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Abstract
This article reconsiders the issue of Bayesian aggregation by pointing at a conflict
that may arise between two logically independent dominance criteria, Pareto domi-
nance and statewise dominance, that are commonly imposed on social preferences.
We propose a weaker dominance axiom that restricts statewise dominance to Pareto
dominant alternatives and, symmetrically, Pareto dominance to statewise dominant
alternatives. The associated aggregation rule is a convex combination of two compo-
nents, the first being a weighted sum of the individuals’ subjective expected utility
(SEU) functional, the second being a social SEU functional, with associated social
utility function and social belief. Such representation establishes the existence of a
trade off between adherence to the Pareto principle and compliance with statewise
dominance. We then investigate what are the consequences of adding to our assump-
tions either of the two dominance criteria in their full force and obtain that each of
them is equivalent to discarding the other, unless there is essentially a common prior
probability across individuals.

1 Introduction

Suppose that a group of individuals is asked to express preference judgments over
some set of uncertain alternatives and that they all abide to the model of Bayesian
rationality. Suppose further that we aim at summarizing the individuals’ rankings into
a single collective preference judgment. To illustrate, think of a government who aims
at implementing an environmental policy and consults a panel of experts to assess the
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various risks associated to the available scenarios in order to decide what type of pol-
icy to enforce; alternatively, let a social planner be concerned with a tax reform while
knowing little about the subjective beliefs of the agents involved; in order to evaluate
the welfare of the members of society, the planner asks them to express preference
judgments among different specifications of the tax reform and then aggregate these
data to define his own ranking. What kind of normative principles should such col-
lective ranking obey? Two natural candidates are the avoidance of arbitrariness—the
collective judgment should respect preference judgments over pair of alternatives that
the individuals unanimously express—and of inconsistencies—it should be “rational”
in the same way that individuals’ rankings are. That is, the social preference ranking
should be at once Paretian and Bayesian. As we just suggested, these two require-
ments appear to be quite natural, and there are serious arguments in favour of each:
the former desideratum amounts to require the members of the group to be the source
of the collective evaluation of states of affairs that emanates from them, or, once the
aggregative authority is identified with a social planner who must choose a policy
whose outcome is uncertain and affects several individual actors, it demands that the
members of society be the source of the decision whose consequences apply to them,
a principle grounded in the theory of consumer sovereignty1 and tightly related to a
welfarist interpretation of social ethics.2 The second requirement consists in binding
the planner’s ranking to conform to the same kind of rationality (to the same decision
model) as the one of the individual members of society; the rationale behind this can
be identified in the principle of coherence, stating that rationality principles are recog-
nized and accepted once and for all, so that they apply both to the individuals’ and to
the collective evaluations. Here again, attributing the social ranking to (an individual
acting as) a social observer rather than conceiving it as the passive result of aggregating
individual judgments, seems to strengthen the normative force carried by the coher-
ence principle: the social planner, who adopts a moral rather than personal stand, shall
aim at even higher standards of rationality than ordinary individuals. But are these
allegedly compelling consistency requisites compatible with each other? This is the
so-called issue of consistent Bayesian aggregation.3 Applying the Pareto principle
to the von Neumann-Morgenstern (VNM) apparatus of expected utility for both the
individuals and the aggregating authority, Harsanyi (1955) shows that the observer’s
VNM utility function equals a weighted sum of individual VNM utility functions, and
claims to have grounded utilitarianism in a new way.4 Averaging of individual utilities
represents a compromise between personal interests when individuals disagree, while

1 In social choice theory and welfare economics, consumer sovereignty is the claim that socio-economic
decisions are legitimate to the extent only that they originate in the consumers’ preferences. Such claim
derives its normative stand from the implicit understanding that the satisfaction of one’s tastes contributes
towards one’s welfare or, in a broader sense, that consumer preferences reflect individual welfare.
2 Welfarism is the (consequentialist) approach to social ethics according to which individual utility values
capture all the information on alternatives that may be relevant to the social evaluation.
3 The term appears in Mongin (1995).
4 Utilitarianism is the normative view that the rightness of an act depends only on the amount of utility it
yields.
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endorsing the force of their combined authority when they unanimously agree. Yet,
the VNM framework presupposes that all individuals face, or agree upon, the same
probability distribution over the states of nature that are deemed to be relevant to the
collective decision. Hence, divergence of opinion, if any, results solely from differ-
ent values that the group members attach to the consequences of the chosen action,
making such aggregative setting unable to address situations in which not only utility
assignments but also factual opinions differ considerably across individuals. To allow
individuals to hold different (subjective) beliefs about the likelihood of the states of
nature and to have different utilities, the expected utility apparatus needs to be replaced
by a framework à la Savage (1972); under such hypothesis, however, Bayesian aggre-
gation runs into logical difficulties:5 it becomes impossible to aggregate individuals’
preferences, unless individuals have identical probabilistic beliefs—as in Harsanyi-,
or identical taste for outcomes.6

To restore the possibility of aggregation, two natural strategies suggest themselves:
to relax the Pareto criterion or to depart from the Bayesian rationality requirement,
by either allowing the collective preference to embody a different form of rationality
than the individuals, or by retaining the coherence between the two, while varying the
underlying decision model. There are sound normative arguments in favour of relax-
ing the Pareto condition, as well as each of Savage’s axioms,7 but we do not intend
to pursue either of these strategies here. Rather than rejecting one of the two condi-
tions while retaining the other, we will weaken both Paretianism and Bayesianism at
once. The rationale behind this weaker version of double consistency relies on the
observation that these two requirements entail an implicit conflict: while Pareto domi-
nance requires each alternative to be evaluated at the collective level solely in terms of
individual evaluations, the monotonicity axiom (or statewise dominance), a building
block of the formal apparatus of subjective expected utility maximization (henceforth,
SEU), requires only the consequences of an act to matter for the collective evaluation.
Naturally, under some circumstances, these two instances clash. These circumstances
can be identified with binary comparisons of prospects that involve situations of unan-
imous (individual) preference judgments for a prospect which is statewise dominated
according to the collective ranking. Crucially, such a conflicting evaluation can only
arise (but needs not) in situationswhere Pareto domination involves “spurious unanim-
ity”, i.e. cases in which the individuals agree on the ranking of two alternatives not by
virtue of genuine agreement but because they disagree twice (they hold very different
tastes regarding their possible outcomes and very different beliefs on the likelihood
of these outcomes) and their conflicting opinions cancel out.8 If only for the purpose
of theoretical experimentation, we want to defuse the outlined conflict while retaining

5 For the sake of precision, weaker versions of the ex ante Pareto condition (e.g. weak Pareto or Pareto
indifference) yield dictatorial rules, while the imposition of the strong Pareto condition makes it logically
impossible to aggregate individual preferences into a Bayesian collective ranking. See Sect. 5.1 below for
a detailed discussion.
6 Such a result echoes the linear pooling rule in the probability aggregation literature (see for instance
Dietrich and List (2016) for an extensive review).
7 See Sect. 3 for a brief review of the existing literature.
8 The term “spurious unanimity” appears in Mongin (1997).
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the symmetry between individuals and states which is implicit in the standard setting
of Bayesian aggregation. Therefore, we propose a weakening of statewise dominance
and of the Pareto criteria that restricts statewise dominance to Pareto dominant acts
and Pareto dominance to statewise dominant acts. Roughly, we say that a prospect is
dominant if it is at the same time Pareto and statewise dominant: agreement across
individuals or, symmetrically, across states, is not sufficient to determine the collective
preference for some option. As a result, we do not take a stand on which of the two
principles should be used a priori to resolve situations of conflict at the expenses of the
other: a given collective rankingmay be prone to Paretianism in some choice situations
while being monotonic in others. Note furthermore that our definition of dominance
is implied both by the Pareto condition and by the monotonicity axiom, so if one is
willing to accept either of the two, she will be forced to go along with our axiom.
The aggregation rule obtained is a convex combination of the two criteria, where the
Pareto component is represented by a functional which is ex ante utilitarian in nature
and the monotonicity component is represented by means of a social SEU functional,
which is ex post utilitarian. A variant of the main result shows that a strengthening
of our dominance principle makes the social prior probability of such SEU functional
be a convex combination of the individual beliefs. The parameter γ that determines
the weight to be assigned at each of the two consistency requirements is obtained
as part of the representation result and may be interpreted as the trade-off between
the two;9 in some sense, by contrasting ex ante and ex post aggregation rules,10 it
may also be viewed as the degree of paternalism of the aggregative authority. We
further investigate under what circumstances our aggregation rule is fully Paretian or,
symmetrically, fully Bayesian. Abstracting from some minor technicalities, we obtain
that full Paretianism (full Bayesianism, respectively) holds when either the parameter
γ assigns all the weight to the Pareto component of the representation (the mono-
tonicity component, respectively), or there is a common prior, thereby confirming the
well-known impossibility results in our setting.

The article is organized as follows: in the next section we provide two examples that
motivate the approach adopted, whose main tenets are then briefly outlined. Section
3 discusses the related literature, while Sect. 4 describes the technical framework and
presents our axioms; the main results, i.e. our aggregation rule and a variant thereof,
are presented in Sect. 5, while additional results characterizing stronger dominance
properties and debating the uniqueness of the representation are contained in Sects.
5.3 to 5.4. Our conclusions are gathered in Sect. 6. The technical proofs are provided
in the Appendix.

9 When γ = 1, we obtain a rule which is utilitarian in spirit, that is, social utility is a convex combination
of the individuals’ expected utility. When γ = 0, the functional form expresses the case where society
disregards individual evaluations and assesses alternatives by taking the expected utility according to its
VNM utility function and probabilistic belief.
10 Ex ante aggregation rules result from applying the Pareto principle to ex ante individual preferences, i.e.
to preferences (or, equivalently, SEU functionals) over uncertain prospects; by contrast, ex post aggregation
rules restrict the Pareto principle to ex post preferences, that is, preferences relative to consequences only
(or, equivalently, to VNM utility indexes). Therefore, ex post rules discard the probability component of
individual preferences.
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2 Two examples

The following two examples will help us illustrating the conflict between Paretian and
statewise dominance outlined in the introduction.

Example 1 The duel.11 Two gentlemen agree to fight a duel, whose result is that one
wins and the other loses. The gentlemen have opposite rankings of the three outcomes:
(1 wins and 2 loses), (no duel), and (2 wins and 1 loses). Assume that the cardinal
rankings of these outcomes are (1, 0,−5) for the first gentleman and (−5, 0, 1) for
the second. Moreover, each of them believes, with a probability of at least 85%, that
he will win the duel. A straightforward adaptation of the Pareto condition implies
that society should rank duel (weakly) above no duel, since both prefer it. Yet, for a
utilitarian society assigning, say, equal weight to the two gentlemen, the duel leads to
one of the gentlemen being severely injured, a net welfare loss of two units of utilities
compared to the no duel situation.

Example 2 The choice of education.12 Consider now a father of two children, who has
to finance their higher education. Due to budget constraints, he only has two available
strategies: either he funds a 3-year BA degree for each child or he funds a 8-year PhD
to only one of them and leaves nothing to the other one. In the latter case, he waits
for the next school test to determine who gets the PhD opportunity. Assume that the
welfare of each child is given by the number of years spent in the university, and that
the children are pessimistic enough about their own probability to get the best grade,
which they both maintain to be of one third. As a result, they unanimously prefer
the BA solution. Again however, at the eyes of an utilitarian society assigning equal
weights to the children, the PhD option yields two more years of university training
than the BA option—a net social gain-, no matter which child performs better in the
test.

In these examples two seemingly natural evaluation procedures, Pareto dominance and
statewise dominance, yield opposite recommendations, leaving the collective ranking
of the alternatives involved indeterminate. Since it turns out to be impossible to adhere
to the two criteria simultaneously, the question arises as to how to resolve such conflict-
ing situations. When considering the duel example, Paretian logic yields a preference
for allowing the duel rather than forbidding it, a solution that might hurt common
sense and seems to build a case in favor of restricting the domain of application of
the Pareto condition. However, when facing the second example, statewise dominance
requires the collective ranking to express strict preference for the PhD alternative,
a solution that may appear as counter-intuitive as the preference for the duel in the
previous choice situation. The tenet of our approach is to define a weaker dominance
principle to drive collective preferences: an alternative will be said to be dominant if
it is at the same time Pareto and statewise dominant; by doing this, we avoid taking a
stand on what criterion should the group preferences unilaterally adhere to. Since we
do not believe the duel example to be an argument against Pareto nor the education

11 The duel story is due to Gilboa et al. (2004).
12 This example is due to Billot and Vergopoulos (2016).
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example to be an argument against monotonicity of social preferences, we relax both
dominance principles in a symmetric way. As a consequence, a collective ranking may
well opt to forbid the duel while financing the BA studies for both children.

2.1 Discussion

The conflict between unanimity and monotonicity displayed in these examples can be
decomposed into two key elements. First, it can only arise in situation of spurious,
rather than genuine, unanimity across the group members. Such a phenomenon, first
identified by Mongin (1995, 1997, 1998) finds its roots on the fact that, contrary to
deterministic or risky choice situations, in uncertain environments two components
determine individual preferences:13 a taste component (the utility function in the SEU
model) and a belief component (the subjective prior probability over the states of the
world). It is then possible for individuals to agree on the ranking of two prospects
while deeply disagreeing on both factual judgments and utility assessments because
these conflicts cancel out. Second, it relies on the utilitarian form of the social utility
function, which, as shown by Harsanyi’s aggregation theorem, is a consequence of
assuming Bayesian rationality for the collective preferences together with the Pareto
principle.

Spurious unanimity has been taken as a normative argument against the Pareto prin-
ciple: since unanimity of judgments can prevail with or without having the individuals
agreeing on the reasons for such judgments (that is, on probabilities and utilities), the
aggregative authority should take into account the underlying reasons of an individual
preference ranking rather than the individual preference ranking by itself; and when
those reasons conflict with each other, in the absence of an arbitration principle it is
impossible to decide between these opposite arguments, leaving the collective ranking
with no motive to commit to the unanimous individual preference nor to the opposite
preference. Moreover, under a welfarist interpretation of social ethics,14 when indi-
vidual beliefs are contradictory, agreement among individuals cannot be expected to
increase the welfare of all members of society, a further argument why such unanimity
should not compel society.

The difficulties that enclose the Pareto principle in the context of uncertainty led
some authors to restrict the domain of application of the Pareto condition, either
by rejecting it at the ex ante stage, i.e. before the resolution of uncertainty, while
accepting it ex post, or by retaining its ex ante formulation but confining it to prospects
whose outcome only depends on events to which all individuals assign the same

13 For the sake of precision, it should be noted that deterministic or risky choices are not immune to
situations of spurious unanimity, provided that the consequences brought about by an act are aggregates of
multiple consequences rather than monolithic. This point has been raised by Mongin (1997), who provides
an interesting example to which we refer (p. 14, section 7). It is perhaps interesting to contrast such remark
with Hausman and McPherson’s well-known comment that it is quite unintuitive to expect people to be
better “at forecasting the consequences of lung cancer than the likelihood of getting it” (Hausman and
McPherson 1994, p. 398).
14 We recall that an implicit assumption in any approach to social ethics is that utilities and subjective
probabilities in Savages theory are meaningful representations of individual tastes and beliefs, rather than
pure mathematical constructs.
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probability. By doing this, any agreement which is rooted in a situation of double
disagreement is not treated as genuine agreement anymore (as the ex ante Pareto
principle recommends); genuine agreement can only results from unanimity about
pure value judgments, emended from probabilistic beliefs, when these differ across
individuals.

But while we are sensitive to the case just made against the Pareto principle, we
find it troubling to restrict its applicability to pure value judgments or to common-
belief prospects, since under some circumstances, e.g. in the above examples, such
choice turns out to elect statewise dominance, hence Bayesianism, to be the arbitration
principle in case of conflicts between dominance criteria. Abandoning the unrestricted
ex ante Pareto principle requires that an individual’s prior is to be ignored in making
welfare judgments—unless such prior is agreed-upon by all individuals, including
the social planner-, a procedure which, beyond being naturally paternalistic, seems to
implicitly undermine the validity of Bayesianism as a model of rationality. On the one
hand, by accepting to circumscribe the validity of Bayesianism at the individual level,
onemaywonderwhy then should the collective preferences be required to beBayesian;
on the other, it seems that retaining the rationality value of SEU stands at odd with
the restricted versions of the Pareto principle, at least if one views valuing rational life
as recognizing the features which distinguish rational life from other valuable things,
specifically the ability of rational creatures to assess reasons and judgments, and to
govern their lives in accordance with their assessments.15

Another well-recognized objection against Bayesianism for collective preferences
concerns the distributional consequences of utilitarianism:16 to evaluate social arrange-
ments it may be important to know the exact distribution of individual utilities rather
than some sort of mathematical expectation of such utility distribution. We believe
that a similar logic is at play in Examples 1 and 2, where the monotonic dominance
evaluation is driven by the utilitarian form of the collective utility function. Since our
weaker dominance principle does not require such an evaluation to be compelling for
the observer’s preferences, one may view it as allowing fairness considerations to take
place.

Arguably, the previous discussion relies on a distinct interpretation of utility and
probability as representing pure value and factual judgments, respectively. While
such interpretation is widely viewed to be key for any normative discussion of the
preference-based approach to social ethics, it is not immune to critics: in real-life one
may expect factual and normative considerations to influence both the individuals’
evaluations of the consequences of certain alternatives and of the likelihood attached
to the respective conditioning events. Moreover, Savage theory is perfectly compatible
with the view that the utility and probability components of the functional representing

15 Related but more specific arguments against society’s interference in individual unanimous evaluations
when individuals’ factual judgments are incompatible with each other are that (i) prohibiting speculative
motives prevents learning in subjective probability models, and (ii) under some circumstances “distorted”
beliefs may enhance positive economic outcomes. One such example is provided in Brunnermeier et al.
(2014), who consider bubbles caused by heterogeneous beliefs in Akerlof-type lemons models (Akerlof
1970) and show that they can help overcomemarket breakdowns induced by the adverse-selection problems.
16 See Diamond et al. (1967) classic example of a two-person society in which the collective ranking turns
out to be indifferent between a lottery involving equal chances for the two agents to receive some positive
gain, and another lottery assigning everything to one of the agents with certainty.
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preferences may be pure mathematical constructs rationalizing a certain behaviour as
defined by the axioms of the theory. According to this view, there is no clear reason
why these two elements should be treated differently in the analysis by requiring for
instance individuals to be sovereign in normative matters only. It is our conviction that
whether one is inclined to embrace the welfarist interpretation of social ethics or rather
simply view the collective ranking as the passive result of putting together individual
preference judgments, the issue of aggregating group preferences is an interesting one.
Importantly, if the welfarist approach seems to strengthen the case in favor of relaxing
the Pareto condition, the theoretical aggregation problem may view monotonicity as
being a desirable property of the collective ranking which, as opposed to the case of
individual preferences, is not however normatively compelling. In short, we remain
agnostic as to the normative appeal of Pareto dominance and of monotonicity for the
collective ranking. There are serious arguments for and against each of the two. By
pointing at a conflict that the two requirements implicitly entail, we ask what is the
specific role they play in the context of preference aggregation.

3 Related literature

Harsanyi’s pioneering aggregation theorem (Harsanyi 1955) assumes the standard
ex ante Pareto principle in the context of VNMexpected utility preferences over lotter-
ies, that is prospects depending on agreed-upon probabilities, for both the individuals
and the social observer. The derived aggregation rule is a weighted form of utilitari-
anism. When the VNM framework is replaced by a subjective expected utility (SEU)
setting à la Savage and individual beliefs are allowed to be heterogeneous, on the other
hand, relatively weak versions of the ex ante Pareto condition (such as weak Pareto or
Pareto indifference) yield dictatorial rules, while the imposition of the strong Pareto
condition makes it logically impossible to aggregate individual preferences into a
Bayesian collective ranking, unless individuals all have identical tastes—or identical
utility functions, up to positive affine transformations. Such negative conclusions have
been established both within Savage’s axiom set (Hylland and Zeckhauser 1979;Mon-
gin 1995) and within the Anscombe and Aumann (1963) formalization of SEU theory
(Mongin 1998). More generally, Mongin (1995, 1997, 1998) proves that when indi-
vidual preferences satisfy some diversity condition, such as the affine independence of
the associated utility functions or, symmetrically, of the associated subjective beliefs,
then the Pareto condition can only hold if every non-null individual has identical
beliefs or identical utility function, respectively. Replacing the assumption of SEU
for the collective preferences with suitable monotonicity assumptions with respect to
both states and individuals, Mongin and Pivato (2015) strengthen Mongin’s negative
results. Their analysis is similar to ours in so far the symmetry between Paretian and
statewise dominance (and incompatibility thereof) is acknowledged. Chambers and
Hayashi (2014) pursue a similar pattern in a framework where there is uncertainty
not only as to the true state of the world, but also as to the other agents’ preferences.
Their Pareto condition is then formulated to apply to situations of common knowl-
edge of the appropriate events. These largely negative conclusions established in the
field of collective Bayesian decision-making suggest three natural ways out, i.e. aban-
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doning the full force of the Pareto principle, questioning the rationality of Savage’s
axioms on the collective preference ranking or doing both. The first approach has been
adopted by Gilboa et al. (2004), who, in the Savage’s framework, restrict the domain
of applicability of the Pareto principle to “common-belief” prospects, i.e. alternatives
whose outcome only depends on events that are consensual in the sense that all agents
attach the same probability to them. The aggregation rule obtained recommends using
a weighted average of the individuals’ probabilities as the observer’s beliefs while
resorting to the utilitarian social utility function as in Harsanyi’s theorem. Investi-
gating the more general setting of Maxmin preferences in the Anscombe–Aumann
setting, Qu (2017) obtains the same characterization by restricting the Pareto princi-
ple to common-taste acts. Both restrictions of the Pareto principle exclude unanimities
that are spurious and they do so by exploiting the rich structure of states and outcomes
that are featured by the Savage and Anscombe–Aumann settings, respectively. These
approaches obviously differ fromours sincePareto dominance is relaxed but the collec-
tive ranking remains fullymonotonic.Among the advocates of relaxing the assumption
of Bayesianism at the collective level,17 Chambers and Hayashi (2006) abandon the
requirement of state-independence in a setting à la Savage. Given the well-known rela-
tion between monotonicity and state-independence, their paper is maybe the closest
to ours. Their aggregation rule, despite the technical differences, echoes ours, when
γ equals 1. A related result is proven by Mongin (1998) in the Anscombe–Aumann
framework; the author also assumes that individual preferences are state-dependent.

Finally, among the writers who relax Bayesianism and Paretianism at once, Danan
et al. (2016) relax the completeness property of individual and social preferences
by assuming preferences à la Bewley, who allow decision makers to have imprecise
probabilistic beliefs in the sense of considering more than one prior as plausible. Yet,
they discuss the particular case wherein individual preferences may be complete while
those of society are incomplete. In such a context, if individual tastes and beliefs are
heterogeneous, the standard Pareto principle is satisfied only if social preferences
coincide with those of a particular individual, who then acts as a dictator. Therefore,
they show that the assumption that society has a precise belief is not necessary for
the difficulties surrounding the issue of Paretian aggregation. In a second result, the
Pareto principle isweakened to common-belief options and obtain that the social utility
function is utilitarian while the social set of priors is composed by probabilities which
areweighted averages of the individual priors. Alon andGayer (2016) replace Savage’s
axiom P2 (the sure thing principle) with Maxmin expected utility assumptions for the
collective ranking, since they view heterogeneity of individual priors as evidence of
the fact that there is ambiguity as to what prior should the observer adopt to evaluate
a social alternative. They further restrict the Pareto principle to common-belief and
common-taste options and obtain an aggregation rule which is very similar to the
one proposed by Danan et al. (2016). A MaxMin social ranking is also assumed in
Hayashi and Lombardi (2018), who impose a Pareto-like condition requiring that if
the expected utility of a prospect is at least as large as the expected utility of some
other prospect, for each individual, for all individual beliefs, then the social observer

17 Several authors abandoned the hypothesis of Bayesianism at the individual and collective level, i.e.
investigated the issue of group preference aggregation under a different decision model. We do not review
this literature here.
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should respect this judgment; they obtain the existence of a set of state-dependent
individual weights and a set of social beliefs such that the social evaluation is the
minimal expected value of the worse weighted sum of individuals’ utilities. Further
incomplete social rankings have been obtained by redefining Pareto dominance so
as to exclude betting situations (spurious unanimities). Gilboa et al. (2014) propose
a criterion according to which an option f no-betting dominates another option g
if f Pareto dominates g and there exists a probability distribution which makes the
choice of f individually rational for all agents involved in the sense that all involved
individuals’ expected utility of f under p is higher than the one of g. Brunnermeier
et al. (2014) suggest a belief neutral social welfare criterion that essentially requires
an option to be dominant if it is so according to all priors in the convex hull of the
individuals.

Lastly, in the context of an axiomatic characterization of social welfare functions
for uncertain incomes, Gajdos and Maurin (GM) (Gajdos and Maurin 2004) obtain a
representation of social preferences that is reminiscent of our main result. Their objec-
tive is to disentangle the social attitude towards uncertainty (the ex ante view) from
the one towards inequality (the ex post view), and study their impact on social pref-
erences. These attitudes are represented by dominance criteria that apply respectively
state-by-state and individual-by-individual. Their main axiom requires a global form
of dominance with respect to both criteria through a logic similar to ours. Moreover,
the representation in their Theorem 2 also entails a convex combination (with variable
weight) between the ex ante and ex post evaluations. However, as GM clarify (see
p. 98), their analysis “should not be understood as providing a rule for aggregating
individual preferences” and their ex ante preference relation “does not represent indi-
viduals’ preferences but the collective attitude towards uncertainty”. For instance, one
can easily verify that forcing the ex ante dominance criterion to be compatible with
Pareto dominance is only possible if individuals hold a common prior, a situation that
boils down to Harsanyi’s seminal aggregation theorem Harsanyi (1955).

4 Framework

4.1 Basic framework

4.1.1 Uncertain social decision

We assume a basic Anscombe and Aumann (1963) framework. Let X be a non-
empty set of consequences and Y = �(X) be the set of all lotteries over X ; that
is, distributions over X with finite support. Uncertainty is represented by a finite state
space S. Let F be the set of acts; that is, functions from S to Y . Since Y is a mixture
space, one can define, for any f , g ∈ F and for any α ∈ [0, 1], the act α f + (1− α)g
in F which yields α f (s) + (1 − α)g(s) ∈ Y for every state s ∈ S. We slightly abuse
notation and denote by l the constant act in F yielding lottery l ∈ Y in every state.
Finally, for any subset E ⊆ S and any two act f , g ∈ F , fE g denotes the element of
F which is equal to f over E and equal to g over S\E . If E = {s} is a singleton set
for some s ∈ S, then we rather use the notation fs g for fE g.
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4.1.2 Individuals

We assume a society made of a finite number of agents N = {1, . . . , n} with n ≥ 1.
Each agent i ∈ N in this society is characterized with a preference relation �i over
F . As customary, ∼i and �i denote its symmetric and asymmetric components.

4.1.3 Society

A social planner, which we simply refer to as “the society” for convenience, must
make decisions. His preferences are given by a binary relation �0 on F . Again,
∼0 and �0 denote its symmetric and asymmetric components. The subscript i = 0
refers to society. The set N ∪ {0} is denoted N∗. Our goal is to provide an axiomatic
representation of social preferences.

4.2 Assumptions

SEU individuals: Individual preferences are assumed to abide by the (Anscombe–
Aumann) theory of Subjective Expected Utility (SEU). Therefore, for each individual
i ∈ N , there exist a probability measure λi on S and a non-constant mixture affine
function ui : Y → R such that, for any f , g ∈ F , we have

f �i g ⇐⇒ Eλi (ui ◦ f ) ≥ Eλi (ui ◦ g). (1)

Next, we require that, for any finite set of lotteries, the existence of some pair of
lotteries that all individual consider as better and worse than any of the lotteries in
the set. Such an assumption constitutes a strengthening of a technical condition, ofter
referred as minimum agreement on consequences (MAC), which is quite common in
the preference aggregation literature and states that there exists two lotteries whose
(strict) ranking is commonly agreed by all agents.18 While we do not believe such
strengthening of MAC to be overly restrictive (we may disagree on what is preferable
between economicgrowth and equality, andyet agree that havingbothoutscores having
none), we mention that such assumption plays only a technical role in our proof: it
is needed to derive the existence of social certainty equivalents without hinging on
monotonicity of �0 nor on some unanimity (Pareto-like) condition.
C-Agreement: For all finite subset A of Y , there exist two lotteries l, l ′ ∈ Y such that,
for all i ∈ N , we have l �i m �i l ′ for all m ∈ A.

As a consequence of c-Agreement, there exist two lotteries l1, l0 ∈ Y such that
l1 �i l0 for any i ∈ N . Thus, we can assume without loss of generality that ui (l1) = 1
and ui (l0) = 0 for any i ∈ N .

18 Formally,MACpostulates the existence of two lotteries l,m ∈ Y such that for all i+1, . . . , n, l �i m.We
mention en passant that in the presence of some diversity condition on the individual risk preferences (VNM
utility functions)—such as affine independence—MAC becomes an inference rather than a hypothesis, i.e.
it holds for free.
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5 Main result

This section contains the main results of the paper. We first introduce the set of axioms
wewish to impose on the social preferences and then present the functional representa-
tion to which they are equivalent. Our axioms are weaker than the standard aggregative
setting à la Anscombe–Aumann,19 in that the (Anscombe–Aumann) monotonicity
requirement and theweakPareto condition are combined in aweaker dominance axiom
stating that if an option statewise dominates another option according to the social con-
ditional preferences and it is preferred to the other by all individuals, then the social
unconditional preferences agree with such ranking. Since such weaker dominance
principle restricts the applicability of the Pareto condition and of social monotonicity
to a particular subsets of act, we further investigate what are the consequences of
assuming the unrestricted versions of each of these two conditions in turns (their joint
imposition being discarded by the classical impossibility results). Such exercise yields
an intuitive characterization of the incompatibility of the two principles in terms of
functional representation.We finally show that the representation of social preferences
obtained is suitably unique and propose a simple comparative criterion to determine
whether a social planner is more prone to monotonicity or Paretianism than another.

5.1 Axioms

The first three axioms are the standard Anscombe–Aumann (henceforth, AA) condi-
tions.
(Weak Order) �0 is complete and transitive.
(Continuity) For all f , g, h ∈ F , if f �0 g �0 h, there exist α, β ∈ (0, 1) such that
α f + (1 − α)h �0 g �0 β f + (1 − β)h.
(Independence) For all f , g, h ∈ F and α ∈ (0, 1), f �0 g if and only if α f + (1 −
α)h �0 αg + (1 − α)h.

Next axiom is novel with respect to the AA framework. It states that for any act f ,
one can always find two lotteries (or equivalently, constant acts) that society values
as (weakly) better and worst than f . As for the technical assumption of c-agreement,
this condition is needed to derive the existence of certainty equivalents for the social
preferences without hinging on monotonicity. It is easy to see that such condition is a
minor consequence of the standard AA monotonicity.
(Boundedness) For all f ∈ F , there exist l, m ∈ Y such that l �0 f �0 m.

The following axiom is the key assumption to our approach; it states that if all
individuals unanimously prefer (weakly) an option f to another option g, and the
former option statewise dominates the latter from the social viewpoint, then society
should also prefer f to g. It is easily observed that such condition represents at once
a weakening of statewise dominance and of the Pareto criteria; it restricts statewise
dominance to Pareto dominant acts and Pareto dominance to statewise dominant acts.
Observe that the standard Pareto condition or, symmetrically, AA monotonicity each

19 That is, SEU rationality together with the (weak) Pareto condition; for a discussion of the latter, see
Remark 5.1 and Footnote 20.

123



Aggregation of Bayesian preferences: unanimity vs monotonicity 431

implies Weak dominance, which is therefore hardly refutable by whoever is willing
to accept either of the two.
(Weak Dominance) For all f , g ∈ F , if f �i g for any i ∈ N and f (s) �0 g(s) for
any s ∈ S, then f �0 g.

Remark Note that the unanimity condition used in the above axiom is theweak version
of the Pareto principle;20 we mentioned in the introduction that, when individual
tastes and beliefs are heterogeneous, the joint imposition of weak Pareto and SEU
assumptions on the individuals’ and on the collective ranking delivers dictatorial rules
rather than a logical impossibility. Here, the choice of weak Pareto is motivated by our
intention of guaranteeing a symmetric treatment of the two dominance conditions, for
to assume a strong version of statewise dominance is of little meaning.

Finally, a non-triviality assumption is needed.
(Non-triviality) We have l1 �0 l0.

Such condition is stronger than the usual AA non-triviality axiom, since it requires
strict preference to hold with respect to two specific rather than arbitrary lotteries.
However, it is not necessary to the proof: it only allows a convenient normalization of
the collective VNM index which simplifies the presentation of the result.

5.2 Result

In order to introduce our main result, the following definition is needed. We say that
a function u0 : Y → R is normalized if u0(l1) = 1 and u0(l0) = 0.

Theorem 1 Assume SEU individuals and c-Agreement. Then, society’s preferences
�0 satisfy Weak Order, Continuity, Independence, Boundedness, Weak Dominance
and Non-triviality if and only if there exist non-negative real numbers (α1, . . . , αn)

with α1 + · · · + αn = 1, a real number γ ∈ [0, 1], a probability measure λ0 on S and
a normalized mixture affine function u0 : Y → R satisfying the following:

(Th1.1) For any l ∈ Y , γ · u0(l) = γ · (
α1 · u1(l) + · · · + αn · un(l)

)

(Th1.2) For any f , g ∈ F , f �0 g ⇐⇒ V0( f ) ≥ V0(g), where, for any h ∈ F ,

V0(h) = γ ·
∑

i∈N

αi · Eλi (ui ◦ h) + (1 − γ ) · Eλ0(u0 ◦ h). (2)

Example 3 Consider again Examples 1 and 2. The collective evaluation ranks no duel
above duel whenever γ < 20

21 , while it ranks the BA option higher than the Phd
one whenever γ > 3

4 . Hence, and contrary to a unilateral commitment to one of
the dominance criteria, there is an interval of values for the parameter γ (namely
γ ∈ ( 34 ,

20
21 )) that allows society to forbid the duel among the two gentlemen while

financing BA studies for both children.

20 The weak Pareto principle states that if all agents weakly prefer one option to another, so does the
collective ranking, while the strong (sometimes called strict) Pareto condition requires that if all agents
weakly prefer one prospect to another and there exists at least one agent whose preference is strict, society
has also a strict preference for the first option.
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Theorem 1 posits an aggregation rule which is a convex combination of two compo-
nents, the first being a weighted sum of the individuals’ SEU functional, i.e. of the
expected values of the prospect computed according to the individual utility function
and prior belief, the second being the social SEU functional, with associated social
utility function and social belief. Since the first term trivially satisfies the (ex ante)
Pareto condition (but does not entail a separation of social beliefs and tastes), while
the second one is clearly monotonic, Theorem 1 establishes the existence of a trade off
between adherence to the Pareto principle and compliance with statewise dominance.
While the Pareto component of the representation is necessarily ex ante utilitarian,
the monotonicity component has an ex post utilitarian form whenever the parameter
γ , determining the weight to be assigned to Pareto dominance (and, consequently, to
statewise dominance), is strictly positive. Hence, if Pareto is at all to matter, utilitari-
anism follows. On the other hand, when γ = 0, the functional form expresses the case
where society disregards individual evaluations and assesses alternatives by taking the
expected utility according to its (unrestricted) VNM utility function and probabilistic
belief. By the same token, when γ = 1, only ex ante individual evaluations matter for
the social evaluations, so there is no room for a social VNM index. A formal analysis
of these limit cases is provided below and shows, roughly, that under heterogene-
ity of individual beliefs they are equivalent to assume the full force of either of the
dominance criteria at the expenses of the other.

A final remark concerns the existence of a social belief λ0 and of a social utility
function u0 that need not be related to, nor stem from, individual beliefs and utility
assignments respectively. The above representation involves a SEU social planner who
treats her own preferences as the ones of any of the individual members of society
and then applies the Pareto principle. Indeed, by letting βi = γ · αi for all i ∈ N and
β0 = 1 − γ , representation 2 can be written as follows:

V0(h) =
∑

j∈N∗
β j · Eλ j (u j ◦ h). (3)

Such feature is in line with the spirit of our Weak dominance principle; in some sense,
individual evaluations alone or, symmetrically, social considerations alone are not suf-
ficient to determine the final deliberation, which therefore turns out to be a compromise
between the two. The Pareto principle is a reason to restrict social preferences and
social preferences provide a reason to contrast unanimous judgments.21

Whether this is a desirable feature or not it is likely to depend on the choice situation;
therefore, onemaywonderwhat additional constraints on social preferences are needed
to obtain that the social belief or utility function are some specific function of the
respective individual components. We use the remaining of this section to give a
partial answer to this question by analyzing the particular case of utilitarian functional
aggregators. By awell-known fact, whose formal statementwe omit, the ex post Pareto
principle is sufficient to guarantee that the social VNM index is utilitarian; it turns

21 There is nevertheless an important caveat to the preceding interpretation: our aggregation rule is in general
state-dependent and therefore it does not satisfy Savage’s axioms P3 and P4. Therefore, the parameters u0
and λ0 of the representation do not represent social utility assignments and beliefs in the usual sense.
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out that the following strengthening of Weak Dominance is needed to characterize the
social prior from Theorem 1 as a convex combination of individual priors:
(Belief-Adjusted Weak Dominance) For all f , g ∈ F , if for every i ∈ N , f �i g and∑

s∈S λi (s) f (s) �0
∑

s∈S λi (s)g(s), then f �0 g.
Like Weak Dominance, Belief-Adjusted Weak Dominance combines two dom-

inance principles. The first one is nothing but the standard Pareto condition. To
understand the second one, it is helpful to assume a utility function u0 represent-
ing the restriction of �0 to lotteries. Then, this second dominance principle requires
acts f , g ∈ F to be such that Eλi (u0 ◦ f ) ≥ Eλi (u0 ◦ g) for all i ∈ N . In a way, by
replacing the heterogeneous individual utility functions with the social utility function
u0 and only then applying the Pareto condition, society prescribes to each agent to
evaluate welfare not only from the individual but also from the collective point of
view. Alternatively, it requires the social evaluation to conform with the one of the
individuals whenever the expected social utility, computed according to either of the
individual beliefs, points at the same direction. In some sense, society appraises ex ante
social welfare from behind a (probabilistic) veil of ignorance, believing that agent i’s
prior may be the correct one with some well-defined probability. As a consequence,
and in a way that parallels the utilitarian averaging of individual utilities, society is
non-creative in assessing social uncertainty.

In is worth noticing that by combining the two above mentioned dominance princi-
ples as it does, Belief-Adjusted Weak Dominance weakens each one of them at once.
It conveys the basic principle that society as a whole is responsible for the beliefs
of its members, and dismisses any spurious unanimity. Interestingly, Belief-Adjusted
Weak Dominance has been introduced by Billot and Qu (2018) to obtain a convex
aggregation of priors when society has SEU preferences. In this perspective, Theo-
rem 2 below shows that it is the appropriate weaker notion of dominance that makes
the social belief of the representation conveyed by Theorem 1 a convex aggregation
of individual priors. Notice that Belief-Adjusted Weak Dominance is stronger than,
and implies, Weak Dominance. However, while Weak Dominance is only expressed
in terms of preferences and is thus a purely behavioral axiom, Belief-Adjusted Weak
Dominance is formulated in terms of the given individual priors.

Theorem 2 Assume SEU individuals and c-Agreement. Then, society’s preferences �0
satisfy Weak Order, Continuity, Independence, Boundedness, Belief-Adjusted Weak
Dominance and Non-triviality if and only if there exists {γ, (αi )i∈N , u0, λ0} providing
a representation of �0 as in Theorem 1, with λ0 a convex combination of (λi )i∈N .

5.3 Pareto dominance and statewise dominance

In this section we investigate the implications of strengthening our assumptions by
assuming the full force of the Pareto principle or of monotonicity on the representation
provided in Theorem 1. Put it differently, we ask how the aggregation rule changes
once either of the dominance criteria is added to our axiom set. As it is customary
in the literature, we focus on situations where individuals tastes, as represented by
their utility functions, are sufficiently diverse. An established formal rendering of
such diversity consists in assuming the existence of pair of lotteries that “separate”
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each agent’s preferences in the sense that every individual in society but one agent
is indifferent between the two. Such assumption, stated below under the label of
risk diversity and assumed throughout this section, is well-known to be equivalent
to the individuals’ utility functions being linearly independent.22 Interestingly, we
obtain that full Paretianism (full Bayesianism, respectively) holds when either the
parameter γ assigns all the weight to the Pareto component of the representation (the
monotonicity component, respectively), or there is a commonprior, thereby confirming
the well-known negative conclusions on the impossibility of Bayesian aggregation in
our setting. Given such clear-cut characterization, it is then possible to compare classes
of preferences as defined in Theorem 1 according to their disposition to Paretianism
(or, dually, to Bayesianism). Loosely speaking, we say that a social planner is more
prone to Paretianism than another one if, whenever the first social planner respects
unanimity of individual preferences, so does the latter. Dually, we say that a planner
is more prone to statewise dominance than another if, whenever she complies with
the axiom of monotonicity, so does the latter. Not surprisingly, the two dominance
criteria being incompatible, a planner is more prone to Paretianism than another if and
only if she is less prone to statewise dominance. Furthermore, it suffices to compare
the magnitude of the parameter γ in order to identify the social planner’s disposition
toward Paretianism.

Finally, given the well-known relationship between monotonicity and state-
independence of preferences, one may expect social preferences as defined by
Theorem 1 to be in general state-dependent. We confirm such intuition below by
showing that social preferences are state-independent if and only if monotonicity
holds.

We are now ready to state such results formally. For the rest of this subsection,
we assume that society’s preferences �0 satisfy Weak Order, Continuity, Indepen-
dence, Boundedness, Weak Dominance and Non-triviality and Risk Diversity. Let the
structure (γ, (αi )i∈N , u0, λ0) provide a representation of�0 as in Theorem 1. We will
furthermore assume the diversity condition mentioned at the beginning of this section:

Risk Diversity: For any i ∈ N , there exist l, m ∈ Y such that l �i m and l ∼ j m
for all j ∈ N\{i}.

To state our first proposition formally, some additional definitions are needed. We
first remind the notions of Pareto, and statewise dominance.
(Pareto Dominance) For all f , g ∈ F , if f �i g for any i ∈ N , then f �0 g.
(Statewise Dominance) For all f , g ∈ F , if f (s) �0 g(s) for any s ∈ S, then f �0 g.

Remark OurWeak dominance axiomused the conjunction of the antecedents of Pareto
dominance and Statewise dominance as antecedent while delivering the same conse-
quent. It is perhaps clearer now in what sense Weak dominance is implied by each
dominance criterion separately.

We further introduce the notion of state-independence of preferences, which is based
on the following definition of null state:

22 Somewhat surprisingly, this diversity condition also implies that individuals cannot be in full disagree-
ment either, for it implies the property of minimal agreement on consequences, that we already discussed
in Sect. 4.2 above.
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A state s ∈ S is said to be null if any two acts being equal to each other on S\{s}
are indifferent for �0. We can now define state-independence of preferences.
(State Independence) For any s ∈ S, f ∈ F , and l, m ∈ Y , if ls f �0 ms f , then
lt f �0 mt f for any nonnull state t ∈ S.23

Next, we define an individual to be null if her preferences are irrelevant to soci-
ety, and call a prior probability common if it is shared by every non-null individual.
Such common prior probability may or not coincide with the social prior probability.
Furthermore, we use the definition of null agents to distinguish between two notions
of convex combination of individual utilities: the classic definition involving non-
negative coefficients, and the particular case where individual weights are bound to
be strictly positive whenever an agent is non-null.

We say that that a given individual i ∈ N is null if there exist f , g ∈ F such that
f �i g, f ∼ j g for any j ∈ N\{i}, f (s) ∼0 g(s) for any s ∈ S, and yet f ∼0 g.
We say that the social prior is essentially a common prior if, for any non-null

individual i ∈ N , we have λi = λ0. We say that there is essentially a common prior if
there exist a probability measure λ on S such that, for any non-null individual i ∈ N ,
we have λi = λ.

We say that u0 is a convex combination of individual utilities if there exist non-
negative coefficients {β1, . . . , βn} summing to 1 such that u0(l) = ∑

i∈N βi ·ui (l) for
any l ∈ Y . If additionally we have that i ∈ N is non-null if and only if βi > 0, we say
that the convex combination is adapted.

Proposition 1 Assume SEU individuals, c-Agreement and Risk Diversity. Let the struc-
ture {γ, (αi )i∈N , u0, λ0} provide a representation of �0 as in Theorem 1. Then, the
following equivalences hold:

(P1.1) Pareto Dominance holds iff γ = 1, or λ0 is essentially a common prior, and
u0 is an adapted convex combination of individual utilities.

(P1.2) Statewise Dominance holds iff γ = 0, or there is essentially a common prior.
(P1.3) Statewise Dominance holds iff State Independence holds.

The first part of Proposition 1 shows that Pareto dominance holds when either
the monotonicity component (the social SEU functional) disappears from the
representation—yielding a pure ex ante utilitarian aggregation rule, or the social VNM
index is utilitarian and the social prior is essentially common, i.e. every non-null indi-
vidual and the social planner have the same prior. In some sense, either the social
observer is itself “null”—and social preferences are not SEU, or her prior probabil-
ity coincides with the one of any other non-null individual and a SEU representation
follows even thoughmonotonicity has not been assumed. Note that the notion of essen-
tially common social prior generalizes the one of probability dictatorship,24 so that
the case where γ �= 1 essentially strengthens (but nevertheless does not generalize25)

23 This axiom appears, among others, in Fishburn (1970, p. 177) and Kreps (1988, p. 109).
24 Formally, an individual i ∈ N is a probability dictator if λ0 = λi ; this definition is due to Mongin
(1998).
25 This is because while the aggregation rule involves a generalization of probability dictatorship, it does
so by displaying a stronger form of convexity of individual utilities for the social VNM utility.

123



436 F. Ceron, V. Vergopoulos

the classical result of Bayesian aggregation:26 if an agent’s utility assignment is to be
given any weight, the social planner should adopt her same beliefs; reciprocally, and
unless the social planner agrees with an agent’s beliefs, the agent’s utility plays no
role in the aggregation rule.

The second part of Proposition 1 posits the equivalence between statewise domi-
nance and the irrelevance of the preferences of the individuals, unless they essentially
agree on the prior probability. In the latter case, social preferences are represented by
a SEU functional with associated utilitarian VNM index and probability given by the
convex combination (with weight γ ) of such common prior and the social belief λ0,
as if the planner were compromising between her beliefs and those shared by the indi-
viduals. Such result is perhaps the most surprising, given that social preferences may
ignore or overturn the ones of the individuals. Yet adherence to statewise dominance
means in some sense that the preferences of the observer are not to be ignored when
making social decisions which, in the presence of sufficient individual heterogeneity,
commonly results in dictatorial solutions; therefore, we see (P1.1) and (P1.2) as two
sides of the same coin.

Finally, the last equivalence formally establishes that social preference are state-
independent whenever they satisfy statewise dominance.

Despite the general incompatibility delineated in Proposition 1, the two dominance
criteria can nonetheless hold on some specific subdomains. For instance, define a
common-belief act f ∈ F as an act such that, for all l ∈ Y , λi [{ f = l}] is independent
of all non-null i ∈ N . It is then a simple consequence of Eq. (2) in Theorem 1 that
social preferences satisfy statewise dominance on the subdomain of common-belief
acts. Likewise, define a strongly common-belief act f ∈ F as an act such that, for all
l ∈ Y , λi [{ f = l}] = λ0[{ f = l}] for any non-null i ∈ N . Eq. (2) then implies Pareto
dominance on the subdomain of strongly common-belief acts. Moreover, by looking
at Theorem 2, it is easy to see that whenever the social prior is a convex combination of
individual priors, the two dominance principles continue to hold in their full force on
the domain of common-taste acts, where a common-taste act f ∈ F is an act such that
ui ◦ f is independent of all non-null i ∈ N . Hence, and overall, the two dominance
criteria hold simultaneously on subdomains of acts which do not reveal “too much”
heterogeneity in individual preferences.

We turn now to the comparative notion discussed at the beginning of this section,
i.e. we ask whether it is possible to identify social planners who are more prone to
Pareto or statewise dominance than others. As mentioned earlier, we will focus on
social observers whose preferences are strongly comparable, in the sense that they
assign the same set of individual weights, and they have same social belief and VNM
index. We will also discard the case where there is essentially a common prior.

Formally, consider now two preference relations over F given by �0 and �′
0. We

say that �0 is more prone to Pareto Dominance than �′
0 if for any f , g ∈ F such

that f �i g for all i ∈ N , f �′
0 g implies f �0 g. We say that �0 is more prone

to Statewise Dominance than �′
0 if for any f , g ∈ F such that f (s) �0 g(s) and

f (s) �′
0 g(s) for all s ∈ S, f �′

0 g implies f �0 g.

26 By classical result we mean the fact that the joint imposition of SEU assumptions on the individuals and
the social observer together with (weak) Pareto dominance and linear independence of individual utilities
yield probability dictatorship; see for example Lemma 5 and Proposition 9 in Mongin (1998).
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Proposition 2 Assume SEU individuals, c-Agreement and Risk Diversity. Consider
two binary relations �0 and �′

0 on F . Assume that �0 and �′
0 define the same set

of null individuals, and that there is essentially no common prior. Let the structures
{γ, (αi )i∈N , u0, λ0} and {δ, (αi )i∈N , u0, λ0} provide two representations as in Theo-
rem 1 for �0 and �′

0 respectively. Then, the following are equivalent:

(P2.1) �0 is more prone to Pareto Dominance than �′
0,

(P2.2) �0 is less prone to Statewise Dominance than �′
0,

(P2.3) γ ≥ δ.

5.4 Uniqueness of the representation

In this section we study the uniqueness properties of the representation provided in
Theorem 1. We will need to distinguish two fundamental situations, depending on
whether an essentially common prior exists or not. In the former case the representa-
tion turns out to be essentially unique, meaning that the relevant parameters—i.e. those
parameters that do not necessarily cancel out from the aggregation rule—are unique.
Clearly, the remaining parameters may well take arbitrary values, but since any such
value delivers exactly the same final representation of social preferences, there is no
serious loss.When there is an essentially common prior, on the other hand, social pref-
erences admits a unique SEU representation which, however, given the parsimony of
its parameters, cannot be associated to a unique structure {γ, (αi )i∈N , u0, λ0} as pro-
vided by Theorem 1. Any of such structures representing the same social preferences
�0 is in fact admissible, provided that a few constraints linking the parameters of the
two representations are satisfied. This is not surprising, for reducing to a SEU repre-
sentation involves an important loss of information with respect to the representation
provided in Theorem 1. Such loss is not immune to critiques, for in many contexts
very different arrangements may turn out (doubtfully) to be formally equivalent, but
it is not an uncommon feature of functional aggregators.

Proposition 3 Assume SEU individuals, c-Agreement, Risk Diversity and that there is
essentially no common prior. Let the structures {γ, (αi )i∈N , u0, λ0} and
{δ, (βi )i∈N , v0, μ0} provide two representations of �0 as in Theorem 1. Then, we
always have δ = γ and v0 = u0. Moreover, the following hold:

(P3.1) If γ = δ = 0, then μ0 = λ0.
(P3.2) If γ = δ = 1, then βi = αi for any i ∈ N.
(P3.3) If γ = δ ∈ (0, 1), then μ0 = λ0 and βi = αi for any i ∈ N.

Proposition 4 Assume SEU individuals and c-Agreement. Assume that there is essen-
tially a common prior denoted by λ. Then, society’s preferences �0 satisfy Weak Order,
Continuity, Independence, Boundedness, Weak Dominance and Non-triviality if and
only if there exist a normalized mixture affine function v0 : Y → R and a probability
measure μ0 on S such that for any f , g ∈ F ,

f �0 g ⇐⇒ Eμ0(v0 ◦ f ) ≥ Eμ0(v0 ◦ g). (4)
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Moreover, v0 and μ0 are unique. Finally, for any structure {γ, (αi )i∈N , u0, λ0} pro-
viding a representation of �0 as in Theorem 1, we have:

(P4.1) v0 = u0,
(P4.2) If γ > 0, then v0 = ∑

i∈N αi · ui ,
(P4.3) μ0 = γ · λ + (1 − γ ) · λ0.

6 Conclusions

This article reconsiders the issue of Bayesian aggregation by pointing at a conflict
that may arise between two logically independent dominance criteria, Pareto domi-
nance and statewise dominance, that are commonly imposed on social preferences.
We propose a weaker dominance axiom that restricts statewise dominance to Pareto
dominant alternatives and Pareto dominance to statewise dominant alternatives. In this
way we maintain the symmetry between the relevance of individuals and of states of
nature to the social evaluation which is implicit in the standard setting while avoiding
to take a stand as per what criterion should be adopted at the expenses of the other. The
associated aggregation rule is a convex combination of two components, the first being
a weighted sum of the individuals’ SEU functional, the second being a social SEU
functional, with associated social utility function and social belief. Since the first term
trivially satisfies the (ex ante) Pareto condition, while the second one is clearly mono-
tonic, such representation establishes the existence of a trade off between adherence
to the Pareto principle and compliance with statewise dominance. We then investigate
what are the consequences of adding to our assumptions either of the two dominance
criteria in their full force and obtain that each of them is equivalent to discarding the
other dominance principle, unless there is essentially a common prior probability.

7 Appendix: proofs of all results

7.1 Four useful lemmata

Lemma 1 Consider an integer P ≥ 1, and a mapping ϕp : F → R for any p ∈
[0 . . . P]. Suppose that each ϕp is mixture affine; that is, for any f , g ∈ F and any
α ∈ [0, 1], ϕp(α f + (1 − α)g) = αϕp( f ) + (1 − α)ϕp(g). Moreover, suppose that
the ϕp are related by a Pareto condition; that is, for any f , g ∈ F , if ϕp( f ) ≥ ϕp(g)

for any p ∈ [1 . . . P], then ϕ0( f ) ≥ ϕ0(g).
Then, there exist non-negative numbers α1, . . . , αP and a real number β such that,

for any f ∈ F , we have

ϕ0( f ) =
P∑

p=1

αp · ϕp( f ) + β. (5)

Proof Define a mapping 	 : F → R
P+1 by, for any f ∈ F , 	( f )

= (ϕ0( f ), . . . , ϕP ( f )). Let K ⊆ R
P+1 denote the range of 	. Since ϕp is mix-
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ture affine for any p ∈ [0 . . . P], the subset K must be convex. Moreover, since the
ϕp are related by a Pareto condition, we can invoke Proposition 1 in De Meyer and
Mongin (1995) and finally obtain α1, . . . , αP and β as in Eq. (5). ��
Lemma 2 Let the structure {γ, (αi )i∈N , u0, λ0} provide a representation of �0 as in
Theorem 1 with γ > 0. Then, for any i ∈ N, i is null if and only if αi = 0.

Proof First, suppose that i is null. Then, there exist f , g ∈ F such that: (a) f �i g, (b)
f ∼ j g for any j ∈ N\{i}, (c) f (s) ∼0 g(s) for any s ∈ S, and yet (d) f ∼0 g. Since
the structure {γ, (αi )i∈N , u0, λ0} provide a representation of �0 as in Theorem 1, and
by Conditions (b), (c) and (d),

0 = V0( f ) − V0(g) = γ · αi · [Vi ( f ) − Vi (g)]

By Condition (a), we have Vi ( f ) − Vi (g) > 0. Since γ > 0 by assumption, we
must have αi = 0. Now, suppose that αi = 0. By Risk Diversity, there are l, m ∈ Y
such that l �i m and l ∼ j m for any j ∈ N\{i}. Let s ∈ S be a state such that
λi (s) > 0. Define f , g ∈ F by g(s′) = m for any s′ ∈ S, and f (s′) = l if s′ = s
and f (s′) = m otherwise. By construction, we have f ∼ j g for any j ∈ N\{i}, and
f ∼i g. Moreover, since γ > 0 and αi = 0, we have u0 = ∑

j �=i α j u j by (Th1.1). So
u0( f (s)) = u0(g(s)) and, therefore, f (s) ∼0 g(s) for any s ∈ S. But then we must
also have Eλ0(u0 ◦ f ) = Eλ0(u0 ◦ g). Finally, by (Th1.2), we also have for any h ∈ F

V0(h) = γ ·
∑

j∈N\{i}
α j · Vj (h) + (1 − γ ) · Eλ0(u0 ◦ h).

Therefore, V0( f ) = V0(g), and f ∼0 g. This shows that i is null. ��
Lemma 3 Assume Risk Diversity. For any function ψ : N × S → R such that, for any
f ∈ F , ∑

i∈N ,s∈S

ψ(i, s) · ui ( f (s)) = 0, (6)

we have ψ(i, s) = 0 for any i ∈ N and s ∈ S.

Proof Fix i ∈ N and s ∈ S. We construct f , g ∈ F such that f (t) ∼ j g(t) for any
( j, t) ∈ N × S with ( j, t) �= (i, s), and f (s) �i g(s). By Risk Diversity, there exist
l, m ∈ Y such that l �i m and l ∼ j m. for any j ∈ N\{i}. Let g ∈ F be such that
g(t) = m for any t ∈ S. Let f ∈ F be such that f (t) = l if t = s and f (t) = m
otherwise. These two acts satisfy the conditions above. Then, by Eq. (6), we have

0 =
∑

j∈N ,t∈S

ψ( j, t) · u j ( f (t))

−
∑

j∈N ,t∈S

ψ( j, t) · u j (g(t)) = ψ(i, s) · [ui ( f (s)) − ui (g(s))].

But by construction we have ui ( f (s)) > ui (g(s)). So it must be that ψ(i, s) = 0.
This holds for any i ∈ N and s ∈ S. ��
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We say that �0 satisfies STP if for any E ⊆ S and any f , g, h, k ∈ F , we have
fE h �0 gE h iff fE k �0 gE k.

Lemma 4 If �0 satisfies completeness, transitivity, STP and State Independence, then
it satisfies Statewise Dominance.

Proof Suppose that �0 satisfies STP and State Independence. We have:

Claim 1: For any s ∈ S, f , g ∈ F , and l, m ∈ Y , if ls f �0 ms f , then lt g �0 mt g
for any nonnull state t ∈ S.

Indeed, suppose ls f �0 ms f for some s ∈ S, f ∈ F and l, m ∈ Y . Let t ∈ S be a
nonnull state. Then, by State Independence, lt f �0 mt f . Finally, by STP, we obtain
lt g �0 mt g. ��

Claim 2: For any s ∈ S, f ∈ F , and l, m ∈ Y , if l �0 m, then ls f �0 ms f .

Let S∗ := {s1, . . . sN } be the set of nonnull states in S. Consider s ∈ S, f ∈ F , and
l, m ∈ Y such that ls f �0 ms f . We will show that l �0 m. By Claim 1, we obtain:

lt g �0 mt g for any t ∈ S∗ and any g ∈ F . (7)

In particular, for t = s1 and g = l, we get l �0 ms1l.
Now, note that ms1l = ls2(ms1l). By applying (7) to t = s2 and g = ms1l, we

get ms1l = ls2(ms1l) �0 ms2(ms1l) = m{s1,s2}l. By the conclusion of the previous
paragraph, l �0 m{s1,s2}l.

By repeating iteratively this process, we obtain l �0 mS∗l. Now, let S\S∗
= {t1, . . . , tM }. Note that mS∗l and mS∗∪{t1}l are equal to each other except on the
null state t1. So l �0 mS∗l ∼0 mS∗∪{t1}l. Moreover, mS∗∪{t1}l and mS∗∪{t1,t2}l are
equal to each other except on the null state t2. So mS∗∪{t1}l ∼0 mS∗∪{t1,t2}l and,
therefore, l �0 mS∗∪{t1,t2}l. By repeating iteratively this process, we finally obtain
l �0 mSl = m, as desired. ��

Claim 3: �0 satisfies Statewise Dominance.

Let S = {s1, . . . , sN }. Let f , g ∈ F be such that f (s) �0 g(s) for any s ∈ S. Define
f0 = f and, for anyn ∈ [1 . . . N ], fn = g(sn)sn fn−1. For anyn ∈ [1 . . . N ],we clearly
have fn−1(sn) = f (sn) �0 g(sn) so, by Claim 2, fn−1(sn)sn fn−1 �0 g(sn)sn fn−1;
that is, fn−1 �0 fn . Then, f0 �0 fN ; that is, f �0 g. ��

Claim 3 completes the proof of the lemma. ��

7.2 Proof of Theorem 1

The necessity of Weak Order, Continuity and Independence is straightforward. So we
only prove the necessity of Weak Dominance, Boundedness and Non-triviality. To do
so, assume a representation as in Theorem 1. Since u0 is normalized, we have u0(l1)
> u0(l0). Moreover, by confronting (Th1.1) and (Th1.2), we see that V0(l ′) =
u0(l ′) for any l ′ ∈ Y . Thus, V0(l1) > V0(l0). But since V0 represents social
preferences, we finally obtain l1 �0 l0. To show Weak Dominance, assume that

123



Aggregation of Bayesian preferences: unanimity vs monotonicity 441

f , g ∈ F satisfy f �i g for any i ∈ N and f (s) �0 g(s) for any s ∈
S. Then, we have Eλi (ui ◦ f ) ≥ Eλi (ui ◦ g) for any i ∈ N and V0( f (s))
≥ V0(g(s)) for any s ∈ S. Since we have proved that u0 is the restriction of V0
to lotteries, we have u0( f (s)) ≥ u0(g(s)) and, therefore, Eλ0(u0 ◦ f ) ≥ Eλ0(u0 ◦ g).
By Eq. (2), this is sufficient to obtain V0( f ) ≥ V0(g) and, finally, f �0 g. Hence
Weak Dominance. Finally, to show Boundedness, consider an arbitrary act f ∈ F . If
γ = 0, then �0 satisfies Satatewise Dominance. Moreover, the range of f is finite.
So there exist l, m ∈ Y such that l �0 f (s) �0 m. Then, by Statewise Dominance,
we have l �0 f �0 m. If γ > 0, then by (Th1.1) we have u0 = ∑

i∈N αi ui . Since
the range of f is finite, we can apply c-Agreement and obtain l, m ∈ Y such that
l �i f (s) �i m for any s ∈ S and i ∈ N . Since individual preferences satisfy
Statewise Dominance, we obtain l �i f �i m for any i ∈ N . Moreover, we have
ui (l) ≥ ui ( f (s)) ≥ ui (m) for any s ∈ S and i ∈ N . Since u0 = ∑

i∈N αi ui , we
obtain u0(l) ≥ u0( f (s)) ≥ u0(m) for any s ∈ S. Therefore, l �0 f (s) �0 m for any
s ∈ S. Then, we can apply Weak Dominance since we have already proved that it is
necessary, and get l �0 f �0 m.

From now on, we assume that social preferences satisfy Weak Order, Continuity,
Independence, Boundedness,WeakDominance andNon-triviality. Observe thatWeak
order, Continuity and Independence imply that the restriction of�0 to lotteries satisfies
the von Neumann and Morgenstern axioms. Then, by their theorem, there exists a
mixture affine function u0 : Y → R that provides a representation for the restriction
of �0 to lotteries. Moreover, by Non-triviality, we must have u0(l1) > u0(l0). By
applying positive affine transformations if necessary, we may suppose without loss of
generality that u0(l1) = 1 and u0(l0) = 0. Thus, u0 is normalized.

Now, to construct a functional V0 providing a representation for �0, we first show
that each act f ∈ F has a certainty equivalent for �0. That is, for any f ∈ F , there
exists l ∈ Y such that f ∼0 l. Fix f ∈ F . By Boundedness, there are l, m ∈ Y
such that l �0 f �0 m. Then, the construction of a certainty equivalent follows from
standard arguments, which we only briefly sketch. First, if f ∼0 l or f ∼0 m, we are
done. So we assume without loss of generality that l �0 f �0 m. Then, the sets

{α ∈ [0, 1], αl + (1 − α)m �0 f } and {α ∈ [0, 1], f �0 αl + (1 − α)m}

are of the form (α, 1] and [0, α) respectively, for some α ∈ (0, 1). Then, the lottery
p ∈ Y defined by p = αl + (1 − α)m satisfies f ∼0 p.

Next, define the function V0 : F → R by, for any f ∈ F :

V0( f ) = u0(l) (8)

where l is a certainty equivalent associated to f . Clearly, V0( f ) is well-defined,
independent of the choice of a specific certainty equivalent since u0 represents the
restriction of �0 to Y . Moreover, V0 represents social preferences; that is, for any
f , g ∈ F , f �0 g if and only if V0( f ) ≥ V0(g). Last, it is simple to use the axiom of
Independence to see that V0 is mixture-linear on F .

Note that the functional Vi is mixture affine for any i ∈ N . So is the functional
f → u0( f (s)) for any s ∈ S. Let k be the cardinalty of S. Since Weak Dominance
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holds, Lemma 1 provides non-negative numbers (σ j )
n+k
j=1 ∈ R

n+k and a real number
μ ∈ R such that, for any f ∈ F ,

V0( f ) =
∑

i∈N

σi · Vi ( f ) +
∑

s∈S

σs · u0( f (s)) + μ.

By assumption, we have Vi (l1) = ui (l1) = 1 and Vi (l0) = ui (l0) = 0 for any i ∈ N .
Meanwhile, by construction, we have V0(l1) = u0(l1) = 1 and V0(l0) = u0(l0) = 0.
Then, it must necessarily be that σ := ∑

j∈N∪S σ j = 1 and μ = 0. Next, define
γ = ∑

i∈N σi . There are now different cases:

Case 1: γ = 0. Then, set λ0(s) = σs for s ∈ S. This defines a probability
measure λ0 on S, and we obtain V0( f ) = Eλ0(u0 ◦ f ). Hence the representation
of Theorem 1.
Case 2: γ = 1. Then, setαi = σi for i ∈ N . These numbersαi are non-negative and
sum up to 1. We obtain V0( f ) = ∑

i∈N αi ·Eλi (ui ◦ f ). Hence the representation
of Theorem 1.
Case 3: γ ∈ (0, 1). Then, set λ0(s) = σs/(1 − γ ) for s ∈ S and αi = σi/γ for
i ∈ N to obtain the representation of Theorem 1.

Thus, in all three cases, we have

V0(h) = γ ·
∑

i∈N

αi · Eλi (ui ◦ h) + (1 − γ ) · Eλ0(u0 ◦ h).

Given that u0 is the restriction of V0 to lotteries, applying the latter equation to the
case of a constant act establishes (Th1.2).

7.3 Proof of Theorem 2

The representation in Theorem 2 is a particular case of the representation from Theo-
rem 1. Hence, it implies all of Weak Order, Continuity, Independence, Boundedness,
and Non-triviality. Moreover, since λ0 to be a convex combination of (λi )i∈N , there
exists a collection of weakly positive weights (βi )i∈N summing up to 1 such that
λ0 = ∑

i∈N βi · λi . Then, with the notations form Theorem 1, for every f ∈ F , we
have

V0( f ) = γ ·
∑

i∈N

αi · Eλi (ui ◦ f ) + (1 − γ ) ·
∑

i∈N

βi · Eλi (u0 ◦ f ).

Hence, Belief-Adjusted Weak Dominance easily follows from the representation.
As for the sufficiency of the axioms,we proceed exactly as in the proof of Theorem1

and obtain a normalized andmixture affine function u0 from Y toR and a functional V0
from F to R extending u0 and providing a representation of �0. Moreover, by Belief-
Adjusted Weak Dominance and Lemma 1, we obtain two collections of non-negative
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numbers (σi )i∈N and (τi )i∈N summing up to 1 such that, for every f ∈ F ,

V0( f ) =
∑

i∈N

σi · Eλi (ui ◦ f ) +
∑

i∈N

τi · Eλi (u0 ◦ f ).

Now, let σ = ∑
i∈N σi . We split the proof in three different cases:

Case 1: σ = 0. Then, define λ0 = ∑
i∈N τi · λi , a convex combination of (λi )i∈N .

The structure {0, (αi )i∈N , u0, λ0} provides a representation of �0, with a totally
arbitrary family (αi )i∈N .
Case 2: σ = 1. Then define λ0 as an arbitrary convex combination of (λi )i∈N . The
structure {1, (σi )i∈N , u0, λ0} provides a representation of �0.
Case 3:σ ∈ (0, 1). Then, defineαi = σi/σ for evey i ∈ N andλ0 = ∑

i∈N τi/(1−
σ) · λi , a convex combination of (λi )i∈N . The structure {σ, (αi )i∈N , u0, λ0} pro-
vides a representation of �0.

7.4 Proof of Proposition 1

Claim 1: If �0 satisfies Pareto Dominance and if γ ∈ (0, 1), then the social
prior is essentially a common prior, and u0 is an adapted convex combination of
{ui , i ∈ N }.

Since γ > 0,we already know from (Th1.1) that u0 is a convex combination of {ui , i ∈
N } with coefficients given by {αi , i ∈ N }. By Lemma 2, this convex combination
is adapted. Moreover, note that Vi is mixture affine for any i ∈ N∗. Since Pareto
Dominance holds, Lemma 1 provides non-negative numbers βi , i ∈ N , and μ ∈ R

such that, for any f ∈ F ,

V0( f ) =
∑

i∈N

βi · Vi ( f ) + μ.

Ifwe apply this to f = l1, l0,we obtainμ = 0 and
∑

i∈N βi = 1 since u0 is normalized
and since it is the restriction of V0 to lotteries. But since γ > 0, by (Th1.1) we have
u0 = ∑

i∈N αi · ui . So we must have

∑

i∈N

αi · ui = u0 =
∑

i∈N

βi · ui

Fix i ∈ N and let l, m ∈ Y be as in Risk Diversity. Then, since l ∼ j m for any
j ∈ N\{i}

0 =
∑

j∈N

(α j − β j ) · u j (l) −
∑

i∈N

(α j − β j ) · u j (m)

= (αi − βi ) · (ui (l) − ui (m))

123



444 F. Ceron, V. Vergopoulos

Since by construction l �i m, we must have αi = βi . Therefore, for any f ∈ F , we
obtain

V0( f ) =
∑

i∈N

αi · Vi ( f ) (9)

On the one hand, by Eq. (2) in (Th1.2), we have for any act f ∈ F ,

V0( f ) =
∑

i∈N ,s∈S

[γ · αi · λi (s) + (1 − γ ) · αi · λ0(s)] · ui ( f (s)). (10)

On the other hand, by Eq. (9)

V0( f ) =
∑

i∈N ,s∈S

αi · λi (s) · ui ( f (s)). (11)

Then, define ψ(i, s) = [γαiλi (s) + (1 − γ )αiλ0(s)] − αiλi (s) for any i ∈ N and
s ∈ S. By confronting Eqs. (10) and (11) and applying Lemma 3, we obtain:

γ · αi · λi (s) + (1 − γ ) · αi · λ0(s) = αi · λi (s). (12)

Rearranging Eq. (12), and using γ < 1, we obtain that λi = λ0 for any i ∈ N such
that αi > 0. But by Lemma 2, i ∈ N is non-null if and only if αi > 0. So for any
non-null individual i ∈ N , we have λi = λ0. Hence, the social prior is essentially a
common prior. ��

Claim 2: If �0 satisfies Pareto Dominance and if γ = 0, then the social prior is
essentially a common prior, and u0 is an adapted convex combination of {ui , i ∈
N }

Note that Vi is mixture affine for any i ∈ N∗. Since Pareto Dominance holds, Lemma 1
provides non-negative numbers βi , i ∈ N , and μ ∈ R such that, for any f ∈ F ,

V0( f ) =
∑

i∈N

βi · Vi ( f ) + μ.

Ifwe apply this to f = l1, l0,we obtainμ = 0 and
∑

i∈N βi = 1 since u0 is normalized
and since it is the restriction of V0 to lotteries. Thus, we obtain, for any f ∈ F ,

V0( f ) =
∑

i∈N ,s∈S

βi · λi (s) · ui ( f (s)). (13)

In particular, we have u0 = ∑
i∈N βi · ui . This shows that u0 is a convex combination

of individual utilities. Moreover, Eq. (13) provides another representation of �0 as in
Theorem 1. By applying Lemma 2 to this other representation, i ∈ N is non-null if
and only if βi > 0. So the convex combination is adapted. Since γ = 0, Eq. (2) in
(Th1.2) gives, for any f ∈ F ,

V0( f ) =
∑

i∈N ,s∈S

βi · λ0(s) · ui ( f (s)). (14)
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Then, define ψ(i, s) = βiλi (s) − βiλ0(s) for any i ∈ N and s ∈ S. By confronting
Eqs. (13) and (14) and applying Lemma 3, we obtain for any i ∈ N and s ∈ S:

βi · λi (s) = βi · λ0(s). (15)

So if βi > 0, then λi = λ0. Then, if i ∈ N is non-null, we have βi > 0 and therefore
λi = λ0. The social prior is essentially a common prior. ��

Combining Claims 1 and 2, we obtain that if Pareto Dominance holds, then either
γ = 1, or the social prior is essentially a common prior, both when γ > 0 (Claim 1)
and when γ = 0 (Claim 2). Moreover, u0 is always an adapted convex combination
of {ui , i ∈ N }. Reciprocally, assume that γ = 1, or the social prior is essentially a
common prior and u0 is an adapted convex combination of {ui , i ∈ N }. We show
Pareto Dominance. If γ = 1, this is trivial given Eq. (2). So we assume that γ < 1.

Case 1: γ > 0. Then, by (Th1.2) we have u0 = ∑
i∈N αi ui . Let I stand for the

set of i ∈ N that are non-null. Then, by Lemma 2, I = {i ∈ N , αi > 0}. Since
the social prior is essentially a common prior, we have that if i ∈ I , then λi = λ0.
Then, Eq. (2) gives for any f ∈ F ,

V0( f ) = γ ·
∑

i∈N

αi · Eλi (ui ◦ f ) + (1 − γ ) ·
∑

i∈N

αi · Eλ0(ui ◦ f )

= γ ·
∑

i∈N

αi · Eλi (ui ◦ f ) + (1 − γ ) ·
∑

i∈I

αi · Eλi (ui ◦ f )

= γ ·
∑

i∈N

αi · Eλi (ui ◦ f ) + (1 − γ ) ·
∑

i∈N

αi · Eλi (ui ◦ f )

=
∑

i∈N

αi · Eλi (ui ◦ f ).

Then, it is straightforward to see that Pareto Dominance holds.
Case 2: γ = 0. Let I stand for the set of i ∈ N that are non-null. By assump-
tion, there exist non-negative coefficients (β1, . . . , βn) summing to 1 such that u0
= ∑

i∈N βi ui and I = {i ∈ N , βi > 0}. Proceeding as in Case 1, we obtain
V0( f ) = ∑

i∈N βi · Eλi (ui ◦ f ) for any f ∈ F . Hence Pareto Dominance. This
completes the proof of (P1.1).

Claim3: If�0 satisfies StatewiseDominance and if γ > 0, then there is essentially
a common prior.

For any s ∈ S, the mapping f → u0( f (s)) is mixture affine; so is V0. Since Statewise
Dominance holds, Lemma 1 gives the existence of non-negative numbersμ0(s), s ∈ S,
and μ ∈ R such that, for any f ∈ F ,

V0( f ) =
∑

s∈S

μ0(s) · u0( f (s)) + μ.

If we apply this to f = l1, l0, we obtain μ = 0 and
∑

s∈S μ0(s) = 1 since u0 is
normalized and since it is the restriction ofV0 to lotteries. Thus,μ0 defines a probability
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measure on S. Moreover, since γ > 0, by (Th1.1) we have u0 = ∑
i∈N αi ui . Then,

for any f ∈ F ,
V0( f ) =

∑

i∈N ,s∈S

αi · μ0(s) · ui ( f (s)). (16)

On the other hand, by Eq. (2), we have for any f ∈ F ,

V0( f ) =
∑

i∈N ,s∈S

[γ · αi · λi (s) + (1 − γ ) · αi · λ0(s)] · ui ( f (s)). (17)

Then, define ψ(i, s) = [γαiλi (s) + (1 − γ )αiλ0(s)] − αiμ0(s) for any i ∈ N and
s ∈ S. By confronting Eqs. (16) and (17) and applying Lemma 3, we obtain:

γ · αi · λi (s) + (1 − γ ) · αi · λ0(s) = αi · μ0(s). (18)

Therefore, for any i ∈ N such that αi > 0, we have γ · λi + (1− γ ) · λ0 = μ0. Since
γ > 0, this shows that λi is independent of i provided i satisfies αi > 0. Let λ denote
this common measure. To conclude, if i is non-null, then by Lemma 2, αi > 0 and
therefore λi = λ. So there is essentially a common prior. ��

Claim 3 shows if Statewise Dominance holds, then either γ = 0, or there is essen-
tially a common prior. Reciprocally, if γ = 0, it is straightfroward to show Statewise
Dominance given Eq. (2). So we assume that γ > 0, and that there is essentially a
common prior. By (Th1.1), we have u0 = ∑

i∈N αi ui . Let λ be the measure on S such
that, for any non-null i ∈ N , λi = λ. Note also that, by Lemma 2, i ∈ N is non-null
if and only if αi > 0. Let I = {i ∈ N , αi > 0}. For any f ∈ F , we have:

V0( f ) = γ ·
∑

i∈I

αi · Eλ(ui ◦ f ) + (1 − γ ) · Eλ0(u0 ◦ f )

= γ · Eλ

(
∑

i∈I

αi · ui ◦ f

)

+ (1 − γ ) · Eλ0(u0 ◦ f )

= γ · Eλ(u0 ◦ f ) + (1 − γ ) · Eλ0(u0 ◦ f )

Then, �0 has an SEU representation where a utility function is given by u0 and the
prior is given by γ · λ + (1− γ ) · λ0. It becomes straightforward to see that Statewise
Dominance holds.

Claim 4: Assume that �0 has an SEU representation. Then �0 satisfies State
Independence.

Letμ be the prior on S and v be a utility function onY providing anSEU representation.
Let s ∈ S, f ∈ F , and l, m ∈ Y be such that ls f �0 ms f . Then, by the assumed
SEU representation, we have μ(s) · {v(l) − v(m)} > 0. So it must be the case that
v(l) − v(m) > 0. Consider now any nonnull state t ∈ S. We have μ(t) > 0 and
therefore μ(t) · {v(l) − v(m)} > 0. But then still by the assumed SEU representation
we obtain lt f �0 mt f . ��
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Finally, we show that Statewise Dominance and State Independence are equivalent.
First, assume State Independence. Given the representation (2), it is clear that�0 satis-
fies STP. Then, Lemma 4 implies that�0 satisfies Statewise Dominance. Now, assume
Statewise Dominance. By (P1.2), either γ = 0, or there is essentially a common prior
denote by λ. In the first case, �0 has an SEU representation with respect to u0 and λ0.
In the second case, as shown above, it has an SEU representation with respect to u0
and γ · λ + (1 − γ ) · λ0. In both cases, it has an SEU representation. Then, by Claim
4, it satisfies State Independence.

7.5 Proof of Proposition 2

Let V0 and W0 be the functionals defined respectively by the structures {γ, (αi )i∈N ,

u0, λ0} and {δ, (αi )i∈N , u0, λ0} as in Eq. (2). First, we show the equivalence between
(P2.1) and (P2.2).

Assume that �0 is more prone to Pareto Dominance that �′
0. Then, f �i g for

all i ∈ N and f �′
0 g imply f �0 g for any f , g ∈ F . Since the functionals Vi ,

for i ∈ N , V0 and W0 are all mixture affine, Lemma 1 and normalization provide
non-negative numbers βi , for all i ∈ N , and β0 summing to 1 such that for any f ∈ F ,

V0( f ) =
∑

i∈N

βi · Vi ( f ) + β0 · W0( f ). (19)

Moreover, note if δ = 0, then we have γ ≥ δ. So we can suppose that δ > 0. Then,
u0 = ∑

i∈N αi ui . Therefore, for any f ∈ F ,

W0( f ) = δ ·
∑

i∈N

αi · Eλi (ui ◦ f ) + (1 − δ) ·
∑

i∈N

αi · Eλ0(ui ◦ h). (20)

Combining Eqs. (19) and (20), we obtain for any f ∈ F ,

V0( f ) =
∑

i∈N ,s∈S

[βiλi (s) + β0δαiλi (s) + β0(1 − δ)αiλ0(s)] · ui ( f (s)). (21)

On the other hand, by Eq. (2) and u0 = ∑
i∈N αi ui , we also have for any f ∈ F ,

V0( f ) =
∑

i∈N ,s∈S

[γαiλi (s) + (1 − γ )αiλ0(s)] · ui ( f (s)). (22)

Then, define ψ(i, s) = [βiλi (s) + β0δαiλi (s) + β0(1 − δ)αiλ0(s)] − [γαiλi (s)
+ (1 − γ )αiλ0(s)] for any i ∈ N and s ∈ S. By confronting Eqs. (21) and (22) and
applying Lemma 3, we obtain for any i ∈ N and s ∈ S,

βiλi (s) + β0δαiλi (s) + β0(1 − δ)αiλ0(s) = γαiλi (s) + (1 − γ )αiλ0(s). (23)
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By summing these equalities for s ∈ S, we obtain βi = (1 − β0)αi . Reinjecting this
in Eq. (23), we obtain for any i ∈ N such that αi > 0 and s ∈ S,

(1 − β0)λi (s) + β0δλi (s) + β0(1 − δ)λ0(s) = γ λi (s) + (1 − γ )λ0(s). (24)

Now, suppose that 1 − β0 + β0δ − γ �= 0. Then, for any non-null individual i ∈ N ,
we have αi > 0 by Lemma 2. Then, since 1 − β0 + β0δ − γ �= 0, Eq. (23) shows
that λi is independent of i . In other words, there is essentially a common prior, which
contradicts our assumptions. Therefore, we must have 1 − γ = β0(1 − δ). Then,
1 − γ ≤ 1 − δ and finally γ ≥ δ.

Assume now that γ ≥ δ. If δ = 1, then γ = δ = 1. Furthermore, we have V0 = W0.
So the two binary relations must agree with each other. Thus, �0 is more prone to
Pareto Dominance that �′

0. If δ < 1, then let β0 be such that 1 − γ = β0(1 − δ), and
for all i ∈ N set βi = αi (1− β0). It is then easy to see that Eq. (19) holds. Hence, �0
is more prone to Pareto Dominance that �′

0.
Now, we show the equivalence between (P2.2) and (P2.3). Assume that �0 is less

prone to Statewis Dominance that �′
0. Then, since the utility function u0 is the same

for �0 and �′
0, we have: f (s) �0 g(s) for all i ∈ N and f �0 g imply f �′

0 g for
any f , g ∈ F . Since the functionals f → u0( f (s)), for s ∈ S, V0 and W0 are all
mixture affine, Lemma 1 and normalization provide non-negative numbers μ(s), for
all s ∈ S, and μ0 summing to 1 such that for any f ∈ F ,

W0( f ) =
∑

s∈S

μ(s) · u0( f (s)) + μ0 · V0( f ). (25)

Moreover, note if δ = 0, then we have γ ≥ δ. So we can suppose that δ > 0. Then,
u0 = ∑

i∈N αi ui . Therefore, for any f ∈ F ,

V0( f ) = γ ·
∑

i∈N

αi · Eλi (ui ◦ f ) + (1 − γ ) ·
∑

i∈N

αi · Eλ0(ui ◦ h). (26)

Combining Equations (25) and (26), we obtain for any f ∈ F ,

W0( f ) =
∑

i∈N ,s∈S

[αiμ(s) + μ0γαiλi (s) + μ0(1 − γ )αiλ0(s)] · ui ( f (s)). (27)

On the other hand, by Eq. (2) and u0 = ∑
i∈N αi ui , we also have for any f ∈ F ,

W0( f ) =
∑

i∈N ,s∈S

[δαiλi (s) + (1 − δ)αiλ0(s)] · ui ( f (s)). (28)

Then, define ψ(i, s) = [αiμ(s) + μ0γαiλi (s) + μ0(1 − γ )αiλ0(s)] − [δαiλi (s)
+ (1 − δ)αiλ0(s)] for any i ∈ N and s ∈ S. By confronting Eqs. (27) and (28) and
applying Lemma 3, we obtain for any i ∈ N and s ∈ S,

αiμ(s) + μ0γαiλi (s) + μ0(1 − γ )αiλ0(s) = δαiλi (s) + (1 − δ)αiλ0(s). (29)
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Suppose that δ �= μ0γ . For any non-null individual i ∈ N , we have αi > 0 by
Lemma 2 and, therefore,

μ + μ0γ λi + μ0(1 − γ )λ0 = δλi + (1 − δ)λ0. (30)

Equation (30) shows that λi is independent of i . In other words, there is essentially
a common prior, which contradicts our assumptions. Therefore, we must have δ

= μ0γ ≤ γ . Now, suppose δ ≤ γ . If γ = 0, then δ = γ = 0. Furthermore, we
have V0 = W0. So the two binary relations must agree with each other. Thus, �0 is
less prone to StatewiseDominance that�′

0. If γ > 0, then letμ0 be such that δ = μ0γ .
For any s ∈ S, set μ(s) = (1 − μ0)λ0(s). It is then easy to see that Eq. (25) holds.
Hence, �0 is less prone to Statewise Dominance that �′

0.

7.6 Proof of Proposition 3

Suppose first γ = 0. Then, by Eq. (2), �0 must satisfy Statewise Dominance. But
then, by Proposition 1, either δ = 0, or there is essentially a common prior. The latter
possibility is excluded by assumption. So we must have δ = 0, and therefore δ = γ .
Then, still by Eq. (2), the two representations of �0 reduce to SEU representations:
the one is given by u0 and λ0, the other one is given by v0 and μ0. By the uniqueness
part of the Anscombe and Aumann (1963) theorem, we obtain μ0 = λ0, and v0 is a
positive affine transformation of u0. However, the two utility functions are normalized.
Hence v0 = u0.

Suppose now γ = 1. Then, by Eq. (2), �0 must satisfy Pareto Dominance. But
then, by Proposition 1, either δ = 1, or the social prior is essentially a common prior.
The latter possibility is excluded by assumption. So wemust have δ = 1, and therefore
δ = γ . Consider now the restriction of �0 to constant acts; that is, to lotteries in Y .
By Theorem 1, each of u0 and v0 provides a representation for this restriction. By the
uniqueness part of the von Neumann andMorgenstern (1944) theorem, u0 and v0 must
be positive affine transformation of each other. But since they are normalized, they are
in fact equal to each other. Then, since γ > 0 and δ > 0, we have u0 = ∑

i∈N αi ui and
v0 = ∑

i∈N βi ui . Therefore,
∑

i∈N αi ui = ∑
i∈N βi ui . Since Risk Diversity holds,

we must have βi = αi for any i ∈ N (Proceed as in Claim 1).
Finally, suppose γ ∈ (0, 1). Then, by the previous paragraphs, it must be the

case that δ ∈ (0, 1). Consider now the restriction of �0 to constant acts; that is,
to lotteries in Y . By Theorem 1, each of u0 and v0 provides a representation for
this restriction. By the uniqueness part of the von Neumann and Morgenstern (1944)
theorem, u0 and v0 must be positive affine transformation of each other. But since they
are normalized, they are in fact equal to each other. Let V0 and W0 be the functionals
defined respectively by {γ, (αi )i∈N , u0, λ0} and {δ, (βi )i∈N , v0, μ0} as in Eq. (2). For
any l ∈ Y , we have by Theorem 1 V0(l) = u0(l) = v0(l) = W0(l). Moreover, for
each f ∈ F , there exists l ∈ Y such that f ∼0 l (See proof of Theorem 1). Then,
V0( f ) = V0(l) = W0(l) = W0( f ). On the other hand, the functionals V0 and W0 can

123



450 F. Ceron, V. Vergopoulos

be written in the following way: for any f ∈ F

V0( f ) =
∑

i∈N ,s∈S

[γ · αi · λi (s) + (1 − γ ) · αi · λ0(s)] · ui ( f (s)), (31)

and
W0( f ) =

∑

i∈N ,s∈S

[δ · βi · λi (s) + (1 − δ) · βi · μ0(s)] · ui ( f (s)). (32)

Then, define ψ(i, s) = [γαiλi (s) + (1 − γ )αiλ0(s)] − [δβiλi (s) + (1 − δ)βiμ0(s)]
for any i ∈ N and s ∈ S. By confronting Eqs. (31) and (32) and applying Lemma 3,
we obtain:

γ · αi · λi (s) + (1 − γ ) · αi · λ0(s) = δ · βi · λi (s) + (1 − δ) · βi · μ0(s). (33)

By summing these equalities on S, we obtain βi = αi for any i ∈ N . Moreover,
since there is essentially no common prior, there exist two non-null i, j ∈ N such
that λi �= λ j . Let s ∈ S be such that λi (s) �= λ j (s). Moreover, by Lemma 2, we have
αi > 0 and α j > 0. By applying twice Eq. (33) and substracting, we get

γ · (λi (s) − λ j (s)) = δ · (λi (s) − λ j (s)).

Since λi (s) �= λ j (s), it must be that δ = γ . Finally, applying again Eq. (33) to any
s ∈ S and some non-null individual i ∈ N gives μ0 = λ0.

7.7 Proof of Proposition 4

Assume that �0 satisfies Weak Order, Continuity, Independence, Boundedness,
Weak Dominance and Non-triviality. Then, by Theorem 1, there exists a structure
{γ, (αi )i∈N , u0, λ0} providing a representation of �0 as in Theorem 1. Let V0 be the
functional this structure defines according to Eq. (2).

Moreover, let I stand for the set of i ∈ N that are non-null. Suppose momentarily
that γ > 0. Then, by Lemma 2, I = {i ∈ N , αi > 0}. If i ∈ I , then λi = λ. So for
any f ∈ F

V0( f ) = γ ·
∑

i∈I

αi · Eλ(ui ◦ f ) + (1 − γ ) · Eλ0(u0 ◦ f )

= γ · Eλ

(
∑

i∈I

αi · ui ◦ f

)

+ (1 − γ ) · Eλ0(u0 ◦ f )

= γ · Eλ(u0 ◦ f ) + (1 − γ ) · Eλ0(u0 ◦ f )

Note that the latter equality also holds if γ = 0. So it holds for any γ ∈ [0, 1]. This
shows that�0 has a SEU representation where the normalized utility function is given
by u0 and the probability measure is given by γ λ + (1 − γ )λ0, thereby showing Eq.
(4) as well as (P4.1) and (P4.3). Moreover, (P4.2) follows from (Th1.1). Finally, the
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uniqueness of μ0 follows from the Anscombe and Aumann (1963) theorem, which
also provides the uniquenes of v0 up to positive affine transformation. But since v0 is
normalized, it is in fact unique.

Now, suppose that �0 has an SEU representation with respect to a normalized and
mixture affine function v0 : Y → R and probability measure μ0 on S. Then, it is easy
to see that it satisfies all of Weak Order, Continuity, Independence, and Non-triviality.
Moreover,�0 satisfies StatewiseDominance, and therefore satisfiesWeakDominance.
Finally, since �0 satisfies Statewise Dominance, it also satisfies Boundedness.
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