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Abstract
We analyze lobbying as contest in which lobbyists exert effort to pull a policy out-
come in a multidimensional space in their preferred directions. We prove existence
and uniqueness of equilibrium and perform comparative statics on the cost of effort
and policy utility of the lobbyists. As cost of effort increases, the equilibrium policy
outcome and inefficiency (i.e., total effort expended) are constant. Assuming power
utility, the equilibrium policy minimizes a social loss function that depends on cur-
vature of utilities. As lobbyists become less tolerant of larger losses, the equilibrium
policy outcome converges to the Rawlsian policy, which maximizes the payoff of the
worst-off lobbyist, and inefficiency may become large or go to zero, depending on
the configuration of ideal points. As lobbyists become less tolerant of smaller losses,
the equilibrium outcome converges to the mean of the lobbyists’ ideal points, and
inefficiency goes to zero.

1 Introduction

In this paper, we consider a finite set of lobbyists who compete in a contest by exerting
pressure to influence the location of a policy outcome in a finite-dimensional pol-
icy space. Much of the literature on contest theory assumes that the final outcome
is imposed by a single winner who is determined stochastically by effort exerted by
contest participants: although the winner of the contest is affected by effort choices,
the final outcome reflects only the preferences of the winner, independent of effort
expended by losers (cf. Corchón 2007). In contrast, we view public policy as a contin-
uous variable, and it is natural in this setting to expect that the final location of policy
will be the result of a compromise, or a balance of forces, that reflects the efforts of
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all participants, so that the effort exerted by any one lobbyist generates externalities
on all others. Thus, we model lobbying as a “tug of war,” where the policy outcome is
the result of each lobbyist exerting force in her preferred direction; technically, it is a
weighted combination of lobbyist ideal points, where weights are determined by effort
choices via a standard contest success function, and effort is subject to a quadratic cost.

We assume a finite number of lobbyists with Euclidean preferences over a multidi-
mensional policy space; thus, each lobbyist has an ideal policy and seeks to minimize
the distance between the final policy outcome and her ideal point. The lobbyists
simultaneously choose effort levels, and the resulting policy outcome is a convex
combination of lobbyist ideals points, where the weight on each lobbyist’s ideal point
depends on the lobbyist’s effort in proportion to the total effort expended. We interpret
effort in a broadway, as encompassing a range of activities intended to influence policy
in the preferred direction of the lobbyist: contributions to campaigns or independent
expenditures in elections; threats to fund political opponents; writing of model bills to
influence the content of legislation; sponsoring fund raising or inaugural events; sup-
port for think tanks or academic foundations to change elite views; or illegal activities
such as outright bribes or extortion. Lobbyists representing different interests, even if
from the same side of the political spectrum, may differ in the preferred direction of
policy: for example, a petroleumcompany and a defense contractormay each generally
prefer less government regulation, but the petroleum firm would place greater weight
on reduction of exploration and drilling restrictions on government lands, while the
defense contractor would place greater weight on increased defense spending. These
differences will be reflected in different gradients for lobbyists representing these
interests, and thus it becomes important to conduct the analysis under the general
assumption of a multidimensional policy space.

Each lobbyist receives policy utility from the outcome realized, and each pays a
quadratic cost of effort times a cost parameter that measures the responsiveness of
policy to lobbying efforts. The cost parameter can proxy for a number of institu-
tional factors, including reporting requirements, restrictions on the types of allowable
lobbying expenditures, and caps on lobbying expenditures. More generally, viewing
lobbyists as pressure groups that exert influence on electoral campaigns and public
opinion to obtain preferred policy outcomes, the cost parameter can also incorporate
disclosure requirements for contributions to campaigns and non-profit organizations;
restrictions on independent expenditures to promote a candidate or party; tax deduc-
tions for contributions to non-profit, issue-advocacy organizations; access to large
data bases containing detailed voter information; and the availability of cable news
and social media outlets to facilitate messaging to voters.

We characterize the unique Nash equilibrium of the multidimensional game of
tug of war as the unique solution to a particular system of equations. In general: the
equilibrium policy outcome is unaffected by the cost parameter, total effort goes to
zero as the cost parameter becomes large, and total effort increases without bound
as the parameter goes to zero. To measure inefficiency, we look at the total cost
of effort, and we find that this measure is independent of the cost parameter; that
is, as the cost parameter changes, equilibrium effort levels adjust to maintain the
same total cost of effort. We then specialize to the class of power utility functions,
and we show that the equilibrium policy outcome minimizes a social loss function,
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where the loss of an individual lobbyist is measured as distance raised to a power
depending on the curvature of policy utility. As lobbyists become less tolerant of larger
losses (technically, as the coefficient of relative risk aversion increases), the unique
equilibrium policy outcome converges to the Rawlsian optimum, which maximizes
the payoff of the worst-off lobbyist, and inefficiency may become large or may go to
zero, depending on the configuration of ideal points. As lobbyists become less tolerant
of small losses, so that lobbying approximates an “all or nothing” competition, the
equilibrium policy outcome converges to the mean of the individual ideal points, and
inefficiency goes to zero. In addition, we discuss a number of extensions of the model,
including heterogeneous cost of effort and a more general cost structure.

Although our leading interpretation of the model is lobbying, the continuous con-
test approach has other applications. For example, committee decision making could
be viewed as a contest, in which members exert effort to pull the outcome of a meeting
in their favored directions. This is especially true in unstructured settings, where the
protocol governing discussion is informal, and the rules of interaction are not explic-
itly defined. While such unstructured environments are often modeled in terms of a
dynamic bargaining game (Baron and Ferejohn 1989; Banks andDuggan 2000, 2006),
our approach provides another possible model for the “black box” of committee deci-
sion making. For another example with two players, our model could capture leaders
of two parties who seek to influence legislative outcomes by expending resources
to influence bill language or voting in committees or floor votes, exerting effort to
determine the legislative outcome in a continuous way. Relying on our extension to
weighted lobbying, in Sect. 3, a related application with multiple players could be
a parliament, in which parties pull policy in their preferred directions, with effort
weighted by an increasing function of seat share, reflecting the influence of parties in
the government formation process.

In the remainder of the paper, Sect. 2 provides an overview of the related literature.
Section 3 formally presents the baseline lobbying game and establishes existence and
uniqueness of equilibrium, along with comparative statics on the cost parameter. In
Sect. 4, we examine the special case of power utility, which allows us to conduct
comparative statics on preference parameters. We discuss the normative implications
of our analysis in Sect. 5. Section 6 discusses a number of extensions of the baseline
model, and Sect. 7 concludes. Proofs of supporting propositions are contained in the
“Appendix”.

2 Related literature

Our paper is related to the exchange lobbying literature, where lobbying is treated
as a quid pro quo between the lobbyist and the politician. In some of the early work
on exchange theory, the competition is for the vote of a single voter, and the model
is either similar to most of the work on contest theory, where the final outcome is
imposed by a singlewinnerwho is determined stochastically by effort exerted by all the
lobbyists (Tullock 1980), or lobbying is modeled as an all-pay auction, where bidders
submit their bids simultaneously, and the highest bidder gets the prize (Hillman and
Riley 1989; Baye et al. 1993, 1996; Che and Gale 1998). Others have also studied the
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sequential lobbyinggame in a legislative setting,where the lobbyistsmove sequentially
to buy off a majority of the legislators. Groseclose and Snyder (1996) study the game
in which two lobbyists move sequentially to compete for the votes of a continuum
of legislators, and Banks (2000) studies the same process assuming a finite set of
legislators. Both find a second-mover advantage, while Dekel et al. (2008) consider
the infinite-horizon sequential lobbying game and find the second-mover advantage
largely disappears, and the lobbying outcome is more open-ended. Nevertheless, the
final outcome is still imposed by a single winner, namely, the lobbyist who offers the
highest price.

Closer in spirit to our paper are lobbyingmodels stemming from the commonagency
literature. Bernheim and Whinston (1986a, b) set the common agency framework, in
which a finite number of principals each offer a menu of contracts to an agent to
influence her action choice, and they show that truthful Nash equilibria maximize the
aggregate utility of the principals and agent, and that these are essentially the only
coalition-proof equilibria. Thus, in equilibrium, the forces exerted by the principals
must cancel out, in a sense, similar to our model, but the nature of competition is
quite different: in our analysis, there is no agent whose choice is endogenous to the
model, and lobbyists exert force directly at quadratic cost, rather than by offering an
agent monetary inducements as a function of her actions. In the case of power utility,
our characterization on social losses sharply illustrates the distinct implications of the
two approaches. We show that the equilibrium policy minimizes social losses, where
the loss of an individual lobbyist is measured as foregone utility, multiplied by the
square of distance to the policy outcome; see Eq. (8), below. In contrast, because the
truthful equilibria of Bernheim and Whinston (1986a, b) maximize aggregate utility,
they effectivelyminimize social losses bymeasuring individual loss as foregone utility
alone. In sum, the nature of competition in our lobbying game places greater weight on
deviations from the policy outcome by individual lobbyists, and this will be reflected
in the fact that aggregate utility is lower in equilibria of the lobbying game, while
lobbyists at a greater distance from the equilibrium policy are relatively advantaged.

Grossman and Helpman (1994) use the framework to study lobbying in the spe-
cific context of trade policy, Mitra (1999) extends Grossman and Helpman (1994) by
endogenizing the interest group formation process, and Laussel and Le Breton (2001)
characterize in detail the equilibrium payoffs of the common agency game. More
recently, the literature has visited the topic of incomplete information in common-
agency models of lobbying. Le Breton and Salanié (2003) characterize the conditions
for an efficient outcome in a binary policy setting with uncertainty over a politician’s
preference over social welfare, and Martimort and Semenov (2008) show that when
there is uncertainty over a politician’s ideology, the lobbying outcome may be biased
toward the politician’s preference and may not be efficient; however, in these settings,
some lobbyists may turn out to be non-pivotal, and thus have no effect on the final
policy outcome.

A distinguishing feature of our model is the nature of the externality generated by
a lobbyist’s effort. Each lobbyist pulls the policy outcome in a different direction, and
thus the externality generated by the efforts of lobbyists j and k may affect lobbyist
i differentially, e.g., j’s effort may produce a positive externality to i , whereas k’s
effort moves the outcome further from lobbyist i’s ideal point, producing a negative
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externality. For a fourth lobbyist, the externalities may be reversed, with j’s effort
producing a negative externality and k’s a positive one. In short, externalities are
“identity-dependent,” a feature of Linster’s (1993) generalized contest model and
Esteban and Ray’s (1999) analysis of conflict and redistribution. In both of the latter
papers, the outcome of the contest is a lottery over winners, and the utility of a lobbyist
candependon the identity of thewinner. In particular, Esteban andRay (1999) establish
existence and, under weak conditions, uniqueness of equilibrium; their main focus is
the effect of group sizes on the level and pattern of conflict, whereas we exploit
the structure of our model to consider comparative statics on preferences and cost
parameters of lobbyists.

Although the contest success function used in this paper has a standard func-
tional form (cf. Skaperdas 1996), our use of it differs from the contest literature in
that it determines a specific outcome in Euclidean space—rather than a lottery over
contestants—as a continuous function of individual effort levels. In fact, if lotteries
are viewed as elements of the unit simplex in �n , then the standard approach with n
lobbyists also has a Euclidean structure: an outcome x = (x1, . . . , xn) consists of a
vector of probabilities, where xi is the probability that lobbyist i wins. Interpreting the
model of Esteban and Ray (1999) in this way, the essential difference between their
model of conflict and redistribution and our spatial contest is in the preferences of the
lobbyists. As is standard, Esteban and Ray (1999) assume expected utility over lotter-
ies and that each lobbyist’s ideal outcome is to win outright, so that in the Euclidean
formulation, utilities over the simplex are linear, and ideal points of the lobbyists fall
on the vertices of the simplex. In contrast, we impose standard spatial structure on
lobbyist preferences, so that the marginal rate of substitution of one policy for another
depends on the lobbyist’s relative satisfaction on the two dimensions—technically,
utilities are strictly quasi-concave—and because the location of ideal points is arbi-
trary in our model, we allow for the possibility that the policy preferences of some
lobbyists are closely aligned.

Some papers in the literature do consider models with a spatial structure (Konrad
2000; Epstein andNitzan 2004;Münster 2006). In these papers, however, the positions
of the players are determined endogenously in the first stage of the game, and the
winner of the contest is determined stochastically in the second stage. In contrast, we
fix the ideal points of the players, and we model the final outcome as a deterministic
function of individual efforts, giving the model a structure something like a tug of
war. Konrad and Kovenock (2005) analyze what they refer to as a tug of war, but
they model a sequence of all-pay auctions in which two players attempt to pull a state
variable to their preferred terminal points over time. In contrast, drawing an analogy
to the well-known game, we model multiple lobbyists moving simultaneously, each
exerting force on a segment of rope, and all segments meeting at a common nexus. The
goal of each lobbyist is to pull the nexus point as close to her ideal point as possible,
and a Nash equilibrium of the game then corresponds to a location of this nexus that
is stable under the forces exerted by the n lobbyists. The literature appears to have
omitted spatial contests with this strategic structure.
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3 Lobbying game

Assume n lobbyists, denoted i = 1, . . . , n, simultaneously choose effort levels αi ≥ 0
to determine an outcome x∗ in d-dimensional Euclidean space, �d . Each lobbyist i
has an ideal point x̂ i ∈ �d , and effort levels determine the policy outcome via a contest
success function with a standard functional form,

x∗ =
∑

j α j x̂ j

∑
j α j

. (1)

Intuitively, each lobbyist pulls the policy outcome toward her ideal point, the weight
on that outcome being determined by the ratio of individual to total effort, as though
lobbyists play a multidimensional game of tug of war over policy outcomes. When all
lobbyists exert zero effort, the above expression is not well-defined, and in this case,
we set x∗ equal to an arbitrary status quo outcome in the convex hull of ideal points.
To avoid trivial cases, we will assume that at least two lobbyists have distinct ideal
points; this renders the choice of status quo immaterial.

Payoffs of the lobbying game are determined by a common loss function applied to
the distance of the policy outcome from a lobbyist’s ideal point, minus a quadratic cost
of effort; that is, for some twice differentiable function u : �+ → �, each lobbyist
i’s payoff is u(‖x̂ i − x∗‖) − cα2

i . We impose the following assumptions on payoffs;
in Assumption 2 and elsewhere, it is understood that the outcome x∗ is a function of
effort choices expressed in (1).

Assumption 1 For all z > 0, u′(z) < 0.

Assumption 2 For all α j , j 	= i , u(‖x∗ − x̂ i‖) − cα2
i is quasi-concave in αi .

Assumption 3 For all z > 0, u′′(z)z + 2u′(z) < 0.

Assumption 1, in the current context, is a differentiable formulation of strict quasi-
concavity. Assumption 2 is a standard condition used to guarantee existence of Nash
equilibria in pure strategies, and Assumption 3, which is used in the uniqueness proof,
limits the extent of non-concavity of the lobbyists’ utilities. An obvious sufficient
condition for the latter assumptions is concavity—specifically, u′′ ≤ 0—but the con-
ditions hold even more generally. In Sect. 2, we show that they hold for power utility
u(z) = −zr with arbitrary positive parameter r > 0. Note that the power function is
actually convex for r < 1, showing that the analysis can accommodate substantially
non-concave utility over distance.

Given the effort levels of the other lobbyists, lobbyist i’s best response problem is

max
αi

u

(∥
∥
∥
∥
∥

x̂ i −
∑

j α j x̂ j

∑
j α j

∥
∥
∥
∥
∥

)

− cα2
i .

We focus on pure strategyNash equilibria of the lobbying game, and by the assumption
that at least two lobbyists have distinct ideal points, it is immediate that all equilibria
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feature positive total effort, i.e., A ≡ ∑
i αi > 0 in equilibrium. Furthermore, it is

clear that if x∗ = x̂ i in equilibrium, then it must be that lobbyist i exerts zero effort,
i.e., αi = 0.

For every other lobbyist i such that x∗ 	= x̂ i , optimal effort must satisfy the follow-
ing first order condition:

−u′ (
∥
∥
∥x̂ i − x∗

∥
∥
∥
) ∥

∥
∥x̂ i − x∗

∥
∥
∥ ≤ 2cαi A,

with equality if αi > 0. By Assumption 1, the left-hand side of the above inequality
is positive, and we conclude that αi > 0 for all i with x∗ 	= x̂ i . Thus, we have

αi = − 1

2cA
u′ (

∥
∥
∥x̂ i − x∗

∥
∥
∥
) ∥

∥
∥x̂ i − x∗

∥
∥
∥ (2)

for all such lobbyists. Substituting (2) into the definition of x∗ in (1), it follows that
in equilibrium, we must have

0 = x∗ −
∑

i αi x̂ i

A

=
∑

i αi
(
x∗ − x̂ i

)

A

=
∑

i − 1
2cA u′ (∥∥x̂ i − x∗∥∥) ∥

∥x̂ i − x∗∥∥ (
x∗ − x̂ i

)

A
,

where we sum only over lobbyists i for whom x∗ 	= x̂ i ; we use this convention when
summing over derivatives of utility functions throughout the paper, without further
mention. Simplifying further, we can then characterize the solution to the lobbyists’
first order conditions by a system of d equations in d unknowns: letting Ñ consist of
the lobbyists such that x̂ i = x∗, an equilibrium policy outcome x∗ must solve

∑

i /∈Ñ

u′ (‖x̂ i − x∗‖
) ∥

∥
∥x̂ i − x∗

∥
∥
∥

(
x∗ − x̂ i

)
= 0. (3)

In words, the equilibrium policy outcome must balance the forces exerted on it, where
each lobbyist exerts force in the direction of her ideal point x̂ i , with magnitude equal
to the squared distance to x̂ i weighted by the marginal utility of distance. For the case
of concave u, this means that in equilibrium, lobbyists further from the policy outcome
x∗ exert greater effort, implying that x∗ will resist being too distant from the ideal
point of the furthest lobbyist; we return to this topic in Theorem 5 of the next section.

Our main result is that the lobbying game admits a unique equilibrium. The proof of
uniqueness proceeds by showing that the system in (3) has at most one solution, after
which the result follows from the above first-order analysis. An interesting feature of
(3) is that the cost parameter c does not appear in this system of equations, fromwhich
we conclude that the equilibrium policy outcome is independent of c.
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Theorem 1 Under (A1)–(A3), the lobbying game admits a unique Nash equilibrium,
and the equilibrium policy outcome is characterized by the system of equations in (3)
and is independent of the cost parameter c.

Proof The existence argument must account for the facts that the policy outcome x∗ is
discontinuous at (α1, . . . , αn) = 0 and that the lobbyists’ strategy sets are unbounded
above. To address the latter difficulty, note that the outcome x∗ always belongs to
the convex hull of {x̂1, . . . , x̂n}, and since u is quasi-concave in x , it follows that the
minimum of u(‖x̂ i − x∗‖) over profiles (α1, . . . , αn) is achieved when some lobbyist,
say ji , exerts positive effort and all others exert zero effort. That is, the worst feasible
outcome for lobbyist i is x̂ ji ; of course, the best feasible outcome for i is x̂ i . Let a be
such that for all lobbyists i , we have

u(0) − ca2 < u
(∥
∥
∥x̂ i − x̂ ji

∥
∥
∥
)

,

so that each lobbyist would prefer to choose zero effort and obtain the worst possible
outcome, rather than receive the best possible outcome while exceeding the level
a. Clearly, an equilibrium of the lobbying game with strategy sets restricted to the
compact interval [0, a] for all lobbyistswill persist as an equilibriumof the unrestricted
game.

To address the discontinuity of payoffs, we invoke Reny’s (1999) Theorem 3.1
to obtain an equilibrium of the restricted game, and to this end, we must verify his
condition of better-reply security. Write x∗(α) to bring out dependence of the policy
outcome on the profile α = (α1, . . . , αn) of effort levels. Let � be the closure of the
graph of the vector payoff function of the game, i.e.,

� = clos
({

(α, y1, . . . , yn) ∈ [0, a]n × �n | for all i, yi = u
(∥
∥
∥x̂ i − x∗(α)

∥
∥
∥
)})

.

Because payoffs are continuous at every profile of effort levels not equal to the zero
vector, it suffices to show that for every (y1, . . . , yn) with (0, y1, . . . , yn) ∈ �, some
lobbyist i has a profitable deviation to a positive effort level, αi > 0. Indeed, for such a
vector (y1, . . . , yn), there is at least one lobbyist i whose payoff is less than the payoff
from the ideal outcome, i.e., yi < u(0). For every deviation αi > 0, the resulting
outcome is the lobbyist’s ideal point, x∗(αi , 0−i ) = x̂ i . Then for αi > 0 sufficiently
small, we have

u(x∗(αi , 0−i )) − cα2
i = u(0) − cα2

i > yi ,

as required. Because the outcome x∗ is continuous at (αi , 0−i ), there exists ε > 0
such that for all α−i = (α j ) j 	=i ∈ [0, ε)n−1, we have u(x∗(αi , α−i )) − cα2

i > yi .
Thus, Reny’s theorem delivers existence of an equilibrium. Necessity of (3) follows
from first order arguments above. Sufficiency follows from the fact that Eq. (3) admits
at most one solution, as argued below.
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To establish that Eq. (3) has a unique solution, we define a function φi : �d → �
for each lobbyist i by

φi (x) =
{

u′ (∥∥x̂ i − x
∥
∥
) ∥
∥x̂ i − x

∥
∥

(
x − x̂ i

)
if x 	= x̂ i ,

0 else.

Note that if x 	= x̂ i , then φi is differentiable at x . Next, observe that if there are two
solutions to (3), say x∗ and x∗∗, then the equality

t ·
∑

i

φi (x∗ + βt) = 0

must hold for the direction t = 1
‖x∗∗−x∗‖ (x∗∗ − x∗) at both β = 0 and β = ‖x∗∗ −

x∗‖. Thus, to preclude the possibility of multiple solutions, it suffices to show that
t · φi (x∗ + βt) is strictly decreasing in β > 0.

Given β such that x̂ i 	= x∗ + βt , the expression in question is differentiable as
a function of β, and we claim that its derivative is negative. Indeed, define ξ i (β) =
x∗ +βt , and write the derivative of t ·φi (ξ

i (β))with respect to β as the sum
∑

i (Ai +
Bi + Ci ), where for each lobbyist i , we define

Ai = u′′ (
∥
∥
∥x̂ i − ξ i (β)

∥
∥
∥
) [

t ·
(

x̂ i − ξ i (β)
)]2

Bi = u′ (∥∥x̂ i − ξ i (β)
∥
∥
) [

t · (
x̂ i − ξ i (β)

)]2

‖x̂ i − ξ i (β)‖
Ci = u′ (

∥
∥
∥x̂ i − ξ i (β)

∥
∥
∥
) ∥

∥
∥x̂ i − ξ i (β)

∥
∥
∥ .

By Assumption 1, we have Ai + Bi + Ci < 0 when t · ξ i (β) = 0, so consider the
remaining case. Using the fact that z + 1

z ≥ 2 for all z > 0, we have

[
t · ξ i (β)

]2

∥
∥ξ i (β)

∥
∥

+
∥
∥
∥ξ i (β)

∥
∥
∥ ≥ 2|t · ξ i (β)|.

Therefore, with Assumption 1, we have

Ai + Bi + Ci ≤ u′′ (
∥
∥
∥ξ i (β)

∥
∥
∥
) [

t · ξ i (β)
]2 + 2u′ (

∥
∥
∥ξ i (β)

∥
∥
∥
)

|t · ξ i (β)| < 0,

where the second inequality follows from Assumption 3. We conclude that the deriva-
tive of t · φi (ξ

i (β)) is negative, as claimed.
In case β is such that x̂ i = x∗ + βt , then φi (ξ

i (β)) may not be continuous at β,
but we argue that the function t · φi (ξ

i (β)) jumps down at any point of discontinuity.
It suffices to show that for β ′ < β < β ′′, we have

t · φi

(
ξ i (

β ′)) ≥ 0 ≥ t · φi

(
ξ i (

β ′′)) .
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By Assumption 1, this follows if

t ·
(
ξ i (

β ′) − x̂ i
)

≤ 0 ≤ t ·
(
ξ i (

β ′′) − x̂ i
)

.

Since ξ i (β) = x̂ i , the above inequalities hold if and only if

t ·
(
ξ i (

β ′) − ξ i (β)
)

≤ 0 ≤ t ·
(
ξ i (

β ′′) − ξ i (β)
)

,

or equivalently,

t · ((
β ′ − β

)
t
) ≤ 0 ≤ t · ((

β ′′ − β
)

t
)
,

which holds by β ′ − β < 0 < β ′′ − β. We conclude that the expression t · φi (ξ
i (β))

is strictly decreasing in β > 0 for each lobbyist i . This implies that there is a unique
solution to (3), and thus a unique Nash equilibrium of the lobbying game, as required.

�
An implication of Theorem 1 is that the unique equilibrium policy outcome is

independent of the lobbyists’ cost parameter. Summing over i in Eq. (2) and solving
for the equilibrium total effort level, we directly obtain:

A =
√

− 1

2c

∑

i

u′ (∥∥x̂ i − x∗∥∥) ‖x̂ i − x∗‖.

Substituting this expression back into (2), we see that the equilibrium effort level of
each lobbyist i with x̂ i 	= x∗ varies inversely with the cost parameter:

αi = −u′ (∥∥x̂ i − x∗∥∥) ‖x̂ i − x∗‖
√

−2c
∑

j u′ (∥∥x̂ j − x∗∥∥) ∥
∥x̂ j − x∗∥∥

. (4)

Since the policy outcome x∗ in the right-hand side of the above expression is constant
as the cost parameter c varies, the effort level of all such lobbyists increases without
bound as c becomes small, and effort goes to zero as c becomes large.

As our measure of equilibrium inefficiency, however, we use the total cost of effort,
i.e., c

∑
i α2

i , which we can obtain from (4), as follows:

c
∑

i

α2
i =

∑
i

[
u′ (∥∥x̂ i − x∗∥∥) ∥

∥x̂ i − x∗∥∥]2

−2
∑

i u′ (∥∥x̂ i − x∗∥∥) ∥
∥x̂ i − x∗∥∥ . (5)

Interestingly, with the observation that the equilibrium policy outcome x∗ is inde-
pendent of the cost parameter, the total cost of effort is also constant in c. Thus, like
the equilibrium policy outcome, inefficiency depends on modeling primitives only
through the system of equations in (3), and effort levels adjust to changes in c so as to
maintain Eq. (5). We have thus proven the following theorem.
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Theorem 2 In the lobbying game, as the cost parameter c becomes large, equilibrium
effort goes to zero, and as c becomes small, for all lobbyists i with x̂ i 	= x∗, equilibrium
effort increases without bound, i.e., limc→∞ αi = 0 and limc→0 αi = ∞. Moreover,
the total cost of effort is independent of c and given by the expression in (5).

To gain insight into the nature of equilibrium policy outcomes, we consider two
simple functional forms. First, assume utility over distance is linear, i.e., u(z) = −z.
Then Eq. (3) reduces to

∑

i

∥
∥
∥x∗ − x̂ i

∥
∥
∥

(
x∗ − x̂ i

)
= 0,

and thus in the one-dimensional special case, the equilibrium outcome equalizes the
total, over ideal points of the lobbyists, of squared distance from x∗ to the left and to
the right of this outcome. Equivalently, we can write

x∗ =
∑

i

( ∥
∥x∗ − x̂ i

∥
∥

∑
j

∥
∥x∗ − x̂ i

∥
∥

)

x̂ i ,

so that the equilibrium policy outcome x∗ is a weighted combination of ideal points,
with weights equal to the ratio of a lobbyist’s distance to x∗ over the total distance. In
this case, total effort is given by

A =
√

− 1

2c

∑

i

∥
∥x∗ − x̂ i

∥
∥.

Next, assume quadratic utility, i.e., u(z) = −z2, so that Eq. (3) reduces to

∑

i

∥
∥
∥x∗ − x̂ i

∥
∥
∥
2 (

x∗ − x̂ i
)

= 0,

so that in one dimension, the equilibrium outcome equalizes the total of cubed distance
to x∗ to the left and to the right of this outcome. Equivalently,

x∗ =
∑

i

( ∥
∥x∗ − x̂ i

∥
∥2

∑
j

∥
∥x∗ − x̂ i

∥
∥2

)

x̂ i ,

and total effort is given by

A =
√
1

c

∑

i

∥
∥x∗ − x̂ i

∥
∥2,

so that total effort is the standard deviation of individual distance to x∗, normalized
by

√
n/c.
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Fig. 1 Power utility
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4 Power utility

In this section, in order to understand the role of payoffs in the determination of the
equilibrium policy outcome and the magnitude of inefficiency in the lobbying game,
we assume power utility of the form u(z) = −zr for some r > 0, so that we can
control the lobbyists’ sensitivity to policy losses by the parameter r . Note that the
coefficient of relative risk aversion is r − 1, so that when r > 1, lobbyists are risk
averse in policy distance; and when r < 1, lobbyists are risk loving in distance. See
Fig. 1, which depicts a one-dimensional policy space with three lobbyists, located at
0, .75, and 1. In the upper panel, r is close to zero, so that utility becomes increasingly
steep near the lobbyist’s ideal point and flat at outcomes distinct from the ideal point,
so that the lobbyist is increasingly indifferent toward outcomes that are not ideal. In
other words, the competition becomes “all-or-nothing,” with lobbyists caring only
about achieving their own ideal policy outcomes. In the lower panel, r is high, so
that lobbyists’ utility falls off rapidly as policy moves away from their ideal points.
For an example, if a domestic firm is lobbying for import restrictions (e.g., tariffs or
inspection requirements), then r could reflect the degree of product differentiation in
the market, where r close to zero would correspond to homogeneous outputs and high
r to highly differentiated output.1

We will apply the equilibrium analysis of the previous section, but we must first
confirm that power utility with r > 0 satisfies (A1)–(A3). Clearly, it satisfies (A1),
and the next result verifies (A2) and (A3) as well.

Proposition 1 The lobbying game with power utility and r > 0 satisfies (A1)–(A3).

Thus, Theorems 1 and 2 indeed apply to the current setting, and the unique Nash
equilibrium policy outcome of the lobbying game is given by the solution to the
equation

0 =
∑

i

∥
∥
∥x∗ − x̂ i

∥
∥
∥

r (
x∗ − x̂ i

)
, (6)

1 Intuitively, if output is highly homogeneous, as would be the case in agricultural markets, then foreign
products priced to slightly undercut the domestic market will lead to a sharp decrease in profits of domestic
firms. In the opposite case where outputs are very distinct, e.g., if consumer brand loyalty is strong, then
failure to obtain desired import restrictions would entail a smaller decrease in profits.
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which specializes Eq. (3) to the power utility case. In turn, the equilibrium effort of
lobbyist i is determined by Eq. (4), which becomes:

αi =
∥
∥x̂ i − x∗∥∥r

√
2c
r

∑
j

∥
∥x̂ j − x∗∥∥r

. (7)

In the power utility case, examination of (6) yields an alternative characterization of
the equilibrium outcome, for the equation coincides with the first order condition of
the minimization problem

min
x∈�d

∑

i

∥
∥
∥x̂ i − x

∥
∥
∥

r+2
. (8)

Since the objective function above is strictly convex, it follows that the first order
condition is sufficient for a global minimum; and since the equilibrium policy outcome
satisfies the first order condition for (8), it is therefore the unique solution to the
problem. In sum, the equilibrium policy outcome of the lobbying game minimizes a
social loss function, in which the loss of each lobbyist is calculated as distance to the
policy raised to the power r + 2.

Theorem 3 In the lobbying game with power utility and r > 0, the unique equilibrium
outcome x∗ solves the minimization problem (8).

Theorem 3 allows us to analyze the properties of equilibrium policy outcomes
through awell-behaved optimization problem, and it provides a straightforward avenue
to computation of equilibria in the model. We first apply this observation to the case in
which lobbyists become less tolerant of policy losses closer to their ideal points, i.e.,
r → 0. Then r +2 → 2, and applying the theoremof themaximum to (8), we conclude
that the limit of equilibrium policy outcomes minimizes the sum of squared distance
to the lobbyists’ ideal points. Thus, the limiting policy is the mean of the lobbyists’
ideal points; moreover, by (7), total effort goes to zero, and equilibrium inefficiency
goes to zero as well. In Fig. 1, the mean of the three ideal points is x = .583, and as
lobbyists place greater weight on losses close to their ideal points, as in the top panel,
equilibrium outcomes converge to this policy.

Theorem 4 In the lobbying game with power utility and r > 0, the limit of equilibrium
policy outcomes as r → 0 is the mean of the lobbyists’ ideal points, and total effort
goes to zero as r → 0, i.e., limr→0 x∗ = 1

n

∑
x̂ i and limr→0 A = 0.

Theorem 4 establishes that as r goes to zero, equilibrium outcomes balance the
lobbyists’ preferences by converging to the mean of their ideal points. Lobbyists
whose ideal points are distinct from the mean fail to achieve their ideal outcomes and
thus expend vanishingly small effort in equilibrium, and lobbyists with ideal points at
the mean (if any) achieve their ideal outcome with effort that also goes to zero.

Next, we show that as lobbyists become less tolerant of policy losses further from
their ideal points, i.e., r → ∞, the equilibrium policy outcome converges to the
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policy that maximizes the minimum utility of the lobbyists. That is, it converges to the
maximal element of the Rawlsian social welfare ordering, x R = argmaxx mini u(‖x −
x̂ i‖). Furthermore, we show that total effort may or may not become arbitrarily large,
depending on the configuration of ideal points. Before proceeding to the analysis, we
establish that the Rawlsian policy is uniquely defined, so that the limit of equilibria is
pinned down uniquely as risk aversion increases. Uniqueness of the Rawlsian policy
is established in the following mathematical result, which is formulated in general
terms for arbitrary, strictly quasi-concave functions, and does not rely on functional
form assumptions.

Proposition 2 Let fi : �d → �, i = 1, . . . , n, be arbitrary, strictly quasi-concave
functions. Then

max
x

min
i

fi (x)

has at most one solution.

In one dimension, the Rawlsian policy is easily characterized as the average of the
most extreme ideal points, i.e.,

x R = 1

2
min

j
x̂ j + 1

2
max

j
x̂ j .

In particular, it belongs to the convex hull of the ideal points of lobbyists who are
worst off at x R . The next proposition gives a characterization of the Rawlsian policy
that formalizes and generalizes this insight; it does not depend on the power utility
functional form, and thus it is stated for the general lobbying game.

Proposition 3 In the lobbying game, a policy x is the Rawlsian policy, x R, if and only
if it is a convex combination of the ideal points of the lobbyists who are worst off at x,
i.e., x = x R if and only if

x ∈ conv{x̂ i | i ∈ N (x)},

where

N (x) =
{

i ∈ N | u
(∥
∥
∥x − x̂ i

∥
∥
∥
)

= min
j

u
(∥
∥
∥x − x̂ j

∥
∥
∥
)}

is the set of lobbyists with lowest utility at x.

In multiple dimensions, Rawlsian policy provides a selection from the Pareto set
that is continuous as a function of lobbyist ideal points. In Fig. 2, we consider a two-
dimensional policy space and three lobbyists, andwe depict four arrangements of ideal
points for the lobbyists. In the first panel, the ideal points form an equilateral triangle,
and the Rawlsian policy is the centroid of the triangle, equalizing the utility of the
three lobbyists. As lobbyist 3’s ideal point moves in, the Rawlsian policy shifts to the
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x̂1x̂1x̂1x̂1

x̂2x̂2x̂2x̂2

x̂3x̂3x̂3x̂3

Fig. 2 Rawlsian policy in multiple dimensions

left, and at first, utilities are again equalized among the three. Eventually, lobbyist
3’s ideal point is so close to the other two that the Rawlsian policy lies on the line
between the ideal points of lobbyists 1 and 2, equalizing their utility, while the utility
of lobbyist 3 is higher.

We nowproceed to the analysis of equilibriumpolicy outcomeswhen the coefficient
of relative risk aversion becomes large, and we show that equilibrium policy outcomes
converge to the Rawlsian policy, x R . The limit of total effort turns out to depend on
the distance of the worst-off lobbyists from the Rawlsian policy: if this distance is
greater than or equal to one, then total effort goes to infinity; and otherwise, it goes
to zero. In both cases, although effort levels increase without bound for all lobbyists
or go to zero for all lobbyists, we can compare effort levels of individual lobbyists as
well. Letting zi = ‖x̂ i − x∗‖ be the distance between the lobbyist i’s ideal point and
the equilibrium policy outcome, we can manipulate the first order condition in (2) for
lobbyists i and j to derive a restriction on ratios of efforts,

αi

α j
=

(
zi

z j

)r

, (9)

so that lobbyists further from x∗ must exert greater effort, with the ratio of efforts
increasing in r . Now, consider any two lobbyists i and j with ‖x̂ i −x R‖ > ‖x̂ j −x R‖.
Since x∗ → x R , Eq. (9) then implies that the ratio αi/α j of equilibrium efforts goes to
infinity as r → ∞. We conclude that lobbyists further from the Rawlsian policy exert
arbitrarily great effort relative to those who are closer, consistent with the assumption
of decreasing tolerance of policy losses further from ideal.

Theorem 5 In the lobbying game with power utility and r > 0, the limit of equilibrium
policy outcomes asr → ∞ is the Rawlsian policy, i.e., limr→∞ x∗ = x R. Ifmaxi ‖x̂ i −
x R‖ ≥ 1, then total effort increases without bound as r → ∞, i.e., limr→∞ A = ∞;
and if maxi ‖x̂ i − x R‖ < 1, then total effort goes to zero as r → ∞, i.e., limr→∞ A =
0.

Proof Because equilibrium policy outcomes belong to the convex hull of the lobbyists’
ideal points, and this set is compact, we can assume without loss of generality that
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equilibrium outcomes converge as r → ∞, so that x∗ → x̃ for some outcome x̃ . We
argue that x̃ = x R . Let Nr be the set of worst-off lobbyists given parameter r , i.e.,

Nr =
{

i ∈ N | u
(∥
∥
∥x∗ − x̂ i

∥
∥
∥
)

= min
j

u
(∥
∥
∥x∗ − x̂ j

∥
∥
∥
)}

,

where x∗ implicitly depends on r through Eq. (6). Given that the number of lobbyists
is finite, we may go to a subsequence (still indexed by r ) such that there exists some
lobbyist k such that k ∈ Nr for all r in the subsequence. Since the ratios ‖x∗ −
x̂ i‖/‖x∗ − x̂ k‖ lie in the unit interval [0, 1], so do the powers (‖x∗ − x̂ i‖/‖x∗ − x̂ k‖)r ,
so we can go to a further subsequence (still indexed by r ) such that for all lobbyists
i 	= k, the limit

ρi = lim
r→∞

( ‖x∗ − x̂ i‖
‖x∗ − x̂ k‖

)r

∈ [0, 1]

is well-defined. Now, rewrite Eq. (6) as:

0 = (x∗ − x̂ k) +
∑

i 	=k

( ‖x∗ − x̂ i‖
‖x∗ − x̂ k‖

)r (
x∗ − x̂ i

)
. (10)

Taking limits in (10), we obtain the expression

0 =
(

x̃ − x̂ k
)

+
∑

i 	=k

ρi

(
x̃ − x̂ i

)
,

which after manipulation becomes

x̂ k + ∑
i 	=k ρi x̂ i

1 + ∑
i 	=k ρi

= x̃ .

Let γk = 1
1+∑

i 	=k ρi
, and for i 	= k, let γi = ρi

1+∑
j 	=k ρi

. Then we have

∑

i

γi x̂ i = x̃ .

Note that for every lobbyist j , if ‖x̃ − x̂ j‖ < ‖x̃ − x̂ k‖, then ρ j = 0; equivalently,
if ρ j > 0, then ‖x̃ − x̂ j‖ = ‖x̃ − x̂ k‖. We conclude that the limit x̃ of equilibrium
policy outcomes is a convex combination of the ideal points of the lobbyists who are
worst off at x̃ . Therefore, by Proposition 3, x∗ → x̃ = x R , proving the first part of
the theorem.
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For the second part of the theorem, note that for every lobbyist i , we have

αi = ‖x̂ i − x∗‖r/2

√
2c
r

∑
j

( ‖x̂ j −x∗‖
‖x̂ i −x∗‖

)r
.

First assume that maxi ‖x̂ i − x R‖ ≥ 1. Going to a subsequence (still indexed by
r ) if necessary, we may choose a lobbyist j such that ρ j = maxi ρi for every r in
the subsequence. Then in the above expression for equilibrium effort, the denominator
goes to zero, while the numerator is bounded below by one, andwe have limr→∞ α j =
0, and thus total effort increaseswithout bound.Next, assume thatmaxi ‖x̂ i −x R‖ < 1.

For each lobbyist i , the sum
∑

j (
‖x̂ j −x∗‖
‖x̂ i −x∗‖ )r includes one term equal to one, and thus the

summation is bounded belowbyone. Thus, the limit of equilibriumeffort is determined
by r‖x̂ i − x∗‖r , which goes to zero, and total effort goes to zero, as required. �

In Fig. 1, the Rawlsian policy is x = .5, and as lobbyists place greater weight on
losses from their ideal points, as in the bottom panel, equilibrium outcomes converge
to this policy. By Theorem 3, it is straightforward to compute equilibrium policy
outcomes for arbitrary r , and Fig. 3 depicts this relationship graphically, using the
parameterization from the earlier figure, i.e., n = 3, x̂1 = 0, x̂2 = .75, and x̂3 = 1.
Of course, Theorems 4 and 5 are evidenced in policies converging to the mean ideal
point as r → 0, and to the Rawlsian policy as r → ∞, respectively.

5 Normative implications

We have seen that equilibrium policy outcomes have familiar normative properties in
the special case of power utility, with r → ∞, considered in Theorem 5: in this setting,
equilibrium policies converge to the Rawlsian policy. In this section, we compare
equilibrium policies of the lobbying game to two other normative solutions to the
collective choice problem of the lobbyists. To begin, we say an alternative x is a
majority core alternative if for all y ∈ �d , it is not the case that a majority of lobbyists
prefer y to x , i.e.,

#
{

i | u
(
‖x̂ i − y‖

)
> ui

(
‖x̂ i − x‖

)}
≤ n

2
.

In one dimension, assuming the number n of lobbyists is odd, it is known that the
unique majority core alternative is the median ideal point; adding the assumption that
the lobbyists’ ideal points are distinct, this means that the core alternative equalizes
the number of lobbyists with ideal points to the left and right of the alternative. In
multiple dimensions, Plott (1967) shows that under weak conditions, the majority
core (if nonempty) consists of the alternative (there can be at most one) satisfying a
restrictive symmetry assumption: an alternative x satisfies radial symmetry when for
every direction t ∈ �d , the number of lobbyists with gradients pointing in direction
t equals the number with gradients pointing in direction −t . In the present context,
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x
∗

r

Fig. 3 Comparative statics on r

letting Ñ denote the set of lobbyists i such that x̂ i = x , this is

#

{

i /∈ Ñ | 1

‖x̂ i − x‖
(

x̂ i − x
)

= t

}

= #

{

i /∈ Ñ | 1

‖x̂ i − x‖
(

x̂ i − x
)

= −t

}

.

A key distinction between equilibrium policy outcomes of the lobbying game and
the majority core alternative (if one exists) is that the latter concept is ordinal; in
contrast, as demonstrated by (3), the location of the equilibrium policy depends on
the curvature of policy utility u. This dependence arises because a lobbyist’s marginal
rate of substitution of effort for policy depends on the magnitude of the derivative
u′(‖x̂ i −x∗‖), and not just its sign. In general, radial symmetry is neither necessary nor
sufficient for a policy to be the equilibrium outcome of the lobbying game. However, if
we strengthen radial symmetry substantially, then we can obtain a sufficient condition:
say an alternative x satisfies exact radial symmetry if for every y ∈ �d , the number of
lobbyists with ideal point at x + y equals the number with ideal point at x − y, i.e.,

#
{

i | x̂ i = x + y
}

= #
{

i | x̂ i = x − y
}

.

The next result establishes that if an alternative x satisfies exact radial symmetry,
then it is the unique equilibrium outcome of the lobbying game. The proof derives a
contradiction from the negation of the consequent: if the unique equilibrium outcome
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x = x̂5
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x̂4x̂4
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Fig. 4 Radial symmetry: exact and inexact

x∗ does not equal x , then exact radial symmetry implies that the reflection of x∗
through x , namely 2x − x∗, also satisfies (3), so it is an equilibrium outcome—but
this contradicts uniqueness.

Proposition 4 In the lobbying game, if a policy x satisfies exact radial symmetry, then
x is the unique equilibrium policy outcome.

An implication of Proposition 4 is that when there is a policy that satisfies exact
radial symmetry, the equilibriumpolicyoutcome x of the lobbyinggame is independent
of the curvature of utility, r ; this is depicted in the left-hand side of Fig. 4, where exact
radial symmetry is satisfied at the ideal point of lobbyist 5, and this is the unique
majority core policy. By Theorems 4 and 5, it follows that x is not only the mean of
the lobbyists’ ideal points (which is clear), but it is also the Rawlsian policy. In the
right-hand panel of the figure, policy x satisfies radial symmetry, but not in the exact
sense. By Theorem 3, the equilibrium policy outcome minimizes social loss, as in
(8), and now the equilibrium policy does depend on curvature of utilities: when r is
close to zero, the equilibrium policy is close to the mean ideal point, at the center of
the quadrilateral formed by the ideal points of lobbyists 1, 2, 3, 4; and when r grows
large, equilibrium policies converge to the Rawlsian policy, x R , located below the
mean. The set of equilibrium policies that is swept out as r > 0 varies is depicted by
the gray line segment in the right-hand panel.

A well-known implication of Plott’s theorem is that, assuming an odd number of
lobbyists and at least two policy dimensions, the majority core is empty for generic
arrangements of lobbyist ideal points. Clearly, equilibria of the lobbying game exist
generally, so the comparison with the majority core is limited. An alternative formu-
lation of the majority core, which permits a more robust comparison, is provided by
the geometric median, which is any alternative that minimizes total distance to the
lobbyists’ ideal points, i.e., any solution to

min
x∈�d

∑

i

‖x − x̂ i‖.
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This is known as the “Fermat–Weber problem,” and when the number of lobbyists
is odd, it admits a unique solution. Moreover, Chung and Duggan (2018) show that
when there is a majority core alternative, it coincides with the geometric median, and
thus it provides a continuous extension of the majority core that is well-defined for
all arrangements of ideal points.2 Of course, the unique solution to the problem of
minimizing squared distance,

min
x∈�d

∑

i

‖x − x̂ i‖2,

is the mean of the lobbyists’ ideal points. Interestingly, the solutions of both of the
above problems play roles in statistical estimation: viewing the ideal points x̂1, . . . , x̂n

as a finite sample drawn independently from an underlying distribution, the sample
mean is a well-known estimator of the mean of the true distribution, and the geometric
median is a robust estimator of centrality. Relative to the geometric median, the mean
is more sensitive to outliers, and thus it is the preferred estimator only if the analyst
puts substantial weight on avoiding large deviations from the estimate.

Assuming power utility, Theorem 3 shows that equilibrium policy outcome of the
lobbying gameminimizes a social loss function, where the loss of a particular lobbyist
ismeasured by distance to the policy raised to the power r+2; formally, the equilibrium
policy solves

min
x∈�d

∑

i

‖x − x̂ i‖r+2.

We obviously obtain the mean ideal point when r ↓ 0 approaches zero. For higher
values of the parameter r , the equilibrium policy outcomes generate a family of solu-
tions that extend the mean by placing arbitrary weight r + 2 > 2 on deviations from
the policy outcome, implicitly reflecting greater weight on the losses of individu-
als further from the chosen policy. Statistically, this family corresponds to a class of
centrality measures that place greater weight on outliers—making them impractical
as estimators, but interesting conceptually. An implication of our analysis is that as
r → ∞, i.e., this class of measures is driven entirely by outliers, in the precise sense
that they converge to the Rawlsian point, which minimizes the greatest distance to
realized sample points.

6 Extensions

We have presented a simple version of the lobbying game to facilitate exposition,
but there are many possible extensions that could be considered. A first, and easy,
extension of the model is to allow the cost parameter ci > 0 to vary across lobbyists,

2 Chung and Duggan (2018) extend the concept of geometric median to non-Euclidean utilities, and they
motivate their concept of directional equilibrium as a tug of war; in contrast to the current paper, it is
implicitly assumed that all voters pull with equal force. See the literature review of that paper for a history
of the geometric median idea.
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in which case Eq. (3) takes the form

0 =
∑

i

1

ci
u′ (

∥
∥
∥x̂ i − x∗

∥
∥
∥
) ∥

∥
∥x̂ i − x∗

∥
∥
∥

(
x̂ i − x∗) ,

so that lobbyists with lower cost have greater weight, and total effort is:

A =
√

−
∑

i

1

2ci
u′ (∥∥x̂ i − x∗∥∥) ∥

∥x̂ i − x∗∥∥.

Solving for the equilibrium effort of lobbyist i , we obtain:

αi = −u′ (∥∥x̂ i − x∗∥∥) ∥
∥x̂ i − x∗∥∥

√
∑

j
2c2i
c j

u′ (∥∥x̂ j − x∗∥∥) ∥
∥x̂ j − x∗∥∥

.

In contrast to the earlier analysis, the equilibrium outcome can now be affected by
relative changes in cost parameters. Because the outcome x∗ is restricted to the convex
hull of the lobbyists’ ideal points, a compact set, it follows that as lobbyist i’s cost
parameter ci becomes large, her equilibrium effort goes to zero. Moreover, if we fix
the parameters of all other lobbyists and let ci → 0, then lobbyist i’s equilibrium
effort goes to infinity, and the equilibrium outcome converges to i’s ideal point.

A second, and related, extension is to consider a generalized contest success func-
tion in which lobbyist ideal points have exogenously given weights, representing the
influence of the lobbyist. Formally, each lobbyist i is associated with a positive weight
βi > 0, and given effort levels α1, . . . , αn , the policy outcome determined is

x∗ =
∑

j α jβ j x̂ j

∑
j α jβ j

.

The first order condition for each lobbyist i who chooses positive effort αi > 0
becomes

βi u
′ (

∥
∥
∥x̂ i − x∗

∥
∥
∥
) ∥

∥
∥x̂ i − x∗

∥
∥
∥ = 2αi c

∑

j

α jβ j ,

and Eq. (2) becomes

αi = βi u′ (∥∥x̂ i − x∗∥∥) ∥
∥x̂ i − x∗∥∥

c
∑

j α jβ j
.

In equilibrium, we must have

0 = x∗ −
∑

i αiβi x̂ i
∑

i αiβi
= 1

∑
i αiβi

∑

i

βi

(
βi u′(x̂ i − x∗)‖x̂ i − x∗‖

c
∑

j α jβ j

)
(

x∗ − x̂ i
)

,
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and, analogous to (3), the system of equations characterizing the equilibrium becomes

∑

i

β2
i u′ (

∥
∥
∥x̂ i − x∗

∥
∥
∥
) ∥

∥
∥x̂ i − x∗

∥
∥
∥

(
x∗ − x̂ i

)
= 0.

In contrast to heterogeneity in the cost parameter, the lobbyists’ weights are squared in
the above system, magnifying differences in weights across lobbyists. If we normalize
weights to sum to one, we can analyze equilibrium policy outcomes as one lobbyist’s
weight increases compared to all others: letting βi → 1, it follows from the above
equilibrium equation that u′(‖x̂ i − x∗‖)‖x̂ i − x∗‖(x∗ − x̂ i ) → 0, so that, predictably,
the equilibrium outcome converges to the ideal policy of the dominant lobbyist.

A third extension generalizes the assumption of quadratic cost of effort, so that
lobbyist i’s payoff is u(‖x̂ i − x∗‖)− cαk

i , where k > 1 is a cost parameter. Of course,
the linear cost case is approximated by k ↓ 1. Then the first order condition for lobbyist
i with x̂ i 	= x∗ is:

αi =
(

− 1

kcA
u′ (

∥
∥
∥x̂ i − x∗

∥
∥
∥
) ∥

∥
∥x̂ i − x∗

∥
∥
∥

) 1
k−1

.

Following the logic above, Eq. (3) becomes

∑

i

(
u′ (

∥
∥
∥x̂ i − x∗

∥
∥
∥
) ∥

∥
∥x̂ i − x∗

∥
∥
∥
) 1

k−1
(

x∗ − x̂ i
)

= 0, (11)

and total effort is:

A =
[
∑

i

(

− 1

kc
u′ (

∥
∥
∥x̂ i − x∗

∥
∥
∥
) ∥

∥
∥x̂ i − x∗

∥
∥
∥

) 1
k−1

] k−1
k

.

Once again, equilibrium effort goes to zero as c becomes large, and for all lobbyists
i with x̂ i 	= x∗, effort increases without bound as c → 0. More interestingly, we can
analyze the effect of varying the curvature of the cost function for the special case of
power utility. Then (11) becomes

∑

i

∥
∥
∥x̂ i − x∗

∥
∥
∥

r
k−1

(
x∗ − x̂ i

)
= 0,

and it can be seen that varying k has the effect of varying r in the inverse direction:
letting k ↓ 1 is analogous to letting r go to infinity, and letting k → ∞ is analogous to
letting r go to zero. Thus, Theorems 4 and 3 show, respectively, that the equilibrium
outcome goes to the Rawlsian outcome and the mean of ideal points in the two cases.

Fourth, we could consider a model in which each lobbyist chooses the effort for
each dimension separately, i.e., αi

m ≥ 0 for each i = 1, . . . , n and m = 1, . . . , d, with
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the cost parameter for each dimension being cm > 0 for m = 1, . . . , d. In that case,
Eq. (3) is replaced by

0 =
n∑

i :x̂ i
m<x∗

m

u′ (
∥
∥
∥x̂ i − x∗

∥
∥
∥
) 1

∥
∥x̂ i − x∗∥∥

(
x∗

m − x̂ i
m

)2

−
n∑

i :x̂ i
m>x∗

m

u′ (
∥
∥
∥x̂ i − x∗

∥
∥
∥
) 1

∥
∥x̂ i − x∗∥∥

(
x∗

m − x̂ i
m

)2
,

for m = 1, . . . , d, and the total effort on dimension m is characterized by

Am =
√

− 1

2cm

∑

i

u′ (∥∥x̂ i − x∗∥∥) 1
∥
∥x̂ i − x∗∥∥

(
x∗

m − x̂ i
m

)2
.

Again, the equilibrium outcome on dimension m is unaffected by the cost parameter,
and if the lobbyists’ ideal points on dimension m are not identical, i.e., x̂ i

m 	= x̂ j
m for

distinct i and j , then total effort level in dimension m increases without bound as cm

becomes small.

7 Conclusion

This paper provides a new perspective on lobbying, in which lobbyists exert costly
effort to influence policies in a multidimensional tug of war, and the resulting policy
outcome reflects a balancing of the efforts of all lobbyists. We prove that the lobbying
game admits a unique equilibrium, and we illustrate the tractability of the model in
the analysis of comparative statics with respect to cost and preference parameters and
in numerous extensions of the baseline model. The approach is most closely related
to exchange models of lobbying, which usually take the form of all-pay auctions or
contests, with the outcome reflecting only the preferences of the winning lobbyist,
rather than a compromise of interests, as in our model. Beyond the theoretical lobby-
ing literature, the paper also contributes to the theory of contests by allowing outcomes
in an arbitrary policy space with Euclidean preferences—rather than the space of lot-
teries over winners—and by assuming these outcomes are a continuous function of
effort levels. The model is conceptual, rather than empirical: it is meant to generate
insights, rather than testable predictions. Nevertheless, the results of our paper indi-
cate the viability of our approach to lobbying—and to other applications featuring
competing interests over a continuous outcomes variable—and suggest promise for
the development of extensions that can accommodate empirical analysis.

A Proofs of propositions

Proof of Proposition 1: We verify (A2) and (A3). For the former, it suffices to show
that the second derivative of u(‖x∗ − x̂ i‖) − cα2

i with respect to αi is negative. For
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any lobbyist i , the first derivative with respect to αi is the following:

r
∑

j α j

[
d∑

m=1

(
x∗

m − x̂ i
m

)2
] r

2

− 2cαi

The second derivative simplifies to:

− 1
(∑

j α j

)2

⎛

⎝r2
[

d∑

m=1

(
x∗

m − x̂ i
m

)2
] r

2

+ r

[
d∑

m=1

(
x∗

m − x̂ i
m

)2
] r

2
⎞

⎠ − 2c

= − 1
(∑

j α j

)2

(
r2 + r

)
[

d∑

m=1

(
x∗

m − x̂ i
m

)2
] r

2

− 2c

< 0,

as required. To verify (A3), write

2u′(z)z + u′′(z)z2 = −2r zr−1z − r(r − 1)zr−2z2

= −2r zr − r(r − 1)zr

= −
(

r2 + r
)

zr

< 0,

as required. �

Proof of Proposition 2: Suppose toward a contradiction that there exist distinct policies
x ′ and x ′′ such that mini fi (x ′) = mini fi (x ′′) = maxx mini fi (x), and let u denote
this value. Set x ′′′ = 1

2 x ′ + 1
2 x ′′, and let k solve mini f (x ′′′), so that fk is among the

functions taking the lowest value at x ′′′. By construction, we have

min
{

fk
(
x ′) , fk

(
x ′′)} ≥ u.

Then strict quasi-concavity implies fk(x ′′′) > u, but this implies that x ′ and x ′′ do
not solve maxx mini fi (x), a contradiction. We conclude that the latter problem has a
unique solution, as required. �

Proof of Proposition 3: First, assume x = x R , and suppose toward a contradiction that
x is not a convex combination of ideal points of lobbyists belonging to N (x). Then
x is not Pareto optimal for the lobbyists in this set, and there exists x ′ such that for
all i ∈ N (x), we have u(‖x ′ − x̂ i‖) > u(‖x − x̂ i‖). For each ε ∈ (0, 1), define
xε = (1 − ε)x + εx ′, and note that strict quasi-concavity implies that for all such ε

and all i ∈ N (x), we have u(‖xε − x̂ i‖) > u(‖x − x̂ i‖). Furthermore, by continuity
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of u, we can choose ε > 0 sufficiently small that for all i ∈ N \ N (x), we have
u(‖xε − x̂ i‖) > u(‖x − x̂ i‖). But then we have

min
j

u
(∥
∥
∥xε − x̂ j

∥
∥
∥
)

> min
j

u
(∥
∥
∥x R − x̂ j

∥
∥
∥
)

,

a contradiction.We conclude that x is a convex combination of ideal points of lobbyists
in N (x).

For the converse, assume that x is a convex combination of ideal points of lobbyists
in N (x), and suppose toward a contradiction that x 	= x R . Then we have

min
j

u
(∥
∥
∥x R − x̂ j

∥
∥
∥
)

> min
j

u
(∥
∥
∥x − x̂ j

∥
∥
∥
)

.

Since x R 	= x and x ∈ conv{x̂ i | i ∈ N (x)}, it follows that if ‖x̂ i − x R‖ < ‖x̂ i − x‖
for some i ∈ N (x), then there is some k ∈ N (x) such that ‖x̂ k − x‖ < ‖x̂ k − x R‖.
But this would imply

min
j

u
(∥
∥
∥x − x̂ j

∥
∥
∥
)

= u
(∥
∥
∥x − x̂ k

∥
∥
∥
)

> u
(∥
∥
∥x R − x̂ k

∥
∥
∥
)

≥ min
j

u
(∥
∥
∥x R − x̂ j

∥
∥
∥
)

,

a contradiction. Thus, we must have u(‖x − x̂ i‖) = u(‖x R − x̂ i‖) for all i ∈ N (x).
For each ε ∈ (0, 1), define xε = (1− ε)x + εx R , and note that strict quasi-concavity
implies that for all such ε and all i ∈ N (x), we have u(‖xε − x̂ i‖) > u(‖x R − x̂ i‖).
Furthermore, by continuity of u, we can choose ε > 0 sufficiently small that for all
i ∈ N \ N (x), we have u(‖xε − x̂ i‖) > u(‖x R − x̂ i‖), which leads to a contradiction,
as above. We conclude that x = x R , as required. �
Proof of Proposition 4: Suppose otherwise, toward a contradiction. By Theorem 1,
there is a unique equilibrium outcome x∗, and this is characterized as the unique
solution to (3). By exact radial symmetry, there is a bijective mapping φ : N → N
such that for each lobbyist i , we have x̂ i − x = x − x̂φ(i), i.e., the ideal point of
lobbyist i coincides with the reflection of the ideal point of lobbyist φ(i) through x .
Since φ is bijective, we can rewrite (3), by a change of variables and multiplying by
negative one, as

∑

i

u′ (
∥
∥
∥x̂φ(i) − x∗

∥
∥
∥
) ∥

∥
∥x̂φ(i) − x∗

∥
∥
∥

(
x̂φ(i) − x∗) = 0.

Using x̂φ(i) = 2x − x̂ i , we write this as

∑

i

u′ (
∥
∥
∥x̂ i − (2x − x∗)

∥
∥
∥
) ∥

∥
∥x̂ i − (

2x − x∗)
∥
∥
∥

(
2x − x∗ − x̂ i

)
= 0.

We conclude that the policy 2x − x∗ 	= x∗ satisfies (3), as does x∗, contradicting the
fact that the system has a unique solution. �
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