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Abstract
Fishburn (Aggregation and revelation of preferences. North Holland, Amsterdam, pp
201–218, 1979) proved that majority rule on any proper permutation closed j-rich
ballot space is the only social choice function satisfying faithfulness, consistency,
cancellation, and neutrality. Alós-Ferrer (Soc ChoiceWelf 27:621–625, 2006) showed
that neutrality was not needed for Fishburn’s result as long as the ballot space has no
restriction on ballot sizes. In this paper, we show that the Alós-Ferrer result can be
extended to a much larger class of ballot spaces.

1 Introduction

Fishburn (1979) proved that majority rule is the only social choice function satisfying
neutrality, consistency, faithfulness, and cancellation. In his model, a social choice
function takes as input a ballot response profile and outputs a nonempty subset of
winning alternatives. Each voter submits a nonempty subset of alternatives called a
ballot and the set of all admissible ballots is called the ballot space. A voter’s ballot
consists of all approved alternatives. In this context, a ballot response profile is a
function π with domain a ballot space B and range the set of nonnegative integers
with the interpretation that π(B) is number of voters that chose the ballot B. Majority
rule is the social choice function where the output is the set of alternatives with the
maximum number of approvals.

Alós-Ferrer (2006) showed that the axiom of neutrality was not needed for Fish-
burn’s theorem. Moreover, he was able to give a much simpler argument than
Fishburn’s original proof. This simplicity comes at a price. Namely, Alós-Ferrer
assumed that the ballot space is the set of all proper subsets of the set of alterna-
tives. In this case, majority rule is known as Approval Voting and so Alós-Ferrer
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showed that Approval Voting is the only social choice function satisfying consistency,
faithfulness, and cancellation. Fishburn’s theorem, however, is true for ballot spaces
where the cardinality of the ballot maybe restricted.1 One example of such a restriction
is when each voter can approve of at most 3 alternatives. This leads to the following
question. Does there exist an extension of the Alós-Ferrer theorem to a larger class of
ballot spaces? To follow our earlier example, suppose there are 4 or more alternatives
and each voter can submit a ballot of cardinality at most 3, is majority rule the only
social choice function satisfying consistency, faithfulness, and cancellation? It turns
out that the answer to the last question is yes and it follows as a consequence of the
main result of this paper.

In this paper, we will focus on ballot spaces where there exists a positive integer
j such that all ballots of size j belong to our ballot space. We will call this type of
ballot space, j-rich. For example, if X is the finite set of m alternatives with m ≥ 4,
then the ballot space consisting of all singleton subsets of X , all two element subsets
of X and one 3-element subset of X is a 1-rich ballot space and a 2-rich ballot space.
By allowing j to vary from 1 tom − 1 we can see that the class of j-rich ballot spaces
is more general than the class of ballot spaces dealt with by Fishburn. It turns out
that majority rule is the only rule fulfilling faithfulness, cancellation, and consistency
in a given j-rich ballot space if j ≥ 3 with m ≥ 4. This is one of the main results
of this paper. The other main result deals with the class of j-rich ballot spaces B
that are closed under permutations. This means that if B ∈ B and B ′ ⊆ X satisfies
|B ′| = |B|, then B ′ ∈ B. Based on the number m of alternatives, we give a complete
classification of the permutation closed j-rich ballot spaces in which majority rule is
the only social choice function satisfying faithfulness, cancellation, and consistency.
This second result is an extension of the Alós-Ferrer theorem.

In the next section we establish notation, define our terms, and state the two main
results of this paper. The model we use is the one used by Fishburn and Alós-Ferrer.
In Sect. 3, two examples are given to show why our results do not hold for all possible
permutation closed j-rich ballot spaces with j ≤ 2. Section 3 also contains a proof of
the extended Alós-Ferrer theorem. In Sect. 4, we establish the necessity of the other
axioms by providing independence examples. Finally, since it is a bit technical, a proof
of the first main result is given in an appendix at the end of the paper.

2 Notation, terminology, and the twomain results

The finite set of alternatives is X = {x1, . . . , xm} with m ≥ 2. The set of all subsets
of X is denoted by P(X) and

Pne(X) = {A ∈ P(X) : A �= ∅}.

1 This type of ballot restriction goes back to the concept of “voting system” introduced by Brams and
Fishburn (1978).
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Majority rule on j-rich ballot spaces 641

A nonempty subset B of Pne(X) is called a ballot space and the sets belonging to B
are called ballots. For any integer k belonging to the interval [1,m], the set

Bk = {B ⊆ X : |B| = k}
is the ballot space consisting of all ballots of size k. We will say that a ballot space B
is j-rich if B j ⊆ B for some j ∈ {1, . . . ,m−1}. A j-rich ballot space B will be called
a permutation closed j-rich ballot space if, for any permutation σ on X and for any
B ∈ B, σ(B) = {σ(x) : x ∈ B} ∈ B. Furthermore, if X /∈ B we will say that B is
a proper permutation closed j-rich ballot space. Notice that a proper permutation
closed j-rich ballot space B is of the form

B =
⋃

k∈I
Bk

for some nonempty subset I of {1, . . . ,m − 1}.
The set of natural numbers including 0 is denoted by N0. If B is a ballot space, then

a function π : B → N0 is called a ballot response profile or just simply a profile.
The set of all profiles on B is given by N

B
0 . For any profile π and for any B belonging

to B, π(B) is the number of voters that chose the ballot B. For any π ∈ N
B
0 and for

any x ∈ X , the number of voters who approve of the alternative x is given by

v(x, π) =
∑

B∈B,x∈B
π(B).

The maximum and minimum approval values based on a profile π are

max v(π) = max{v(x, π) : x ∈ X} and min v(π) = min{v(x, π) : x ∈ X}.
A social choice function on the ballot space B is any function of the form f :

N
B
0 → Pne(X).2 We say that the domain of f : N

B
0 → Pne(X) is j-rich if the ballot

space B is j-rich and similarly for permutation closed j-rich domain.
Majority rule is the social choice function FM : N

B
0 → Pne(X) defined as follows:

for any profile π ,

FM (π) = {x ∈ X : v(x, π) = max v(π)}.
Notice that x ∈ FM (π) means that there is no alternative y that obtained more votes
than x . If B = Pne(X), then FM is called approval voting and is denoted by FA. In
this particular case we will call B the unrestricted ballot space.

For any profiles π, ρ ∈ N
B
0 , the sum of π and ρ is the profile π + ρ defined by

(π+ρ)(B) = π(B)+ρ(B) for all B ∈ B. A social choice function f : N
B
0 → Pne(X)

satisfies consistency if for any profiles π, ρ ∈ N
B
0 ,

f (π) ∩ f (ρ) �= ∅ ⇒ f (π + ρ) = f (π) ∩ f (ρ).

2 Alós-Ferrer (2006) points out that such a function is implicitly anonymous.
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Consistency says that if an alternative x is an acceptable social outcome by two disjoint
groups of voters, then x should be an acceptable social outcome for the union of the
two groups. Moreover, if another alternative y is not an acceptable outcome for one
of the groups, then y should not be part of the social outcome for the union of the
two groups. The consistency axiom, sometimes called reinforcement, was introduced
independently by Smith (1973), Young (1974), and Fine and Fine (1974).

Next, f satisfies cancellation if, for any π ∈ N
B
0 ,

v(x, π) = v(y, π) for all x, y ∈ X ⇒ f (π) = X .

If all alternatives get the same number of votes, then cancellation implies that every
alternative should belong to the social output.

For any ballot B ∈ B, the profile where one voter chooses B is denoted by πB or B.
So πB(B) = 1 and πB(B ′) = 0 for all B ′ �= B. A social choice function f satisfies
faithfulness if, for all B ∈ B,

f (πB) = B.

If there is just one voter and that voter submits the ballot B, then faithfulness implies
that the social outcome should be B. We can now state the Alós-Ferrer result.

Theorem 1 Approval Voting is the only social choice function on the ballot space
Pne(X)3 satisfying faithfulness, consistency, and cancellation.

Theorem 1 is just one of many axiomatic characterizations of approval voting and
we refer the reader to Fishburn (1978, 1979), Sertel (1988), Baigent and Xu (1991),
Goodin and List (2006), Vorsatz (2007), Alcalde-Unzu and Vorsatz (2009), and Sato
(2014) for some other characterizations of approval voting. Alós-Ferrer’s theorem is a
sharpening of a result due to Fishburn whenB = Pne(X). Fishburn’s theorem involves
a larger class of ballot spaces than just the unrestricted ballot space Pne(X).

A social choice function f on a permutation closed j-rich ballot space B satisfies
neutrality if, for any profiles π and π ′ and for any permutation σ of X ,

π ′(σ (B)) = π(B) for all B ∈ B ⇒ σ ( f (π)) = f (π ′)

where σ(A) = {σ(x) : x ∈ A} for any subset A of X . Neutrality implies that the
labeling of the alternatives does not affect the social outcome. We can now state
Fishburn’s theorem.

Theorem 2 Majority rule is the only social choice function on a proper permutation
closed j-rich ballot space B satisfying faithfulness, consistency, cancellation, and
neutrality.

We show in the next section that Theorem 2 does not go through for all j-rich ballot
spaces if the condition of neutrality is dropped. The next theorem, which is one of the

3 Alós-Ferrer assumes B = P(X)\{X ,∅}. However, in a footnote, he points out that his result remains
unchanged if B = Pne(X).
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Majority rule on j-rich ballot spaces 643

main results of this paper, is a classification of the permutation closed j-rich domains
in which majority rule is the only function satisfying faithfulness, consistency, and
cancellation.

Theorem 3 For B a permutation closed j-rich ballot space with m alternatives:

1. Majority rule is the only rule fulfilling faithfulness, cancellation, and consistency
if m = 2.

2. Majority rule is the only rule fulfilling faithfulness, cancellation, and consistency
with m = 3 if and only if B �= B1.

3. Majority rule is the only rule fulfilling faithfulness, cancellation, and consistency
with m ≥ 4 if and only if B /∈ {B1,B2,B1 ∪ B2}.

Observe that Theorem 3 is a generalization of the Alós-Ferrer result (Theorem 1
above) since N0

Pne(X) is a permutation closed (m − 1)-rich domain for all m ≥ 2. For
the case of m ≥ 4, and so j ≥ 3, we can drop the requirement that the ballot space is
permutation closed. This leads to the second main result of this paper.

Theorem 4 If m ≥ 4 and 2 < j < m, then majority rule is the only social choice
function on a j-rich domain satisfying faithfulness, consistency, and cancellation.

The proof of Theorem 4 is a bit technical and will be given in the appendix at the
end of the paper. To help motivate both theorems, we offer the following example.

Example 1 Let X = {x1, x2, x3, x4, x5} and let B = B1 ∪ B2 ∪ B3. So there are
5 alternatives and B is a 3-rich ballot space. Assume f : N

B
0 → Pne(X) satisfies

faithfulness, consistency, and cancellation and let ρ = {x1, x2, x3} + {x4}. We will
show that f (ρ) = FM (ρ) = {x1, x2, x3, x4}.

By faithfulness, f ({x5}) = {x5} and, by cancellation, f (ρ + {x5}) = X . In order
to avoid a contradiction based on consistency, we get f (ρ) ∩ f ({x5}) = ∅. Thus,
x5 /∈ f (ρ) and so f (ρ) ⊆ {x1, x2, x3, x4}.

Assume that f (ρ) is a proper subset of {x1, x2, x3, x4}. So there exist i �= j in
{1, 2, 3, 4} such that xi ∈ f (ρ) and x j /∈ f (ρ).

Let {xk, xl} = X\{xi , x j , x5} and consider that by cancellation we have that
f ({xi , x j , x5} + {xk} + {xl}) = X . Using this fact we get

f ({xi } + {x j } + {x5}) = f ({xi } + {x j } + {x5}) ∩ X

= f ({xi } + {x j } + {x5}) ∩ f ({xi , x j , x5} + {xk} + {xl})
= f

({xi } + {x j } + {x5}
+ {xi , x j , x5} + {xk} + {xl}

)
By consistency

= f ({xi , x j , x5} + {xi } + {x j } + {x5} + {xk} + {xl})
= f ({xi , x j , x5}) ∩ f

({xi } + {x j }
+ {x5} + {xk} + {xl}) By consistency

= f ({xi , x j , x5}) ∩ X By cancellation

= f ({xi , x j , x5}).
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Hence by faithfulness, we have that4

f ({xi } + {x j } + {x5}) = f ({xi , x j , x5}) = {xi , x j , x5},

and a similar argument will show

f ({xi } + {x j }) ∩ f ({x5} + ρ) = {xi , x j }.

Therefore,

f ({xi } + {x j } + {x5}) ∩ f (ρ) = {xi }

and

f ({xi } + {x j }) ∩ f ({x5} + ρ) = {xi , x j }.

But this violates consistency since

f ({xi } + {x j } + {x5}) ∩ f (ρ) = f ({xi } + {x j } + {x5} + ρ)

= f ({xi } + {x j }) ∩ f ({x5} + ρ).

This final contradictions tell us that f (ρ) is not a proper subset of {x1, x2, x3, x4}. So
f (ρ) = FM (ρ) and this completes the example.

In the next section we give two examples showing why the bound for j in Theorem
4 must be greater than or equal to 3. We will then use these examples to carefully
prove Theorem 3.

3 Two examples and the proof of Theorem 3

Plurality rule is the special case of majority rule where each voter votes for one
alternative. So the corresponding ballot space is B1. We now give a simple example of
a social choice function f on B1 that is not equal to plurality rule and yet f satisfies
faithfulness, consistency, and cancellation.

Example 2 Define the social choice function f : N
B1
0 → Pne(X) by

f (π) =
{

X if FM (π) = X
min FM (π) otherwise

where

min FM (π) = {xi ∈ FM (π) : i ≤ j ∀ x j ∈ FM (π)}.
4 This argument is similar to the argument given for Step 1 on page 624 in Alós-Ferrer (2006).
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Majority rule on j-rich ballot spaces 645

Notice that min FM (π) is the unique element belong to the majority output having
minimum index. Note that cancellation is trivial since universal-tie profiles result in
the first case of the rule. Moreover, since the ballot space is B1, it is not hard to verify
that f satisfies faithfulness and consistency.

Example 2 show why neutrality is needed in Fishburn’s theorem when the ballot
space is B1 and m ≥ 3. In the case that m = 2 it turns out that f = FM .

We now explore the permutation closed j-rich ballot spaces B2 and B1 ∪ B2 when
m ≥ 4.

Example 3 Let B ∈ {B2,B1 ∪ B2} and let σ : X → X be the cyclic permutation
σ(xi ) = xi+1 for i = 1, . . .m with the convention that xm+1 = x1. Define the social
choice function fσ : N

B1
0 → Pne(X) by fσ (π) = FM (π̂) for all profiles π ∈ N0

B
where

π̂ = π +
∑

x∈X
[v(x, π) + v(σ (x), π)] · π{x,σ (x)}.

For any profile π and for any x ∈ X ,

v(x, π̂) = v(x, π) + [v(x, π) + v(σ (x), π)] + [v(σ−1(x), π) + v(x, π)]
= 3 · v(x, π) + v(σ (x), π) + v(σ−1(x), π).

Therefore, fσ (π) is the set of all x in X that maximize the sum

v(x, π̂) = 3 · v(x, π) + v(σ (x), π) + v(σ−1(x), π). (1)

By using Eq. (1) we now show that fσ satisfies faithfulness. If π = πB for some
B ∈ B and x ∈ B, then

v(x, π̂) ≥ 3 · v(x, π) = 3.

If y ∈ X\B, then v(y, π) = 0 and so

v(y, π̂) = v(σ (y), π) + v(σ−1(y), π) ≤ 2.

Thus,

fσ (πB) = FM (π̂B) ⊆ B.

If B ∈ B1, then, since fσ (πB) is nonempty, fσ (πB) = B. If B ∈ B2, then B = {x, y}
for some x �= y in X . If y �= σ(x) and y �= σ−1(x), then

v(x, π̂) = v(y, π̂) = 3
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and so fσ (πB) = B. Finally, if y ∈ {σ(x), σ−1(x)}, then

v(x, π̂) = v(y, π̂) = 4

and again fσ (πB) = B. We now know that fσ satisfies faithfulness.
Supposeπ ∈ N0

B satisfies v(x, π) = v(y, π) = k for all x, y ∈ X . Using equation
(1) we get v(x, π̂) = v(y, π̂) = 5k for all x, y ∈ X . Since FM satisfies cancellation,
fσ (π) = FM (π̂) = X . Thus, fσ satisfies cancellation.
To prove consistency we need the following observation. For any π, ρ ∈ N0

B,

π̂ + ρ = (π + ρ) +
∑

x∈X
[v(x, π + ρ) + v(σ (x), π + ρ)]π{x,σ (x)}

= (π + ρ) +
∑

x∈X
[(v(x, π) + v(x, ρ))

+ (v(σ (x), π) + v(σ (x), ρ))]π{x,σ (x)}
= π + ρ +

∑

x∈X
[(v(x, π) + v(σ (x), π)) + (v(x, ρ)

+ v(σ (x), ρ))]π{x,σ (x)}
= π +

∑

x∈X
[v(x, π) + v(σ (x), π)]π{x,σ (x)} + ρ

+
∑

x∈X
[v(x, ρ) + v(σ (x), ρ)]π{x,σ (x)}

= π̂ + ρ̂.

Therefore,

π̂ + ρ = π̂ + ρ̂ for all π, ρ ∈ N0
B.

Now suppose fσ (π) ∩ fσ (ρ) �= ∅. Using the previous observation and the fact that
majority rule is consistent we get

fσ (π) ∩ fσ (ρ) = FM (π̂) ∩ FM (ρ̂) = FM (π̂ + ρ̂) = FM

(
π̂ + ρ

)
= fσ (π + ρ).

Hence fσ satisfies consistency.
Finally , we will show that fσ is not equal to FM . Consider the profile

π = π{x1,x2} + π{x2,x3} + π{x1,x3}.

Since v(x, π) = 2 for x ∈ {x1, x2, x3} and v(x, π) = 0 for x ∈ X\{x1, x2, x3}, it
follows that FM (π) = {x1, x2, x3}. Using Eq. (1) and the fact that σ(x1) = x2 =
σ−1(x3) we get

v(x2, π̂) = 3 · v(x2, π) + v(x3, π) + v(x1, π) = 10.
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In general,

v(x, π̂) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

8 if x = x1, x3
10 if x = x2
2 if x = x4, xm and x4 �= xm
4 if x = xm and x4 = xm
0 otherwise.

Therefore, fσ (π) = {x2} �= FM (π) and we’re done.
This example show why neutrality is needed in Fishburn’s theorem when the ballot

space is either B2 or B1 ∪ B2 when m ≥ 4.5 Surprisingly, when m = 3 it turns out
that fσ = FM . Theorem 4 shows that for any other j-rich ballot space neutrality is
not needed.

Our proof of Theorem 3 will involve the following notation. For any j-rich ballot
space B, let

jmax (B) = max { j ∈ {1, . . . ,m − 1} : B j ⊆ B}.

For example, if B = B1 ∪ B2, then B is 1-rich, 2-rich and jmax (B) = 2. Using this
notation, we can rephrase Theorem 3 as follows:

Theorem 5 Majority rule is the only rule fulfilling faithfulness, cancellation, and con-
sistency in a given permutation closed j-rich domain N0

B with m alternatives if and
only if

jmax (B) ≥ min{m − 1, 3}.

Proof (⇒) Let B be a permutation closed j-rich ballot space and assume

jmax (B) < min{m − 1, 3}.

Then jmax (B) = 1 and m ≥ 3 or jmax (B) = 2 and m ≥ 4. In the first case, B = B1
andm ≥ 3. In the second case, B ∈ {B1∪B2,B2} andm ≥ 4. Examples 2 and 3 given
above show that in both cases majority rule is not the only rule satisfying faithfulness,
cancellation, and consistency.

(⇐) Suppose f : N
B
0 → Pne(X) satisfies faithfulness, cancellation, and con-

sistency and B is a permutation closed j-rich ballot space such that jmax (B) ≥
min{m − 1, 3}. We will show that f is majority rule.

If m = 2, then jmax (B) = 1 and B = B1. If m = 3, then jmax (B) = 2 and
B ∈ {B1 ∪ B2,B2}. If B = B1 and m = 2 or B = B1 ∪ B2 and m = 3, then
B = Pne(X)\{X}. In these cases, the Alós-Ferrer Theorem implies that f is majority
rule.

We now consider the casewhereB = B2 andm = 3. Letπ be an arbitrary nontrivial
profile. If π(B) = 0 for some B ∈ B2, then there exists x ∈ X such that x ∈ B ′ for

5 A different example for the case of m = 4 is given in Leach (2019).
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648 T. Leach, R. C. Powers

all B ′ ∈ B2 such that π(B ′) > 0. By faithfulness, x ∈ f (πB) for all B ∈ B2 such that
π(B) > 0. Therefore,

⋂

π(B)>0

f (π(B) · πB) �= ∅.

Using the fact that both f and Fm are consistent and faithful we get

f (π) =
⋂

π(B)>0

f (π(B) · πB) =
⋂

π(B)>0

FM (π(B) · πB) = FM (π).

If the profile π satisfies, π(B) > 0 for all B ∈ B2, then let

j ′ = min{π(B) : B ∈ B2}.

Next, we introduce the profiles ρ1 and ρ2 defined by

ρ1(B) = π(B) − j ′ and ρ2(B) = j ′

for all B ∈ B2. Observe that there exists B ′ ∈ B2 such that ρ1(B ′) = 0. Therefore,
by the previous argument, f (ρ1) = FM (ρ1). By cancellation, f (ρ2) = X . Since
π = ρ1 + ρ2 and FM (ρ2) = X it follows from consistency that

f (π) = f (ρ1) = FM (ρ1) = FM (π).

It now follows that f = FM .
The final case is when m ≥ 4. In this case, by Theorem 4, f has to be majority rule

and we’re done.

4 Independence examples

It is not possible to remove any of the axioms in Theorems 3 and 4 and still uniquely
describe majority rule. In other words, there exist social choice functions that satisfy
only two out of the three axioms. Following (Duddy and Piggins 2013) we define the
mean based rule Fmean on the unrestricted ballot space Pne(X) as follows: for any
profile π ,

Fmean(π) = {
x ∈ X : v(x, π) ≥ v(π)

}

where

v(π) =
∑

x∈X

v(x, π)

|X | .
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Majority rule on j-rich ballot spaces 649

The rule Fmean is faithful, cancellative, and neutral but not consistent. However, Duddy
and Piggins showed that Fmean satisfies a modified version of consistency.

Our next example is a weighted refinement of Approval Voting. Define Fw on
Pne(X) as follows: for any profile π ,

Fw(π) = {x ∈ FA(π) : w(x, π) ≤ w(y, π) ∀ y ∈ FA(π)}
where

w(x, π) =
∑

B∈Pne(X), x∈B
|B| π(B).

Notice that Fw(π) ⊆ FA(π) for any profile π . The rule Fw rule is faithful, consistent
and neutral but not cancellative. Our third example is inverse approval voting F−A

defined as follows: for any π ∈ N
Pne(X)
0 ,

F−A(π) = {x ∈ X : v(x, π) = min v(π)}.
By Theorem 1 in Ninjbat (2013), F−A is consistent, cancellative and neutral but not
faithful. See also Theorem 2 in Alcalde-Unzu and Vorsatz (2014) where the function
F−A is calledDisapproval Voting. Finally, the ballot aggregation functions f1, f2, and
f3 given on page 96 in Xu (2010) are three more examples of social choice functions
that satisfy exactly two out of the three axioms in Theorem 3.

5 Appendix

To prove Theorem 4wewill assume thatm ≥ 4,B is a j-rich ballot space for some j ≥
3, and f : N

B
0 → Pne(X) is a social choice rule satisfying faithfulness, consistency,

and cancellation. We want to show that f is majority rule, i.e.,

f (π) = FM (π)

for any profile π . This proof will involve the following notation. For each alternative
xi ∈ X , let the profile ρxi be the profile that consists of each of the j sized ballots
containing xi . That is,

ρxi =
∑

B∈B j ,xi∈B
B.

For example, if X = {x1, x2, x3, x4} and j = 3, then

ρx1 = π{x1,x2,x3} + π{x1,x2,x4} + π{x1,x3,x4}.

In this case,

v(x1, ρx1) = 3 and v(x2, ρx1) = v(x3, ρx1) = v(x4, ρx1) = 2.
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In the general case,

v(xi , ρxi ) =
(
m − 1

j − 1

)
and v(xt , ρxi ) =

(
m − 2

j − 2

)

for all t �= i . It follows from consistency and faithfulness that f (ρxi ) = {xi }. For any
nonempty subset I of {1, . . . ,m} let

ρI =
∑

i∈I
ρxi and BI = {xi : i ∈ I }.

If |I | = k, then

v(xi , ρ) =
(
m − 1

k − 1

)
+ (k − 1) ·

(
m − 2

k − 2

)

for all i ∈ I and

v(xt , ρ) = k ·
(
m − 2

k − 2

)

for all t ∈ {1, . . . ,m}\I . Therefore,

FM (ρI ) = BI .

We want to show that f (ρI ) = BI as well. The next lemma shows that this equality
holds when |I | = j or j − 1.

Lemma 1 If |I | ∈ { j, j − 1}, then

f (ρI ) = BI .

Proof Assume |I | = j and note that BI ∈ B since B is j-rich. Let α and β be the
positive integers satisfying

α = v(xi , ρI ) and β = v(x j , ρI )

for some i ∈ I and j ∈ {1, . . . ,m}\I . Notice that α > β. Next, let

ρ̂ =
m∑

i=1

ρxi

and observe that f (ρ̂) = X by cancellation. Let γ be the positive integer

γ = v(x, ρ̂)
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for any x ∈ X . We now compare the two profiles:

γ · ρI and [β · ρ̂ + γ (α − β) · BI ].

For any xi ∈ BI ,

v(xi , γ · ρI ) = γ v(xi , ρI ) = γα

and

v(xi , β · ρ̂ + γ (α − β) · BI ) = βγ + γ (α − β) = γα.

Next, for any x j ∈ X\BI ,

v(x j , γ · ρI ) = γ v(x j , ρI ) = γβ

and

v(x j , β · ρ̂ + γ (α − β) · BI ) = βγ.

We now know that

v(x, γ · ρI ) = v(x, β · ρ̂ + γ (α − β) · BI )

for all x ∈ X . Let I ′ = {1, . . . ,m}\I and observe that

ρI + ρI ′ = ρ̂.

Therefore,

v(x, γρI + γρI ′) = v(x, γ · ρ̂) = γ 2

for all x ∈ X . Using the previous equation and fact that

v(x, γ · ρI ) = v(x, β · ρ̂ + γ (α − β) · BI )

for all x ∈ X it follows that

v(x, [γρI ′ + β · ρ̂ + γ (α − β) · BI )]) = γ 2

for all x ∈ X as well. Since f satisfies cancellation we get

f (γρI + γρI ′) = f ([γρI ′ + β · ρ̂ + γ (α − β) · BI )]) = X .

Therefore, using consistency (many times) we get

f (ρI ) = f (γρI )
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= f (γρI + [γρI ′ + β · ρ̂ + γ (α − β) · BI ])
= f ([γρI + γρI ′ ] + β · ρ̂ + γ (α − β) · BI )

= f (β · ρ̂ + γ (α − β) · BI ))

= f (γ (α − β) · BI ))

= f (BI ).

Finally, since f is faithful, f (ρI ) = f (BI ) = BI and we’re done with the first part
of the proof of Lemma 1.

Now assume |I | = j − 1 and, as above, let I ′ = {1, . . . ,m}\I . Using consistency
and the first part of this lemma we get

f

(
∑

t∈I ′
[ρI + ρxt ]

)
=

⋂

t∈I ′
[BI ∪ {xt }] = BI .

Note that

∑

t∈I ′
[ρI + ρxt ] =

m∑

i=1

ρxi + (m − j)ρI .

By consistency and cancellation,

f

(
m∑

i=1

ρxi + (m − j)ρI

)
= f (ρI ).

Hence f (ρI ) = BI .

We are now ready to use Lemma 1 to complete the proof of Theorem 4.

Proof of Theorem 4. Assume that the set

D = {π ∈ N
B
0 : f (π) �= FM (π)}

is nonempty. So D is the set of profiles where the functions f and FM disagree.
Choose ρ ∈ D such that |FM (ρ)| is maximal. This means that if π is a profile such
that |FM (π)| > |FM (ρ)|, then f (π) = FM (π). Since f is cancellative and ρ ∈ D it
follows that FM (ρ) �= X . So

|FM (ρ)| ≤ m − 1.

Assume that there exists x ∈ f (ρ) such that x /∈ FM (ρ). We may assume that x = x1.
Let

� = max v(ρ) − v(x1, ρ)
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and note that � > 0. Next, let

ρ̂ = αρ + �ρx1

where

α =
(
m − 1

j − 1

)
−

(
m − 2

j − 2

)
.

Then

v(x1, ρ̂) = αv(x1, ρ) + � ·
(
m − 1

j − 1

)

and

v(xi , ρ̂) = αv(xi , ρ) + � ·
(
m − 2

j − 2

)

for all i �= 1. If v(xi , ρ) = max v(ρ) = [� + v(x1, ρ)], then

v(xi , ρ̂) = α · [� + v(x1, ρ)] + � ·
(
m − 2

j − 2

)

= αv(x1, ρ) + � ·
(
m − 1

j − 1

)

= v(x1, ρ̂).

It follows that

FM (ρ̂) = FM (ρ) ∪ {x1}.

By our choice of ρ and the fact that |FM (ρ̂)| > |FM (ρ)| it follows that

f (ρ̂) = FM (ρ̂) = FM (ρ) ∪ {x1}.

On the other hand, by consistency,

f (ρ̂) = f (ρ) ∩ f (ρx1) = {x1}.

Since FM (ρ) ∪{x1} �= {x1}we get a contradiction. It now follows that f (ρ) ⊂ FM (ρ).
Since f (ρ) ⊂ FM (ρ) and f (ρ) �= FM (ρ), there exists y ∈ FM (ρ)\ f (ρ). Let

x ∈ X\FM (ρ) and z ∈ f (ρ). We may assume that x = x1, y = x2, and z = x3. As
above, let

� = max v(ρ) − v(x1, ρ)
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and note that � > 0. We now introduce the profile

μ = αρ + �[ρx1 + ρx2 + · · · + ρx j ].

By our choice of ρ we know that

f (αρ + �ρx1) = FM (αρ + �ρx1) = FM (ρ) ∪ {x1}.

Using consistency and Lemma 1,

f
(
�[ρx2 + · · · + ρx j ]

) = {x2, . . . , x j }.

Using consistency and the fact that x2, x3 ∈ FM (ρ) we get

f (μ) = f (αρ + �ρx1) ∩ f
(
�[ρx2 + · · · + ρx j ]

) ⊇ {x2, x3}.

Next, using consistency and Lemma 1, we get

f
(
�[ρx1 + · · · + ρx j ]

) = {x1, . . . , x j }.

Since x3 ∈ f (ρ) = f (αρ) and x3 ∈ f
(
�[ρx1 + · · · + ρx j ]

)
it follows that

f (μ) = f (αρ) ∩ f
(
�[ρx1 + · · · + ρx j ]

)
.

Since x2 /∈ f (ρ) = f (αρ) it follows from the previous equation that x2 /∈ f (μ). But
this contradicts the fact that {x2, x3} ⊆ f (μ). This final contradiction shows that the
set D = {π ∈ N0 : f (π) �= FM (π)} must be the empty set. Hence f = FM and
we’re done.
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