 4, Pi : bcad. By upper invariance,
ϕ3b(P6) = ϕ3b(P5) = 1

2 and by lower invariance, ϕ3d(P6) = ϕ3d(P5) = 1
4 . By

equal treatment of equals, ϕ4b(P6) = ϕ3b(P6) = 1
2 and ϕ4d(P6) = ϕ3d(P6) = 1

4 .
Therefore, ϕ1b(P6) = ϕ2b(P6) = 0 and ϕ1d(P6) = ϕ2d(P6) = 1

4 . By Fact 1 applied
to a and c, ϕ3a(P6) = ϕ4a(P6) = 0. Altogether,

ϕ(P6) =

⎛

⎜
⎜
⎝

1
2 0 1

4
1
4

1
2 0 1

4
1
4

0 1
2

1
4

1
4

0 1
2

1
4

1
4

⎞

⎟
⎟
⎠

Profile 7, P7. For i = 1, 2, 3, Pi : abcd, and P4: bcda. By upper invariance,
ϕ4b(P7) = ϕ4b(P4) = 1

2 and ϕ4c(P7) = ϕ4c(P4) = 1
4 . By Fact 1 applied to a

and b, ϕ4a(P7) = 0, which implies that ϕ4d(P7) = 1
4 . By equal treatment of equals,

ϕ(P7) =

⎛

⎜
⎜
⎝

1
3

1
6

1
4

1
4

1
3

1
6

1
4

1
4

1
3

1
6

1
4

1
4

0 1
2

1
4

1
4

⎞

⎟
⎟
⎠

Profile 8, P8. For i = 1, 2, Pi : abcd, P3: bacd, and P4: bcda. By lower invariance,
ϕ3c(P8) = ϕ3c(P7) = 1

4 and ϕ3d(P8) = ϕ3d(P7) = 1
4 . Also, by upper invariance,

ϕ4b(P8) = ϕ4b(P5) = 1
2 and ϕ4c(P8) = ϕ4c(P5) = 1

4 . By Fact 1 applied to a and d,

ϕ4a(P8) = 0. Therefore, ϕ1c(P8) = ϕ1d(P8) = ϕ2c(P8) = ϕ2d(P8) = 1
4 . Also, by

Fact 1 applied to a and b, ϕ1b(P8) = ϕ2b(P8) = ϕ3a(P8) = 0. Altogether,

ϕ(P8) =

⎛

⎜
⎜
⎝

1
2 0 1

4
1
4

1
2 0 1

4
1
4

0 1
2

1
4

1
4

0 1
2

1
4

1
4

⎞

⎟
⎟
⎠
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Profile 8′, P8′
. P1: bacd, for i = 2, 3, Pi : abcd, and P4: bcda. From the same

reasoning as in Profile 8,

ϕ(P8′
) =

⎛

⎜
⎜
⎝

0 1
2

1
4

1
4

1
2 0 1

4
1
4

1
2 0 1

4
1
4

0 1
2

1
4

1
4

⎞

⎟
⎟
⎠

Profile 8′′, P8′′
. For i = 1, 3, Pi : abcd, P2: bacd, and P4: bcda. From the same

reasoning as in Profile 8,

ϕ(P8′′
) =

⎛

⎜
⎜
⎝

1
2 0 1

4
1
4

0 1
2

1
4

1
4

1
2 0 1

4
1
4

0 1
2

1
4

1
4

⎞

⎟
⎟
⎠

Profile 9 P9. For each i ∈ N , Pi : bacd. By equal treatment of equals,

ϕ(P9) =

⎛

⎜
⎜
⎝

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

⎞

⎟
⎟
⎠

Profile 10 P10. For i = 1, 2, 3, Pi : bacd, and P4: bcad. By upper invariance,
ϕ4b(P10) = ϕ4b(P9) = 1

4 and by lower invariance, ϕ4d(P10) = ϕ4d(P9) = 1
4 .

By Fact 1 applied to a and c, ϕ4a(P10) = 0. Altogether, ϕ4c(P10) = 1
2 . By equal

treatment of equals,

ϕ(P10) =

⎛

⎜
⎜
⎝

1
3

1
4

1
6

1
4

1
3

1
4

1
6

1
4

1
3

1
4

1
6

1
4

0 1
4

1
2

1
4

⎞

⎟
⎟
⎠

Profile 11 P11. For i = 1, 2, 3, Pi : bacd, and P4: bcda. By upper invariance,
ϕ4b(P11) = ϕ4b(P10) = 1

4 and ϕ4c(P11) = ϕ4c(P10) = 1
2 . By Fact 1 applied to

a and c, ϕ4a(P11) = 0, which implies that ϕ4d(P11) = 1
4 . By equal treatment of

equals,

ϕ(P11) =

⎛

⎜
⎜
⎝

1
3

1
4

1
6

1
4

1
3

1
4

1
6

1
4

1
3

1
4

1
6

1
4

0 1
4

1
2

1
4

⎞

⎟
⎟
⎠

123



678 Y. Chun, K. Yun

Profile 12 P12. For i = 1, 2, 4, Pi : bacd and P3: abcd. By lower invariance,
ϕ3c(P12) = ϕ3c(P9) = 1

4 and ϕ3d(P12) = ϕ3d(P9) = 1
4 . By Fact 1 applied to a and

b, ϕ3b(P12) = 0, which implies that ϕ3a(P12) = 1
2 . By equal treatment of equals,

ϕ(P12) =

⎛

⎜
⎜
⎝

1
6

1
3

1
4

1
4

1
6

1
3

1
4

1
4

1
2 0 1

4
1
4

1
6

1
3

1
4

1
4

⎞

⎟
⎟
⎠

Profile 13 P13. For i = 1, 2, Pi : bacd, P3: abcd, and P4: bcad. By upper invariance,
ϕ4b(P13) = ϕ4b(P12) = 1

3 .

ϕ(P13) =

⎛

⎜
⎜
⎝

· · · ·
· · · ·
· · · ·
· 1

3 · ·

⎞

⎟
⎟
⎠

Profile 14 P14. For i = 1, 2, Pi : bacd, P3: abcd, and P4: bcda. By lower
invariance, ϕ2c(P14) = ϕ2c(P8′

) = 1
4 and ϕ2d(P14) = ϕ2d(P8′

) = 1
4 , and

ϕ1c(P14) = ϕ1c(P8′′
) = 1

4 and ϕ1d(P14) = ϕ1d(P8′′
) = 1

4 . Also, by lower
invariance, ϕ3c(P14) = ϕ3c(P11) = 1

6 and ϕ3d(P14) = ϕ3d(P11) = 1
4 . By

Fact 1 applied to a and b, ϕ3b(P14) = 0. Also, by Fact 1 applied to a and d,

ϕ4a(P14) = 0. Therefore, ϕ3a(P14) = 7
12 and ϕ1a(P14) = 5

24 . By upper invariance,
ϕ4b(P14) = ϕ4b(P13) = 1

3 . By equal treatment of equals, ϕ1b(P14) = ϕ2b(P14) = 1
3 .

However,
∑

k∈A ϕ1k(P14) = ∑
k∈A ϕ2k(P14) = 5

24 + 1
3 + 1

4 + 1
4 > 1, a contradiction.

ϕ(P14) =

⎛

⎜
⎜
⎝

5
24

1
3

1
4

1
4

5
24

1
3

1
4

1
4

7
12 0 1

6
1
4

0 1
3 · ·

⎞

⎟
⎟
⎠

Now we consider the case when n > 5. Let N = {1, . . . , n} and A =
{a, b, c, d, o5, . . . , on}. We construct preference profiles P ∈ PN such that for each
i ∈ {1, 2, 3, 4}, the preference ordering on {a, b, c, d} is the same as before in the
most preferred 4 positions and for each i ∈ {5, . . . , n}, the most preferred object is oi .
By sd-efficiency, for each i ∈ {5, . . . , n}, ϕi oi (P) = 1. By using a similar argument
as before, we have a contradiction. �	
Remark 1 We discuss the independence of axioms in Theorem 1. Serial dictator rules
satisfy sd-efficiency, upper invariance and lower invariance, but not equal treatment
of equals. The random serial dictator rule satisfies equal treatment of equals, upper
invariance and lower invariance, but not sd-efficiency. The probabilistic serial rule
satisfies sd-efficiency, equal treatment of equals and upper invariance, but not lower
invariance. However, the existence of a rule satisfying sd-efficiency, equal treatment
of equals, and lower invariance, but not upper invariance, is an open question.
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Remark 2 Let A = {a, b, c, d} be linearly ordered as a, b, c, d. The preference rela-
tions used in the proof of Theorem 1 is abcd, bacd, bcad, and bcda. Since all four
preference relations can be represented to satisfy single-peakedness, our impossibility
result holds even if the domain is restricted to be single-peaked.

Now we characterize the random serial dictator rule for n = 3.

Proposition 2 If n = 3, then the random serial dictator rule is the only rule satisfying
sd-efficiency, equal treatment of equals, and uc-strategy-proofness.

Proof Let N = {1, 2, 3} and A = {a, b, c}. It is obvious that the random serial dictator
rule satisfies sd-efficiency, equal treatment of equals, and uc-strategy-proofness. We
prove the converse statement. Note that if n = 3, then there are 216 preference
profiles which can be classified into six types (Bogomolnaia andMoulin 2001). These
preference profiles are as follows. The bracket in the preference relation indicates that
the proof can be obtained by using similar arguments irrespective of the preference
orderings of the objects in the bracket. For example, in Type 1, P1: a(bc) means that
both P1: abc and P1: acb can be handled in a similar way.

Type 1 (48 profiles)

⎧
⎨

⎩

P1 : a(bc)
P2 : b(ac)
P3 : c(ab)

Type 2 (6 profiles)

⎧
⎨

⎩

P1 : abc
P2 : abc
P3 : abc

Type 3 (18 profiles)

⎧
⎨

⎩

P1 : abc
P2 : abc
P3 : acb

Type 4 (36 profiles)

⎧
⎨

⎩

P1 : acb
P2 : acb
P3 : b(ac)

Type 5 (36 profiles)

⎧
⎨

⎩

P1 : abc
P2 : abc
P3 : b(ac)

Type 6 (72 profiles)

⎧
⎨

⎩

P1 : abc
P2 : acb
P3 : b(ac)

Now we consider each type of preference profiles and show that if the rule satisfies
the three axioms, then it should choose the same allocation as the random serial
dictator rule. Once again, by Proposition 1, uc-strategy-proofness can be decomposed
into upper invariance and lower invariance.

Type 1 P1. By sd-efficiency, ϕ1a(P1) = ϕ2b(P1) = ϕ3c(P1) = 1. Therefore,

ϕ(P1) =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠

Type 2 P2. By equal treatment of equals, for all i ∈ N , ϕia(P2) = ϕib(P2) =
ϕic(P2) = 1

3 . That is,

ϕ(P2) =
⎛

⎝

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

⎞

⎠
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Type 3 P3. By upper invariance, ϕ3a(P3) = ϕ3a(P2) = 1
3 . By Fact 1 applied to b

and c, ϕ3b(P3) = 0. Therefore, ϕ3c(P3) = 2
3 . By equal treatment of equals,

ϕ(P3) =
⎛

⎝

1
3

1
2

1
6

1
3

1
2

1
6

1
3 0 2

3

⎞

⎠

Next, we consider P3′
, for i = 1, 3, Pi : abc and P2: acb. From the same reasoning

as in P3,

ϕ(P3′
) =

⎛

⎝

1
3

1
2

1
6

1
3 0 2

3
1
3

1
2

1
6

⎞

⎠

Type 4 P4. By Fact 1 applied to a and b, ϕ3a(P4) = 0 and by Fact 1 applied to b
and c, ϕ3c(P4) = 0, which together imply that ϕ3b(P4) = 1. By equal treatment of
equals,

ϕ(P4) =
⎛

⎝

1
2 0 1

2
1
2 0 1

2
0 1 0

⎞

⎠

Type 5-1 P5−1. P3: bac. By lower invariance, ϕ3c(P5−1) = ϕ3c(P2) = 1
3 . By Fact

1 applied to a and b, ϕ3a(P5−1) = 0. Therefore, ϕ3b(P5−1) = 2
3 . By equal treatment

of equals,

ϕ(P5−1) =
⎛

⎝

1
2

1
6

1
3

1
2

1
6

1
3

0 2
3

1
3

⎞

⎠

Type 5-2 P5−2. P3: bca. By Fact 1 applied to a and b, ϕ3a(P5−2) = 0. By upper
invariance, ϕ3b(P5−2) = ϕ3b(P5−1) = 2

3 , which implies that ϕ3c(P5−2) = 1
3 . By

equal treatment of equals,

ϕ(P5−2) =
⎛

⎝

1
2

1
6

1
3

1
2

1
6

1
3

0 2
3

1
3

⎞

⎠

Type 6-1 P6−1. P3: bac. By lower invariance, ϕ3c(P6−1) = ϕ3c(P3′
) = 1

6 . By
Fact 1 applied to a and b, ϕ3a(P6−1) = 0, which implies that ϕ3b(P6−1) = 5

6 .
By upper invariance, ϕ2a(P6−1) = ϕ2a(P5−1) = 1

2 . By Fact 1 applied to b and c,
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ϕ2b(P6−1) = 0, which implies that ϕ2c(P6−1) = 1
2 . Therefore,

ϕ(P6−1) =
⎛

⎝

1
2

1
6

1
3

1
2 0 1

2
0 5

6
1
6

⎞

⎠

Type 6-2 P6−2. P3: bca. By upper invariance, ϕ3b(P6−2) = ϕ3b(P6−1) = 5
6 . By

Fact 1 applied to a and b, ϕ3a(P6−2) = 0, which implies that ϕ3c(P6−2) = 1
6 .

By upper invariance, ϕ2a(P6−2) = ϕ2a(P5−2) = 1
2 . By Fact 1 applied to b and c,

ϕ2b(P6−2) = 0, which implies that ϕ2c(P6−2) = 1
2 . Therefore,

ϕ(P6−2) =
⎛

⎝

1
2

1
6

1
3

1
2 0 1

2
0 5

6
1
6

⎞

⎠

�	

Next we investigate the consequence of deleting upper invariance from Theorem 1.
By strengthening equal treatment of equals to strong equal treatment of equals,we still
end up with an impossibility result. A related result is given by Nesterov (2017), who
shows that when the number of agents is at least three, there is no rule satisfying ex-post
efficiency,6 upper envy-freeness,7 and lower invariance. Our impossibility result uses
a stronger efficiency requirement of sd-efficiency, but a weaker fairness requirement
of strong equal treatment of equals.

Theorem 2 If n ≥ 4, then there is no rule satisfying sd-efficiency, strong equal treat-
ment of equals, and lower invariance together.

Proof Suppose by way of contradiction that there is a rule ϕ satisfying sd-efficiency,
strong equal treatment of equals, and lower invariance.We obtain a contradiction after
considering assignments to problems by the rule ϕ. We first consider the case n = 4.
Let N = {1, 2, 3, 4} and A = {a, b, c, d}.
Profile 1 P1. For i = 1, 2, 3, Pi : acbd and P4: adcb. By Fact 1 applied to b and d,

ϕ4b(P1) = 0 and by Fact 1 applied to c and d, ϕ4c(P1) = 0. By strong equal treatment
of equals, ϕ1a(P1) = ϕ2a(P1) = ϕ3a(P1) = ϕ4a(P1) = 1

4 . Then, ϕ4a(P1) = 3
4 . By

6 Ex-post efficiency requires that an allocation selected by a rule should be represented as a probability
distribution over efficient deterministic allocations. Sd-efficiency implies ex-post efficiency, but the converse
is not true.
7 Upper envy-freeness requires that if two agents have the same upper contour set for some object, then
they should be assigned with the same probability of receiving the object. Formally, for each P ∈ PN ,

each i, j ∈ N , and each a ∈ A, ifU (Pi , a) = U (Pj , a), then ϕia(P) = ϕ ja(P). It is stronger than strong
equal treatment of equals, but the converse is not true. The random serial dictator rule satisfies strong equal
treatment of equals, but not upper envy-freeness.
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strong equal treatment of equals,

ϕ(P1) =

⎛

⎜
⎜
⎝

1
4

1
3

1
3

1
12

1
4

1
3

1
3

1
12

1
4

1
3

1
3

1
12

1
4 0 0 3

4

⎞

⎟
⎟
⎠

Profile 2 P2. For i = 1, 2, Pi : acbd, P3: abcd, and P4: adcb. By Fact 1 applied
to b and d, ϕ4b(P2) = 0 and by Fact 1 applied to c and d, ϕ4c(P2) = 0. By
lower invariance, ϕ3d(P2) = ϕ3d(P1) = 1

12 . By strong equal treatment of equals,
ϕ1a(P2) = ϕ2a(P2) = ϕ3a(P2) = ϕ4a(P2) = 1

4 . Therefore, ϕ4d(P2) = 3
4 . By Fact

1 applied to b and c, ϕ3c(P2) = 0, which implies that ϕ3b(P2) = 2
3 . By strong equal

treatment of equals,

ϕ(P2) =

⎛

⎜
⎜
⎝

1
4

1
6

1
2

1
12

1
4

1
6

1
2

1
12

1
4

2
3 0 1

12
1
4 0 0 3

4

⎞

⎟
⎟
⎠

Profile 2′, P2′
. P1: abcd, for i = 2, 3, Pi : acbd, and P4: adcb. By the same reasoning

as in Profile 2,

ϕ(P2′
) =

⎛

⎜
⎜
⎝

1
4

2
3 0 1

12
1
4

1
6

1
2

1
12

1
4

1
6

1
2

1
12

1
4 0 0 3

4

⎞

⎟
⎟
⎠

Profile 3 P3. For i = 1, 2, Pi : acbd, P3: bacd, and P4: adcb. By Fact 1 applied
to b and d, ϕ4b(P3) = 0 and by Fact 1 applied to c and d, ϕ4c(P3) = 0. By lower
invariance, ϕ3c(P3) = ϕ3c(P2) = 0 and ϕ3d(P3) = ϕ3d(P2) = 1

12 . By Fact 1
applied to a and b, ϕ3a(P3) = 0, which implies that ϕ3b(P3) = 11

12 . By strong equal
treatment of equals, ϕ1a(P2) = ϕ2a(P2) = ϕ4a(P2) = 1

3 . Therefore, ϕ4d(P2) = 2
3 .

By strong equal treatment of equals,

ϕ(P3) =

⎛

⎜
⎜
⎝

1
3

1
24

1
2

1
8

1
3

1
24

1
2

1
8

0 11
12 0 1

12
1
3 0 0 2

3

⎞

⎟
⎟
⎠

Profile 4 P4. For i = 1, 2, 3, Pi : bacd and P4: adcb. By Fact 1 applied to b and
d, ϕ4b(P4) = 0 and by Fact 1 applied to c and d, ϕ4c(P4) = 0. By strong equal
treatment of equals, ϕ1b(P4) = ϕ2b(P4) = ϕ3b(P4) = 1

3 and ϕ1c(P4) = ϕ2c(P4) =
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ϕ3c(P4) = 1
3 . Altogether,

ϕ(P4) =

⎛

⎜
⎜
⎝

· 1
3

1
3 ·

· 1
3

1
3 ·

· 1
3

1
3 ·

· 0 0 ·

⎞

⎟
⎟
⎠

Profile 5 P5. For i = 1, 2, Pi : bacd, P3: abcd, and P4: adcb. By Fact 1 applied
to b and d, ϕ4b(P5) = 0 and by Fact 1 applied to c and d, ϕ4c(P5) = 0. By lower
invariance, ϕ3c(P5) = ϕ3c(P4) = 1

3 . By strong equal treatment of equals, ϕ1c(P5) =
ϕ2c(P5) = 1

3 . Altogether,

ϕ(P5) =

⎛

⎜
⎜
⎝

· · 1
3 ·

· · 1
3 ·

· · 1
3 ·

· 0 0 ·

⎞

⎟
⎟
⎠

Profile 6 P6. For i = 1, 2, 3, Pi : abcd and P4: adcb. By Fact 1 applied to b and
d, ϕ4b(P6) = 0 and by Fact 1 applied to c and d, ϕ4c(P6) = 0. By strong equal
treatment of equals, ϕ1a(P6) = ϕ2a(P6) = ϕ3a(P6) = ϕ4a(P6) = 1

4 , which implies
that ϕ4d(P6) = 3

4 . By strong equal treatment of equals,

ϕ(P6) =

⎛

⎜
⎜
⎝

1
4

1
3

1
3

1
12

1
4

1
3

1
3

1
12

1
4

1
3

1
3

1
12

1
4 0 0 3

4

⎞

⎟
⎟
⎠

Profile 7 P7. For i = 1, 2, Pi : abcd, P3: bacd, and P4: adcb. By Fact 1 applied
to b and d, ϕ4b(P7) = 0, by Fact 1 applied to c and d, ϕ4c(P7) = 0, and by Fact
1 applied to a and b, ϕ3a(P7) = 0. By strong equal treatment of equals, ϕ1a(P7) =
ϕ2a(P7) = ϕ4a(P7) = 1

3 . Therefore, ϕ4a(P7) = 2
3 . By lower invariance, ϕ3c(P7) =

ϕ3c(P6) = 1
3 and ϕ3d(P7) = ϕ3d(P6) = 1

12 , which implies that ϕ3b(P7) = 7
12 . By

strong equal treatment of equals,

ϕ(P7) =

⎛

⎜
⎜
⎝

1
3

5
24

1
3

1
8

1
3

5
24

1
3

1
8

0 7
12

1
3

1
12

1
3 0 0 2

3

⎞

⎟
⎟
⎠
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Profile 7′, P7′
. For i = 1, 3, Pi : abcd, P2: bacd, and P4: adcb. By the same reasoning

as in Profile 7,

ϕ(P7′
) =

⎛

⎜
⎜
⎝

1
3

5
24

1
3

1
8

0 7
12

1
3

1
12

1
3

5
24

1
3

1
8

1
3 0 0 2

3

⎞

⎟
⎟
⎠

Profile 7′′, P7′′
. P1: bacd, for i = 2, 3, Pi : abcd, and P4: adcb. By the same reasoning

as in Profile 7,

ϕ(P7′′
) =

⎛

⎜
⎜
⎝

0 7
12

1
3

1
12

1
3

5
24

1
3

1
8

1
3

5
24

1
3

1
8

1
3 0 0 2

3

⎞

⎟
⎟
⎠

Profile 5 P5. For i = 1, 2, Pi : bacd, P3: abcd, and P4: adcb. Now we are ready
to fix other elements of ϕ(P5). By lower invariance, ϕ1d(P5) = ϕ1d(P7′

) = 1
8 and

ϕ2d(P5) = ϕ2d(P7′′
) = 1

8 . ByFact 1 applied to a and b, ϕ3b(P5) = 0. By strong equal
treatment of equals, ϕ1b(P5) = ϕ2b(P5) = 1

2 . Therefore, ϕ1a(P5) = ϕ2a(P5) = 1
24 .

By strong equal treatment of equals, ϕ3a(P5) = ϕ4a(P5) = 11
24 . Altogether,

ϕ(P5) =

⎛

⎜
⎜
⎝

· · 1
3 ·

· · 1
3 ·

· · 1
3 ·

· 0 0 ·

⎞

⎟
⎟
⎠ ⇒ ϕ(P5) =

⎛

⎜
⎜
⎝

1
24

1
2

1
3

1
8

1
24

1
2

1
3

1
8

11
24 0 1

3
5
24

11
24 0 0 13

24

⎞

⎟
⎟
⎠

Profile 5′, P5′
. For i = 1, 3, Pi : bacd, P2: abcd, and P4: adcb. By the same reasoning

as in Profile 5,

ϕ(P5′
) =

⎛

⎜
⎜
⎝

1
24

1
2

1
3

1
8

11
24 0 1

3
5
24

1
24

1
2

1
3

1
8

11
24 0 0 13

24

⎞

⎟
⎟
⎠

Profile 8 P8. P1: abcd, P2: acbd, P3: bacd, and P4: adcb. By Fact 1 applied to
b and d, ϕ4b(P8) = 0, by Fact 1 applied to c and d, ϕ4c(P8) = 0, and by Fact 1
applied to a and b, ϕ3a(P8) = 0. By strong equal treatment of equals, ϕ1a(P8) =
ϕ2a(P8) = ϕ4a(P8) = 1

3 , which implies that ϕ4d(P8) = 2
3 . By lower invariance,

ϕ1d(P8) = ϕ1d(P3) = 1
8 , ϕ2d(P8) = ϕ2d(P7) = 1

8 , and ϕ3d(P8) = ϕ3d(P2′
) = 1

12 .

123



Upper-contour strategy-proofness in the probabilistic... 685

Altogether,

ϕ(P8) =

⎛

⎜
⎜
⎝

1
3 · · 1

8
1
3 · · 1

8
0 · · 1

12
1
3 0 0 2

3

⎞

⎟
⎟
⎠

Profile 8′, P8′
. P1: bacd, P2: acbd, P3: abcd, and P4: adcb. By the same reasoning

as in Profile 8,

ϕ(P8′
) =

⎛

⎜
⎜
⎝

0 · · 1
12

1
3 · · 1

8
1
3 · · 1

8
1
3 0 0 2

3

⎞

⎟
⎟
⎠

Profile 9 P9. For i = 1, 3, Pi : abcd, P2: acbd, and P4: adcb. By Fact 1 applied
to b and d, ϕ4b(P9) = 0 and by Fact 1 applied to c and d, ϕ4c(P9) = 0. By lower
invariance, ϕ3d(P9) = ϕ3d(P8) = 1

12 and ϕ1d(P9) = ϕ1d(P8′
) = 1

12 . By strong
equal treatment of equals, ϕ1a(P9) = ϕ2a(P9) = ϕ3a(P9) = ϕ4a(P9) = 1

4 . There-
fore, ϕ4d(P9) = 3

4 and ϕ2d(P9) = 1
12 . By Fact 1 applied to b and c, ϕ2b(P9) = 0.

By strong equal treatment of equals, ϕ1b(P9) = ϕ3b(P9) = 1
2 . Altogether,

ϕ(P9) =

⎛

⎜
⎜
⎝

1
4

1
2

1
6

1
12

1
4 0 2

3
1
12

1
4

1
2

1
6

1
12

1
4 0 0 3

4

⎞

⎟
⎟
⎠

Profile 10 P10. For i = 1, 3, Pi : bacd, P2: acbd, and P4: adcb. By Fact 1 applied
to b and d, ϕ4b(P10) = 0 and by Fact 1 applied to c and d, ϕ4c(P10) = 0. By lower
invariance, ϕ1d(P10) = ϕ1d(P8) = 1

8 , ϕ3d(P10) = ϕ3d(P8′
) = 1

8 , and ϕ2d(P10) =
ϕ2d(P5′

) = 5
24 ,which together imply thatϕ4d(P10) = 13

24 . Therefore,ϕ4a(P10) = 11
24 .

By strong equal treatment of equals, ϕ2a(P10) = 11
24 , which implies that ϕ1a(P10) =

ϕ3a(P10) = 1
24 . By Fact 1 applied to b and c, ϕ2b(P10) = 0. Therefore,ϕ2c(P10) = 1

3 .
By strong equal treatment of equals,

ϕ(P10) =

⎛

⎜
⎜
⎝

1
24

1
2

1
3

1
8

11
24 0 1

3
5
24

1
24

1
2

1
3

1
8

11
24 0 0 13

24

⎞

⎟
⎟
⎠

Profile 8 P8. P1: abcd, P2: acbd, P3: bacd, and P4: adcb. By lower invariance,
ϕ3c(P8) = ϕ3c(P9) = 1

6 and ϕ1c(P8) = ϕ1c(P10) = 1
3 . Therefore, ϕ3b(P8) = 3

4 and
ϕ1b(P8) = 5

24 . Also, ϕ2b(P8) = 1
24 and ϕ2c(P8) = 1

2 . However, by Fact 1 applied
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to b and c, either ϕ2b(P8) = ϕ4b(P8) = 0 or ϕ1c(P8) = ϕ3c(P8) = 0. If not, we
can find an allocation which stochastically dominates ϕ(P8). Therefore, we obtain a
contradiction.

ϕ(P8) =

⎛

⎜
⎜
⎝

1
3 · · 1

8
1
3 · · 1

8
0 · · 1

12
1
3 0 0 2

3

⎞

⎟
⎟
⎠ ⇒ ϕ(P8) =

⎛

⎜
⎜
⎝

1
3

5
24

1
3

1
8

1
3

1
24

1
2

1
8

0 3
4

1
6

1
12

1
3 0 0 2

3

⎞

⎟
⎟
⎠

Now we consider the case when n > 5. Let N = {1, . . . , n} and A =
{a, b, c, d, o5, . . . , on}. We construct preference profiles P ∈ PN such that for each
i ∈ {1, 2, 3, 4}, the preference ordering on {a, b, c, d} is the same as before in the
most preferred 4 positions and for each i ∈ {5, . . . , n}, the most preferred object is oi .
By sd-efficiency, for each i ∈ {5, . . . , n}, ϕi oi (P) = 1. By using a similar argument
as before, we have a contradiction. �	
Remark 3 It is easy to check the independence of axioms in Theorem 2. The random
serial dictator rule satisfies strong equal treatment of equals and lower invariance, but
not sd-efficiency. Serial dictator rules satisfy sd-efficiency and lower invariance, but
not strong equal treatment of equals. The probabilistic serial rule satisfies sd-efficiency
and strong equal treatment of equals, but not lower invariance.

Remark 4 Differently from Theorem 1, the preference relations used in the proof of
Theorem 2 does not satisfy single-peakedness. It remains an open question whether
the impossibility result of Theorem 2 can be carried over to the single-peaked domain.

Remark 5 Aweakening of sd-strategy-proofness, sd-adjacent strategy-proofness (Car-
roll 2012; Sato 2013; Cho 2016) requires that if one agent changes her preference
relation to another adjacent one by swapping two adjacent objects, then the prob-
abilities of obtaining any other objects should not be affected and the probability
of obtaining the object with the higher rank in the second preference should be
greater. Similarly, we can formulate an adjacent version of uc-strategy-proofness,
which applies the uc-strategy-proofness only when two preference relations are adja-
cent to each other.

uc-adjacent strategy-proofness For each P ∈ PN , each i ∈ N , each P ′
i ∈ P,

and each a, b ∈ A, if P ′
i is adjacent to Pi and U (Pi , a) = U (P ′

i , b), then∑
k∈U (Pi ,a) ϕik(Pi , P−i ) = ∑

k∈U (P ′
i ,b)

ϕik(P ′
i , P−i ).

It is easy to show that uc-strategy-proofness implies uc-adjacent strategy-proofness,
which implies upper invariance and lower invariance. Therefore, by Proposition 1,
uc-adjacent strategy-proofness is equivalent to uc-strategy-proofness.8

8 As shown in Sato (2013) and Cho (2016), if the domain satisfies connectedness and non-restoration, then
sd-adjacent strategy-proofness is equivalent to sd-strategy-proofness. Since our universal domain satisfies
these two conditions, we can also establish the equivalence between uc-adjacent strategy-proofness and
uc-strategy-proofness.
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