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Abstract
We characterize elections that are simultaneously single-peaked and single-crossing
(SPSC), by establishing a connection between this domain and that of minimally rich
elections, i.e., elections where each candidate is ranked first by at least one voter.
Specifically, we show that an election is both single-peaked and single-crossing if and
only if it can be obtained from a minimally rich single-crossing election by deleting
voters.

1 Introduction

Perhaps the most famous result in social choice is Arrow’s impossibility theo-
rem (Arrow 1951), which establishes that there is no perfect method of aggregating
voters’ preferences over three or more candidates into a collective opinion. However,
this impossibility result only applies if there are no constraints on how the voters
may rank the candidates. Thus, a common strategy to circumvent Arrow’s theorem
is to consider restricted preference domains, i.e., to assume that voters’ preferences
have additional structure. Under such assumptions, one can often develop aggregation
procedures that have a number of desirable properties.

A preliminary version of this paper was presented at the 28th Conference on Artificial Intelligence
(AAAI-2014).
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168 E. Elkind et al.

A prominent example of a restricted domain is that of single-peaked preferences
(Black 1948). Informally, in single-peaked elections all candidates can be ordered
along a single axis, each voter has a most preferred point on this axis, and each voter
ranks all candidates so that if candidate a lies between candidate b and the voter’s
most preferred point then this voter prefers a to b (see Sect. 2). This restricted domain
has a number of useful properties: every single-peaked election has a weak Condorcet
winner (i.e., a candidate preferred to every other candidate by a weak majority of the
voters), its majority relation is transitive (i.e., if a majority of the voters prefer a to b
and a majority of the voters prefer b to c, then a majority of the voters prefer a to c)
(Inada 1969), and single-peaked elections admit a strategyproof voting rule (Moulin
1980). It was recently established that such elections can be characterized in terms
of forbidden configurations (Ballester and Haeringer 2011): there are two elections
(one containing two voters and four candidates, and the other containing three voters
and three candidates) such that an election is single-peaked if and only if it does not
contain subelections that are equivalent to one of these two elections.

Anotherwell-studied restricted domain is that of single-crossing elections (Mirrlees
1971; Roberts 1977). In such elections, the voters can be ordered so that for every pair
of candidates their “trajectories” in the voters’ preferences intersect at most once, i.e.,
for every pair of candidates a, b it holds that if the first voter in the ordering ranks a
above b then the voters who prefer a to b form a prefix of the ordering. Single-crossing
preferences play an important role in the analysis of income redistribution (Mirrlees
1971; Roberts 1977;Meltzer andRichard 1981), coalition formation (Demange 1994),
and strategic voting (Saporiti and Tohmé 2006; Saporiti 2009; Barberà and Moreno
2011). Single-crossing elections share some of the desirable properties of single-
peaked elections: for instance, every single-crossing election has a weak Condorcet
winner, and Bredereck et al. (2013) show that single-crossing elections, too, can be
characterized in terms of a small number of forbidden configurations. However, neither
of the restrictions implies the other.

Computational complexity considerations provide another reason to be interested
in restricted preferences: single-peaked and single-crossing elections often admit effi-
cient algorithms for social choice problems that are hard for elections with unrestricted
preferences. This observation has recently led to a new wave of interest in restricted
domains within the computational social choice community (Walsh 2007; Conitzer
2009; Faliszewski et al. 2011b, a; Cornaz et al. 2012, 2013; Betzler et al. 2013;
Skowron et al. 2015; Brandt et al. 2015; Dey and Misra 2016; Misra et al. 2017;
Jaeckle et al. 2018; Lakhani et al. 2019); see also the survey by Elkind et al. (2017).

Thus, the existing body of work provides us with a good understanding of the prop-
erties of elections that are single-peaked or single-crossing. Against this background,
the goal of this paper is to characterize the elections that belong to the intersection of
these two domains; we refer to the resulting class of elections as the SPSC domain.
One of the reasons to be interested in the SPSC domain is the fact that it contains a rich
and natural class of elections, namely, the 1-Euclidean elections. These are elections
where both voters and candidates can be identified with points on the real line so that
each voter prefers the candidates who are closer to her to ones that are further away.
The observation that 1-Euclidean elections are both single-peaked and single-crossing
dates back to Grandmont (1978). On the other hand, it is known that there exist SPSC
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elections that are not 1-Euclidean, i.e., the SPSC domain is strictly larger than the 1-
Euclidean domain; the first such example can be found in the work of Coombs (1950),
and this also follows from the fact that 1-Euclidean elections cannot be characterized
by finitely many forbidden configurations (Chen et al. 2017). While the 1-Euclidean
domain admits a very intuitive geometric description, it is more difficult to work with
analytically than the single-peaked or the single-crossing domain: for instance, while
the latter two domains admit purely combinatorial recognition algorithms (Bartholdi
and Trick 1986; Doignon and Falmagne 1994; Escoffier et al. 2008; Elkind et al. 2012;
Bredereck et al. 2013), all known algorithms for recognizing 1-Euclidean elections are
based on solving linear programs (Doignon and Falmagne 1994; Knoblauch 2010).1

Thus, informally, the SPSC domain can be viewed as a combinatorial approximation
of the 1-Euclidean domain.

We have mentioned that both the single-peaked domain and the single-crossing
domain can be characterized in terms of forbidden configurations; consequently, this
is also true for the SPSC domain. However, the resulting description is not particularly
intuitive. In this paper, we offer an alternative characterization of the SPSC domain.
A notion that turns out to be useful in this context is that of minimal richness: an
election is minimally rich if every candidate is ranked first in at least one vote. We
show that an election is both single-peaked and single-crossing if and only if it can be
obtained from aminimally rich single-crossing election by deleting voters.We develop
two combinatorial algorithms that, given an SPSC election, identify a minimally rich
single-crossing election from which it can be obtained. As the SPSC domain is larger
than the 1-Euclidean domain, we hope that our characterization and algorithms can
be useful for dealing with problems for which initial intuitions were obtained in the 1-
Euclidean setting, but where a combinatorial perspective is necessary; for example, in
another paper we used this approach to find an improved algorithm for the egalitarian
variant of the Monroe multiwinner rule (Skowron et al. 2015).

2 Preliminaries

Given a positive integer s, we write [s] to denote the set {1, . . . , s}. An election is a
pair (C, V ), where C = {c1, . . . , cm} is a set of candidates and V = (v1, . . . , vn)

is a list of voters. Each voter v ∈ V is described by her preference order, or vote,
�v , which is a linear order over C . Given a voter v ∈ V and a candidate c ∈ C , we
denote by pos(v, c) the position of c in �v: we have pos(v, c) = 1 if c is v’s most
preferred candidate and pos(v, c) = m if c is v’s least preferred candidate. Voter v’s
most preferred candidate is denoted by top(v). We refer to the list (�v)v∈V as the
preference profile. In what follows, we use the terms “election”, “preferences”, and
“profile” interchangeably.

Given an election E = (C, V ) and a subset of candidates D ⊂ C , let V |D denote the
profile obtained by restricting the preference order of each voter in V to D. Throughout
the paper, we assume that the candidate set C remains fixed, but the voter population
may vary. The concatenation of two voter lists U and V is denoted by U + V ; if U

1 The algorithm of Doignon and Falmagne (1994) was later rediscovered by Elkind and Faliszewski (2014).
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consists of a single vote u, we simply write u+V . We say that a listU is a sublist of a
list V (and writeU ⊆ V ) ifU can be obtained from V by deleting voters. An election
(C ′, V ′) is said to be a subelection of an election (C, V ) if C ′ ⊆ C and there exists a
U ⊆ V such that V ′ = U |C ′ .

Single-crossing (also known as intermediate or order-restricted) preferences, first
studied by Mirrlees (1971) and Roberts (1977), capture settings where the voters can
be ordered along a single axis according to their beliefs.

Definition 1 An election E = (C, V ) with C = {c1, . . . , cm}, V = (v1, . . . , vn) is
single-crossing (SC) (with respect to the given order of voters) if for every pair of
candidates a, b such that a �v1 b there exists a t ∈ [n] such that {i ∈ [n] | a �vi b}
= [t].
Intuitively, as we sweep from left to right through the list of voters in a single-crossing
election, the relative order of every pair of candidates changes at most once.

We emphasize that we define single-crossing preferences with respect to a fixed
order of the voters. Alternatively, one could define an election to be single-crossing
if the voters can be ordered so that the condition in Definition 1 is satisfied. Compu-
tationally, these two definitions are essentially equivalent: given an election, one can
efficiently check whether there exists an ordering of the voters satisfying the condition
in Definition 1, and, if so, find such an ordering in polynomial time (Doignon and Fal-
magne 1994; Elkind et al. 2012; Bredereck et al. 2013). We state our results in terms
of the former definition, as this enables us to formulate the intermediate lemmas more
succinctly; however, the reader can verify that our main result (Theorem 9) remains
true under the latter definition.

While single-crossing elections are defined in terms of an ordering of the voters,
the definition of single-peaked elections (Black 1948) refers to an ordering of the
candidates.

Definition 2 The preference order of a voter v with top(v) = c in an election E
= (C, V ) is single-peaked with respect to an order � over C if for every pair of
candidates a, b such that a� b� c or c� b� a it holds that c �v b �v a. An election
E = (C, V ) is single-peaked with respect to� if every vote in V is single-peaked with
respect to � in E ; in this case, � is called a societal axis for E . E is single-peaked
(SP) if it is single-peaked with respect to some societal axis �.

There are polynomial-time algorithms that given an election E decide if it is single-
peaked and, if so, compute a societal axis � such that E is single-peaked with respect
to � (Bartholdi and Trick 1986; Doignon and Falmagne 1994; Escoffier et al. 2008).
Thus we can assume without loss of generality that when we are given a single-peaked
election, we are also provided a societal axis that witnesses this.

3 Characterization of the SPSC domain

Fix a candidate set C and consider the domain of all elections over C that are single-
peaked with respect to some order of the candidates and single-crossing with respect
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to the order in which the voters are listed. We will refer to this domain as the SPSC
domain; note that this domain contains elections that differ form each other in terms
of the number of voters.

Our main result—the characterization of the SPSC domain—is based on the con-
cept of minimally rich single-crossing elections. An election isminimally rich if every
candidate is ranked first by at least one voter. The notion of minimal richness was
used, e.g., by Cornaz et al. (2012, 2013) and Skowron et al. (2015) in the context of
voting rules with computationally hard winner-determination procedures.2 Interest-
ingly, minimal richness turns out to be closely related to the two domains restrictions
that are the focus of this paper: every minimally rich single-crossing (MRSC) election
is single-peaked. This observation follows from the discussion of top monotonicity
by Barberà and Moreno (2011) and from a recent characterization of Puppe (2018,
Corollary 3); for the sake of completeness, we provide a very simple, direct proof.

Proposition 3 A minimally rich single-crossing election is single-peaked with respect
to the axis given by the preference order of the first voter.

Proof Let E = (C, V ) be a minimally rich single-crossing election. Without loss of
generality, we assume that the preference order of the first voter in V is c1 � c2 �
· · · � cm . We will show that each vote in V is single-peaked with respect to this order.
It suffices to argue that for each voter vi ∈ V and for all 1 ≤ j < k < � ≤ m it holds
that ck is not ranked last among c j , ck and c� in vi ’s preference order.

Suppose for the sake of contradiction that there is a triple of candidates c j , ck and
c�, j < k < �, such that some voter vi in V ′ ranks ck below c j and c�. Since (C, V )

is minimally rich, there is another voter vi ′ that ranks ck first. It must be that i ′ > i
because c j �v1 ck , c j �vi ck , ck �vi ′ c j and (C, V ) is single-crossing. Yet, we have
ck �v1 c�, c� �vi ck , and ck �vi ′ c�, a contradiction. �	

Proposition 3 suggests that the SPSC domain is closely related to the domain of all
single-crossing elections over C that are minimally rich. However, it is evident that
there are elections that are single-peaked and single-crossing, but not minimally rich.
To see this, it suffices to note that the SPSC domain is closed under voter deletion:
Given an SPSC election and some candidate c in it, we can delete all voters that
rank c first to obtain an SPSC election that is not minimally rich. This observation
motivates us to study the closure of the minimally rich single-crossing domain under
voter deletion.

Definition 4 An election E ′ = (C, V ′) is pre-minimally rich single-crossing (pre-
MRSC) if there exists a minimally rich single-crossing election E = (C, V ) such that
V ′ ⊆ V .

Clearly, pre-MRSCelections are single-crossing and single-peaked. Themain result
of this paper is that the converse is also true: every SPSC election is pre-MRSC. Before

2 While the authors of these papers spoke of narcissistic profiles rather than minimally rich ones, the latter
termwould have beenmore precise. Formally, narcissistic profiles, introducedbyBartholdi andTrick (1986),
arise when the set of candidates coincides with the set of voters and each voter ranks him or herself first.
Such profiles are, of course, minimally rich, but there are minimally rich profiles that are not narcissistic.
In an early version of this paper we also used the term ‘narcissistic elections’ to refer to minimally rich
elections, and we are grateful to the reviewers for pointing out this distinction.
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we give the proof of this result, in order to build up the readers’ intuition, we present
a general construction of single-crossing elections that are not pre-MRSC.

Example 5 Consider a minimally rich single-crossing election E = (C, V ) with |C |
≥ 3 and add a new candidate x /∈ C to the top of each vote. Let E ′ = (C ∪ {x}, V ′)
denote the resulting election. We claim that E ′ is not pre-MRSC. Indeed, suppose
that there exists a minimally rich single-crossing election E ′′ = (C ∪ {x}, V ′′) with
V ′ ⊆ V ′′. Let a, b, and c be three distinct candidates in C , and for each z ∈ {a, b, c}
let vz be some vote in V ′′ that ranks z first (the existence of vz follows from the fact
that E ′′ is minimally rich). Since E ′′ is single-crossing, the voters that rank x first
form a contiguous block in V ′′. At least two of the voters in {va, vb, vc} have to appear
on the same side of this block. Assume without loss of generality that both va and vb
precede the block of voters that rank x first (and hence precede all voters from V ′),
and va precedes vb. Since E was minimally rich, there is a vote v′

a in V ′ that ranks a
second (just below x). However, this is a contradiction, since va and v′

a rank a above
b, vb ranks b above a, and vb appears between va and v′

a in V ′′.

The following two lemmas will be useful in our discussion. The first one provides
a characterization of votes that can be inserted into a single-crossing election so that it
remains single-crossing. The proof of this lemma follows directly from the definition
of single-crossing preferences.

Lemma 6 Consider a single-crossing election E = (C, V ), where C = {c1, . . . , cm}
and V = (v1, . . . , vn).

1. The election E∗ = (C, V ∗) obtained from E by inserting a vote v∗ right after a
vote vi , i ∈ [n− 1], is single-crossing if and only if v∗ has the following property:
for every pair of candidates c j , c� ∈ C it holds that if c j �v∗ c� then c j �vi c� or
c j �vi+1 c�.

2. The election E+ = (C, V+) obtained from E by inserting a vote v+ right after
vn (i.e., V+ = V + v+) is single-crossing if and only if v+ has the following
property: for every pair of candidates c j , c� ∈ C it holds that if c j �v+ c� then
either c j �vn c� or c� �vi c j for all i ∈ [n].

3. The election E− = (C, V−) obtained from E by inserting a vote v− right before
v1 (i.e., V− = v− + V ) is single-crossing if and only if v− has the following
property: for every pair of candidates c j , c� ∈ C it holds that if c j �v− c� then
either c j �v1 c� or c� �vi c j for all i ∈ [n].
Lemma 6 can be interpreted as a procedure for building a maximal (in terms of

inclusion) single-crossing election. Indeed, for a given single-crossing election E
it tells us how to extend it with a single vote—not yet present in E—so that the
election remains single-crossing, or informs us that such an extension is impossible.
By applying the lemma repeatedly, we eventually obtain a single-crossing election
that cannot be extended any further.

Our second lemma relates an order of the voters witnessing that the election is
single-crossing and an axis witnessing that the election is single-peaked.
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Lemma 7 Suppose that election E = (C, V ) with C = {c1, . . . , cm}, V
= (v1, . . . , vn) is single-crossing as well as single-peaked with respect to the can-
didate order c1 � · · · � cm. Suppose that the top-ranked candidate in v1 is ci and the
top-ranked candidate in vn is c j for some i ≤ j . Then the most preferred candidate
of each voter lies between ci and c j , i.e., if c� is the top-ranked candidate in some vk
in V , then i ≤ � ≤ j .

Proof Suppose that for some vote vk , k ∈ [n], the top-ranked candidate in vk is c� for
some � < i . Since E is single-peaked with respect to �, ci appears above c� in vn .
Therefore, the pair of candidates (ci , c�) and the triple of votes (v1, vk, vn) provide a
witness that E is not single-crossing.

Similarly, suppose that for some vote vk , k ∈ [n], the top-ranked candidate in vk
is c� for some � > j . Since E is single-peaked with respect to �, c j appears above
c� in v1. Therefore, the pair of candidates (c j , c�) and the triple of votes (v1, vk, vn)

provide a witness that E is not single-crossing. �	
Before we present our main result, we will prove one more useful lemma: we will

show thatwe can take an SPSC election E and prepend a vote that orders the candidates
in the same way as some axis witnessing that E is single-peaked, so that the resulting
election remains single-crossing.

Given an axis � for an election E = (C, V ), let v� be the vote that corresponds
to �, i.e., for every ck, c� ∈ C it holds that ck is ranked above c� in v� if and only if
ck � c�.

Lemma 8 Suppose that election E = (C, V ) with C = {c1, . . . , cm}, V
= (v1, . . . , vn) is SPSC. Then there exists some axis � such that E is single-peaked
with respect to � and the election (C, v� + V ) is also SPSC.

Proof If E is single-peaked with respect to some axis� then the election (C, v� +V )

is single-peaked. To show that� can be chosen so that (C, v� +V ) is single-crossing,
we proceed as follows.We pick an arbitrary axis�witnessing that E is single-peaked,
and try to prepend it to V . If this leads to an election that is not single-crossing, we find
a “minimal” pair of candidates that violates the single-crossing property, and modify
� based on this pair. We then show that our modification is legal, i.e., it results in
another axis witnessing that our election is single-peaked. Further, we show that this
modification step can be executed at mostm times. It follows that eventually we obtain
a single-crossing election.

Suppose that the top-ranked candidate in v1 is ci and the top-ranked candidate in
vn is c j . Consider some axis � such that E is single-peaked with respect to � and
ci �c j . We say that a pair of candidates (ck, c�) is violating for� if ck �c�, c� �v1 ck ,
and ck �vn c�. By the third claim of Lemma 6, the election (C, v� + V ) is not single-
crossing if and only if there exists some violating pair for �. Observe that if a pair
(ck, c�) is violating for � then ck � ci and c j � c�. Indeed, if ck = ci or ci � ck , then
v� and v1 agree on (ck, c�), and if c� = c j or c� � c j then v� and vn disagree on
(ck, c�).

Given an axis � and a pair of candidates a, b with a � b, define:

min�{a, b} = a, max�{a, b} = b.

123



174 E. Elkind et al.

We claim that if (ck, c�) and (ck′ , c�′) are two violating pairs, then (max�{ck, ck′ },
min�{c�, c�′ }) is a violating pair as well. Indeed, we can assume without loss of gen-
erality that max�{ck, ck′ } = ck′ . Then if min�{c�, c�′ } = c�′ , our claim is immediate,
so it suffices to consider the case where min�{c�, c�′ } = c�, i.e.,

ck � c′
k � ci � c j � c� � c�′ .

Then c�′ �v1 ck′ (since (ck′ , c�′) is a violating pair) and c� �v1 c�′ (since v1 is
single-peaked with respect to � and ranks ci first) and hence c� �v1 ck′ . By a similar
argument, ck′ �vn c�. Thus, (ck′ , c�) is a violating pair.

Let S� be the set of all violating pairs for �. We say that (cp, cq) ∈ S� is the
minimal violating pair for � if for each (ck, c�) ∈ S� it holds that (a) ck � cp or
ck = cp, and (b) cq � c� or c� = cq .

The argument in the previous paragraph shows that for every axis � such that
S� 
= ∅ there is a unique minimal violating pair. If (cp, cq) is the minimal violating
pair for �, set

δ(�) = |{c | cp � c � ci }|.

Now, pick an arbitrary axis� such that E is single-peakedwith respect to�; assume
without loss of generality that c1 � · · · � cm . If there are no violating pairs for �, we
are done. Otherwise, let (cp, cq) be the minimal violating pair for�. Consider the axis
�′ obtained from � by swapping the “tails” (c1, . . . , cp) and (cq , . . . , cm). Formally,
�′ is given by

cm �′ cm−1 �′ · · · �′ cq �′ cp+1 �′ · · · �′ cq−1 �′ cp �′ · · · �′ c1.

We will now prove that every vote in V is single-peaked with respect to �′. Indeed,
suppose that this is not the case for some vote v ∈ V , and let ct be the top-ranked
candidate in v. Note that by Lemma 7 we have i ≤ t ≤ j . Let C−− = {c1, . . . , cp},
C− = {cp+1, . . . , ct−1}, C+ = {ct+1, . . . , cq−1}, C++ = {cq , . . . , cm}. We know
that v is single-peaked with respect to �; hence, it is not single-peaked with respect
to �′ if and only if (a) a �v b for some a ∈ C−−, b ∈ C+ or (b) c �v d for some
c ∈ C++, d ∈ C−. We will now argue that neither of these cases is possible.

Consider first case (a). Since p < i and q > j , v’s most preferred candidate in
C−− is cp, and his least preferred candidate in C+ is cq−1, so it has to be the case
that v prefers cp to cq−1. On the other hand, v1 prefers cq to cp (because (cp, cq)
is a violating pair) and cq−1 to cq (because q > i), which means that cq−1 �v1 cp.
Further, vn prefers cq−1 to cp, since otherwise (cp, cq−1) would be a violating pair,
a contradiction with (cp, cq) being the minimal violating pair for �. Thus, the pair
(cp, cq−1) and the triple (v1, v, vn) provide a witness that E is not single-crossing, a
contradiction.

The argument for case (b) is similar. Since p < i and q > j , v’s most preferred
candidate in C++ is cq , and his least preferred candidate in C− is cp+1, so it has to be
the case that v prefers cq to cp+1. On the other hand, vn prefers cp to cq (since (cp, cq)
is a violating pair); as p < j , this implies that vn prefers cp+1 to cq . Further, v1 prefers
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cp+1 to cq , since otherwise (cp+1, cq) would be a violating pair, a contradiction with
(cp, cq) being the minimal violating pair for�. Thus, the pair (cp+1, cq) and the triple
(v1, v, vn) provide a witness that E is not single-crossing, a contradiction.

We have shown that E is single-peaked with respect to �′. We will now argue that
δ(�′) > δ(�). To this end, we will show that if (ck, c�) is a violating pair for �′, then
k ≥ q + 1; this would imply δ(�′) = (k − q) + (i − p − 1) > i − p − 1 = δ(�).

Note first that if (ck, c�) is a violating pair for�′, then ck has to be located to the left
of ci with respect to �′, so either k ∈ {m, . . . , q} or k ∈ {p+ 1, . . . , i − 1}. Similarly,
c� has to be located to the right of c j with respect to�′, so either � ∈ { j+1, . . . , q−1}
or � ∈ {p, . . . , 1}.

We consider the following cases and conclude that each of them is impossible.

1. k ∈ {p + 1, . . . , i − 1}, � ∈ { j + 1, . . . , q − 1}. Then (ck, c�) is a violating pair
for �, a contradiction with our choice of (cp, cq).

2. k ∈ {p + 1, . . . , i − 1}, � ∈ {p, . . . , 1}. Since v1 is single-peaked with respect to
� and p < i , v1 prefers ck to c�, so (ck, c�) cannot be a violating pair for �′.

3. k = q, � ∈ { j + 1, . . . , q − 1}. Since vn is single-peaked with respect to � and
j < � < q, vn prefers c� to ck , so (ck, c�) cannot be a violating pair for �′.

4. k = q, � ∈ {p, . . . , 1}. Since (cp, cq) is a violating pair with respect to �, v1
prefers cq to cp. Since v1 is single-peaked with respect to � and � ≤ p < i , v1
prefers cp to c�. Hence, we have ck = cq �v1 cp �v1 c�, so (ck, c�) cannot be a
violating pair for �′.

Thus, the only remaining possibility is that k > q and therefore δ(�′) > δ(�).
We now apply the same argument to�′. If v�′ +V is single-crossing, we are done,

and otherwise we obtain an axis �′′ such that E is single-peaked with respect to �′′
and δ(�′′) > δ(�′). We then continue in the same manner; since δ(�) ≤ m for every
axis �, after at mostm steps we arrive to an axis �∗ such that E is single-peaked with
respect to �∗ and v�∗ + V is single-crossing. This completes the proof. �	

We are now ready to prove our main result.

Theorem 9 An election is SPSC if and only if it is pre-MRSC.

Proof We have already argued that every pre-MRSC election is SPSC (see Proposi-
tion 3). For the converse direction, we proceed as follows.

Consider an SPSC election E = (C, V )withC = {c1, . . . , cm}, V = (v1, . . . , vn).
By Lemma 8we can assume that E is single-peakedwith respect to the candidate order
c1 � · · · � cm , and v1 is given by c1 � · · · � cm . We now show how to extend E to a
single-crossing minimally rich election.

For every ci ∈ C , let Vi be the list of voters who rank ci first. Consider two
candidates ci , c j ∈ C such that Vi 
= ∅, Vj 
= ∅ and i < j . Since E is single-crossing
and ci �v1 c j , in V all voters from Vi appear before those from Vj .

Let cs be the first candidate for which Vs = ∅. Note that s > 1, since c1 is ranked
first by v1. We have Vr 
= ∅ for all r < s, and, in particular, Vs−1 
= ∅. Let u be the
last voter in Vs−1. Since u’s preference order is single-peaked with respect to �, his
vote can be written as cs−1 � cs−2 � · · · � cs−� � cs � · · · for some � ≥ 1. Now
consider the vote v obtained by moving cs to the top of u without changing the relative
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order of the remaining candidates. It is immediate that v is single-peaked with respect
to �: intuitively, when ranking candidates, v starts at cs , then moves one step to the
left, then emulates u. We claim that the election obtained by inserting v right after u
remains single-crossing.

Suppose that u 
= vn , and letw be the voter that appears right after u in V . The most
preferred candidate of w is some cq for q > s. Since w is single-peaked with respect
to � and ranks cq first, v and w agree on all pairs of the form (cs, cs−r ), r ∈ [�]. On
the other hand, u and v agree on all other pairs of candidates. By the first claim of
Lemma 6, we are done.

Now, suppose that u = vn , i.e., v is the last voter in the new election. The only
pairs of candidates that u and v disagree on are (cs, cs−1), . . . , (cs, cs−�). On the other
hand, both v1 and u (and hence all voters in V ) rank cs below cs−r for all r = 1, . . . , �.
By the second claim of Lemma 6, we are done.

We have successfully added a vote that ranks cs first. By repeating this construction
for all candidates that had no first-place votes in the original election, we obtain a
minimally rich profile that is single-crossing and single-peaked with respect to �.
This completes the proof. �	

Theorem 9 is constructive and, in particular, it implies a polynomial-time algorithm
that, given an SPSC election E , finds an MRSC election that can be obtained from E
by adding voters. This algorithm consists of two steps: (a) finding the single-peaked
axis that can be used as the first vote (or checking that the first vote already defines
an axis witnessing that the election is single-peaked), and (b) adding the votes as in
the proof. The second step requires time O(n + m2): we have to look at the first
position of each vote, and at mostm times we have to create a new vote in O(m) time.
Unfortunately, the first step may be significantly slower as Lemma 8 implies only an
O(nm + m3) algorithm for the problem (the O(nm) part stems from computing a
single-peaked axis using the algorithm of Doignon and Falmagne (1994) or Escoffier
et al. (2008), and the O(m3) part captures the complexity of finding violating pairs
and manipulating the axis).

Altogether, the running time of the algorithm implied by Theorem 9 is O(nm+m3).
The next theorem provides an alternative O(nm2) algorithm by looking at the problem
from a very different angle.

Theorem 10 There exists an algorithm that given an election E = (C, V ) decides
whether it is pre-MRSC, and, if so, constructs an MRSC election E ′ = (C, V ′) such
that V ⊆ V ′, in time O(nm2).

Proof Suppose that C = {c1, . . . , cm}, V = (v1, . . . , vn). Let C∗ be the set of candi-
dates that receive no first-place votes from the voters in V .

Suppose there exists anMRSC election E ′ = (C, V ′)with V ⊆ V ′.We first present
some observations on the structure of E ′. We can assume without loss of generality
that for each c j ∈ C∗ there is a unique vote v∗

j in V ′ that ranks c j first. Consider an
arbitrary candidate c ∈ C\{c j }. Suppose first that c �v1 c j , c j �vn c. Then there is a
unique index i ∈ [n − 1] such that c �vi c j , c j �vi+1 c. Since E ′ is single-crossing,
it has to be the case that v∗

j appears after vi in V ′. Similarly, if c j �v1 c, c �vn c j ,
then there is a unique index i ∈ [n − 1] such that c j �vi c, c �vi+1 c j , and v∗

j appears
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before vi+1 in V ′. Finally, if all voters in V prefer c to c j , then in V ′ voter v∗
j appears

either before v1 or after vn .
We can now present the high-level idea behind our algorithm. For each candidate

c j ∈ C∗ our algorithm determines all the constraints on the position of v∗
j , as described

above. If for some candidate the constraints are incompatible with each other, it stops
and outputs “no”. Otherwise, it outputs “yes”; we will show how to construct a mini-
mally rich single-crossing election E = (C, V ′) with V ⊆ V ′ in this case.

In more detail, our algorithm first checks whether E is single-crossing and outputs
“no” if this is not the case. Thus, from now on we will assume that E is single-crossing
with respect to (v1, . . . , vn). Then, for each c j ∈ C∗, we construct a set Pj as follows.
Initially we set Pj = {0, 1, . . . , n}. We then consider all candidates in C\{c j } one by
one. For each c ∈ C\{c j } we have one of the following cases:

(1) There exists an i ∈ [n − 1] such that c �vi c j , c j �vi+1 c. In this case we set
Pj := Pj\{0, . . . , i − 1}.

(2) There exists an i ∈ [n − 1] such that c j �vi c, c �vi+1 c j . In this case we set
Pj := Pj\{i + 1, . . . , n}.

(3) For all i ∈ [n] it holds that c �vi c j . In this case we set Pj := Pj\{1, . . . , n − 1}.
(4) For all i ∈ [n] it holds that c j �vi c. In this case Pj remains unchanged.

We compute the sets Pj for all candidates c j ∈ C∗. If Pj = ∅ for some c j ∈ C∗,
we output “no”; otherwise we output “yes”. We claim that this algorithm correctly
decides whether E is pre-MRSC.

Suppose first that the algorithm outputs “no”. Then either E is not single-crossing,
or there exists a candidate j ∈ C∗ with Pj = ∅. In the former case the algorithm is
obviously correct. Now consider the latter case. As argued above, the set Pj encodes
the possible positions with respect to V for a voter that ranks c j first. That is, we
remove an element i , i ∈ [n], from Pj if and only if placing a voter who ranks c j first
after vi would result in an election that is not single-crossing. Similarly, we remove
0 from Pj if and only if placing a voter who ranks c j first before all voters in V
would result in an election that is not single-crossing. Thus, if all positions have been
removed from Pj , this means that it is impossible to place a voter who ranks c j first
without turning E into an election that is not single-crossing. This implies that E is
not pre-MRSC.

On the other hand, suppose that the algorithm outputs “yes”, i.e., Pj 
= ∅ for all
c j ∈ C∗. Observe that for each c j ∈ C∗ we have either |Pj | = 1 or Pj = {0, n}.
Indeed, suppose that i, � ∈ Pj for some c j ∈ C∗, and i < �. Voter v� ranks some
candidate c, c 
= c j , first. Now, when constructing the set Pj , our algorithm has
considered c. If c j �v1 c, the algorithm should have removed � from Pj . Similarly, if
c j �vn c, the algorithm should have removed i from Pj . Since both i and � are still
in Pj , it has to be the case that both v1 and vn (and hence all voters in V ) prefer c to
c j . But then the algorithm has removed all elements other than 0 and n from Pj when
considering c, so we have i = 0, � = n.

Now, let Ci = {c j ∈ C∗ | i ∈ Pj } for all i ∈ [n]. Consider an i ∈ [n] such that
Ci 
= ∅, and assume that Ci = {c j1, . . . , c jt }, where vi ranks the candidates in Ci as
c j1 � · · · � c jt . Let v

∗
j1
be the vote obtained from vi bymoving candidate c j1 to the top

of vi without changing the relative order of the other candidates. Then, for � = 2, . . . , t
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let v∗
j�
be the vote obtained from v∗

j�−1
by moving candidate c j� to the top of v∗

j�−1

without changing the relative order of the other candidates. Let V ∗
i = (v∗

j1
, . . . , v∗

jt
)

and insert the list V ∗
i after vi . Further, let C0 = {c j ∈ C∗ | Pj = {0}}. Suppose that

C0 = {c�1 , . . . , c�s }, where v1 ranks the candidates in C0 as c�1 � · · · � c�s . Let v∗
�1

be the vote obtained from v1 bymoving candidate c�1 to the top of v1 without changing
the relative order of the other candidates. Then for j = 2, . . . , s let v∗

� j
be the vote

obtained from v∗
� j−1

by moving candidate c� j to the top of v∗
� j−1

without changing the
relative order of the other candidates. Let V ∗

0 = (v∗
�s

, . . . , v∗
�1

), and insert the list V ∗
0

before v1. Let E ′ = (C, V ′) denote the resulting election.
Election E ′ isminimally rich by construction (and the assumption that our algorithm

returned “yes”). To show that it is single-crossing, we apply Lemma 6 repeatedly.
Specifically, consider the set Ci = {c j1 , . . . , c jt } for some i ∈ [n − 1]. Observe that
if Pj = {i} for some j ∈ C∗, then for all c such that c �vi c j we have c j �vi+1 c, and
for all c such that c �vi+1 c j we have c j �vi c. Indeed, if c �vi c j and c �vi+1 c j ,
we would have removed i from Pj when considering c. Now, consider the vote v∗

j1
.

It agrees with vi on all pairs of candidates not involving c j1 , as well as on all pairs of
the form (c j1 , c), where c j1 �vi c. On the other hand, we have argued that if c �vi c j1
then c j1 �vi+1 c. Thus, on all pairs of candidates v∗

j1
agrees with vi or vi+1, so after we

insert v∗
j1
after vi , the election remains single-crossing by the first claim of Lemma 6.

Further, suppose we have already inserted v∗
j1
, . . . , v∗

j�
for some � < t , and we are

trying to insert v∗
j�+1

. The only pairs of candidates on which v∗
j�+1

and v∗
j�
disagree are

pairs of the form (c j�+1 , c), where c is ranked above c j�+1 in v∗
j�
. Note that v∗

j�
prefers

c to c j�+1 if and only if vi prefers c to c j�+1 , which means that vi+1 prefers c j�+1 to
c. Thus, by the first claim of Lemma 6 the election remains single-crossing after we
insert v∗

j�+1
. This inductive argument shows that the election remains single-crossing

after we insert all votes in V ∗
i . We can apply this argument to all sets Ci , i ∈ [n − 1],

one by one.
Now, consider the set Cn . Observe that if n ∈ Pj for some j ∈ C∗, then for all

c such that c �vn c j we have c �vi c j for all i ∈ [n]. Indeed, if c j �vi c for some
i ∈ [n − 1], we would have removed n from Pj when considering c. Thus, we can
apply an inductive argument similar to the one used for Ci , i ∈ [n − 1]; the only
difference is that we invoke the second claim of Lemma 6 rather than its first claim.
The set C0 can be handled similarly, using the third claim of Lemma 6.

It remains to analyze the running time of our algorithm. Bredereck et al. (2013)
describe anO(nm2) algorithm for checkingwhether a given election is single-crossing.
For each c j ∈ C∗, the set Pj canbe computed in timeO(nm); the easiestway to achieve
this is to preprocess the votes so as to represent each vote as an m-by-m comparison
matrix, which can be done in time O(nm2). Each of the sets Ci , i ∈ [n] ∪ {0}, can
be computed in time O(m), and the respective vote list V ∗

i can be computed in time
O(m|Ci |). To establish the bound on the running time, it remains to observe that
|C0| + · · · + |Cn| ≤ m. �	

We note that we need not assume that the input election is single-crossing in the
given order: given an election, we can decidewhether the votes can be reordered so that
it becomes single-crossing in the given order in time O(nm2) (Bredereck et al. 2013).
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Hence, performing this check before executing the algorithm presented in Theorem 10
does not affect the overall running time.

We finish our discussion by pointing out an interesting property of SPSC elections:
If E is an SPSC election then for each candidate c, as we sweep through the voters in
the single-crossing order, the position of c first rises and then falls; this property can
be quite useful when deriving algorithms for SPSC elections and was used, e.g., by
Skowron et al. (2015).

Proposition 11 For every election E = (C, V ) with C = {c1, . . . , cm}, V
= (v1, . . . , vn) that is SPSC with respect to the voter order (v1, . . . , vn) and for
every candidate c ∈ C there exists a voter v� ∈ V such that for every pair of voters
vi , v j satisfying j < i ≤ � or � ≤ i < j it holds that pos(v j , c) ≥ pos(vi , c).

Proof If an election E has the property described in the proposition statement, then
every election obtained from E by deleting voters also has this property. Thus, it
suffices to give a proof for the case where E is single-crossing and minimally rich.
Fix a candidate c ∈ C and let v� be some voter that ranks c first. Consider two voters,
v j and vi , such that j < i ≤ �. If pos(v j , c) < pos(vi , c), there exists a candidate c′
such that v j prefers c to c′, but vi prefers c′ to c. However, v� ranks c first, so she also
prefers c to c′, and this is a contradiction with the assumption that E is single-crossing.
The case � ≤ i < j is similar. �	

4 Conclusions

We have explored the domain of all elections that are simultaneously single-peaked
and single-crossing. We established a connection between minimally rich elections,
single-crossing elections, and single-peaked elections that led to a characterization of
the SPSC domain. Further, we have proposed two algorithms for reconstructing the
minimally rich single-crossing election fromwhich they can be obtained. Finding such
an embedding may be useful for algorithms that exploit the properties of the SPSC
domain, just like finding a single-peaked axis or the single-crossing order of voters is
useful for some of the algorithms for single-peaked or single-crossing elections.
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