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Abstract
We study strategy-proof rules for choosing between two alternatives. We consider
the full preference domain which allows for indifference. In this framework, for
strategy-proof rules, ontoness does not imply efficiency. We weaken the requirement
of efficiency to ontoness and characterize the class of strategy-proof rules. We argue
that the notion of efficiency is not desirable always. Further, we provide a simple
description of the class of onto, anonymous and strategy-proof rules in this frame-
work. The key feature of our characterization results brings out the role played by
indifferent agents.

1 Introduction

In this paper, we study social choice problems where a finite set of individuals/agents
have to choose one between two alternatives. Let a and b be two alternatives. We
assume that individuals can report one among the following three preferences over
these two alternatives: (1) a is strictly preferred to b, (2) b is strictly preferred to a and
(3) a is indifferent to b. Based on individuals’ reported preferences, a Social Choice
Function (or simply a rule) selects an alternative. Choosing between two alternatives
has many important applications - such as, two candidate elections, up-down votes
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on legislation, choosing one out of two locations for locating a public facility, yes-
no decisions about building a new public facility or any situation with a status-quo
alternative and a new alternative.

Throughout this paper we consider non-constant rules i.e. onto rules. Ontoness
implies efficiency (or unanimity) for strategy-proof rules defined over a suitably rich
domain of strict preferences1. However, ontoness does not imply efficiency if pref-
erence domain includes indifference (see Examples in Sect. 3)2. We do not impose
efficiency criteria on rules and characterize the class of onto and strategy-proof rules
in this framework. Further, we provide a simple description of the class of anonymous,
onto and strategy-proof rules.

A natural objection could be why onemight compromise efficiency. In election, it is
quite often that a significant proportion of voters express their opinion as indifference.
For instance, abstaining from voting can be interpreted as indifference3. Our objective
in this paper is to examine the role played by the agents who are indifferent among
the two alternatives. In this scenario, if we only look at efficient and strategy-proof
voting rules, the outcome is simply based on voters who do not express their opinion
as indifference. We believe that this is not desirable in particular when the number of
indifferent voters is very large. However if we relax the requirement of efficiency, the
outcome depends on both the voters who are indifferent and who are not. Of course,
the class of efficient and strategy-proof rules is contained in the class of onto and
strategy-proof rules.

In this paper, we introduce two classes of rules, one contained in the other. The
larger one, named Generalized Voting by Committee (GVC) contains all onto and
strategy-proof rules in our setting. In rough words, any GVC rule first considers the
coalition of agents who are indifferent. If they are not winning, then the rule looks at
the set of remaining agents (agents with strict preference) and selects the outcome for
which there is a winning coalition. The technical details are purposefully not presented
in this section in order to improve readability. The smaller class, named quota rule with
indifference default contains those GVC rules which are also anonymous. Roughly,
these are those GVC rules which cares about only the size of the coalitions and not the
members of the coalitions. Further, we study a solidarity property in this framework.
We consider the following solidarity property: “Welfare dominance under preference
replacement (WDPR)”, which says that when the preferences of one agent change,
the other agents all weakly gain or all weakly lose. We characterize the class of rules
satisfying WDPR among the class of quota rules.

Larsson and Svensson (2006) characterizes the class of efficient and strategy-proof
rules in this framework. These rules are known as voting by extended committees (see
Sect. 3 for details). These rules are contained in the class of GVC rules - in fact,
efficient GVC rules are voting by extended committees rules. A point of difference
between Larsson and Svensson (2006) and this work is the presentation of the class

1 For instance, see Dogan and Sanver (2007) for three or more alternatives with strict preferences. For two
alternatives with strict preferences, see Theorem 1 of Barberà et al. (1991) and Corollary 3 of Ju (2003) for
the case of single object.
2 If we restrict our attention to strong group strategy-proof rules, then ontoness implies efficiency [see
Barberà et al. (2012), Manjunath (2012) and Harless (2015)].
3 See Section 3 in Núñez and Sanver (2017) for the case of two alternatives.
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of rules. Here our objective is to examine the role played by the indifferent agents.
The winning coalitions in any voting by extended committees consists of agents with
strict preferences. In such description, the role of the indifferent agent is not obvious.
That is why, our presentation centers around agents with indifferences. It is worth
mentioning at this point that our results in Theorems 1 and 2 can also be obtained
as corollaries of Ju (2003) (see Conclusions for a detailed explanation). In our paper,
however, apart from other results not included in Ju (2003), we propose alternative
proofs and definitions of the characterized rules which we believe are useful for the
literature.

This paper is organized as follows. Section 2 describes the basic notation and
definitions. Section 3 discusses the relationship between ontoness and unanimity (or
efficiency) and provides some rules which are onto and strategy-proof but not efficient.
The main results are presented in Sect. 4. Proofs are relegated to the Appendix. We
conclude the paper in Sect. 5.

2 Basic notation and definitions

Let A = {a, b} denote the set of two alternatives and N = {1, . . . , n}, n ≥ 2, a finite
set of agents/individuals. Each individual in N has a preference relation over A: she
either prefers a, prefers b, or is indifferent between them. Let R be the set of these
three preference relations. For each i ∈ N , let Ri ∈ R denote individual i’s preference
relation. If a is at least as good as b according to individual i , we write aRib. If she
prefers a to b, we write aPib and if she is indifferent between the two, aIi b. Let P be
the set of two strict preference relations defined over A.

A preference profile is a list R = (R1, . . . , Rn) ∈ Rn of individuals preferences.
For any coalition S ⊆ N and any profile R ∈ R, RS denotes the restriction of the
profile R to the coalition S i.e. RS = (Ri )i∈S . A profile R′ ∈ Rn is defined to be a
i−deviation from another profile R ∈ Rn if RN\{i} = R′

N\{i}.
For each R ∈ Rn , let Na(R) be the set of individuals who prefer a to b at R.

Similarly, let Nb(R) be the set of individuals who prefer b to a, and let NA(R) be the
set of individuals who are indifferent between a and b at R. Finally, let ς be the set of
permutations of N . For each R ∈ Rn and each σ ∈ ς , let σ(R) = (Rσ(i))i∈N .

Definition 1 A SCF f is a mapping from Rn to A i.e. f : Rn −→ A.

A SCF is sometimes called a voting rule (or simply a rule).

Definition 2 A SCF f is onto if for every alternative x ∈ A there exists a profile
R ∈ Rn such that f (R) = x .

Note that, as |A| = 2, if f is not onto, then it must be a constant rule i.e. a rule that
selects the same alternative at each profile.

We list some well-known properties of SCFs below.

Definition 3 A SCF f satisfies unanimity, if for all profile R ∈ Rn , f (R) = a
whenever Na(R) �= ∅ and Nb(R) = ∅, and f (R) = b whenever Na(R) = ∅ and
Nb(R) �= ∅.
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If x ∈ A is at least as good as A\{x} by all individuals and at least one individual
prefers x , then by unanimity, the SCF must select x . Unanimity is also known as
efficiency in this model.

The next property imposes a weaker requirement than unanimity. If all individuals
prefer x ∈ A, then the SCF must select x .

Definition 4 A SCF f satisfies weak unanimity, if for all profile R ∈ Rn , f (R) = a
whenever Na(R) = N , and f (R) = b whenever Nb(R) = N .

Anonymity requires that the names of the agents should not matter. In particular,
when the identities of the agents are shuffled, the rule must select the same alternative.

Definition 5 A SCF f is anonymous if for any R ∈ Rn and for any σ ∈ ς , we have
f (R) = f (σ (R)).

Definition 6 A SCF f is strategy-proof if, for any i ∈ N , for any R ∈ Rn and for any
i−deviation R′ ∈ Rn of R, we have f (R)Ri f (R′).

A SCF is strategy-proof if no individual can obtain a preferred alternative by mis-
representing her preferences for any announcement of the preferences of the other
individuals. Strategy-proofness ensures that for every agent truth-telling is a weakly
dominant strategy in the direct revelation game induced by the SCF.

Next we introduce a weaker notion of strategy-proofness as follows.

Definition 7 A SCF f is weakly strategy-proof if, for any i ∈ N , for any R ∈ Rn and
for any i−deviation R′ ∈ Rn of R such that Ri ∈ P and aI ′

i b, we have f (R)Ri f (R′).
Next we show that in our model, strategy-proofness and weak strategy-proofness are
equivalent.

Lemma 1 Let f : Rn −→ A be a SCF. f is strategy-proof if and only if f is weakly
strategy-proof.

The proof of Lemma 1 is in the Appendix. Weak strategy-proofness can be seen
as participation property of a SCF for the case of two alternatives [for instance, see
Section 3 inNúñez and Sanver (2017)]4. Therefore, with two alternatives, participation
property and strategy-proofness are logically equivalent.

3 Unanimity versus weak unanimity

It is important to mention that unanimity implies weak unanimity and weak unanimity
implies ontoness. However, ontoness does not imply weak unanimity and weak una-
nimity does not imply unanimity. If we restrict our attention to strategy-proof SCFs,
then ontoness implies weak unanimity. In the following, we show this.

Proposition 1 Let f : Rn → A be a strategy-proof SCF. If f is onto, then it satisfies
weak unanimity.

4 The participation property was introduced in Moulin (1991) to avoid the no-show paradox. The no-show
paradox can be viewed as a way to manipulate social choice rules by abstaining from voting.
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Proof Suppose not. We assume that f (R) = b where aPib for all i ∈ N . Since
f is onto, there exists R′ ∈ Rn such that f (R′) = a. Applying strategy-proofness
repeatedly, it follows that

f (R′) = f (R1, R
′
2, . . . , R

′
n)

= f (R1, R2, R
′
3, . . . , R

′
n)

...

= f (R1, . . . , Rn)

= a

This contradicts the assumption f (R) = b. A similar argument will lead to a contra-
diction if we assume that f (R) = a where bPia for all i ∈ N . Therefore f satisfies
weak unanimity. 	


We first introduce the class of unanimous and strategy-proof rules known in the
literature as V ECa,t which were characterized by Larsson and Svensson (2006). To
introduce the class of unanimous and strategy-proof rules onRn , we need the following
notations and definitions. For each M ⊆ N , a committee for alternative a at M , FM ,
is a set of subsets of M , satisfying the following two properties:

1. Non-emptyness: If M �= ∅, then FM �= ∅ and ∅ /∈ FM . If M = ∅, then FM = ∅.
2. Monotonicity: For each S ∈ FM and T ⊆ M , if S ⊆ T , then T ∈ FM .

A collection of committees for a, F ≡ {FM }M⊆N , is a set containing for each
M ⊆ N a committee for a at M , FM , satisfying the following properties:

For each M ⊆ N and each i ∈ M

1. If S ∈ FM and i /∈ S, then S ∈ FM\{i}.
2. If S ∪ {i} /∈ FM , then S /∈ FM\{i}.

Definition 8 A SCF is voting by extended committees, denoted by V ECa,t , if there
exists a collection of committees for a (i.e. F) and a tie-breaker t ∈ A such that for
all R ∈ Rn ;

V ECa,t (R) =
⎧
⎨

⎩

t i f NA(R) = N
a i f Na(R) ∈ FN\NA(R)

b otherwise

A natural question arises - if a SCF satisfies ontoness and strategy-proofness, does
it satisfy unanimity? In the following, we provide rules which are strategy-proof and
onto but not unanimous.

Example 1 Consider the following SCF f : Rn −→ A:

f (R) =
{
a if aR1b
b if bP1a
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Note that f satisfies strategy-proofness and ontoness (see Sect. 4.1). However, it
does not satisfy unanimity. To see this, consider a preference profile R′ where aI ′

1b
and for all j ∈ N\{1}, bP ′

j a. Unanimity implies that f must select b at R′. However,
f (R′) = a. Therefore f is not unanimous. 	

Note that the rule in Example 1 is not anonymous. However, there are anonymous,

onto and strategy-proof rules which are not unanimous.

Example 2 Consider the status-quo rule with respect to the status-quo alternative a,
f a : Rn −→ A:

f a(R) =
{
b if b is preferred by all agents
a otherwise

It is straightforward that f a is strategy-proof, anonymous and onto (see Sect. 4.2).
However, f a is not unanimous. Consider a preference profile R where aIi b for some
i ∈ N and for all j ∈ N\{i}, bPja. Unanimity implies that f a must select b at R.
However, f a(R) = a. Therefore f a is not unanimous.

The status-quo rulewith respect to the status-quo alternative b, is defined as follows:

f b(R) =
{
a if a is preferred by all agents
b otherwise

It can be seen that f b is strategy-proof, anonymous and onto but not unanimous. 	

The following class of rules can be found in Chapter 2 of Fishburn (1973).

Example 3 Let s : R 
−→ {1, 0,−1} such that

s(Ri ) =
⎧
⎨

⎩

1 if aPib
0 if aIi b
−1 if bPia

For each R ∈ Rn , we denote s(R) = ∑n
i=1 s(Ri ).

We fix an integer h ∈ (−n, n] ∩ Z and define the SCF f h , as follows: For all
R ∈ Rn

f h(R) =
{
a i f s(R) ≥ h
b otherwise

First, we make following remarks on these rules.

1. If h = 1, we get the simple majority rule i.e. a beats b whenever more individuals
that prefer a to b than prefer b to a and b beats a whenever the converse holds.

2. The case where a wins if the number of individuals that prefer a to b exceeds the
number of individuals that prefer b to a by at least a positive integer r , and b wins
otherwise, is described by h = r .
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3. If h = n, then we get the status-quo rule with respect to status quo alternative
b. Similarly, if h = −(n − 1), then we get the status-quo rule with respect to
status-quo alternative a.

4. If h = −n, then f −n(R) = a for all profiles, a constant rule. That is why we
exclude this case.

In Sect. 4.2, we show that f h is strategy-proof, anonymous and onto. Whether f h

is unanimous or not, that depends on the value of h. In particular, it can be seen that f h

is unanimous if h ∈ {0, 1}. However if h > 1 or h ≤ −1, then f h is not unanimous.
To see this, we first assume that h > 1. Let R ∈ Rn be a preference profile where
aPib and aI j b for all j ∈ N\i . By unanimity, we should select a at R. However
f h(R) = b, because s(R) = 1 < h. Similarly, if h ≤ −1, at R ∈ Rn where bPia and
aI j b for all j ∈ N\i , f h(R) = a, because s(R) = −1 ≥ h - violates unanimity. 	


We can think of a rule where the number of individuals who are indifferent between
two alternatives, can determine the outcome. For instance, consider a rulewhich selects
an alternative x ∈ A if the number of indifferent individuals is at least a positive
integer r ∈ {1, 2, . . . , n}. Otherwise if the number is less than r , then based upon
the preferences of strict individuals, the rule selects x or the other alternative A\{x}.
Below, we introduce a class of such rules.

Example 4 Wefix a positive integer r ∈ {1, 2, . . . , n} and define the SCF f r as follows:
For all R ∈ Rn

f r (R) =
⎧
⎨

⎩

b if |NA(R)| ≥ r
b if |NA(R)| < r and |Nb(R)| �= 0
a if |NA(R)| < r and |Nb(R)| = 0

We make the following remarks on these rules.

1. If r = 1, then we get the status-quo rule with respect to status quo alternative b.
2. If r = n, then we get the consensus rule with disagreement-default b and

indifference-default b ( Manjunath (2012)).

In Sect. 4.2, we show that f r is strategy-proof, anonymous and onto. However,
whether f r is unanimous or not depends on r . In particular, if r = n, then it is
straightforward to show that f r is unanimous. However, if r < n, f r is not unanimous.
To see this, consider R ∈ Rn where aPib and aI j b for all j ∈ N\i . By unanimity,
we should select a at R. However f r (R) = b, because |NA(R)| = n − 1 ≥ r . 	


4 Results

4.1 Generalized voting by committees

In this section, we characterize onto and strategy-proof rules. For this, we need to
introduce additional notation and definitions.

Acommittee for indifference default d ∈ {a, b},denoted by Id , is a set of subsets
of N , satisfying the following two properties:
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1. Non-emptyness Id �= ∅ and ∅ /∈ Id .
2. Monotonicity For each S ∈ Id and T ⊆ N , if S ⊆ T , then T ∈ Id .

Since d ∈ {a, b}, Ia denotes a committee for indifference default a. Similarly, a
committee for indifference default b is denoted by Ib.

Let M ⊆ N and Id be a committee for indifference default d. A committee for a
at M with respect to Id , denoted by FM,Id , is a set of subsets of M , satisfying the
following two properties:

1. Non-emptiness with respect to Id : If N\M /∈ Id , thenFM,Id �= ∅ and ∅ /∈ FM,Id .
If N\M ∈ Id , then FM,Id = ∅.

2. Monotonicity For each S ∈ FM,Id and T ⊆ M , if S ⊆ T , then T ∈ FM,Id .

A collection of committees for a with respect to Ia , denoted by FIa ≡
{FM,Ia }M⊆N , is a set containing for each M ⊆ N a committee for a with respect to
Ia i.e. FM,Ia , satisfying the following properties:

For each M ⊆ N and each i ∈ M

1. If N\M /∈ Ia and {N\M} ∪ {i} ∈ Ia , then for all S ⊆ M such that i ∈ S,
S ∈ FM,Ia .

2. If S ∈ FM,Ia , i /∈ S and {N\M} ∪ {i} /∈ Ia , then S ∈ FM\{i},Ia .
3. If N\M /∈ Ia , S ∪ {i} /∈ FM,Ia and {N\M} ∪ {i} /∈ Ia , then S /∈ FM\{i},Ia .

Similarly, a collection of committees for a with respect to Ib, FIb ≡
{FM,Ib }M⊆N , is a set containing for each M ⊆ N a committee for a with respect
to Ib i.e. FM,Ib , satisfying the following properties:

For each M ⊆ N and each i ∈ M

1. If N\M /∈ Ib and {N\M} ∪ {i} ∈ Ib, then for all S ∈ FM,Ib , i ∈ S.
2. If S ∈ FM,Ib , i /∈ S and {N\M} ∪ {i} /∈ Ib, then S ∈ FM\{i},Ib .
3. If N\M /∈ Ib, S ∪ {i} /∈ FM,Ib and {N\M} ∪ {i} /∈ Ib, then S /∈ FM\{i},Ib .

Given a committee for indifference default d, Id and a collection of committees for
a with respect to Id , we define generalized voting by committees (GVC) as follows.

Definition 9 A SCF is a GVC, denoted by f Id

FId
, if there exist a committee for indif-

ference default d, Id where d ∈ A and a collection of committees for a with respect
to Id , FId , such that for all R ∈ Rn ;

f Id

FId
(R) =

⎧
⎨

⎩

d if NA(R) ∈ Id

a if Na(R) ∈ FN\NA(R),Id and NA(R) /∈ Id

b otherwise

A generalized voting by committees (GVC) rule is described by two sets. The first
one is a nonempty set of subsets of N satisfying a monotonicity condition and we say
it as a committee for indifference default d ∈ {a, b}. The second one is a set containing
for each M ⊆ N , a committee for the alternative a at M . Moreover, the second set, not
only depends on the first set, but also satisfies further properties. For any preference
profile, if the set of agents who are indifferent between two alternatives, belongs to the
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On strategy-proof social choice between two alternatives 589

committee for indifference default d, then the rule selects d at that profile. Otherwise,
consider the committee for a at the set of agents with strict preferences over a and b -
if the set of agents who prefers a to b, belongs the that committee, then the outcome
is a or if it does not belong the that committee, then the outcome is b.

Now we state the main result of the paper.

Theorem 1 Let f : Rn −→ A be a SCF. Then, f is onto and strategy-proof if and
only if f is a GVC.

The proof of Theorem 1 is in the Appendix. However, we make several remarks on
Theorem 1 in the following:

1. Larsson and Svensson (2006) characterizes unanimous (or efficient) and strategy-
proof rules in this framework. In particular, they show that the only unanimous
and strategy-proof rules are V ECa,t (see Sect. 3). We consider the much weaker
requirement of ontoness and characterize strategy-proof rules in this framework.
The class of V ECa,t rules belongs to the the class of GVC rules. In particular, a
GVC rule, f Id

FId
is unanimous if and only if Id = {N }.

2. It can be seen that the rule inExample 1 is aGVC rulewhereIa = {S ⊆ N : 1 ∈ S}
and FIa ≡ {FM,Ia }M⊆N is as described below:

FM,Ia =
⎧
⎨

⎩

{
S ⊆ M : 1 ∈ S

}
if 1 ∈ M

∅ if 1 /∈ M

3. Using Lemma 1, it follows that Theorem 1 would still hold if we replace strategy-
proofness with weak strategy-proofness.

4.2 Quota rules

Theorem 1 provides a characterization of onto and strategy-proof rules in our model.
However, we must confess that GVC rules are not simple to describe. The rules that
are anonymous, can be described in much simpler way. First we define the following
class of rules.

Definition 10 A SCF is a quota rule with indifference default a, denoted by f k,xa ,
if there exists a vector of natural numbers of length k, x = (x1, x2, . . . , xk) ∈ {1} ×
{1, 2} × . . . × {1, 2, . . . , k}, where k ∈ {1, 2, . . . , n} and xi+1 − 1 ≤ xi ≤ xi+1 for all
i ∈ {1, 2, . . . , k − 1} such that for all R ∈ Rn

f k,xa (R) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a if |NA(R)| ≥ k

a if |NA(R)| < k
and |Na(R) ∪ Nb(R)| = n − k + l for some l ∈ {1, 2, . . . , k}
and |Na(R)| ≥ xl

b otherwise
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Next we define another class of rules as follows.

Definition 11 A SCF is a quota rule with indifference default b, denoted by f k,yb , if
there exists a vector of natural numbers of length k, y = (y1, y2, . . . , yk) ∈ {n − k +
1}×{n−k+1, n−k+2}× . . .×{n−k+1, n−k+2, . . . , n}, where k ∈ {1, 2, . . . , n}
and yi+1 − 1 ≤ yi ≤ yi+1 for all i ∈ {1, 2, . . . , k − 1} such that for all R ∈ Rn

f k,yb (R) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

b i f |NA(R)| ≥ k

a i f |NA(R)| < k
and|Na(R) ∪ Nb(R)| = n − k + l f orsomel ∈ {1, 2, . . . , k}
and|Na(R)| ≥ yl

b otherwise

Aquota rulewith indifference default a is described simply by a vector of integers of
length k, k ∈ {1, 2, . . . , n}, x = (x1, x2, . . . , xk) ∈ {1} × {1, 2} × . . . × {1, 2, . . . , k},
where xi+1 − 1 ≤ xi ≤ xi+1 for all i ∈ {1, 2, . . . , k − 1}. Note that xi is the i th

component of the vector x , where i ∈ {1, 2, . . . , k}. The rule works as follows. For
any preference profile, if the number of agents who are indifferent between the two
alternatives, is at least k, then the rule selects the indifference default a at that profile.
Suppose that the number is less than k, i.e. the number of agents with strict preferences
belongs to {n− k+1, . . . , n}. In particular, we assume that the number of agents with
strict preferences is n − k + l where l ∈ {1, 2, . . . , k}. Then the outcome is a if the
number of agents who prefers a to b is at least xl and the outcome is b if the number
is less than xl . Here, k is the quota for indifference default a i.e. whenever the number
of indifferent agents is at least k, the outcome is a. Also, xl is the quota for a when the
number of strict agents is n − k + l, l ∈ {1, 2, . . . , k} i.e when n − k + l is the number
of strict agents, the outcome is a if the number of agents who prefers a to b is at least
xl and the outcome is b if the number is less than xl . Quota rule for a with indifference
default b can also be described in similar fashion. Theorem 2 characterizes the class of
anonymous, onto and strategy-proof rules in terms of quota rules in this framework.

Theorem 2 Let f : Rn −→ A be a SCF. Then, f is anonymous, onto and strategy-
proof if and only if it is either a quota rule with indifference default a or a quota rule
with indifference default b.

The proof of Theorem 2 is in the Appendix. In the following, we make several
remarks on Theorem 2:

1. An anonymous, onto and strategy-proof rule can be described simply by a vector
of natural numbers of length k, where k ∈ {1, 2, . . . , n}. In particular, a quota
rule with indifference default a, f k,xa , is described by a vector of natural numbers
of length k, x = (x1, x2, . . . , xk) ∈ {1} × {1, 2} × . . . × {1, 2, . . . , k}, where
k ∈ {1, 2, . . . , n} and xi+1 − 1 ≤ xi ≤ xi+1 for all i ∈ {1, 2, . . . , k − 1}. For any
R ∈ Rn , f k,xa works as follows.
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• If the number of individuals who are indifferent between two alternatives at
R, is atleast k, i.e. |NA(R)| ≥ k, then the rule selects the indifference default
a i.e. f k,xa (R) = a. Here, k is the quota for indifference default a.

• If |NA(R)| < k, then note that |Na(R) ∪ Nb(R)| = n − k + l for some
l ∈ {1, 2, . . . , k} and we consider xl which represents the quota for alternative
a. If the number of individuals who vote for a is atleast xl , i.e. |Na(R)| ≥ xl ,
then f k,xa (R) = a; otherwise f k,xa (R) = b.

A quota rule with indifference default b, can be described in a similar way as well.
2. Note that f k,xa is unanimous if and only if k = n. Similarly, f k,yb is unanimous if

and only if k = n.
3. Rules in Example 2: The status-quo rule with respect to the status-quo alternative

a, f a is a quota rule with indifference default a, f k,xa , where x is a vector of
natural numbers of length 1 i.e. k = 1 and x ≡ (x1) = (1). The status-quo rule
with respect to the status-quo alternative b, f b is a quota rule with indifference
default b, f k,yb where y is a vector of natural numbers of length 1 i.e. k = 1 and
y ≡ (y1) = (n).

4. Rules in Example 3: If h > 0, the f h is a quota rule with indifference default b,
f k,yb where y is a vector of natural numbers of length n− h + 1 i.e. k = n− h + 1
and y ≡ (y1, . . . , yn−h+1) = (h, h + 1, h + 1, h + 2, h + 2, h + 3, . . .).

If h ≤ 0, the f h is a quota rule with indifference default a, f k,xa , where x is a
vector of natural numbers of length n+h i.e. k = n+h and x ≡ (x1, . . . , xn+h) =
(1, 1, 2, 2, 3, 3, . . .).

5. The rule in Example 4: It can be seen that the rule f r in Example 4 is a quota rule
with indifference default b, f k,yb where y is a vector of natural numbers of length
r i.e. k = r and y ≡ (y1, . . . , yr ) = (n − r + 1, n − r + 2, . . . , n).

6. Using Lemma 1, it follows that Theorem 1 would still hold if we replace strategy-
proofness with weak strategy-proofness.

4.3 Solidarity and quota rules

Among the class of anonymous, onto and strategy-proof rules, those that satisfy solidar-
ity property, are studied in this section. We consider the following solidarity property:
“welfare dominance under preference replacement”, which says that when the prefer-
ences of one agent change, the other agents all weakly gain or all weakly lose.

Definition 12 A SCF f satisfies welfare dominance under preference replacement
(WDPR) if for any R ∈ Rn , for any i ∈ N and for any R′

i ∈ R, either (i) for
each j ∈ N\{i}, we have f (R)R j f (R′

i , R−i ) or (i i) for each j ∈ N\{i}, we have
f (R′

i , R−i )R j f (R).

Harless (2015) characterizes the class of WDPR rules. Among the class of WDPR
rules, the rules that satisfy anonymity, ontoness and strategy-proofness, are discussed
in this section. Before presenting themain results of this section, we state the following
lemma.
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Lemma 2 Let f : Rn −→ A satisfy WDPR. Then, for all R, R′ ∈ Rn such that
Na(R), Nb(R), Na(R′), Nb(R′) �= ∅, we have f (R) = f (R′).

Proof The proof can be found in Lemma 1 of Harless (2015). Hence, it is omitted. 	

According to Lemma 2, if a rule satisfiesWDPR, then, it selects the same alternative

in each disagreement profile5.
Now we are ready to state our results. The following proposition characterizes the

class of rules satisfyingWDPRamong the class of quota ruleswith indifference default
a.

Proposition 2 Let n ≥ 3 and f k,xa : Rn −→ A be a quota rule with indifference
default a. Then, f k,xa satisfies WDPR if and only if x is a vector of natural numbers
of length n, where x = (x1, . . . , xn) ∈ {(1, 1, . . . , 1), (1, 2, . . . , n)} or x is a vector
of natural numbers of length k, k ∈ {1, 2, . . . , n − 1}, where x = (x1, . . . , xk) =
(1, 1, . . . , 1).

The proof of Proposition 2 is in the Appendix. Next we characterize the class of
rules satisfying WDPR among the class of quota rules with indifference default b.

Proposition 3 Let n ≥ 3 and f k,yb : Rn −→ A be a quota rule with indifference

default b. Then, f k,yb satisfies WDPR if and only if y is a vector of natural numbers
of length n, where y = (y1, . . . , yn) ∈ {(1, 1, . . . , 1), (1, 2, . . . , n)} or y is a vector
of natural numbers of length k, k ∈ {1, 2, . . . , n − 1}, where y = (y1, . . . , yk) =
(n − k + 1, n − k + 2, . . . , n).

The proof of Proposition 2 is in the Appendix. In the following, we make remarks
on Propositions 2 and 3.

1. If n = 2, then quota rules with indifference default a and quota rules with indif-
ference default b, satisfy WDPR. For n > 2, this is not true.

2. For unanimous rules, WDPR implies strategy-proofness and anonymity [see The-
orem 2(b) in Harless (2015)]. However, for onto rules, WDPR does not imply
strategy-proofness and anonymity [seeTheorem2(a) inHarless (2015)]. ByPropo-
sitions 2 and 3, the combination of anonymity, ontoness and strategy-proofness
does not imply WDPR for n > 2. In particular, Proposition 2 and 3 together char-
acterize the class of rules satisfying WDPR among the class of anonymous, onto
and strategy-proof rules.

5 Conclusion

We study social choice problems where a finite set of individuals have to choose
one between two alternatives. We consider the full preference domain which allows
for indifference. We weaken the requirement of efficiency to ontoness and analyse
strategy-proof rules in this framework. Firstly, we characterize the class of onto and

5 A profile R ∈ Rn is called disagreement profile if Na(R) �= ∅ and Nb(R) �= ∅.
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strategy-proof rules. Further, we provide a simple description of the class of anony-
mous, onto and strategy-proof rules in this framework. It is important to mention
that such characterizations can be obtained from Theorem 1 and Corollary 2 in Ju
(2003). In particular, in Ju (2003), if one assumes that the set of indivisible objects
contain only one item and the set of alternatives is all possible subsets of that set of
indivisible object, then it boils down to our model. Ju (2003) characterizes the class
of rules satisfying strategy-proofness and null-independence by describing the class
of rules through profile of power structures. Null-independence is trivially satisfied
in our setting. But, the main difference between Ju (2003) and this work lies in the
description of the rules. The profile of power structure is a tuple of coalitions for every
object (for one coalition, the object is good and for the other, it is bad), satisfying
a monotonicity condition. Ju (2003) does not describe the profile of power structure
in terms of those agents for whom an object is a null which is what we do in this
paper. Note that agents for whom an object is a null in Ju (2003) would correspond to
indifferent agents in our framework and the main focus of this paper has been to point
out the roles played by the agents who are indifferent. Moreover, the description of
the rules in this paper are easier than Ju (2003) (in particular, quota rules). At the same
time, analysis with respect to solidarity properties is absent in Ju (2003), whereas our
Propositions 2 and 3 together characterize the class of rules satisfying WDPR among
the class of anonymous, onto and strategy-proof rules. Also note that from Lemma 1,
we have equivalence between participation property (as introduced in Moulin (1991))
and strategy-proofness. Such a result is not attainable in Ju (2003).

Appendix

1 The Proof of Lemma 1

Proof Note that if f is strategy-proof then it is weakly strategy-proof. So suppose
that f is weakly strategy-proof, but to the contrary f is not strategy-proof. Then there
exist an agent i ∈ N and a profile R ∈ Rn and an i−deviation R′ ∈ R of R such that
Ri , R′

i ∈ P and f (R′)Pi f (R). So it follows that Ri �= R′
i . Without loss of generality,

assume that aPib and bP ′
i a. So it follows that f (R) = b and f (R′) = a. Now

consider the profile R� ∈ Rn such that R�
N\{i} = R′

N\{i} = RN\{i}, and aI �
i b. Now

weak strategy-proofness for the deviation from R to R� implies that f (R�) = b. On
the other hand weak strategy-proofness for the deviation from R′ to R� implies that
f (R�) = a, which contradicts the fact that f (R�) = b and concludes the proof. 	


2 The Proof of Theorem 1

Proof If part. Let f Id

FId
be a GVC rule. Let Id be the committee for indifference

default d ∈ {a, b} and FId , the collection of committees for a with respect to Id . We

show that f Id

FId
is onto and strategy-proof.
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To prove that f Id

FId
is onto, we show that there exist R′, R′′ ∈ Rn such that

f Id

FId
(R′) = a and f Id

FId
(R′′) = b. Let R′ and R′′ be such that Na(R′) = N and

Nb(R′′) = N respectively. Note that NA(R′) = Nb(R′) = ∅, Na(R′) ∈ FN\Nab(R′),Id

and NA(R′) /∈ Id . Therefore, f Id

FId
(R′) = a. Again, since NA(R′′) = Na(R′′) = ∅,

Na(R′′) /∈ FN\Nab(R′′),Id and NA(R′′) /∈ Id , we have f Id

FId
(R′′) = b.

Next we show that f Id

FId
satisfies strategy-proofness. We consider R ∈ Rn and

R′
i ∈ R.

First we assume that f Id

FId
(R) = a. If aRib, then i can not manipulate at R via R′

i .

If bPia then we show that f Id

FId
(R′

i , RN\{i}) = a. The following two cases arise : (i)

aI ′
i b and (ii) aP ′

i b.
(i) Suppose aI ′

i b. Let d = a. If NA(R) ∈ Ia , then NA(R′
i , RN\{i}) ∈ Ia . Therefore,

f Ia

FIa
(R′

i , RN\{i}) = a. If NA(R) /∈ Ia , then f Ia

FIa
(R) = a implies that Na(R) ∈

FN\NA(R),Ia . Now we consider the set NA(R′
i , RN\{i}). If NA(R′

i , RN\{i}) ∈ Ia , then
f Ia

FIa
(R′

i , RN\{i}) = a. If NA(R′
i , RN\{i}) /∈ Ia , then the property 2 of FIa would

imply that Na(R′
i , RN\{i}) ∈ FN\NA(R′

i ,RN\{i}),Ia . Therefore, f Ia

FIa
(R′

i , RN\{i}) = a.

Let d = b. Since f Ib

FIb
(R) = a, NA(R) /∈ Ib and Na(R) ∈ FN\NA(R),Ib . Now

we consider the set NA(R′
i , RN\{i}). If NA(R′

i , RN\{i}) ∈ Ib, then by property 1
of FIb , i ∈ Na(R) which is not possible. Therefore, NA(R′

i , RN\{i}) /∈ Ib. Since
Na(R) ∈ FN\NA(R),Ib and Na(R′

i , RN\{i}) = Na(R), by the property 2 of FIb we

have Na(R′
i , RN\{i}) ∈ FN\NA(R′

i ,RN\{i}),Ib . Therefore, f Ib

FIb
(R′

i , RN\{i}) = a.

(ii) Suppose aP ′
i b. Let d = a. Note that NA(R′

i , RN\{i}) = NA(R). If NA(R) ∈
Ia , then f Ia

FIa
(R′

i , RN\{i}) = a. If NA(R) /∈ Ia , then f Ia

FIa
(R) = a implies that

Na(R) ∈ FN\NA(R),Ia . By monotonicity property of FN\NA(R),Ia , Na(R′
i , RN\{i}) ∈

FN\NA(R),Ia . Since NA(R′
i , RN\{i}) = NA(R), f Ia

FIa
(R′

i , RN\{i}) = a.

Let d = b. Since f Ib

FIb
(R) = a, NA(R) /∈ Ib and Na(R) ∈ FN\NA(R),Ib . Also,

since NA(R′
i , RN\{i}) = NA(R), NA(R′

i , RN\{i}) /∈ Ib. By monotonicity property of

FN\NA(R),Ib , Na(R′
i , RN\{i}) ∈ FN\NA(R),Ib . Therefore, f Ib

FIb
(R′

i , RN\{i}) = a.

Now we assume that f Id

FId
(R) = b. If bRia, then i can not manipulate. If aPib

then we show that f Id

FId
(R′

i , RN\{i}) = b. The following two cases arise : (i) aI ′
i b and

(ii) bP ′
i a.

(i) Suppose aI ′
i b. Let d = a. Since f Ia

FIa
(R) = b, NA(R) /∈ Ia and Na(R) /∈

FN\NA(R),Ia . Now we consider the set NA(R′
i , RN\{i}). If NA(R′

i , RN\{i}) ∈ Ia ,
then by property 1 of FIa , Na(R) ∈ FN\NA(R),Ia which is not possible. Therefore,
NA(R′

i , RN\{i}) /∈ Ia . Since Na(R) /∈ FN\NA(R),Ia and NA(R′
i , RN\{i}) /∈ Ia , prop-

erty 3 of FIa would imply that Na(R′
i , RN\{i}) /∈ FN\NA(R′

i ,RN\{i}),Ia . Therefore,

f Ia

FIa
(R′

i , RN\{i}) = b.
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Let d = b. If NA(R) ∈ Ib, then (bymonotonicity property ofIb) NA(R′
i , RN\{i}) ∈

Ib. Therefore, f Ib

FIb
(R′

i , RN\{i}) = b. If NA(R) /∈ Ib, then f Ib

FIb
(R) = b implies that

Na(R) /∈ FN\NA(R),Ib . Nowwe consider the set NA(R′
i , RN\{i}). If NA(R′

i , RN\{i}) ∈
Ib, then f Ib

FIb
(R′

i , RN\{i}) = b. If NA(R′
i , RN\{i}) /∈ Ib, then property 3 ofFIb would

imply that Na(R′
i , RN\{i}) /∈ FN\NA(R′

i ,RN\{i}),Ia . Therefore, f Ib

FIb
(R′

i , RN\{i}) = b.

(ii) Suppose bP ′
i a. Note that NA(R′

i , RN\{i}) = NA(R). Let d = a. Since
f Ia

FIa
(R) = b, NA(R) /∈ Ia and Na(R) /∈ FN\NA(R),Ia . Since NA(R′

i , RN\{i}) =
NA(R), we have NA(R′

i , RN\{i}) /∈ Ia and Na(R) /∈ FN\NA(R′
i ,RN\{i}),Ia . Note

that Na(R′
i , RN\{i}) /∈ FN\NA(R′

i ,RN\{i}),Ia , otherwise by monotonicity property of
FN\NA(R′

i ,RN\{i}),Ia , Na(R) ∈ FN\NA(R′
i ,RN\{i}),Ia which is not possible. Therefore,

f Ia

FIa
(R′

i , RN\{i}) = b.

Letd = b. If NA(R) ∈ Ib, then NA(R′
i , RN\{i}) ∈ Ib. Therefore, f Ib

FIb
(R′

i , RN\{i}) =
b. So, we consider that NA(R) /∈ Ib. since f Ib

FIb
(R) = b, Na(R) /∈ FN\NA(R),Ib . Note

that since NA(R′
i , RN\{i}) = NA(R), we have Na(R′

i , RN\{i}) /∈ FN\NA(R′
i ,RN\{i}),Ia ,

otherwise bymonotonicity property ofFN\NA(R′
i ,RN\{i}),Ia , Na(R) ∈ FN\NA(R′

i ,RN\{i}),Ia

which is not possible. Therefore, f Ib

FIb
(R′

i , RN\{i}) = b.

Only if part. Let f be an onto and strategy-proof SCF. Let R̄ ∈ Rn denotes the
preference profile where all agents are indifferent between a and b. We show that if
f (R̄) = a, then there exists a committee for indifference default a, Ia and a collection
of committees for a with respect to Ia , FIa , such that for all R ∈ Rn ;

f (R) = f Ia

FIa (R).

Similarly, if f (R̄) = b, then there exists a committee for indifference default b, Ib

and a collection of committees for a with respect to Ib,FIb , such that for all R ∈ Rn ;

f (R) = f Ib

FIb
(R).

In the following, we consider these two cases.
Case 1: f (R̄) = a. For each M ⊆ N , let gMf be the restriction of f to {R ∈ Rn :

aIi b iff i /∈ M}. In other words, let gMf : {R ∈ Rn : aIi b iff i /∈ M} −→ A be a

function defined as gMf (R) = f (R) for all R ∈ {R ∈ Rn : aIi b iff i /∈ M}. First we
show the following claim.

Claim 1 For each M ⊆ N , either gMf is a constant rule that picks a or gMf is onto.

Proof If M = ∅, then it is trivial that gMf is a constant rule that picks a. Therefore, for

contradiction, we assume that there exists ∅ �= M ′ ⊆ N such that gM
′

f is a constant
rule that picks b. W.o.l.g. let M ′ = {1, 2, . . . , k}, k ≤ n. Let R′ be such that aI ′

i b if

i ∈ {k + 1, . . . , n} and aP ′
i b if i ∈ {1, . . . , k}. Since gM ′

f is a constant rule that picks
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b, f (R′) = b. Applying strategy-proofness, we have

f (R′
1, R

′
2, . . . , R

′
n) = f (R1, . . . , Rk−1, R̄k, R

′
k+1, . . . , R

′
n)

= f (R1, . . . , Rk−2, R̄k−1, R̄k, R
′
k+1, . . . , R

′
n)

...

= f (R̄1, . . . , R̄k, R
′
k+1, . . . , R

′
n)

= f (R̄)

= b

This contradicts f (R̄) = a. 	

Let Ia( f ) = {S ⊆ N : gN\S

f is constant rule that picks a }. Next we show the
following fact.

Fact 1 Ia( f ) is a committee for indifference default a.

Proof We show that Ia( f ) satisfies following two properties.

1. Non-emptiness Since N ∈ Ia( f ), Ia( f ) �= ∅. Since f is onto and strategy-proof,
gNf is onto. Therefore, ∅ /∈ Ia( f ).

2. Monotonicity Let S ∈ Ia( f ) , T ⊆ N and S ⊆ T . We show that T ∈ Ia( f ).
Since gN\S

f is a constant rule that picks a, gN\T
f is a constant rule that picks a.

Therefore, T ∈ Ia( f ).

	

The following claim is a direct implication of Theorem 1 of Barberà et al. (1991).

Hence, we omit the proof.

Claim 2 For each M ⊆ N , if gMf is onto, then it is a voting by committee for a at M .

For each M ⊆ N such that gMf is onto, Claim 2 implies that gMf is a voting by

committee for a at M . Let F gMf
M be the committee for a at M associated with gMf .

Now, for each M ⊆ N , we define the set FM,Ia( f ) as follows. If gMf is onto, then

FM,Ia( f ) = F gMf
M . If gMf is not onto i.e. gMf is a constant rule that picks a, then

FM,Ia( f ) = ∅.
First we show the following fact.

Fact 2 For each M ⊆ N , FM,Ia( f ) is a committee for a at M with respect to Ia( f ).

Proof We show that for each M ⊆ N , FM,Ia( f ) satisfies following two properties.

1. Non-emptiness with respect to Ia( f ): If N\M /∈ Ia( f ), then gMf is onto. There-

fore, FM,Ia( f ) = F gMf
M . Since F gMf

M �= ∅ and ∅ /∈ F gMf
M , we have FM,Ia( f ) �= ∅

and ∅ /∈ FM,Ia( f ). This follows from Claim 2 and Barberà et al. (1991). If
N\M ∈ Ia( f ), then gMf is a constant rule that picks a. Therefore, FM,Ia( f ) = ∅
by definition.
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2. Monotonicity W.o.l.o.g. we assume that FM,Ia( f ) �= ∅. Therefore FM,Ia( f ) =
F gMf

M . Since F gMf
M satisfies monotonicity (from Claim 2 and Barberà et al. (1991)),

we have that for each S ∈ FM,Ia( f ) and T ⊆ M , if S ⊆ T , then T ∈ FM,Ia( f ).

	

Next we show thatFIa( f ) ≡ {FM,Ia( f )}M⊆N satisfies the properties of a collection

of committees for a with respect to Ia( f ).

Fact 3 FIa( f ) ≡ {FM,Ia( f )}M⊆N satisfies the properties of a collection of committees
for a with respect to Ia( f ).

Proof We show that for each M ⊆ N and each i ∈ M :

1. If N\M /∈ Ia( f ) and {N\M} ∪ {i} ∈ Ia( f ), then for all S ⊆ M such that
i ∈ S, S ∈ FM,Ia( f ). Suppose not. There exist M ⊆ N and S ⊆ M such that
N\M /∈ Ia( f ), {N\M} ∪ {i} ∈ Ia( f ) and i ∈ S /∈ FM,Ia( f ). Let R ∈ Rn be
a preference profile such that aIkb for all k ∈ {N\M}, aPkb for all k ∈ S and
bPka for all k ∈ M\S. Note that gMf (R) = b. Therefore f (R) = b. Since f is
strategy-proof, f (R′

i , RN\{i}) = b where R′
i = aI ′

i b. This contradicts with the
fact that {N\M} ∪ {i} ∈ Ia( f ).

2. If S ∈ FM,Ia( f ), i /∈ S and {N\M} ∪ {i} /∈ Ia( f ), then S ∈ FM\{i},Ia( f ). Let
R ∈ Rn be a preference profile such that aIkb for all k ∈ {N\M} ∪ {i}, aPkb
for all k ∈ S and bPka for all k ∈ M\{S ∪ i}. Let R′ = (R′

i , RN\{i}) where
R′
i = bP ′

i a. Since S ∈ FM,Ia( f ), gMf (R′) = a. Therefore f (R′) = a. Then by

strategy-proofness, f (R) = a, i.e gM\i
f (R) = a. Since {N\M} ∪ i /∈ Ia( f ),

S ∈ FM\i,Ia( f ).
3. If N\M /∈ Ia( f ), S ∪ {i} /∈ FM,Ia( f ) and {N\M} ∪ {i} /∈ Ia( f ), then S /∈

FM\{i},Ia( f ). Let R ∈ Rn be be a preference profile such that aIkb for all k ∈
N\M , aPkb for all k ∈ S∪i and bPka for all k ∈ M\{S∪i}. Let R′ = (R′

i , RN\{i})
where R′

i = bI ′
i a. Since S∪i /∈ FM,Ia( f ), gMf (R) = b. Therefore f (R) = b. Then

by strategy-proofness, f (R′) = b, i.e gM\i
f (R′) = b. Since {N\M} ∪ i /∈ Ia( f ),

S /∈ FM\i,Ia( f ).

	

We complete this case by showing that for all R ∈ Rn ;

f (R) = hI
a( f )

FIa ( f )
(R).

Consider any profile R. By Claim 1, gN\NA(R)
f is either a constant rule that

picks a or it is an onto rule. Let gN\NA(R)
f be a constant rule that picks a. There-

fore, gN\NA(R)
f (R) = a implies that f (R) = a. Which, in turn, implies that

NA(R) ∈ Ia( f ); i.e.; hI
a( f )

FIa ( f )
(R) = a.
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Now we assume that gN\NA(R)
f is an onto rule. Therefore, NA(R) /∈ Ia( f ). By

Claim 2, gN\NA(R)
f is a voting by committee for a at N\NA(R). Let F g

N\NA(R)

f

N\NA(R) be the

committee for a at N\NA(R) associated with gN\NA(R)
f . Therefore, gN\NA(R)

f (R) = a

if Na(R) ∈ F g
N\NA(R)

f

N\NA(R) and gN\NA(R)
f (R) = b if Na(R) /∈ F g

N\NA(R)

f

N\NA(R). Since

gN\NA(R)
f (R) = f (R) and

FN\NA(R),Ia( f ) = F g
N\NA(R)

f

N\NA(R), we are done.

Case 2: f (R̄) = b. A similar argument (as in case 1) shows that there exists a
committee for indifference default b, Ib and a collection of committees for a with
respect to Ib, FIb , such that for all R ∈ Rn ;

f (R) = f Ib

FIb
(R).

	


3 The Proof of Theorem 2

Weprove this theoremwith the help of the following propositions. The first proposition
is a direct implication of adding anonymity on Theorem 1. For this purpose, we
introduce the following definitions. A committee for indifference default d ∈ {a, b},
Id , is anonymous, if S ∈ Id implies S′ ∈ Id for any S′ ⊆ N such that |S| = |S′|. If
a committee for indifference default d is anonymous, then we refer it as anonymous
committee for indifference default d.

Let M ⊆ N and Id be a committee for indifference default d. A committee for a
at M with respect to Id , FM,Id , is anonymous, if S ∈ FM,Id implies S′ ∈ FM,Id

for any S′ ⊆ M such that |S| = |S′|. If a committee for a at M with respect to Id is
anonymous, we refer it as anonymous committee for a at M with respect to Id .

A collection of anonymous committees for a with respect to Id , is a collection
of committees for a with respect to Id , satisfying following properties

1. For any M ⊆ N , FM,Id is a anonymous committees for a at M with respect to
Id .

2. For any M, M ′ ⊆ N , S ⊆ M and S′ ⊆ M ′ where |M | = |M ′| and |S| = |S′|, if
S ∈ FM,Id then S′ ∈ FM ′,Id .

We define generalized voting by anonymous committees (GVAC), as follows.

Definition 13 A SCF is GVAC, denoted by f Id

FId
, if there exists a anonymous com-

mittee for indifference default d, Id where d ∈ A and a collection of anonymous
committees for a with respect to Id , FId , such that for all R ∈ R

n ;

f Id

FId
(R) =

⎧
⎨

⎩

d if NA(R) ∈ Id

a if Na(R) ∈ FN\NA(R),Id and NA(R) /∈ Id

b otherwise
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This brings us to the following proposition.

Proposition 4 Let f : Rn −→ A be an onto SCF. If f is anonymous and strategy-
proof, then f is GVAC.

Proof Let f be an onto, anonymous and strategy-proof SCF. Let R̄ ∈ Rn denotes the
preference profile where all agents are indifferent between a and b. We show that if
f (R̄) = a, then there exists a anonymous committee for indifference default a, Ia

and a collection of anonymous committees for a with respect to Ia ,FIa , such that for
all R ∈ Rn ;

f (R) = f Ia

FIa (R).

Similarly, if f (R̄) = b, then there exists a anonymous committee for indifference
default b, Ib and a collection of anonymous committees for a with respect to Ib,FIb ,
such that for all R ∈ Rn ;

f (R) = f Ib

FIb
(R).

In the following, we consider these two cases.
Case 1: f (R̄) = a : As f is strategy-proof and onto, we have the following.

For any M ⊆ N , let gMf : {R ∈ Rn : aIi b iff i /∈ M} −→ A be a function defined

as gMf (R) = f (R) for all R ∈ {R ∈ Rn : aIi b iff i /∈ M}. Then either gMf is a

constant rule that picks a or gMf is onto. This follows from Claim 1 in the proof of
Theorem 1.
Ia( f ) = {S ⊆ N : gN\S

f is constant rule that picks a} is a committee for indiffer-
ence default a. This follows from Fact 1 in the proof of Theorem 1.
FIa( f ) ≡ {FM,Ia( f )}M⊆N , where

FM,Ia( f ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{

S ⊆ M : ∃ R ∈ {R ∈ Rn : aIi b iff i /∈ M}
with S = Na(R) ⊆ M and gMf (R) = a

}

if
gMf is an
onto function

∅ if
gMf is a
constant rule
that picks a

is a collection of committees for a with respect to Ia( f ). This follows from Claim
2 and Facts 2 and 3 in the proof of Theorem 1.

Next we are going to show that Ia( f ) is an anonymous committee for indifference
default a.

Claim 3 Ia( f ) is an anonymous committee for indifference default a.

Proof Consider S, S′ ⊆ N such that |S| = |S′|. Suppose S ∈ Ia( f ), but to the contrary

S′ /∈ Ia( f ). This implies that gN\S
f is a constant rule that selects a, but gN\S′

f is onto.
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So there exists a R ∈ {R ∈ Rn : aIi b iff i /∈ N\S′} such that gN\S′
f (R) = b. As |S| =

|S′|, we have |N\S| = |N\S′|. As Na(R) ⊆ N\S′, there exists T ⊆ N\S such that
|Na(R)| = |T | and |(N\S′)\Na(R)| = |(N\S) \ T |. So we can define the following
functions; σ1 : S′ −→ S, σ2 : Na(R) −→ T and σ3 : (N\S′)\Na(R) −→ (N\S)\T ;
which are all one-to-one and onto. Next, we define a permutation σ : N −→ N as
follows.

σ(i) =
⎧
⎨

⎩

σ1(i) i f i ∈ S′
σ2(i) i f i ∈ Na(R)

σ3(i) i f i ∈ (N\S′)\Na(R)

Note thatσ is awell-defined permutation andσ(R) ∈ {R ∈ Rn : aIi b iff i /∈ N\S}.
This implies that gN\S

f (σ (R)) = a; i.e.; f (σ (R)) = a. But this contradicts anonymity

of f as gN\S′
f (R) = b implies f (R) = b. This concludes the proof of Claim 3. 	


Next we show that FIa( f ) is a collection of anonymous committees for a with
respect to Ia( f ).

Claim 4 FIa( f ) is a collection of anonymous committees for a with respect to Ia( f ).

Proof First we show that for every M ⊆ N , FM,Ia( f ) is a anonymous committees for
a at M with respect to Ia( f ). First note that as f is anonymous, so for any M ⊆ N ,
it follows that gMf is also anonymous. Now for any M ⊆ N , consider S, S′ ⊆ M such
that |S| = |S′|. Suppose for contradiction that S ∈ FM,Ia( f ), but S′ /∈ FM,Ia( f ).
This implies that there exists a profile R ∈ {R ∈ Rn : aIi b iff i /∈ M} such that
Na(R) = S and gMf (R) = a. As |S| = |S′|, we have |M\S| = |M\S′|. So we can
define the following functions; σ1 : S −→ S′ and σ2 : M\S −→ M\S′; which are all
one-to-one and onto. Next, we define a permutation σ : N −→ N as follows.

σ(i) =
⎧
⎨

⎩

i i f i ∈ N\M
σ1(i) i f i ∈ S
σ2(i) i f i ∈ M\S

Note that σ is a well-defined permutation and σ(R) ∈ {R ∈ Rn : aIi b iff i /∈ M}
and Na(R) = S′. Now S′ /∈ FM,Ia( f ) implies that gMf (σ (R)) = b because gMf is

onto. But this contradicts anonymity of gMf , as g
M
f (R) = a. This shows that for every

M ⊆ N , FM,Ia( f ) is a anonymous committee for a at M with respect to Ia( f ).
Next, consider any M, M ′ ⊆ N and S ⊆ M and S′ ⊆ M ′ such that |M | = |M ′|
and |S| = |S′|. We are going to show that if S ∈ FM,Ia( f ), then S′ ∈ FM ′,Ia( f ). So
suppose for contradiction that S ∈ FM,Ia( f ), but S′ /∈ FM ′,Ia( f ). As S ∈ FM,Ia( f ),
there exists a profile R ∈ {R ∈ Rn : aIi b iff i /∈ M} such that Na(R) = S and
gMf (R) = a. As |M | = |M ′| and |S| = |S′|, so it follows that |M\S| = |M ′\S′| and
|N\M | = |N\M ′|. So we can define the following functions; σ4 : N\M −→ N\M ′,
σ5 : S −→ S′ and σ6 : M\S −→ M ′\S′; which are all one-to-one and onto. Next,
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we define a permutation σ� : N −→ N as follows.

σ�(i) =
⎧
⎨

⎩

σ4(i) i f i ∈ N\M
σ5(i) i f i ∈ S
σ6(i) i f i ∈ M\S

Note that σ� is a well-defined permutation and σ�(R) ∈ {R ∈ Rn : aIi b iff i /∈ M ′}
and Na(R) = S′. As gMf is onto, so it follows that gM

′
f is also onto. Otherwise

there would be a violation of Claim 3 as |N\M | = |N\M ′|. Then S′ /∈ FM ′,Ia( f )

implies that gM
′

f (σ �(R)) = b; i.e.; f (σ �(R)) = b. This contradicts anonymity of f

as gMf (R) = a implies that f (R) = a. This concludes the proof of Claim 4. 	

We complete this case by showing that for all R ∈ Rn ;

f (R) = f I
a( f )

FIa ( f )
(R).

This follows from the definition of Ia( f ) and FIa( f ) as shown at the end of case 1 in
the proof of the only if part of Theorem 1.
Case 2: f (R̄) = b : A similar argument (as in case 1) shows that there exists a
anonymous committee for indifference default b, Ib and a collection of anonymous
committees for a with respect to Ib,FIb , such that for all R ∈ Rn ; f (R) = f Ib

FIb
(R).

	

In the following proposition, we show that any GVAC rule can be described as

either a quota rule with indifference default a or a quota rule with indifference default
b.

Proposition 5 Let f Id

FId
be a GVAC rule. Then either there exists a quota rule with

indifference default a ( f k,xa ) such that f Id

FId
≡ f k,xa or a quota rule with indifference

default b ( f k,yb ) such that f Id

FId
≡ f k,yb .

Proof Let W be any collection of subsets of N . We denote Q(W) as the cardinality
of S ∈ W such that S contains the least number of agents among all sets in W; i.e;

Q(W) = min
S∈W

|S|, where W ⊆ 2N .

We prove Proposition 5 with the help of the following lemmas. 	

Lemma 3 For the GVAC rule f Ia

FIa
, we have the following.

1. 1 ≤ Q(Ia) = k ≤ n.
2. FM,Ia satisfies following conditions:

2.1 For all M ⊆ N, if |M | ≤ n − k then FM,Ia = ∅.
2.2 For all M, M ′ ⊆ N such that |M | = |M ′| > n − k, Q(FM,Ia ) = Q(FM ′,Ia )

and FM,Ia �= ∅ and FM ′,Ia �= ∅.

123



602 A. Lahiri, A. Pramanik

2.3 For all M ⊆ N such that |M | = n − k + l where l ∈ {1, . . . , k}, we have
Q(FM,Ia ) ∈ {1, . . . , l}.

2.4 For all M, M ′ ⊆ N such that |M ′| = |M | − 1 > n − k,
Q(FM,Ia ) ≥ Q(FM ′,Ia ) ≥ Q(FM,Ia ) − 1.

Proof As Ia is an anonymous committee for indifference default a, it follows that
N ∈ Ia and ∅ /∈ Ia (Non-emptyness condition of Ia). This implies that 1 ≤ Q(Ia) =
k ≤ n.
Next we prove statement 2.1. So consider a M ⊆ N such that |M | ≤ n − k. This
implies that |N\M | ≥ k. As Q(Ia) = k, monotonicity and anonymity property of
Ia implies that N\M ∈ Ia . Then non-emptyness with respect to Ia property of FIa

implies that FM,Ia = ∅.
Next we prove statement 2.2. So consider M, M ′ ⊆ N such that |M | = |M ′| > n− k.
This implies that |N\M | = |N\M ′| < k. As Q(Ia) = k, it follows that N\M /∈ Ia

and N\M ′ /∈ Ia . So from the non-emptyness with respect to Ia property of FIa , it
follows that FM,Ia �= ∅ and FM ′,Ia �= ∅. Also as FIa is anonymous, it follows that
Q(FM,Ia ) = Q(FM ′,Ia ) from the definition of Q.
Next we prove statement 2.3. So consider M ⊆ N such that |M | = n − k + l where
l ∈ {1, . . . , k}. Suppose for contradiction that Q(FM,Ia ) > l. So it follows that for all
S ∈ FM,Ia , |S| > l. Nowwe consider the situation when l = 1. Then |M | = n−k+1
implies that |N\M | = k − 1. As Q(Ia) = k, it follows, from the definition of Q,
that N\M /∈ Ia . Now consider an i ∈ M and the coalition (N\M) ∪ {i}. Note that
|(N\M) ∪ {i}| = k. As Ia is an anonymous committee for indifference default a, it
follows that (N\M) ∪ {i} ∈ Ia . Then as FIa is a collection of committees for a with
respect to Ia , it follows by using property 1 that {i} ∈ FM,Ia . This contradicts our
assumption that for all S ∈ FM,Ia , |S| > 1. Now suppose that for all M ⊆ N such
that |M | = n − k + l where l ∈ {1, . . . , k − 1}, we have Q(FM,Ia ) ∈ {1, . . . , l}, but
there exists a M ′ ⊆ N such that |M ′| = n − k + l + 1 and Q(FM ′,Ia ) > l + 1. So
consider the case where M ′ = M ∪ {i}. Now consider a coalition S ⊆ M , such that
|S| = Q(FM,Ia ). As Q(FM ′,Ia ) > l + 1, it follows that S ∪ {i} /∈ FM ′,Ia . Note that
|N\M ′| = k − l − 1 and |(N\M ′) ∪ {i}| = k − l. As Q(Ia) = k, it follows that
N\M ′ /∈ Q(Ia) and (N\M ′)∪{i} /∈ Q(Ia). Then asFIa is a collection of committees
for a with respect to Ia , it follows by using property 3 that S /∈ FM ′\{i},Ia = FM,Ia .
This however contradicts anonymity of FIa as |S| = Q(FM,Ia ). Hence the proof of
statement 2.3 is concluded by induction.
Next, we prove statement 2.4. So consider M, M ′ ⊆ N such that |M ′| = |M | − 1 >

n − k. In view of statement 2.2, without loss of generality, it can be assumed that
M = M ′ ∪ {i}. Now suppose for contradiction that

Case 1 : either Q(FM,Ia ) < Q(FM ′,Ia ),
Case 2 : or Q(FM,Ia ) − 1 > Q(FM ′,Ia ).

In case 1, there exists S ⊆ M such that S ∈ FM,Ia and |S| = Q(FM,Ia ). Now if
S = M , then we have a contradiction to Q(FM,Ia ) < Q(FM ′,Ia ) as |M | ≥ |S′| for
any S′ ⊆ M ′. So we have S � M . Then it follows that there exists S�

� M such that
|S�| = |S| and S� ⊆ M ′. As FIa is a collection of anonymous committees for a with
respect to Ia , it follows that S� ∈ FM,Ia . Note that as S� ⊆ M ′, it follows that i /∈ S�.
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Also as |M |−1 > n− k, it follows that |(N\M)∪{i}| < k. As Q(Ia) = k, it follows
that (N\M) ∪ {i} /∈ Ia . Then as FIa is a collection of committees for a with respect
to Ia , it follows by using property 2 that S� ∈ FM\{i},Ia = FM ′,Ia . This constitutes
a contradiction with the definition of Q as |S�| < Q(FM ′,Ia ).
In case 2, there exists S ⊆ M ′ such that |S| = Q(FM ′,Ia ). Note that if S = M ′,
it follows from case 2 that Q(FM,Ia ) > |M ′| + 1. This is a contradiction as for all
S ⊆ M , we have |S| ≤ |M | = |M ′| + 1. Now consider the set S ∪ {i} � M . Note
that |S ∪ {i}| = Q(FM ′,Ia ) + 1. As Q(FM,Ia ) > Q(FM ′,Ia ) + 1, from the definition
of Q, it follows that S ∪ {i} /∈ FM,Ia . Also as |M | − 1 > n − k, it follows that
|(N\M) ∪ {i}| < k and |(N\M)| < k − 1 < k. As Q(Ia) = k, it follows that
(N\M)∪ {i} /∈ Ia and (N\M) /∈ Ia . Then as FIa is a collection of committees for a
with respect to Ia , it follows by using property 3 that S /∈ FM\{i},Ia = FM ′,Ia . This
constitutes a contradictionwith the anonymity property ofFM ′,Ia as |S| = Q(FM ′,Ia ).
This completes the proof of statement 2.4 and concludes the proof of Lemma 3. 	

Observation 1 Given a GVAC rule f Ia

FIa
, let k = Q(Ia) and xl = Q(FM,Ia ), where

|M | = n − k + l for any l ∈ {1, 2, . . . , k}. Then it follows from Lemma 3 that
f Ia

FIa
(R) = f k,xa (R) for all R ∈ RN .

Lemma 4 For the GVAC rule f Ib

FIb
, we have the following.

1. 1 ≤ Q(Ib) = k ≤ n.
2. FM,Ib satisfies following conditions:

2.1 For all M ⊆ N, |M | ≤ n − k if and only if FM,Ib = ∅
2.2 For all M, M ′ ⊆ N such that |M | = |M ′| > n − k, Q(FM,Ib ) = Q(FM ′,Ib )

and Q(FM,Ib ) �= ∅ and Q(FM ′,Ib ) �= ∅.
2.3 For all M ⊆ N such that |M | = n − k + l where l ∈ {1, . . . , k}, we have

Q(FM,Ib ) ∈ {n − k + 1, . . . , n − k + l}
2.4 For all M, M ′ ⊆ N such that |M ′| = |M − 1| > n − k,

Q(FM,Id ) ≥ Q(FM ′,Id ) ≥ Q(FM,Id ) − 1.

Proof In view of Lemma 3, we will only show the proof of statement 2.3. So consider
M ⊆ N such that |M | = n − k + l where l ∈ {1, . . . , k}. First consider the case,
where l = 1. In this case, we have to show that FM,Ib = {M}. As |M | = n − k + 1,
it follows that |N\M | = k − 1. As Q(Ib) = k, it follows, from the definition of Q,
that N\M /∈ Ia . Now for every i ∈ M , consider the coalitions (N\M) ∪ {i}. Note
that |(N\M) ∪ {i}| = k. As Ib is an anonymous committee for indifference default
b, it follows that (N\M) ∪ {i} ∈ Ib. Then as FIa is a collection of committees for
a with respect to Ib, it follows by using property 1 that if S ∈ FM,Ia then i ∈ S.
As this is true for all i ∈ M , it follows that FM,Ib = {M}. Now suppose that for all
M ⊆ N such that |M | = n − k + l where l ∈ {1, . . . , k − 1}, we have Q(FM,Ib ) ∈
{n − k + 1, . . . , n − k + l}, but there exists a M ′ ⊆ N such that |M ′| = n − k + l + 1
and either Q(FM ′,Ib ) > n − k + l + 1, or Q(FM ′,Ib ) < n − k + 1. Note that
Q(FM ′,Ib ) > n − k + l + 1 implies for all S ∈ FM ′,Ia , we have |S| > n − k + l + 1.
This is a contradiction as S ⊆ M ′ and |M ′| = n−k+l+1. So assume thatQ(FM ′,Ib ) <

n−k+1. Now consider anM ⊆ N such thatM ′ = M∪{i} for some i ∈ N\M . Then it
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follows that |M | = n−k+l. So Q(FM,Ib ) ∈ {n−k+1, . . . , n−k+l}. Now consider
a S � M such that |S| = n− k. As Q(FM ′,Ib ) < n− k + 1; i.e.; Q(FM ′,Ib ) ≤ n− k,
monotonicity and anonymity property of FM ′,Ib implies that S ∈ FM ′,Ib . Note that
i /∈ S. Also |(N\M ′) ∪ {i}| = k − l < k. Then from the definition of Q, it follows
that (N\M ′) ∪ {i} /∈ Ib. As FIa is a collection of committees for a with respect to
Ib, it follows by using property 2 that S ∈ FM ′\{i},Ib = FM,Ib . This contradicts the
fact that Q(FM,Ib ) ∈ {n − k + 1, . . . , n − k + l} as |S| = n − k. Hence the proof of
statement 2.3 is concluded by induction.

Observation 2 Given a GVAC rule f Ib

FIb
, let k = Q(Ib) and yl = Q(FM,Ia ), where

|M | = n − k + l for any l ∈ {1, 2, . . . , k}. Then it follows from Lemma 4 that
f Ib

FIb
(R) = f k,yb (R) for all R ∈ RN .

The proof of Proposition concludes by Observations 1 and 2. 	

Proof of Theorem 2 In view of Propositions 4 and 5, to prove Theorem 2, it is suffi-
cient to show that the quota rule with indifference default a and the quota rule with
indifference default b are strategy-proof, onto and anonymous. First we show that the
quota rule with indifference default a ( f k,xa ) is strategy-proof, anonymous and onto.
The fact that f k,xa is onto and anonymous follows directly from the definition of f k,xa .
Next, in view of Lemma 1, as f k,xa is onto, it is sufficient to show that f k,xa satisfies
weak strategy-proofness. So consider a profile R ∈ RN and an i−deviation R′ ∈ RN

of R. We need to show f k,xa (R)Ri f
k,x
a (R′) in the following cases.

aPib and aI ′
i b : In this case, suppose f k,xa (R) = a. then it follows that

f k,xa (R)Ri f
k,x
a (R′). So suppose that f k,xa (R) = b. This implies that |NA(R)| < k.

Also in this case we have |Na(R)∪Nb(R)| = n−k+l, for some l ∈ {2, 3, . . . , k}.
Otherwise, |Na(R) ∪ Nb(R)| = n − k + 1 and |Na(R)| ≥ 1 = x1 (due to the fact
that aPib) would imply that f k,xa (R) = a, which contradict our assumption that
f k,xa (R) = b. Also we have |Na(R)| < xl . Now |Na(R) ∪ Nb(R)| = n − k + l,
for some l ∈ {2, 3, . . . , k} implies that |NA(R)| ≤ k − 2. So it follows that
|NA(R′)| ≤ k − 1 < k. Also |Na(R′) ∪ Nb(R′)| = n − k + l − 1. Note that
xl − 1 ≤ xl−1 ≤ xl . Also |Na(R′)| = |Na(R)| − 1. Now |Na(R)| < xl implies
|Na(R′)| < xl − 1 ≤ xl−1. This shows that f k,xa (R′) = b and we can conclude
that f k,xa (R)Ri f

k,x
a (R′).

bPia and aI ′
i b : In this case, suppose f k,xa (R) = b. then it follows that

f k,xa (R)Ri f
k,x
a (R′). So suppose that f k,xa (R) = a. Now if |NA(R)| ≥ k − 1,

then it follows that |NA(R′)| ≥ k. This implies that f k,xa (R′) = a. So suppose
that |NA(R)| < k−1 and |NA(R′)| < k. In this case we have |Na(R)∪ Nb(R)| =
n − k + l, for some l ∈ {2, 3, . . . , k} Also we have |Na(R)| ≥ xl . Also
|Na(R′) ∪ Nb(R′)| = n − k + l − 1. Note that xl − 1 ≤ xl−1 ≤ xl . Also
|Na(R′)| = |Na(R)|. Now |Na(R)| ≥ xl and xl−1 ≤ xl implies |Na(R′)| ≥ xl−1.
This shows that f k,xa (R′) = a and we can conclude that f k,xa (R)Ri f

k,x
a (R′).

Combining these cases, it follows that f k,xa satisfies weak strategy-proofness. Hence
as f k,xa is onto and Lemma 1 implies that f k,xa is strategy-proof. In a similar way, it
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can be shown that f k,yb is anonymous, onto and strategy-proof. This concludes the
proof of Theorem 2. 	


4 The Proof of Proposition 2

Proof Only if part. Let f k,xa be a quota rule with indifference default a and it satisfies
WDPR. Therefore, the length of x is either (i) k = n or (i i) k ∈ {1, 2, . . . , n − 1}.

First we assume that k = n. If xn = 1 or n then we are done. We assume for
contradiction that xn ∈ {2, 3, . . . , n − 1}. Let R be a preference profile such that
NA(R) = ∅ and Na(R) = xn . Since f k,xa be a quota rule with indifference default
a, f k,xa (R) = a. Let R′ be a preference profile such that NA(R′) = ∅ and Na(R′) =
xn − 1. Note that Na(R), Nb(R), Na(R′), Nb(R′) �= ∅. Therefore, by Lemma 2
f k,xa (R) = f k,xa (R′). However, since f k,xa be a quota rule with indifference default
a, f k,xa (R′) = b - a contradiction. Therefore xn = 1 or n, which in turn imply that
x = (x1, . . . , xn) ∈ {(1, 1, . . . , 1), (1, 2, . . . , n)}.

Finallywe assume that k ∈ {1, 2, . . . , n−1}. Note that if we can show xi = xi+1 for
all i ∈ {1, 2, . . . , k−1}, thenwe are done. If k = 1, we are done trivially. Therefore we
assume that k > 1. We assume for contradiction that there exists i ∈ {1, 2, . . . , k − 1}
such that xi �= xi+1. Let i ′ be he minimum among all i ∈ {1, 2, . . . , k − 1} such that
xi �= xi+1. Note that xi ′ = 1 and xi ′+1 = 2. Let R and R′ be preference profiles such
that |Na(R) ∪ Nb(R)| = |Na(R′) ∪ Nb(R′)| = n − k + i ′ + 1. Moreover we assume
that |Na(R)| = 2 and |Na(R′)| = 1. Since Na(R), Nb(R), Na(R′), Nb(R′) �= ∅; by
Lemma 2 f k,xa (R) = f k,xa (R′). However, since f k,xa be a quota rule with indifference
default a, f k,xa (R) = a �= b = f k,xa (R′) - a contradiction. Therefore, xi = xi+1 for
all i ∈ {1, 2, . . . , k − 1}, which in turn imply that x = (x1, . . . , xn) = (1, 1, . . . , 1).

If part. We first prove the following claim.

Claim 5 Let f : Rn −→ A select the same alternative in each disagreement profile.
Then f satisfies WDPR.

Proof Let R ∈ Rn , i ∈ N and R′
i ∈ R. If both R and (R′

i , R−i ) are disagreement
profile then f (R) = f (R′

i , R−i ). Suppose this is not the case. Then either (i) for
each j ∈ N\{i}, we have f (R)R j f (R′

i , R−i ) or (i i) for each j ∈ N\{i}, we have
f (R′

i , R−i )R j f (R). In either case WDPR is satisfied. 	


Let f k,xa : Rn −→ A be a quota rule with indifference default a. If x is a vector
of natural numbers of length n and x = (x1, . . . , xn) = (1, 1, . . . , 1), then f k,xa
selects a in each disagreement profile. If x is a vector of natural numbers of length
n and x = (x1, . . . , xn) = (1, 2, . . . , n), then f k,xa selects b in each disagreement
profile. If x is a vector of natural numbers of length k, k ∈ {1, 2, . . . , n − 1} and
x = (x1, . . . , xk) = (1, 1, . . . , 1), then f k,xa selects a in each disagreement profile.
Therefore, by Claim 5, all these rules satisfy WDPR. 	
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5 The Proof of Proposition 3

Proof Only if part. Let f k,yb be a quota rule with indifference default b and it satisfies
WDPR. Therefore, the length of y is either (i) k = n or (i i) k ∈ {1, 2, . . . , n − 1}.

First we assume that k = n. If Yn = 1 or n then we are done. We assume for
contradiction that yn ∈ {2, 3, . . . , n − 1}. Let R be a preference profile such that
NA(R) = ∅ and Na(R) = yn . Since f k,yb be a quota rule with indifference default

b, f k,yb (R) = a. Let R′ be a preference profile such that NA(R′) = ∅ and Na(R′) =
yn − 1. Note that Na(R), Nb(R), Na(R′), Nb(R′) �= ∅. Therefore, by Lemma 2
f k,yb (R) = f k,yb (R′). However, since f k,yb be a quota rule with indifference default

b, f k,yb (R′) = b - a contradiction. Therefore yn = 1 or n, which in turn imply that
y = (y1, . . . , yn) ∈ {(1, 1, . . . , 1), (1, 2, . . . , n)}.

Finallywe assume that k ∈ {1, 2, . . . , n−1}. Note that if we can show yi �= yi+1 for
all i ∈ {1, 2, . . . , k−1}, thenwe are done. If k = 1, we are done trivially. Therefore we
assume that k > 1. We assume for contradiction that there exists i ∈ {1, 2, . . . , k − 1}
such that yi = yi+1. Let i ′ be he minimum among all i ∈ {1, 2, . . . , k − 1} such that
yi = yi+1. Therefore yi ′ = yi ′+1 = n − k + i ′. Let R and R′ be preference profiles
such that |Na(R) ∪ Nb(R)| = |Na(R′) ∪ Nb(R′)| = n − k + i ′ + 1. Moreover we
assume that |Na(R)| = n − k + i ′ and |Na(R′)| = n − k + i ′ − 1. Since Na(R),
Nb(R), Na(R′), Nb(R′) �= ∅; by Lemma 2 f k,yb (R) = f k,yb (R′). However, since
f k,yb be a quota rule with indifference default b, f k,yb (R) = a �= b = f k,yb (R′) - a
contradiction. Therefore, yi �= yi+1 for all i ∈ {1, 2, . . . , k − 1}, which in turn imply
that y = (y1, . . . , yk) = (n − k + 1, n − k + 2, . . . , n).

If part. Let f k,yb : Rn −→ A be a quota rule with indifference default b. If y is a

vector of natural numbers of length n and y = (y1, . . . , yn) = (1, 1, . . . , 1), then f k,yb
selects a in each disagreement profile. If y is a vector of natural numbers of length
n and y = (y1, . . . , yn) = (1, 2, . . . , n), then f k,yb selects b in each disagreement
profile. If y is a vector of natural numbers of length k, k ∈ {1, 2, . . . , n − 1} and
y = (y1, . . . , yk) = (n − k + 1, n − k + 2, . . . , n), then f k,yb selects b in each
disagreement profile. Therefore, by Claim 5, all these rules satisfy WDPR. 	
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