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Abstract
We study the fair division of a continuous resource, such as a land-estate or a time-
interval, among pre-specified groups of agents, such as families. Each family is given
a piece of the resource and this piece is used simultaneously by all family members,
while different members may have different value functions. Three ways to assess the
fairness of such a division are examined. (a) Average Fairnessmeans that each family’s
share is fair according to the “family value function”, defined as the arithmetic mean
of the value functions of the family members. (b) Unanimous Fairness means that all
members in all families feel that their family’s share is fair according to their personal
value function. (c) Democratic Fairness means that in each family, at least a fixed
fraction (e.g. a half) of the members feel that their family’s share is fair. We compare
these criteria based on the number of connected components in the resulting division
and on their compatibility with Pareto-efficiency.
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1 Introduction

Fair division of heterogeneous resources among agents with different preferences has
been an important issue since Biblical times. Today it is an active area of research in
the interface of computer science (Robertson andWebb 1998; Procaccia 2015; Brânzei
2015; Lindner and Rothe 2016) and economics (Moulin 2004; Thomson 2011). Its
applications range from politics (Brams and Taylor 1996; Brams 2007) to multi-agent
systems (Chevaleyre et al. 2006).

In most fair division problems, the resource is divided among n individual agents,
and the fairness of a division is assessed based on their individual preferences. A
common fairness criterion is proportionality. It requires that each agent receives a
share that is at least as good as 1/n of the total endowment, according to the agent’s
individual preferences.1

In practice, however, goods are often owned and used by groups. As an example,
consider a land-estate inherited by k families, a river that has to be divided among k
states, or the usage-time of a conference room that has to be divided among k meeting
groups. The resource (whether land or time) should be divided into k pieces, one piece
per group. Each group’s share is then used by all its members simultaneously. The
land-plot allotted to a family is inhabited by the entire family. The share of the river
allotted to a state becomes a national park open to all its citizens. In the time-slot
allotted to a group, the conference room is used by all group members.2

The happiness of each group member depends on his/her valuation of the entire
share of the group. But, in each group there are different members with different
valuations. The group’s share can be valued by some of its members as at least 1/k of
the total and by others as less than 1/k of the total. How, then, should the fairness of
a division be assessed?

The present paper studies this question in the classic setting of cake-cutting, intro-
duced by Steinhaus (1948). In this setting, there is a measurable space (e.g. an interval
or a polygon) called the cake, and the preferences of each agent are represented by a
value-measure on the cake.3

We study three ways to assess the fairness of a division.
First, it is possible to aggregate the valuations in each family to a single family

valuation. Following the utilitarian tradition (Bentham 1789), the family-valuation
can be defined as the sum or (equivalently) the arithmetic average of the valuations of

1 The condition of receiving at least 1/n of the total endowment was introduced by Steinhaus (1948).
Economists often call it fair-share guarantee (Bogomolnaia et al. 2017). Computer scientists often call
it proportionality (Robertson and Webb 1998). This term is motivated by a generalization of the fair
division problem in which different agents may have different entitlements (see page 4 below). In this
setting, proportionality guarantees to each agent a value lower-bound that is in direct proportion to his/her
entitlement.
2 In economic terms, the allotted piece becomes a “club good” (Buchanan 1965).
3 The assumption that agents’ preferences can be represented by measures is a strong one. It implies that
the model is applicable only for the special case of linear preferences—the sum of values of two disjoint
pieces equals the value of their union. Equivalently, the agents have constant marginal utilities (Chambers
2005)—the marginal utility of a land-plot for an agent does not depend on the other land-plots owned by
that agent. Although most papers on the cake-cutting problem assume linearity, there are some notable
exceptions; they are surveyed in Sect. 8.5.
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Fair cake-cutting among families 711

all family members. We call a division fair-on-average if it is fair according to these
family valuations. In particular, a division is proportional-on-average if every family
receives a share with an average value (averaged over all family members) of at least
1/k of its average value of the entire endowment.

By this definition, the family-division problem is easy to solve. Since the average
of measures is itself a measure, each family can be represented by a single agent, and
the problem reduces to fair division among the k representatives. Classic results imply
that proportional-on-average allocations exist (Sect. 3).

Average fairness makes sense only when the numerical values of the agents’ val-
uations are meaningful and they are all measured in the same units, e.g. in dollars
(see chapter 3 of Moulin (2004) for some real-life examples of such situations). How-
ever, if the valuations represent individual happiness measures that cannot be put on
a common scale, then their sum is meaningless, and other fairness criteria should be
used.

A second option is to require that all members of every family agree that the division
is fair. We call a division unanimous fair if it is fair according to every individual
valuation. In particular, a division is unanimously-proportional if every agent values
his/her family’s share as at least 1/k of the total value . The advantage of this definition
is that it does not need to assume that all valuations share a common scale. Even though
it is a very strong requirement, we prove that unanimously-proportional allocations
exist (Sect. 4).

A disadvantage of unanimous fairness, compared to average fairness, is that
unanimously-fair divisions might be highly fractioned. When an interval is divided,
there always exists an proportional-on-average division that is also connected—the
share of each family is a single interval (Sect. 3). However, there might not exist con-
nected unanimously-proportional divisions. Moreover, in some cases, the number of
intervals in any unanimously-proportional division is at least n—the number of indi-
vidual agents (Sect. 4). When the number of agents is large, as in the case of dividing
land among states, such divisions might be impractical.

In democratic societies, decisions are almost never unanimous. In fact, when the
number of citizens is large, it may be impossible to attain unanimity on even the most
trivial issue, and decisions are often made by voting. Therefore we suggest a third
fairness criterion. Given a fraction h ∈ [0, 1], we call a division h-democratic fair if
at least a fraction h of the members in each family consider it fair. Unanimous-fairness
is equivalent to 1-democratic fairness. The case h = 1

2 is particularly interesting.
1
2 -democratic fairness can be justified by the following process. After a division is
proposed, each family conducts a voting process in which each member approves the
division if he/she values the family’s share as at least 1/k of the total. The division is
implemented only if, in every family, a (weak) majority of the population approves it.

Democratic-fairness combines someadvantages of unanimous-fairness and average-
fairness. It is similar to unanimous-fairness in that it does not need to assume that all
valuations share a common scale. It is similar to average-fairness in that, when h ≤ 1

k ,
h-democratic fairness among k families can be attained with connected pieces. In
particular, with k = 2 families, there always exists an allocation in which each family
receives a single connected piece, and at least a weakmajority in each family considers
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712 E. Segal-Halevi, S. Nitzan

the allocation fair. An additional advantage of democratic fairness in this case is that
it can be computed efficiently (Sect. 5).4

Although democratic-fairness might leave some citizens unhappy, this may be
unavoidable in real-life situations. This is understandable in light of Winston
Churchil’s dictum: “democracy is the worst form of government, except all the others
that have been tried”.5

While the geometric requirement of having a connected division is practically
important, an even more important requirement from an economic perspective is
Pareto-efficiency. All three variants of proportionality are compatible with Pareto-
efficiency. However, connectivity and Pareto-efficiency are incompatible even without
fairness considerations (Sect. 6).

The proportionality criterion can be generalized to a situation in which each family
has a different entitlement. Suppose that each family j is entitled to a fraction t j of
the resource (where

∑k
j=1 t j = 1). An allocation is unanimously-proportional if each

member in family j believes that the share of family j is worth at least a fraction
t j of the total. In a similar way it is possible to generalize average-proportionality
and democratic-proportionality. In the simplest setting, the families have equal enti-
tlements, i.e, for each j ∈ {1, . . . , k}: t j = 1/k. Equal entitlements make sense, for
example, when k siblings inherit their parents’ estate. While an heir will probably
like to take his family’s preferences into account when selecting a share, each heir is
entitled to 1/k of the estate regardless of the family size.

In general, each familymay have a different entitlement. The entitlement of a family
may depend on its size but may also depend on other factors. For example, consider
several families who jointly buy a vacation apartment. The apartment can host one
family at a time, so the families have to divide the year (a time-interval) among them.
The entitlement of each family naturally depends on the amount ofmoney it contributed
to the purchase, rather than on the family’s size.6 The results presented in Sects. 3–6
consider proportionality both with equal and with different entitlements.

An alternative fairness criterion that is very common in economics is envy-
freeness. In the context of individual agents, it means that each agent receives a
share that is at least as good as the share of any other agent, according to the first

4 In contrast, average-fairness and unanimous-fairness cannot be computed by any finite protocol. See
Remark 1 in page 9.
5 A fourth fairness criterion that could be considered is individual fairness. In particular, an allocation
is individually-proportional if the allocation X = (X1, . . . , Xk ) admits a refinement Y = (Y1, . . . , Yn),
where for each family Fj , ∪i∈Fj Yi = X j , such that for each agent i , Vi (Yi ) ≥ 1/n. Individually-fair
allocations always exist and can be found by using any classic fair division procedure on the individual
agents, disregarding their families. Individual-fairness makes sense if, after the division of the land among
the families, each family intends to further divide its share among its members. However, often this is not
the case. When an inherited land-estate is divided between two families, the members of each family intend
to live and use their entire share together, rather than dividing it among them. Therefore, the happiness of
each family member depends on the entire value of his family’s share, rather than on the value of a potential
private share he would get in a hypothetic sub-division.
6 See Cseh and Fleiner (2018) for a recent account of fair division among individual agents with different
entitlements.

123
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agent’s individual valuation.7 In the context of families, three variants of envy-
freeness can be defined analogously to the three variants of proportionality (for
families with equal entitlements): average-envy-freeness, unanimous-envy-freeness
and democratic-envy-freeness (Sect. 7).

From a geometric perspective, these three variants behave similarly to their pro-
portionality counterparts, that is:

– Connected envy-free-on-average allocations always exist;
– Connected unanimously-envy-free allocations are not guaranteed to exist even for
two families;

– Connected 1
k -democratically-envy-free allocations are guaranteed to exist for k

families. In particular, connected 1
2 -democratically-envy-free allocations are guar-

anteed to exist for two families (but not for three or more families).

However, from an efficiency perspective, envy-freeness behaves differently:

– Pareto-efficient envy-free-on-average allocations always exist;
– Pareto-efficient unanimously-envy-free allocations are guaranteed to exist for two
but not for three or more families;

– Pareto-efficient 1
2 -democratically-envy-free allocations are guaranteed to exist for

two but not for five or more families (we do not know whether they always exist
for three or four families).

The paper is organized as follows. Most of the paper focuses on the proportionality
criterion. Section 2 formally presents the model. Sections 3, 4 and 5 study average,
unanimous and democratic proportionality respectively. We study this criterion both
for families with equal entitlements and for families with different entitlements.

Section 6 studies the three variants of proportionality in combination with Pareto-
efficiency. Section 7 studies family fairness based on the envy-freeness criterion,
explaining the differences between the results for proportionality and for envy-
freeness. Finally, Sect. 8 compares our work to previous and ongoing related work.

2 Model and notation

2.1 Resource and agents

In the usual cake-cutting setting, there is a resource C (“cake”) that has to be divided.
For simplicity it is assumed that C is an interval in R. A realistic example of such a
resource is time: consider a conference room that can host a single meeting at a time.
It is available between 8:00 and 20:00, and this time-interval must be divided among
all those who want to use the room. Another realistic example is the shoreline of a sea
or a river: while usually not a straight line, it can be easily mapped to an interval.

There is a set of agents N = {1, . . . , n}. Each agent i ∈ N has a value measure
Vi , defined on the Borel subsets of C . The Vi are assumed to be nonatomic, so that all

7 The condition of receiving at least as much as any other agent was introduced by Gamow and Stern
(1958) and Foley (1967). Economists often call it no envy (Bogomolnaia et al. 2017). Computer scientists
often call it envy-freeness (Robertson and Webb 1998).
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714 E. Segal-Halevi, S. Nitzan

singular points have a value of 0 to all agents. As the term measure implies, the Vi are
additive—the value of a union of two disjoint pieces is the sum of the values of the
pieces. The value measures are normalized such that ∀i : Vi (∅) = 0, Vi (C) = 1.

2.2 Families and entitlements

In our setting, there is a set of families F = {F1, . . . , Fk}. We use the term “family”
to emphasize that the partition of agents to groups is fixed in advance and cannot be
modified during the division process.

The number of agents in Fj is denoted n j . Each agent i ∈ N is a member of exactly
one family Fj ∈ F , so n = ∑k

j=1 n j .
For each family Fj , there is a positive number t j representing the entitlement of

this family. The sum of all entitlements is one: 1 = ∑k
j=1 t j . In the special case in

which all families have equal entitlements, we have for each j ∈ {1, . . . , k}: t j = 1/k.

2.3 Allocations and components

An allocation is a vector of k pieces, X = (X1, . . . , Xk), one piece per family, such
that the X j are pairwise-disjoint and ∪ j X j = C .

Each piece is a finite union of intervals. We denote by Comp(X j ) the number of
connected components (intervals) in the piece X j , and by Comp(X) the total number
of components in the allocation X, i.e:

Comp(X) =
k∑

j=1

Comp(X j )

Ideally, we would like that each piece be connected, i.e, ∀i : Comp(Xi ) = 1 and
Comp(X) = k. This requirement is especially meaningful when the divided resource
is a time-interval or a land-resource (e.g. a river-bank), since a contiguous piece of
time or land is much easier to use than a collection of disconnected patches.

However, we will show that a fair division with connected pieces is not always
possible.8 In case a division with connected pieces is not possible, it is still desirable
that the number of connectivity components—Comp(X)—be as small as possible.
When dividing an interval, the components are sub-intervals and their number is one
plus the number of cuts. Hence, the number of components isminimized byminimizing
the number of cuts (Robertson and Webb 1995; Webb 1997; Shishido and Zeng 1999;
Barbanel and Brams 2004, 2014). In a realistic, 3-dimensional world, the additional

8 This impossibility appears not only in our one-dimensional theoretic model but also in practical, two-
dimensional land division situations. A striking example was the India-Bangladesh border. According to
Wikipedia page India– Bangladesh enclaves, up to 2015, “Within the main body of Bangladesh were
102 enclaves of Indian territory, which in turn contained 21 Bangladeshi counter–enclaves, one of which
contained an Indian counter–counter–enclave... within the Indian mainland were 71 Bangladeshi enclaves,
containing 3 Indian counter–enclaves”. Another example is Baarle-Hertog—a Belgian municipality made
of 24 separate parcels of land, most of which are exclaves in the Netherlands. For more details and examples
see the Wikipedia page List of enclaves and exclaves. We are grateful to Ian Turton for the references.
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Fair cake-cutting among families 715

dimensions can be used to connect the components, e.g, by bridges or tunnels. Still,
it is desirable to minimize the number of components in the original division in order
to reduce the number of required bridges/tunnels.9

2.4 Fairness criteria

We first define the family-valuation functions:

W avg
j (X j ) =

∑
i∈Fj

Vi (X j )

n j
for, j ∈ {1, . . . , k}.

Now, an allocation X is called:

proportional-on-average if ∀ j ∈ {1, . . . , k} : W avg
j (X j ) ≥ t j ;

unanimously-proportional if ∀ j ∈ {1, . . . , k} : ∀i ∈ Fj : Vi (X j ) ≥ t j ;
h − democratically-proportional if ∀ j ∈ {1, . . . , k},
for at least a fraction h of the members i ∈ Fj : Vi (X j ) ≥ t j .

A property of an allocation is called feasible if for every k families and n agents
there exists an allocation satisfying this property. Otherwise, the property is called
infeasible. In the following sections we will study the feasibility of the above fairness
criteria.

Note that unanimous-proportionality obviously implies both average-proportionality
and h-democratic-proportionality for any h ∈ [0, 1]. The other two do not imply each
other, as shown in the following example.

Example 1 Consider an interval consisting of four sub-intervals. It has to be divided
between two families: (1) {Alice,Bob,Chana} and (2) {David,Esther,Frank}. The fam-
ilies have equal entitlements, i.e, t1 = t2 = 1/2. Each member’s valuation of each
sub-interval is shown in the table below:

Alice 60 30 3 3
Bob 50 40 3 3
Chana 10 80 3 3

David 3 3 60 30
Esther 3 3 60 30
Frank 3 3 0 90

Note that the value of the entire interval is 96 for all agents. Therefore, proportion-
ality implies that each family should get a value of at least 48.

9 The goal of minimizing the number of components is pursued not only in cake-cutting papers but also in
real-life politics. Going back to India and Bangladesh, after many years of negotiations they finally started
to exchange most of their enclaves during the years 2015–2016. This reduced the number of components
from 200 to a more reasonable number.
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716 E. Segal-Halevi, S. Nitzan

If the two leftmost subintervals are given to family 1 and the two rightmost subin-
tervals are given to family 2, then the division satisfies unanimous-proportionality,
since each member of each family feels that his family’s share is worth 90. Of course,
it also satisfies average-proportionality and democratic-proportionality.

If only the single leftmost subinterval is given to family 1 and the other three
are given to family 2, then the division still satisfies 1

2 -democratic-proportionality,
since Alice and Bob feel that their family received more than 48. However, Chana
feels that her family received only 10, so the division does not satisfy unanimous-
proportionality. Moreover, the division does not satisfy average-proportionality since
the average valuation of family 1 is only (60 + 50 + 10)/3 = 40.

If the three leftmost subintervals are given to family 1 and only the rightmost one is
given to family 2, then the division satisfies average-proportionality, since family 2’s
average valuation of its share is (30 + 30 + 90)/3 = 50. However, it does not satisfy
unanimous-proportionality nor even 1

2 -democratic-proportionality, since David and
Esther feel that their share is worth only 30. �	

3 Average fairness

With average fairness, the family cake-cutting problem can be reduced to the classic
problem of cake-cutting among individuals. This gives the following results.

Theorem 1 (a) When families have equal entitlements, average-proportionality with
connected pieces (and k components) is feasible.

(b) When families have different entitlements, average-proportionality with connected
pieces is infeasible. Moreover, in some cases, any proportional-on-average allo-
cation has at least 2k − 1 components.

(c) When families have different entitlements, average-proportionality with at most
O(k log k) components is feasible.

Proof The positive results—parts (a) and (c)—are based on the following reduction.
For each family Fj , define a representative agent A j whose valuation is the function
W avg

j defined in Sect. 2.4 above. Note that, since the Vi are all nonatomicmeasures, the

k family-valuations W avg
j are nonatomic measures too. By classic results (Steinhaus

1948; Even and Paz 1984), when there are k agents with equal entitlements, there
always exists a connected proportional division. As shown in Segal-Halevi (2019),
when there are k agents with different entitlements, there always exists a proportional
allocation with at most 2k log2 k̂ − 2̂k + 2 cuts, where k̂:=2
log2 k� = k rounded up
to the nearest power of two. These cuts create 2k log2 k̂ − 2̂k + 3 components. By
definition, such a division satisfies average-proportionality.

The negative result (b) follows immediately from an identical negative result for
individual agents (Segal-Halevi 2019), by considering k one-member families. �	
Remark 1 Fairness for individuals and average-fairness for families are equivalent
only from an existential perspective; from a computational perspective they are quite
different. A proportional division among k individual agents with equal entitlements
can be found by asking the agents O(k log k) queries (Even and Paz 1984). However,
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a proportional-on-average division cannot be found using a finite number of queries
even when there are k = 2 families with two agents in each family, and even without
any restrictions on the number of components.

Proof The proof is by a reduction from the problem of equitable cake-cutting among
individual agents. In this problem, the goal is to find an allocation X such that for
every two agents i and j , Vi (Xi ) = Vj (X j ). Procaccia and Wang (2017), extending a
previous result byCechlárová andPillárová (2012), showed that an equitable allocation
cannot be computed by a finite number of queries, even when there are only two
individual agents and no connectivity constraints. We show that the same is true for
average-proportionality.

Given an instance of equitable cake-cutting with two agents with value-measures
V1 and V2, construct an instance of average-proportionality cake-cutting with two
families, where in each family there are two members with value-measures V1 and
V2. We claim that an allocation is equitable in the original problem if-and-only-if it is
proportional-on-average in the new problem:

The allocation (X1, X2) is equitable among the individuals

⇐⇒ V1(X1) = V2(X2)

⇐⇒ V1(X1) = 1 − V2(X1) (since V2(X1) + V2(X2) = V2(C) = 1)

⇐⇒ [V1(X1) + V2(X1)]/2 = 1/2

⇐⇒ [V1(X1) + V2(X1)]/2 ≥ 1/2 and [V1(X1) + V2(X1)]/2 ≤ 1/2

⇐⇒ [V1(X1) + V2(X1)]/2 ≥ 1/2 and [V1(X2) + V2(X2)]/2 ≥ 1/2

(since Vi (X1) + Vi (X2) = Vi (C) = 1)

⇐⇒ The allocation (X1, X2) is proportional-on-average among the families.

Hence, if we could find any proportional-on-average division by a finite number of
queries, we could also find an equitable division by a finite number of queries—a
contradiction to Procaccia and Wang (2017). �	

4 Unanimous fairness

Before presenting our results, we note that unanimous-proportionality, like average-
proportionality, can also be defined using family-valuation functions. Define:

Wmin
j (X j ):=min

i∈Fj
Vi (X j ) for j ∈ {1, . . . , k}.

Then, a division is unanimously-proportional if and only if:

∀ j : Wmin
j (X j ) ≥ t j
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However, in contrast to the functions W avg defined in Sect. 3, the functions Wmin are
in general not additive. For example, suppose C is an interval with three subintervals
and a family has the following valuations:

C1 C2 C3 C1 ∪ C2 ∪ C3

Alice 1 1 1 3 = 1 + 1 + 1
Bob 0 2 1 3 = 0 + 2 + 1
Chana 0 1 2 3 = 0 + 1 + 2

Wmin 0 1 1 3 > 0 + 1 + 1

While the individual valuations are additive, Wmin is not additive (it is not even
subadditive). Therefore, the classic results we used in Theorem 1 are inapplicable here,
and different techniques are needed.

4.1 Exact division

Initially, we assume that the entitlements are equal, i.e: t j = 1/k for all j . We relate
unanimous-proportionality to the problem of finding an exact division: 10.

Definition 1 Exact (N , K ) is the following problem. Given N agents and an integer
K , divide C into K pieces, such that each of the N agents assigns exactly the same
value to all pieces:

∀ j = 1, . . . , K : ∀i = 1, . . . , N : Vi (X j ) = 1/K .

From an economic perspective, there is little intrinsic value in the concept of exact
division. However, in this section we will prove that it is closely linked to the concept
of unanimously-fair division. In fact, we will prove that the existence of a solution to
each of these problems implies a solution to the other problem.

Below, we denote by UnanimousPR(n, k) the problem of finding a unanimously-
proportional division when there are n agents grouped in k families with equal
entitlements.

4.2 UnanimousPR �⇒ Exact

Lemma 1 For every pair of integers N ≥ 1, K ≥ 1, a solution to UnanimousPR
(N (K − 1) + 1, K ) implies a solution to Exact (N , K ) with the same number of
components.

Proof Given an instance of Exact(N , K ) (N agents and a number K of required
pieces), create K families. Each of the first K − 1 families contains N agents with the

10 The definition uses capital N and K to distinguish the parameters of exact division from the parameters
of unanimous-fair division.
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same valuations as the given agents. The K -th family contains a single agent whose
valuation is V ∗, defined as the average of V1, . . . , VN :

V ∗ = 1

N

N∑

i=1

Vi .

The total number of agents in all K families is N (K − 1) + 1. Use UnanimousPR
(N (K − 1) + 1, K ) to find a unanimously-proportional division, X . By definition of
unanimous fairness, for each agent i in family j : Vi (X j ) ≥ 1/K .

By construction, each of the first K − 1 families has an agent with valuation Vi .
Hence, all N agents value each of the first K − 1 pieces as at least 1/K and:

∀i = 1, . . . , N :
K−1∑

j=1

Vi (X j ) ≥ K − 1

K
.

Hence, by additivity, every agent values the K -th piece as at most 1/K :

∀i = 1, . . . , N : Vi (X K ) ≤ 1/K .

The piece X K is given to the agent with value measure V ∗, so by proportionality:
V ∗(X K ) ≥ 1/K . By construction, V ∗(X K ) is the average of the Vi (X K ). Hence:

∀i = 1, . . . , N : Vi (X K ) = 1/K .

Again by additivity:

∀i = 1, . . . , N :
K−1∑

j=1

Vi (X j ) = K − 1

K
.

Hence, necessarily:

∀i = 1, . . . , N , ∀ j = 1, . . . , K − 1 : Vi (X j ) = 1/K .

So we have found an exact division and solved Exact(N , K ) as required. �	
Alon (1987) proved that for every N and K , an Exact(N , K ) division might require at
least N (K −1)+1 components. Combining this result with the above lemma implies
the following negative result:

Theorem 2 For every N , K , let n = N (K − 1) + 1. A unanimously-proportional
division for n agents grouped into K families might require at least n components.

In particular, unanimous-proportionality with connected pieces is infeasible.
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720 E. Segal-Halevi, S. Nitzan

4.3 Exact �⇒ UnanimousPR

Lemma 2 For every pair of integers n ≥ 2, k ≥ 1, a solution to Exact (n−1, k) implies
a solution to UnanimousPR (n, k) for any grouping of the n agents to k families.

Proof Supposewe are given an instance ofUnanimousPR(n, k), i.e, we are given some
n agents grouped into k families. Select n − 1 agents arbitrarily. Use Exact(n − 1, k)

to find a partition of C into k pieces, such that each of the n − 1 agents values each
of these pieces at exactly 1/k. Ask the n-th agent to choose a piece with a maximal
value for him/her. The average value of a piece is 1/k, so the piece of maximal value
is worth for the n-th agent at least 1/k. Give that piece to the family of the n-th agent.
Give the other k − 1 pieces arbitrarily to the remaining k − 1 families. The resulting
division is unanimously-proportional. �	
Alon (1987) proved that for every N and K , Exact(N , K ) has a solution with at most
N (K − 1) + 1 components (at most N (K − 1) cuts). Combining this result with the
above lemma implies the following positive result:

Theorem 3 Given n agents in k families with equal entitlements, a unanimously-
proportional division with (n − 1) · (k − 1) + 1 components is feasible.

For k = 2 families, the number of components in Theorem 3 is n, which matches the
lower bound of Theorem 2. For k > 2 families, the number of components can be
made smaller, as explained below.

4.4 Less components: equal entitlements

The purpose of this subsection is to find a unanimously-proportional allocation with
fewer components than the guarantee of Theorem 3, when all families have equal
entitlements.

We start with an example. Assume there are k = 4 families. As in Theorem 3,
using 3(n − 1) cuts, C can be divided into 4 subsets which are considered equal by
n −1 members. But for a unanimously-proportional division, it is not required that all
members think that all pieces are equal, it is only required that all members believe
that their family’s share is worth at least 1/4. This can be achieved as follows:

– DivideC into two subsetswhich all n agents value at exactly 1/2. This is equivalent
to solving Exact(n, 2), which by Alon (1987), can be done with at most n cuts.
Call the two resulting subsets West and East.

– Assign arbitrary two families to West and the other two families to East. Mark by
nW the total number of members in the families assigned to West and by nE the
total number of members assigned to East.

– Divide the West into two pieces which all nW agents value at exactly 1/4; this can
be done with nW cuts. Give a piece to each family. Divide the East similarly using
nE cuts.

The first step requires n cuts and the second step requires nW + nE = n cuts too.
Hence the total number of cuts required is only 2n, rather than 3n − 1.
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In fact, two cuts can be saved in each step by excluding two members (from two
different families) from the exact division. These members will not think that the
division is equal, but they will be allowed to choose their favorite piece for their
family. Thus only 2(n − 2) cuts are required. A simple inductive argument shows that
whenever k is a power of 2, (log2 k) · (n − k/2) cuts are required.

When k is not a power of 2, a result by Stromquist andWoodall (1985) can be used.
They prove that, for every fraction r ∈ [0, 1], it is possible to cut a piece of C such
that all n agents agree that its value is exactly r using at most 2n − 2 cuts.11 This can
be used as follows:

– Select integers l1, l2 ∈ {1, . . . , k − 1} such that l1 + l2 = k.
– Apply Stromquist and Woodall (1985) with r = l1/k: using 2n − 4 cuts, cut a
piece X1 that n −1 agents value at exactly l1/k. This means that these n −1 agents
value the other piece, X2, at exactly l2/k.

– Let the n-th agent choose a piece for his family; assign the other families arbitrarily
such that l1 families are assigned to piece X1 and the other l2 families to piece X2.

– Recursively divide piece X1 to its l1 families and piece X2 to its l2 families.

After a finite number of recursion steps, the number of families assigned to each piece
becomes 1 and the procedure ends. The number of cuts in each level of the recursion
is at most 2n − 4. The depth of recursion can be bounded by 
log2 k� by dividing k
to halves (if it is even) or to almost-halves (if it is odd; i.e. take l1 = (k − 1)/2 and
l2 = (k + 1)/2). Hence:

Theorem 4 Given n agents in k families with equal entitlements, a unanimously-
proportional division with 
log2 k� · (2n − 4) + 1 components is feasible.

Note that Theorems 3 and 4 both give upper bounds on the number of components
required for unanimous-proportionality. The bound of Theorem 3 is stronger when k
is small and the bound of Theorem 4 is stronger when k is large.

4.5 Less components: different entitlements

The purpose of this subsection is to find a unanimously-proportional allocation with
fewer components than the guarantee of Theorem 3, when families may have different
entitlements.

When families have different entitlements, the procedure of the previous subsection
cannot be used. We cannot let the n-th agent select a piece for his family, since the
pieces are different. For example, suppose there are two families with entitlements
t1 = 1/3, t2 = 2/3. We can divide C into two pieces X1, X2 such that n − 1 agents
value X1 as 1/3 and X2 as 2/3. So all of them agree that X1 should be given to family
1 and X2 should be given to family 2. But, the n-th agent might select the wrong piece
for his family. Therefore, the procedure should be modified as follows.

– Select an integer l ∈ {1, . . . , k − 1}.
11 They prove that, if C is a circle, the number of connected components is n − 1. Hence, the number of
cuts is 2n − 2. This is also true when C is an interval, although the number of connected components in
this case is n.
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722 E. Segal-Halevi, S. Nitzan

– Divide the families into two subsets: F1, . . . , Fl and Fl+1, . . . , Fk .
– Apply Stromquist and Woodall (1985) with r = ∑l

j=1 t j : using 2n − 2 cuts, cut a

piece X1 which all n agents value at exactly
∑l

j=1 t j . This means that all n agents

value the other piece, X2, at exactly
∑k

j=l+1 t j .
– Recursively divide piece X1 to F1, . . . , Fl and piece X2 to Fl+1, . . . , Fk .

Here, the number of cuts in each level of the recursion is at most (2n − 2). The
depth of recursion can be bounded by 
log2 k� by choosing l = k/2 (if k is even) or
l = (k − 1)/2 (if k is odd). Hence:

Theorem 5 Given n agents in k families with different entitlements, a unanimously-
proportional division with 
log2 k� · (2n − 2) + 1 components is feasible.

To conclude the analysis of unanimous-proportionality, recall that, even for k = 2
families, unanimous-proportionality is as difficult as exact division and might require
the same number of components—n. In the worst case, we might need to give a
disjoint component to each member, which negates the concept of division to families.
Therefore we now turn to the analysis of an alternative fairness criterion that yields
more useful results.

5 Democratic fairness

Like unanimous-proportionality (Sect. 4), h-democratic-proportionality too can be
defined using family-valuation functions. For example, for h = 1

2 :

Wmed
j (X j ):=

mediani∈Fj Vi (X j )

n j
for j ∈ {1, . . . , k}.

A division is 1
2 -democratically-proportional if and only if:

∀ j : Wmed
j (X j ) ≥ t j

However, the Wmed functions are not additive,12 so again the classic results referred
to in Theorem 1 are inapplicable.

5.1 A division procedure

We start with a positive result for families with equal entitlements, which shows that
democratic-proportionality is substantially easier than unanimous-proportionality.

Theorem 6 For every integer k ≥ 2, when there are k families with equal entitlements,
1
k -democratic-proportionality with connected pieces is feasible and can be found by
an efficient protocol.

12 See the example in the beginning of Sect. 4. In that example Wmed is identical to Wmin.
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Proof The Dubins-Spanier moving-knife protocol (Dubins and Spanier 1961) can be
adapted to families as follows. A knife moves continuously over the cake from left to
right. Whenever in a certain family at least 1/k of its members believe that the cake
to the left of the knife is worth at least 1/k, they shout “stop”, the cake is cut at the
knife location, and the shouting family receives the cake to its left. The division so far
is proportional for 1/k of the members in this family.

In the remaining k − 1 families, at least (k − 1)/k of the members believe the
remaining cake is worth at least (k −1)/k of its original value. Dividing the remaining
cake recursively using the same procedure yields a division that 1/(k −1) of (k −1)/k
of the members in each remaining family value as at least 1/(k − 1) of (k − 1)/k of
the original value; in other words, the division is proportional for at least 1/k of the
members in each family. �	
Theorem 6 is particularly useful for k = 2 families. It implies the existence of a
connected division that is considered fair by at least a weak majority in each family.

Unfortunately, this positive result cannot be improved—it is impossible to guar-
antee the support of a weak majority when there are three or more families, and it is
impossible to guarantee the support of larger majority when there are two families.
This is proved in the following subsection.

5.2 Three or more families: an impossibility result

This subsection presents a lower bound on the number of components required for a
democratic-fair division. The lower bound holds not only for proportionality but even
for a much weaker fairness notion called positivity.

Given a specific division of C among families, define a zero agent as an agent who
values his family’s share as 0 and a positive agent as an agent who believes his family
received a share with a positive value. Note that proportionality implies positivity but
not vice-versa. The following lower bound holds even for positivity, hence it also holds
for proportionality.

Lemma 3 Assume there are n = mk agents, divided into k families with m members
in each family. To guarantee that at least q members in each family are positive, the
total number of components may need to be at least:

k · kq − m

k − 1

Proof Number the families by j = 0, . . . , k − 1 and the members in each family by
i = 0, . . . , m−1. Assume thatC is the interval [0, mk]. In each family j , eachmember
i wants only the following interval: (ik+ j, ik+ j+1). Thus there is nooverlapbetween
desired intervals of different members. The table below illustrates the construction for
k = 2, m = 3. The families are {Alice,Bob,Chana} and {David,Esther,Frank}:

Suppose the piece X j (the piece given to family j) is made of l ≥ 1 components.
We can make l members of Fj positive using l intervals of positive length inside their
desired areas. However, if q > l, we also have to make the remaining q − l members
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Alice 1 0 0 0 0 0
Bob 0 0 1 0 0 0
Chana 0 0 0 0 1 0

David 0 1 0 0 0 0
Esther 0 0 0 1 0 0
Frank 0 0 0 0 0 1

positive. For this, we have to extend q − l intervals to length k. Each such extension
totally covers the desired area of one member in each of the other families. Overall,
each family forces q − l zero members in each of the other families. The number of
zero members in each family is thus (k − 1)(q − l). Adding the q members who must
be positive in each family gives the necessary condition: (k −1)(q − l)+q ≤ m. This
is equivalent to:

m + l(k − 1) ≥ kq

�⇒ l ≥ kq − m

k − 1

The total number of components is k · l, which is the claimed expression. �	
By setting q = hm in Lemma 3, we get the following lower bound on the number of
cuts in an h-democratically-proportional division:

Theorem 7 For any h ∈ [0, 1], in an h-democratically-proportional division with n
agents grouped into k families, the number of components may need to be at least

n · hk − 1

k − 1

In a unanimously-proportional division h = 1, so the number of components is at
least n, which coincides with the lower bound of Theorem 2. On the other hand, when
h = 1/k the lower bound is 0, and indeed we already saw that in this case a connected
allocation is feasible (Theorem 6). However, when h > 1/k, for sufficiently large n,
the expression in Theorem 7 is larger than k, which implies that a connected division
might not exist. In particular, we cannot guarantee a connected 1

2 -democratically-
proportional division for three or more families, and we cannot guarantee a connected
h-democratically-proportional division even for two families if h > 1/2.

5.3 Three or more families: positive results

Suppose we do want a 1
2 -democratically-proportional division for three or more fam-

ilies. How many components are sufficient?
As a first positive result, we can use Theorem 5, substituting n/2 instead of n:

select half of the members in each family arbitrarily, then find a division which is
unanimously-proportional for them while ignoring all other members. This leads to:
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Theorem 8 Given n agents in k families with different entitlements, 1
2 -democratic-

proportionality with 1 + 
log2 k� · (n − 2) components is feasible.

However, for families with equal entitlements we can do much better.

Theorem 9 Given n agents in k families with equal entitlements, 1
2 -democratic-

proportionality with at most

min
(
2 + (
k/2� − 1) · (n/2 − 2), 2 + 
log2
k/2�� · (n − 8)

)
.

components is feasible.

Proof The proof is summarized in Algorithm 1. �	

Algorithm 1 1
2 -democratically-proportional division for k ≥ 2 families.

INPUT:
- C := the unit interval [0, 1].
- n additive agents, all of whom value C as 1.
- A grouping of the agents to k families, F1, ..., Fk .

OUTPUT:
A 1

2 -democratically-proportional division of C into k pieces.

ALGORITHM:
Step 1: Halving
- Each agent i = 1, ..., n selects an xi ∈ [0, 1] such that Vi ([0, xi ]) = 
k/2�

k (this means 1
2 if k is even and

k+1
2k if k is odd). Note: Vi ([xi , 1]) = �k/2�

k .
- For each family j = 1, ..., k, find the median of its members’ selections: M j = mediani∈Fj xi .

- Order the families in increasing order of their medians. Find the median of the family-medians: M∗ =
M
k/2�. Cut C at x = M∗.
Step 2: Sub-division
- Define the western families as the Fj with j = 1, ..., 
k/2�. Let nW be the total number of members in
these families. Divide the interval [0, M∗] among the western families using UnanimousPR(nW /2, 
k/2�).
- Similarly, define the eastern families as the Fj with j = 
k/2� + 1, ..., k. There are �k/2� such families.
Let nE be their total number of members. Divide the interval (M∗, 1] among the eastern families using
UnanimousPR(nE /2, �k/2�).

The algorithm works in two steps.
Step 1: Halving. For each family, a location M j is calculated such that, if C is cut

at M j , half the family members value the interval [0, M j ] as at least 
k/2�
k and the other

half value the interval [M j , 1] as at least �k/2�
k . Then,C is cut in M∗—themedian of the

familymedians. The 
k/2� “western families”—forwhich M j ≤ M∗—are assigned to
the western interval of C—[0, M∗]. By construction, at least half the members in each
of the western families value [0, M∗] as at least 
k/2�

k . We say that these members are
“happy”. Similarly, the �k/2� eastern families—for which M j ≥ M∗—are assigned
to the eastern interval (M∗, 1]; at least half the members in each of these families are
“happy”, i.e, value the interval (M∗, 1] as at least �k/2�

k .
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726 E. Segal-Halevi, S. Nitzan

If there are only two families (k = 2), then we are done: there is exactly one western
family and one eastern family (
k/2� = �k/2� = 1 ). For each family j ∈ {1, 2}, at
least half the members of each family value their family’s share as at least 1/2. Hence,
the allocation of X j to family j is 1

2 -democratically-proportional.
If there are more than two families (k > 2), an additional step is required.
Step 2: Sub-division. Each of the two sub-intervals should be further divided

among the families assigned to it. In each family Fj , at least n j/2 members are happy.
So for each Fj , select exactly n j/2 members who are happy. Our goal now is to
make sure that these agents remain happy. This can be done using a unanimously-
proportional allocation, where only n j/2 happy members in each family (hence n/2
members overall) are counted.

The unanimously-proportional allocation guarantees that every western-happy-
member believes that his family’s share is worth at least 
k/2�

k · 1

k/2� = 1

k .
Similarly, every eastern-happy-member believes that his family’s share is worth at
least �k/2�

k · 1
�k/2� = 1

k . Hence, the resulting division is
1
2 -democratically-proportional.

We now calculate the number of components in the resulting division. One cut is
required for the halving step. For the unanimously-proportional division of thewestern
interval, the number of required cuts is at most (
k/2�−1) ·(nW /2−1) by Theorem 3,
and at most 
log2
k/2�� · (nW − 4) by Theorem 4. Similarly, for the eastern interval
the number of required cuts is at most the minimum of (�k/2� − 1) · (nE/2 − 1) and

log2�k/2��·(nE −4). The total number of cuts is thus atmost 1+(
k/2�−1)·(n/2−2)
and at most 1 + 
log2
k/2�� · (n − 8). The total number of components is larger by
one.

5.4 Comparison and open questions

Table 1 compares the three variants of proportionality, focusing on families with equal
entitlements. Recall that n is the total number of agents in all families.

The case of k = 2 families is well-understood. The results for all fairness criteria
are tight: by all fairness definitions, we know that a fair division exists with the smallest
possible number of connectivity components.

The case of k > 2 families opens some questions:

– Is unanimous-proportionality with n components feasible for all k? (particularly,
with k = 3 families, is the number of required components n as in the lower bound,
or 2n − 1 as in the upper bound?).

– Is 1
2 -democratic-proportionality with n · k/2−1

k−1 components feasible for all k?
(particularly, with k = 3 families, is the number of required components n/4 as
in the lower bound, or n/2 as in the upper bound?).

The case of different entitlements is much less understood even for individual agents
(Segal-Halevi 2019), let alone for families.

What fairness notion is the most practical? The table shows that it depends on the
total number of agents (n). When n is small (as is common when dividing an estate
among heirs), it is reasonable to try to attain a unanimously-fair division. However,
when n is large (as is common when dividing disputed lands among states), unani-
mous fairness quickly becomes impractical, as the number of components might grow
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linearly with n. In this case, we must settle for a weaker fairness criterion. When
k = 2, we can find a democratically-fair allocation that is also connected. When
k > 2, democratic fairness too might be impractical, and we may have to settle for
average-fairness.

6 Pareto-efficiency

So far, we studied the compatibility of fairness criteria with a geometric requirement—
reducing the number of connectivity components. In this section we replace the
geometric requirement with an economic requirement—Pareto efficiency. An allo-
cation is called Pareto-efficient (PE) if no other allocation is weakly better for all
individual agents and strictly better for some individual agents. Fortunately, PE is
compatible even with the strongest variant of the proportionality criterion:

Theorem 10 There always exists an allocation that satisfies both PE and unanimous-
proportionality (hence also average-proportionality and democratically-proportional),
even when families have different entitlements.

Proof We use a famous theorem of Dubins and Spanier (1961), which is a special case
of a measure-theoretic theorem by Dvoretzky et al. (1951).

For every partition X of C into k pieces, let M(X) be its value-matrix—an n-by-k
matrix M where ∀i ∈ {1, . . . , n},∀ j ∈ {1, . . . , k} : Mi, j = Vi (X j ). Let MC be the
set of all matrices that correspond to such partitions:

MC :={M(X)|X is a partition of C into k pieces}

Theorem 1 of Dubins and Spanier (1961) implies that the set MC is compact.
Define a second set of matrices representing the unanimously-proportional condi-

tion:

MP R :={M is an n × k matrix|∀ j ∈ {1, . . . , k} : ∀i ∈ Fj : Mi, j ≥ t j }

Finally, defineMC P R :=MC ∩ MP R . This set represents all value-matrices of alloca-
tions of C that are unanimously-proportional. By Theorem 3, MC P R is non-empty.
Since MC is compact and MP R is closed, their intersection MC P R is compact.

Define the following function U : MC P R → R:

U (M):=
k∏

j=1

∏

i∈Fj

Mi, j

This is a continuous function, so it has a maximum point in MC P R ; let’s call it M∗.
This matrix corresponds to an allocation X∗ that maximizes, among all unanimously-
proportional allocations, the product of valuations of all agents:

∏k
j=1

∏
i∈Fj

Vi (X j ).
This product is strictly increasing with the value of each agent i ∈ N , so the allocation
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X∗ is Pareto-efficient in the setMC P R . Since every Pareto-improvement of an alloca-
tion in MC P R is also in MC P R , the allocation X∗ is also Pareto-efficient in general.

�	
Remark 2 So far we considered two pairs of requirements: fairness+connectivity and
fairness+efficiency. This raises the natural question ofwhether connectivity+efficiency
are compatible. We provide two answers.

(a) There might not exist a connected allocation that is Pareto-efficient in the set
of all allocations, even without any fairness considerations, and even with only two
individual agents (two singleton families). Moreover, the number of components in
such allocation might be unbounded.

Proof For any integer M , suppose C is the interval [0, 2M]. Suppose agent 1 assigns a
value of 1 to the intervals [0, 1], [2, 3], [4, 5], etc., and a value of 0 to the rest of C , and
agent 2 assigns a value of 1 to the intervals [1, 2], [3, 4], [5, 6], etc., and a value of 0
to the rest of C . Then, any Pareto-efficient allocation has 2M connected components.

�	
On the other hand:

(b) There always exists a connected allocation that is Pareto-efficient in the set of all
allocations with at most d components, where d ≥ 1 is any fixed integer. Existence
is guaranteed for any number of families with any number of agents, and even with a
unanimous-proportionality requirement.

Proof Suppose w.l.o.g. that C is the interval [0, 1]. Each division with at most d
components can be represented by a vector x1, . . . , xd where ∀i ∈ [d] : xi ∈ [0, 1]
and

∑d
i=1 xi = 1 (where xi represents the length of the i-th component). Hence the set

of all such divisions can be represented by the (d −1)-dimensional standard simplex in
R

d . This set is compact and convex. Hence, similarly to Theorem 10, this set contains
an allocation that is both PE and unanimously-proportional. �	

7 Envy freeness

So far, we used proportionality as our individual fairness criterion. Another criterion
that is very common in economics is envy-freeness. We study this criterion for families
with equal entitlements.

Analogously to the definitions in Sect. 2.4, we call an allocation X—

envy-free-on-average if ∀ j, j ′ ∈ {1, . . . , k} : W avg
j (X j ) ≥ W avg

j (X j ′);
unanimously-envy-free if ∀ j, j ′ ∈ {1, . . . , k} : ∀i ∈ Fj : Vi (X j ) ≥ Vi (X j ′);
h − democratically-envy-free if ∀ j, j ′ ∈ {1, . . . , k},

for at least a fraction h of the members i ∈ Fj : Vi (X j ) ≥ Vi (X j ′) .
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With individual agents, it is well known that envy-freeness implies proportionality
(with equal entitlements). With two individual agents, envy-freeness and proportion-
ality are equivalent. The same implications are true with families. Each variant of
envy-freeness implies the corresponding variant of proportionality.13 When there are
k = 2 families, each variant of envy-freeness is equivalent to the corresponding variant
of proportionality.14

Most of our results for proportionality with equal entitlements are also valid for
envy-freeness. For average-envy-freeness, we can use classic results proving the
existence of envy-free allocations with connected pieces among individual agents
(Stromquist 1980; Su 1999). Applying the same reduction as in Theorem 1 we get:

Theorem 1’ For any k families, average-envy-freeness with connected pieces is feasi-
ble.

Since envy-freeness implies proportionality, the negative results are still valid:

Theorem 2’ For every N , K , let n = N (K −1)+1. A unanimously-envy-free division
for n agents grouped into K families might require at least n components.

Some positive results remain valid too. Lemma 2 is based on an exact division.
Therefore it holds, with the same proof, even if we replace unanimously-proportional
with unanimously-envy-free. Therefore:

Theorem 3’ Given n agents in k families, a unanimously-envy-free division with (n −
1) · (k − 1) + 1 components is feasible.

However, the recursive-halving procedure of Theorem 4 cannot be used here. Sup-
pose we divide C into two subsets, West and East, which all n agents value at exactly
1/2. Then, we assign arbitrary k/2 families to West and the other families to East. We
find an exact division of the West among the western families and an exact division
of the East among the eastern families. While this division is proportional, it is not
necessarily envy-free, since the agents in the west might envy families in the east and
vice versa. Therefore, while the number of components required for unanimously-
proportional division is in O(n log k), the best we can currently say about the number
of components required for unanimously-envy-free is that it is in O(nk).

The positive result of Theorem 6 holds for envy-freeness too:

Theorem 6’ For every integer k ≥ 2, there exists a connected division among k fami-
lies, that is envy-free for at least 1/k of the members in each family.

Proof Su (1999) presents a procedure (attributed to Simmons) for finding a connected
envy-free division among k individual agents. It is based on presenting various con-
nected partitions to the agents, and asking each agent which of the k pieces is the best.

13 Suppose an agent i ∈ Fj thinks the division is envy-free. Then Vi (X j ) is equal to maxk
j ′=1 Vi (X j ′ ).

The maximum is at least as large as the average, so Vi (X j ) is at least as large as an average value of a piece,
which is Vi (C)/k.
14 Suppose an agent i ∈ Fj thinks the division is proportional. Then Vi (X j ) ≥ 1/2. By additivity, for the
other family j ′ �= j , Vi (X j ′ ) ≤ 1/2. Hence Vi (X j ) ≥ Vi (X j ′ ), so agent i thinks the division is envy-free.
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He proves that there exists a partition in which each agent gives a different answer;
that partition corresponds to an envy-free allocation. He also shows a procedure for
finding a sequence of partitions that converges (after possibly infinitely many steps)
to that envy-free allocation.

The Simmons-Su procedure can be adapted to families in the followingway.When-
ever a family is asked “which of the k pieces is better?”, it answers by doing a plurality
voting among its members. Then, in the final division, each family receives a piece
that is considered the best by a plurality of its members, which is at least a fraction
1/k of its members. Therefore, at least 1/k of each family’s members feel that the
final allocation is envy-free. �	

Similarly, the negative result for h-democratic-proportionality in Theorem 7 is valid
for h-democratic-envy-freeness too.

Theorem9about 12 -democratic-proportionality does not hold as-is for 12 -democratic-
envy-freeness, but it can be adapted by adapting Algorithm 1. Step 1—the halving
step—remains the same. Step 2—the subdivision step—should be modified to use an
exact division, as follows:

– Using Exact(n/2, 
k/2�) , find an exact division of the interval [0, M∗] into

k/2� pieces, such that all n/2 happy agents find the pieces equal. Assign these
pieces to the western families—the Fj with j = 1, . . . , 
k/2�.
– Using Exact(n/2, �k/2�) , find an exact division of the interval (M∗, 1] into
�k/2� pieces, such that all n/2 happy agents find the pieces equal. Assign the
pieces to the eastern families—Fj with j = 
k/2� + 1, . . . , k.

The halving step requires a single cut. The two exact divisions require (n/2)·(k−2)
cuts. Therefore the total number of components is n(k − 2)/2 + 2:

Theorem 9’ Given n agents in k families with equal entitlements, 1
2 -democratic-envy-

freeness with at most n(k − 2)/2 + 2 components is feasible.

Table 2 summarizes our results for envy-free division and shows some remaining
gaps.

We now consider the combination of envy-freeness with Pareto-efficiency. Some
of our positive results from Sect. 6 are still valid:

Theorem 10’ (a) With k = 2 families, there always exists an allocation that satisfies
both PE and unanimous-envy-freeness (hence also h-democratic-envy-freeness for
any h ∈ [0, 1]).

(b) With any number of families, there always exists an allocation that satisfies both
PE and average-envy-freeness.

Proof (a) With k = 2 families, envy-freeness and proportionality are equivalent, so
this follows directly from Theorem 10.

(b) We use the same reduction as in Theorem 1 and the same compactness argument
as in Theorem 10. For each family Fj , define a representative agent A j whose
valuation is W avg

j . There exists an allocation X∗ that maximizes the product of

valuations of the representatives:
∏k

j=1 W avg
j (X j ).
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Fair cake-cutting among families 733

(Segal-Halevi and Sziklai 2018a, Section 5) prove, in the setting of cake-cutting
among individuals, that every allocationmaximizing the product of values is envy-free.
Therefore, in the allocation X∗, there is no envy among the representatives. Therefore
X∗ satisfies average-envy-freeness.

The product
∏k

j=1 W avg
j (X j ) is strictly increasing with the value of each individual

agent i ∈ N . Therefore, the allocation X∗ maximizing this product is Pareto-efficient.
�	

Next, consider Remark 2 regarding connectivity and efficiency. Part (a) holds
regardless of fairness considerations. Part (b) implies that there always exists a
unanimously-proportional allocation that is PE in the set of connected allocations;
this positive result is not true when we replace proportionality with envy-freeness,
even with singleton families. This is proved by Example 5.1 in Segal-Halevi and
Sziklai (2018b).

Even without connectivity constraints, Pareto-efficiency is incompatible with
unanimous-envy-freeness and democratic-envy-freeness.

The incompatibility between PE and unanimous-envy-freeness appears even when
we take a minimal step forward from the case of two families: there are three families,
only one of which is a couple and the other two are singles.

Theorem 11 With three or more families, there might be no allocation that is both PE
and unanimously-envy-free.

Proof The proof is based on an example used by Bade and Segal-Halevi (2018) in
the context of fair division of homogeneous goods. C is an interval composed of two
sub-intervals Y and Z of length 1. C has to be divided among three families—a couple
and two singles—with the following valuations:

Y Z

Alice 1 1
George 7 1

Bob 2 1

Esther 5 1

Suppose that we have a unanimously-envy-free allocation of C among the three
families. Denote by YAG , Z AG the lengths of Y , Z given to Alice+George, and simi-
larly YB, Z B , YE , Z E are the lengths given to Bob and Esther. Then:

7YAG + Z AG ≥ 7YB + Z B (George does not envy Bob)

2YB + Z B ≥ 2YAG + Z AG (Bob does not envy George)

(7 − 2)YAG ≥ (7 − 2)YB (from the above inequalities)

(∗) YAG ≥ YB

1YAG + Z AG ≥ 1YB + Z B (Alice does not envy Bob)
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734 E. Segal-Halevi, S. Nitzan

2YB + Z B ≥ 2YAG + Z AG (Bob does not envy Alice)

(1 − 2)YAG ≥ (1 − 2)YB (from the above inequalities)

(∗∗) YAG ≤ YB

(∗ ∗ ∗) YAG = YB (from * and **)

�⇒ Z AG = Z B (Bob and Alice+George do not envy)

We proved that, in any unanimously-envy-free allocation, the share given to
Alice+George is identical to the share given to Bob (i.e, the same lengths of both
subintervals). The proof does not depend on the exact valuation functions—it only
depends on the fact that 1 < 2 < 7, i.e, Bob’s valuation of Y is strictly between
Alice’s and George’s valuations. Hence, exactly the same proof works for Esther, i.e:
YAG = YE and Z AG = Z E . Therefore, the shares given to all three families are
identical.

We now prove that this allocation cannot be PE. We consider three cases.

– Case 1: YB = 0. Then also YE = YAG = 0 so Y remains unallocated and the
allocation is not PE.

– Case 2: Z E = 0. Then also Z B = Z AG = 0 so Z remains unallocated and the
allocation is not PE.

– Case 3: YB and Z E are positive. Let ε = min(YB, Z E/3). Suppose that Bob gives
ε of his Y to Esther, and gets in exchange 3ε of her Z . Then, Bob’s value increases
by 3ε−2ε; Esther’s value increases by 5ε−3ε; and the values of Alice and George
are unchanged. This means that the original allocation was not Pareto-efficient. �	

�	
Weakening unanimously-envy-free to democratically-envy-free does not helpwhen

there are 5 or more families.

Theorem 12 With five or more families, there might be no allocation that is both PE
and democratically-envy-free.

Proof The proof is based on an extension of the example of Theorem 11, where there
are five families—one triplet and four singles—with the valuations:

Y Z

Alice 1/4 1
Dina 1 1
George 4 1

Bob 1/2 1

Chana 1/3 1

Esther 2 1

Frank 3 1
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Suppose that we have a democratically-envy-free allocation of C among the fam-
ilies. By definition of democratically-envy-free, all singles must not feel any envy.
Moreover, in the first family, at least two members must not feel any envy. There are
three options for the identity of these non-envious members.

Option A: Alice and Dina feel no envy. We consider Bob and Chana. The value of
Y for each of them is strictly between the value of Y for Alice and the value of Y for
Dina. Therefore, similar arguments as in the proof of Theorem 11 imply that the three
allocations of Chana, Bob, and Alice+Dina+George are identical. Now there are three
cases:

– Case A1: YC = 0. Then also YB = YADG = 0. Each of Chana, Bob, and
Alice+Dina+George receive at most 1/3 of Z , so Dina’s value is at most 1/3.
Since Dina does not envy Esther and Frank, each of them must receive at most
1/3 of Y . This means that at least 1/3 of Y remains unallocated, so the allocation
is not PE.

– Case A2: Z B = 0. Then also ZC = Z ADG = 0. Again Dina’s value is at most 1/3,
so Esther and Frank must receive at most 1/3 of Z , so at least 1/3 of Z remains
unallocated, so the allocation is not PE.

– Case A3: YC and Z B are positive. Then, Bob can give ε/2.5 of his Z to Chana in
exchange for ε of her Y (for some small ε > 0) and attain a Pareto improvement,
so the original allocation is not PE.

Option B:George and Dina feel no envy. We consider Esther and Frank. The value
of Y for each of them is strictly between the value of Y for George and the value of
Y for Dina. Therefore the three allocations of Esther, Frank, and Alice+Dina+George
are identical. The rest of the proof is analogous to Option A.

Option C: Alice and George feel no envy. The value of Y for all the singles is
strictly between the value of Y for Alice and the value of Y for George. Therefore, the
allocations of all five families must be identical. The rest of the proof is analogous to
Theorem 11. �	

An interesting question that is left open by Theorems 10′ and 12 is what happens
when there are 3 or 4 families—does there always exist an allocation that is both PE
and democratically-envy-free?

8 Related work

There are numerous papers about fair division in general and fair cake-cutting in
particular. We mentioned some of them in the introduction. Here we survey some
work that is more closely related to family-based fairness.

8.1 Dividing other kinds of resources among families

In a contemporaneous and independent line of work, several authors have studied the
problem of fairly dividing discrete items among families (Manurangsi and Suksom-
pong 2017; Suksompong 2018a, b; Kyropoulou et al. 2019).
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736 E. Segal-Halevi, S. Nitzan

They focusedonunanimous fairness.Theyproved that, inmanycases, unanimously-
fair allocations do not exist. These results complement our impossibility results for
unanimous fairness in dividing a continuous resource. After the publication of their
work and our working paper, we joined forces to study democratic-fair allocation of
discrete goods among families (Segal-Halevi and Suksompong 2018).

Recently, Ghodsi et al. (2018) studied fair division of rooms and rent among fam-
ilies, using three notions of fairness which they term strong, aggregate and weak.
Their strong fairness is our unanimous fairness; their aggregate fairness is our average
fairness; their weak fairness means that at least one agent does not envy.

In another recent work, Bade and Segal-Halevi (2018) studied fair and efficient
allocation of homogeneous divisible resources among families.

8.2 Group-envy-freeness and on-the-fly coalitions

Berliant et al. (1992), Hüsseinov (2011), Todo et al. (2011) study the concept of group-
envy-freeness. They assume the standardmodel of fair division among individuals (and
not among families). They define a group-envy-free division as a division in which
no coalition of individuals can take the pieces allocated to another coalition with
the same number of individuals and re-divide the pieces among its members such
that all members are weakly better-off. Coalitions in cake-cutting are also studied by
Dall’Aglio et al. (2009), Dall’Aglio and Di Luca (2014).

In our setting, the families are pre-determined and the agents do not form coalitions
on-the-fly. In an alternativemodel, inwhich agentsare allowed to formcoalitions based
on their preferences, the family-fair-division problem becomes easier. For instance, it
is easy to achieve a unanimously-proportional division with connected pieces between
two coalitions: ask each agent to mark its median line, find the median of all medians,
then divide the agents to two coalitions according to whether their median line is to
the left or to the right of the median-of-medians.

8.3 Fair division with public goods

In our setting, the piece given to each family is considered a “public good” in this
specific family. The existence of fair allocations of homogeneous goods when some
of the goods are public has been studied e.g. by Diamantaras (1992), Diamantaras
and Wilkie (1994), Diamantaras and Wilkie (1996), Guth and Kliemt (2002). In these
studies, each good is either private (consumed by a single agent) or public (consumed
by all agents). In the present paper, each piece is consumed by all agents in a single
family—a situation not captured by existing public-good models.

8.4 Matchingmarkets

Besides fair division, family preferences are important in matching markets, too. For
example, when matching doctors to hospitals, usually a husband and a wife who are
both doctors want to be matched to the same hospital. This issue poses a substantial
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challenge to stable-matching mechanisms (Klaus and Klijn 2005, 2007; Kojima et al.
2013; Ashlagi et al. 2014).

The idea of satisfying a certain fairness notion for only a certain fraction of the
population, rather than unanimously, has also been studied in the context of matching
markets. For example, Ortega (2018) proves that, when two matching markets are
merged and a stable matching mechanism is run, it is impossible to attain monotonic
improvement for everyone, but it is possible to attain monotonic improvement for at
least half the population.

8.5 Non-additive utilities

As explained in Sects. 4 and 5, the difficulty with unanimous-proportionality and
democratic-proportionality is that the associated family-valuation functions are not
additive. It is therefore interesting to compare our work to other works on cake-cutting
with non-additive valuations.

Berliant et al. (1992); Maccheroni and Marinacci (2003); Dall’Aglio and Mac-
cheroni (2005) focus on sub-additive, or concave, valuations, in which the sum of the
values of the parts is more than the value of the whole. These works are not applicable
to our setting, because the family-valuations are not necessarily sub-additive—the sum
of values of the parts might be smaller than the value of the whole (see the example
in the beginning of Sect. 4).

Sagara andVlach (2009),Dall’Aglio andMaccheroni (2009),Hüsseinov andSagara
(2013) consider general non-additive value functions. They provide pure existence
proofs and do not say much about the nature of the resulting divisions (e.g, the num-
ber of connectivity components), which we believe is important in practical division
applications.

Su (1999) presents a protocol for envy-free division with connected pieces which
does not assume additivity of valuations. However, when the valuations are non-
additive, there are no guarantees about the value per agent. In particular, with non-
additive valuations, the resulting division is not necessarily proportional.

Mirchandani (2013) suggests a division protocol for non-additive valuations using
non-linear programming. However, the protocol is practical only when the resource
to divide is a collection of a small number of homogeneous components, where the
only thing that matters is what fraction of each component is allocated to each agent.
In contrast, in our model the resource is a single heterogeneous good.

Finally, Berliant and Dunz (2004), Caragiannis et al. (2011), Segal-Halevi et al.
(2017) study specific non-additive value functions which are motivated by geometric
considerations (location, size and shape). The present paper contributes to this line
of work by studying specific non-additive value functions which are motivated by a
different consideration: handling the different preferences of family members. A pos-
sible future research topic is to find fair division rules that handle these considerations
simultaneously, as both of them are important for fair division of land.
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