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Abstract
We consider the aspect of strategic manipulation in a group activity selection problem.
Given a set of activities in which they might participate, the agents have preferences
over the activities themselves and over the number of participants in the activities;
the goal is to assign agents to activities on basis of their preferences. In this paper,
we consider the possibility of strategic manipulation involved in providing solutions
in such a setting, for the solution concepts of maximum individual rationality, core
stability, and Pareto optimality respectively. For three different preference extensions
(Gärdenfors extension, maxi–min extension and maxi–max extension) we analyze
strategic manipulability with respect to the number of activities available. In general,
the considered solution concepts turn out to be prone to strategicmanipulation; in some
natural special cases, however, strategyproofness is provided by such an aggregation.

1 Introduction

We investigate the aspect of strategic manipulability in a group activity selection
problem considered in Darmann et al. (2018) and Darmann (2018) respectively. In
this setting, there is a set of agents and a set of activities to which the agents should be
assigned,where each agent can take part in atmost one activity. The agents’ preferences
depend on the activity itself and the number of participants in that activity.As particular
examples consider the organizer of a workshop who plans to set up social activities
for the free afternoon, or a company that wants to provide free sports classes for its
employees (Skowron et al. 2015) in order to raise their overall satisfaction. Since
these take place simultaneously, each agent can take part in at most one activity; of
course, the choice of abstaining from any activity, i.e., doing nothing, should be a
valid option as well. It is plausible to assume that the preferences of the agents do
not depend on the activity alone but also on the number of agents taking part in the
respective activity, since, e.g., a table tennis tournament with 40 players and only one
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528 A. Darmann

table will not be desired even by a passionate table tennis player. A natural goal of the
organizer now would be to find a reasonable assignment of agents to activities without
forcing an agent to participate when she is not willing to. Another example would be
a company that has several possible projects to which some of its employees should
be assigned instead of performing their common working tasks, as a bonus in form of
a variation from their usual work or in order to let them gain additional experience in
project work. However, each of the employees might have different preferences over
the projects and the number of agents engaged in the corresponding project teams. As
an efficiency consideration, the company is interested in assigning the employees in
a way such that they bear a reasonable level of motivation in working on the projects;
in particular, the company does not want that employees are poorly motivated for the
assigned project with the corresponding team size in the sense that an employee would
rather opt out (and perform their usual working tasks in the company instead).

In this paper, we consider the group activity selection problem with ordinal prefer-
ences (o-GASP), in which the agents’ preferences are strict orders over pairs “(activity,
group size)” including the possibility “do nothing” to which we refer as the void activ-
ity. The goal, of course, would be to assign agents to activities in a reasonable manner.
As indicated above, a main requirement is that the assignment should be individually
rational, meaning that no agent should be forced to take part in an alternative she
deems unacceptable, i.e., would rather prefer doing nothing to. The purpose of this
paper is to study the aspect of strategyproofness involved when such assignments are
provided.
Our contribution and relation to the literature Our focus is laid on the main solu-
tion concepts studied in the group activity selection problem: maximum individually
rational, core stable, and Pareto optimal assignments respectively. In natural, special
preference domains we analyze the strategyproofness of the respective single-valued
aggregation functions and possibly multi-valued aggregation correspondences with
respect to the number of activities involved.

Darmann et al. (2018) introduce the general group activity selection problem
GASP, where the agents’ preferences are weak orders over the pairs “(activity, group
size)”. There, the problems of finding a stable assignment, for stability notions such
as Nash and core stability, and, above all, finding a maximum individually ratio-
nal assignment—that is an assignment maximizing the number of agents assigned to a
non-void activity in an individually rational assignment—are studied from a compu-
tational viewpoint in the approval-based variant a-GASP. Darmann (2018) considers
the problem of finding Pareto optimal and stable solutions in the strict preference
setting of o-GASP, for different stability notions including the one of core stability. In
both works the focus is laid on the special cases of increasing and decreasing pref-
erences. Loosely speaking, with increasing preferences an agent would like as many
other agents as possible to join the same activity; in the decreasing preferences case,
an agent would like to share the same activity with as few other agents as possible.
In this paper we analyze the aspect of manipulability involved in providing maximum
individually rational, core stable, and Pareto optimal assignments. Typically, these
assignments are not unique; our main interest hence is laid on aggregation correspon-
dences which output the set of all maximum individually rational, core stable, and
Pareto optimal assignments respectively. We particularly focus on the special cases of
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increasing, decreasing, and—more generally—single-peaked preferences. Our results
show that such an aggregation is, unfortunately, susceptible to strategic manipulation
already for a small number of activities involved: while for the cases of one and two
activities some robustness results can be achieved, for three activities all of the con-
sidered solution concepts allow for strategic manipulation with respect to each of the
preference extensions considered. In addition, it turns out that the negative results gen-
eralize to an impossibility result for any aggregation process that respects individual
rationality when the mild condition of unanimity is imposed (which is satisfied by
basically any reasonable aggregation), for restricted instances of o-GASP already (see
Sect. 5.4).

Whether the aggregation of individual preferences into a group solution is suscepti-
ble to strategicmanipulation is one of the central questions in social choice theory. Such
an aggregation function (which outputs a single outcome) or aggregation correspon-
dence (which outputs a set of outcomes) is strategyproof, and hence not manipulable,
if no agent can be better off by misrepresenting her true preferences. In its classical
framework, both strategyproofness of aggregation functions [see, for instance, Barberà
(2010), and the seminal papers by Gibbard (1973) and Satterthwaite (1975)], and of
aggregation correspondences [see, e.g., Barberà et al. (2001), Brandt and Brill (2011)
and Brandt and Geist (2014)] has been well-studied. Clearly, comparing different
assignments, an agent will prefer one which yields the best alternative for her. Com-
paring sets of assignments, however, is less obvious. Instead of asking the agents to
give a ranking over all possible sets of outcomes (which requires to rank an exponential
number of possibilities), the typical assumption is that the preferences over the single
alternatives can be extended to binary relations over sets of alternatives. Of course,
such a preference extension can be performed in various ways [see, e.g., Barberà et al.
(2004) and Barberà (2010)]. We consider the well-known Gärdenfors extension (Gär-
denfors 1976) and include the natural maxi–max extension and maxi–min extension
(see Moretti and Tsoukiàs 2012) in our analysis: in an optimistic mindset, one might
hope for themost-preferred among the possible alternatives; having a pessimistic view,
one might be worried by the least-preferred among the alternatives.

Strategyproofness of coalition formation rules has been studied in several papers,
often axiomaticallymotivated. Rodríguez-Álvarez (2009) characterizes single-lapping
rules over the domain of additively representable or separable preferences by four
axioms including strategyproofness. Pápai (2004) uses strategyproofness as one of
the characterizing axioms of these rules in general domains. Further literature on
strategyproofness of coalition formation games, in connection with core stability,
includes the works of Alcalde and Revilla (2004), Cechlárová and Romero-Medina
(2001), and Sönmez (1999).

Closely related problems have been considered in the works of Lee and Shoham
(2015) and Long (2018). Both in the anonymous stable invitation problem (ASIP)
of Lee and Shoham (2015) and in the group selection problem of Long (2018), the
objective is to determine a single subgroup of agents in a reasonable way given the
agents’ preferences over group size (including 0). ASIP can be understood as the
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group activity selection problem with a single1 activity; Lee and Shoham (2015)
provide the impossibility result that a strategyproof mechanism for ASIP that always
outputs an individually rational and envy-free solution cannot exist. Also the group
selection problem of Long (2018) might be interpreted as the group activity selection
problemwith a single activity under a certain domain restriction. Long (2018) assumes
the agents’ preferences to be strict and single-peaked, where their notion of single-
peakedness implies that each agent’s set of group sizes preferred over the outside
option is an (possibly empty) integer interval starting from one. In contrast, the notion
of single-peakedness for the group activity selection problem used in this paper does
not yield the analogous implication. However, Long (2018) proposes two aggregation
functions (rules) that output a Pareto optimal and individually rational assignment,
and provides an axiomatic justification for each of them. We add to these results
by showing that, in the terminology used in our paper, a strategyproof aggregation
function outputting a maximum individually rational assignment cannot exist in the
group activity selection problem with only one activity when all agents’ preferences
are decreasing (and therefore single-peaked), while for the increasing case each such
aggregation function is strategyproof. In addition, imposing a rather mild and natural
condition—which is satisfied by all of the considered aggregation correspondences
including the one restricted to Pareto optimal assignments—we provide a general
impossibility result for aggregation functions and correspondences (w.r.t. Gärdenfors
and maxi–min extension) for the case of two activities and increasing preferences.
Note that our work distinguishes from Lee and Shoham (2015) and Long (2018)
in several aspects. For instance, we mainly focus on aggregation correspondences
instead of single-valued aggregation functions. Secondly, with maximum individual
rationality and core stability we consider different solution concepts. Thirdly, we
take into account also the case of more than just one activity. In particular, for the
maxi–max, maxi–min and Gärdenfors extension we provide the link between strategic
manipulability and the number of available activities in the considered group activity
selection problem.

Further related work includes those of Jackson and Nicolò (2004) and Massó and
Nicolò (2008). In their setting, agents have preferences over both alternatives and
group size, and the goal is to determine a single alternative together with a group of
agents who jointly use the alternative. Massó and Nicolò (2008) assume gregarious
preferences, i.e., for each alternative the agents want additional agents to join the
group; the focus is laid on efficient and both internally and externally stable allocations.
Jackson andNicolò (2004) assume that for each group size the agents’ preferences over
the alternatives are single-peaked; they consider the domains of pure congestion and
pure cost-sharing as special cases (these domains translate to the cases of decreasing
and increasing preferences respectively in our framework). They provide the result
that, even in the domain of pure congestion, only dictatorship is compatible with
strategyproofness, Pareto efficiency and the property of outsider independence.

Finally, the group activity selection problem is also related to anonymous and non-
anonymous hedonic games. Note that in non-anonymous hedonic games, agents have

1 Throughout this paper, the number of activities actually refers to the number of activities different from
the void activity (see also Sect. 2).
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preferences over the possible coalitions they could be part of; in the anonymous variant
these preferences only depend on the size of the coalition. In contrast, in o-GASP
(and in GASP in general), the agents’ preferences depend both on the considered
activity and the size of the group of agents participating in that activity. However,
the setting of GASP (and hence o-GASP) can, in a somewhat bulky and artificial way,
be embedded in the general hedonic game framework (see Darmann et al. 2018 for
details). In particular, the model considered in this work allows for a much more
compact representation and has some natural special cases to which we turn our
attention.

The paper is organized as follows. In Sect. 2 we present the model of o-GASP
and some basic definitions. The concepts of strategyproofness and the preference
extensions involved are presented in Sect. 3. In Sect. 4 we discuss manipulability in
the case of a single activity. Section 5 considers the aspect of strategic manipulation
involved when there are at least two activities, and ends with a general impossibility
result for any aggregation function/correspondence satisfying unanimity. Section 6
provides an outlook towards future research questions and concludes the paper.

2 Formal model

We begin with the model considered in this work and some basic definitions (see
also Darmann 2018, Darmann et al. 2018, and the survey by Darmann and Lang
2017).

Given a set of agents N = {1, . . . , n}, and a set of activities A = A∗ ∪ {a∅}, where
A∗ = {a1, . . . , am} and activity a∅ is the void activity, the set of alternatives W is
given by W = W ∗ ∪ {a∅}, with W ∗ = A∗ × {1, . . . , n}; alternative (a, k) ∈ W ∗ is
interpreted as “activity a with k participants”. The vote�i of an agent i ∈ N is a strict
order overW . A preference profile P = (�1, . . . ,�n) overW consists of n votes (one
for each agent). The set of all preference profiles over W is denoted by P(N , A). We
refer to the set Si := {(a, k) ∈ W ∗ | (a, k) �i a∅} as the induced approval vote of
agent i , and say that agent i approves of all alternatives in Si .

An instance of the group activity selection problem with ordinal preferences
(o-GASP) consists of a triple (N , A, P). An assignment for an instance (N , A, P)

of o-GASP is a mapping π : N → A. We set πa := {i ∈ N | π(i) = a} for a ∈ A,
and πi := {i ′ ∈ N | π(i

′
) = π(i)} for i ∈ N .

Abusing notation, we say that assignment π assigns agent i to alternative (a, k)
if π(i) = a with |πa | = k. Also, we identify the void activity a∅ representing the
outside option “do nothing” with the alternative (a∅, k), for any k ∈ {1, . . . , n}. For
the sake of readability, in this paper we omit the repeated use of the term “non-void”
when referring to the number of activities in an instance (N , A, P) of o-GASP; that
is, with abuse of notation we refer to |A∗| as the number of activities in the instance.

As themain requirement considered for an assignment, no agent should be assigned
to an alternative she deems unacceptable. Formally, an assignment π : N → A is said
to be individually rational if for every a ∈ A∗ and every agent i ∈ πa it holds that
(a, |πa |) ∈ Si .
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Clearly, in any instance (N , A, P) of o-GASP the trivial assignment π∅ which
assigns each agent to a∅ is individually rational. As a consequence, an individually
rational assignment always exists. A natural goal of a benevolent central authority,
however, might be to maximize the number of agents assigned to a non-void activity.
Let #(π) = |{i ∈ N | π(i) 	= a∅}| denote the total number of agents assigned to
non-void activities under assignment π .

Definition 1 Given an instance (N , A, P) of o-GASP, an assignment π is said to be
maximum individually rational if π is individually rational and #(π) ≥ #(π

′
) for

every individually rational assignment π
′
.

While the above concept of maximum individual rationality is certainly appealing,
it does not take into account the possible desire of a group of agents to deviate from
the assignment in favor of a different alternative. The well-known concept of the core
is concerned with stability against such group deviations. In particular, an assignment
is core stable if no subgroup of agents wants to deviate from the assignment in order
to join some other activity (see also Darmann 2018).

Definition 2 Given an instance (N , A, P) of o-GASP, an assignment π is core stable
(or in the core) if π is individually rational and there are no E ⊆ N and a ∈ A∗ with
πa ⊂ E such that (a, |E |) �i (π(i), |πi |) for all i ∈ E .

Requirement πa ⊂ E in the above definition represents the intuition that—and
hence covers scenarios in which—a deviating group of agents cannot prevent agents
from participating in their assigned activity; therefore, the group requires cooperation
of the agents assigned to that activity.2

Finally, we will consider Pareto optimal assignments, i.e., individually rational assign-
ments for which there is no other assignment in which an agent is better off while no
agent changes for the worse.

Definition 3 Given an instance (N , A, P) of o-GASP, an assignment π Pareto-
dominates assignment π

′
if (π(i), |πi |) �i (π

′
(i), |π ′

i |) for at least one i ∈ N and

there is no i ∈ N with (π
′
(i), |π ′

i |) �i (π(i), |πi |). Assignment π is Pareto optimal

if it is individually rational and there is no assignment π
′
which Pareto-dominates π .

Example 1 In the instance I = (N , A, P) with N = {1, 2, 3} and A∗ = {a, b} the
agents’ preferences are given by

�1: (a, 3) �1 (a, 2) �1 a∅ �1 (b, 3) �1 (a, 1) �1 (b, 2) �1 (b, 1)
�2: (b, 3) �2 (a, 3) �2 (b, 2) �2 (a, 2) �2 a∅ �2 (b, 1) �2 (a, 1)
�3: (b, 3) �3 (b, 2) �3 (b, 1) �3 a∅ �3 (a, 3) �3 (a, 2) �3 (a, 1).

In this instance, the unique maximum individually rational assignment is π where
π(1) = π(2) = a and π(3) = b. However, this assignment is not core stable since

2 The appealing concept of core stability hence is a reasonable solution concept as well in scenarios where
agents do not have some kind of “hierarchical power” over others.
This condition can also be understood as a distribution of property rights taking as reference the initial
assignment. Also, observe that in our model we are not concerned with initial endowments.
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for the set E = {2, 3} of agents we have E ⊃ πb = {3} and (b, 2) �i (π(i), |πi |)
for each i ∈ E . The unique core stable assignment λ is given by λ(1) = a∅ and
λ(2) = λ(3) = b. Both assignments, however, are Pareto optimal.

Observe that there are instances of o-GASPwhich do not admit a core stable assign-
ment (see Darmann 2018), while maximum individually rational assignments and
Pareto optimal assignments always exist.

We will consider natural special cases of the agents’ preferences. Informally speak-
ing, an agent has increasing preferences with respect to an activity a if she prefers to
participate in a together with asmany other agents as possible; an agent has decreasing
preferences with respect to an activity a if she wishes to share a with as few other
agents as possible. Both increasing and decreasing preferences are special cases of
single-peaked preferences, in which agent i has a conception pi (a) over the ideal
group size in activity a; for any group size j < pi (a) the agent prefers j + 1 agents
participating in a to j , and for any group size j > pi (a) the agent prefers j −1 agents
participating in a to j .

Definition 4 Given an instance (N , A, P) of o-GASP, with respect to activity a ∈ A∗
agent i’s preferences are

• increasing if for each 1 < j ≤ n we have (a, j) �i (a, j − 1);
• decreasing if for each 1 < j ≤ n we have (a, j − 1) �i (a, j).
• single-peaked if there is a pi (a) ∈ {1, . . . , n} such that 1 < j ≤ pi (a) implies

(a, j − 1) ≺i (a, j) and pi (a) < j ≤ n implies (a, j − 1) �i (a, j).

We say that an agent has single-peaked (respectively, increasing/decreasing) prefer-
ences if her preferences are single-peaked (resp., increasing/decreasing) with respect
to each activity a ∈ A∗. In the instance considered in Example 1 each agent has
single-peaked and, in particular, increasing preferences. In what follows, since we are
interested in individually rational assignments only, for the sake of brevity alternatives
ranked below a∅ typically will be omitted in the description of specific profiles. In
addition, throughout this paper we assume that each agent approves of at least one
alternative (otherwise, the agent has to be assigned to the void activity in any indi-
vidually rational assignment), and, in order to exclude trivial instances, that n ≥ 2
holds.

3 Strategyproofness and preference extensions

We study strategyproofness in connection with maximum individually rational, core
stable, and Pareto optimal assignments respectively. Particular focus is laid on
aggregation correspondences which output the set of all maximum individually ratio-
nal assignments (respectively, core stable/Pareto optimal assignments) for a given
preference profile. In contrast, aggregation functions output exactly one specific
assignment for each preference profile.

Given set N of agents and A of activities, where P(N , A) denotes the set of all
preference profiles over the set of alternatives, let α(N , A) := {π | π : N → A}
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534 A. Darmann

denote the set of all assignments. A function f : P(N , A) → α(N , A) is called
aggregation function. A mapping C : P(N , A) → 2α(N ,A)\∅ is called aggregation
correspondence.

With abuse of notation, we say that an aggregation correspondence is individu-
ally rational, if it outputs individually rational assignments only; i.e., aggregation
correspondence C is individually rational, if for each preference profile P and each
π ∈ C(P), π is an individually rational assignment in the respective instance of
o-GASP. We study three particular members of the family of individually ratio-
nal aggregation correspondences defined below.
The aggregation correspondence Cmir such that, for each instance I = (N , A, P)

of o-GASP, Cmir(P) corresponds to the set of all maximum individually ratio-
nal assignments in I, is called mir-aggregation correspondence. Analogously, the
po-aggregation correspondence Cpo outputs, for a given preference profile P , the set
of Pareto optimal assignments of the respective instance of o-GASP. An aggregation
function f is called mir-aggregation function (resp. po-aggregation function) if, for
each instance I = (N , A, P), f (P) is a single maximum individually rational (Pareto
optimal) assignment in I.

The aggregation correspondence Ccs such that, for each instance I = (N , A, P) of
o-GASP, Ccs(P) is the core of I if the core is non-empty, and {π∅} otherwise, is called
cs-aggregation correspondence. An aggregation function f is called cs-aggregation
function if, for each instance I = (N , A, P), f (P) is in the core of I if the core is non-
empty, and f (P) = π∅ otherwise. Recall that in an instance of o-GASP a core stable
assignment might not exist; in such a case, the cs-aggregation function (correspon-
dence) outputs (the singleton set made up of) the trivial assignment.3 Observe that any
mir/po/cs-aggregation function is a special case of an ir-aggregation function which,
for each given preference profile, outputs a single individually rational assignment in
the respective instance.
Let us now turn to strategyproofness of aggregation functions and aggregation corre-
spondences.

Definition 5 An aggregation function f is called manipulable, if there exist an
instance (N , A, P) of o-GASP, an agent i ∈ N and a profile P

′ ∈ P(N , A) with
P|N\{i} = P

′ |N\{i} such that, with f (P) = π and f (P
′
) = π

′
,

(π
′
(i), |π ′

i |) �i (π(i), |πi |)

holds. In such a case, to refer to the respective profile and agent, we say that f is
manipulable at profile P by agent i . f is called strategyproof, if f is not manipulable.

In order to consider manipulability of an aggregation correspondence, we adapt
the natural extension axiom (see Barberà et al. 2004) which, formulated for sets of
objects, states that the comparison of singleton sets containing one object each should
be consistent with the rankings over the objects. In our setting, the agents’ ordering of
sets containing one assignment each should be consistent with the rankings over the

3 We point out, however, that our results also hold when restricted to instances which always admit a core
stable assignment.
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respective alternatives assigned. More formally, any transitive binary relation ε (with
strict part �ε

i ) over sets of assignments is a preference extension of a strict order �i

over alternatives, if for all π, π̃ ∈ α(N , A) the following holds:

{π} �ε
i {π̃} ⇔ (π(i), |πi |) �i (π̃(i), |π̃i |)

Definition 6 Let ε be a preference extension. C is ε-manipulable if there exist an
instance (N , A, P) of o-GASP, an agent i ∈ N and a profile P

′ ∈ P(N , A) with
P|N\{i} = P

′ |N\{i} such that

C(P
′
) �ε

i C(P)

holds. In such a case, we say that C is ε-manipulable at profile P by agent i . C is
ε-strategyproof, if C is not ε-manipulable.

Thus, given the sincere preferences of the other agents, when strategyproofness is
provided by a social choice correspondence then no agent has an incentive to misre-
port her preferences. Inwhat follows, we apply particular representatives of preference
extensions to our setting. These are the intuitive maxi–max and maxi–min extension
(see Moretti and Tsoukiàs 2012), and the well-known Gärdenfors extension (Gärden-
fors 1976).
Let (N , A, P) be an instance of o-GASP. For X ∈ 2α(N ,A)\∅, an assignment π ∈ X is
a max-assignment for i in X , if (π(i), |πi |) �i (π̃(i), |π̃i |) holds for all π̃ ∈ X with
(π(i), |πi |) 	= (π̃(i), |π̃i |); we denote the set of i’s max-assignments in X by maxi X .
Analogously, π ∈ X is a min-assignment for i in X , if (π̃(i), |π̃i |) �i (π(i), |πi |)
holds for all π̃ ∈ X with (π(i), |πi |) 	= (π̃(i), |π̃i |); the set of i’s min-assignments in
X is denoted by mini X .

Observe that, given agent i and set X of assignments, a max-assignment for i
in X is not necessarily unique, but—due to the strict preferences of the agent over
the alternatives—the alternative to which i is assigned must be the same under all
max-assignments for i in X . I.e., for all max-assignments π, π̃ for i in X , we have
(π(i), |πi |) = (π̃(i), |π̃i |). Analogously, for each agent i and set X of assignments,
the alternative to which i is assigned must be the same under all min-assignments for
i in X .

In the maxi–max extension, an agent considers a set X of assignments better than a
setY of assignments, if she prefers the best alternative assigned to her by an assignment
in X to the best alternative assigned to her by an assignment in Y . Similarly, in the
maxi–min extension, an agent considers a set X of assignments better than a set Y of
assignments, if she prefers the worst alternative assigned to her by an assignment in
X to the worst alternative assigned to her by an assignment in Y .

Definition 7 Themaxi–max extension is defined by: for i ∈ N and X ,Y ∈ 2α(N ,A)\∅,
X �max

i Y iff for all x ∈ maxi X and y ∈ maxi Y it holds that (x(i), |xi |) �i

(y(i), |yi |).
Analogously, the maxi–min extension is defined by: for i ∈ N and X ,Y ∈ 2α(N ,A)\∅,
X �min

i Y iff for all x ∈ mini X and y ∈ mini Y it holds that (x(i), |xi |) �i

(y(i), |yi |).
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536 A. Darmann

In our setting, according to the Gärdenfors extension (Gärdenfors 1976) an agent
considers X better than Y if one of the following holds: (1) X can be “created” from
Y by adding (removing) assignments, and the agent considers each added (remaining)
assignment at least as good as each of the original (removed) assignments, with strict
preference in at least one case; (2) otherwise, the agent considers each assignment in
X\Y at least as good as each assignment in Y\X , with strict preference in at least one
case.

Definition 8 The Gärdenfors extension is defined as follows. For i ∈ N and X ,Y ∈
2α(N ,A)\∅, X �G

i Y if one of the three following conditions is satisfied:

1. X ⊂ Y , and there are x ∈ X and y ∈ Y\X with (x(i), |xi |) �i (y(i), |yi |), and
there is no x ∈ X and y ∈ Y\X with (y(i), |yi |) �i (x(i), |xi |).

2. Y ⊂ X , and there are x ∈ X\Y and y ∈ Y with (x(i), |xi |) �i (y(i), |yi |), and
there is no x ∈ X\Y and y ∈ Y with (y(i), |yi |) �i (x(i), |xi |).

3. neither X ⊂ Y nor Y ⊂ X nor X = Y , and there are x ∈ X\Y and y ∈ Y\X
with (x(i), |xi |) �i (y(i), |yi |), but there is no x ∈ X\Y and y ∈ Y\X with
(y(i), |yi |) �i (x(i), |xi |).
Let us begin our study with two basic observations for the mir-aggregation corre-

spondence Cmir.

3.1 Aggregation correspondence Cmir: basic observations

In what follows, for instance I = (N , A, P) and preference profile P
′

= (�′
1, . . . ,�

′
n) with P|N\{i} = P

′ |N\{i}, let S
′
i denote the approval set of agent i

with respect to �′
i ; also, let I

′ = (N , A, P
′
).

The first observation states that—for each of our dedicated preference extensions
ε considered—we can w.l.o.g. assume that an agent i who manipulates Cmir at profile
P does this by reducing her approval set.

Lemma 1 Given instance I = (N , A, P) of o-GASP and ε ∈ {maxi–min, maxi–max,
Gärdenfors}. If Cmir is ε-manipulable at P by agent i then there is an instance I ′

= (N , A, P
′
) with P|N\{i} = P

′ |N\{i} and S
′
i ⊂ Si such that Cmir(P

′
) �ε

i Cmir(P)

holds.

Proof Assume thatCmir is ε-manipulable at profile P by agent i , let P
′
be the respective

manipulated preference profile and I ′ = (N , A, P
′
). Assume i ranks disapproved

alternatives above a∅ in �′
i , i.e., has (a, k) �′

i a∅ for some (a, k) ∈ W ∗\Si . For any
such alternative (a, k), note that there is no individually rational assignment in I that
assigns i to a such that a total of k agents is assigned to a, whereas there might be
maximum individually rational assignments in I ′

that do so. By the choice of ε and by
Cmir(P

′
) �ε

i Cmir(P), it follows that, givenI ′
, removing all such (a, k) ∈ W ∗\Si from

S
′
i (ceteris paribus) results in an instanceI

′′ = (N , A, P
′′
)withCmir(P

′′
) �ε

i Cmir(P).

Thus, for the mir-aggregation correspondence we can assume that S
′
i ⊂ Si holds. ��

Observe that Lemma 1 immediately implies #(π
′
) ≤ #(π) for π

′ ∈ Cmir(P
′
),

π ∈ Cmir(P). In addition, we have either Cmir(P
′
) ⊆ Cmir(P) (if #(π

′
) = #(π))
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or Cmir(P
′
) ∩ Cmir(P) = ∅ (if #(π

′
) < #(π)). As a consequence, for Cmir we can

note that (with X = Cmir(P
′
), Y = Cmir(P)) the second condition of Gärdenfors

manipulability is redundant.
As as second observation, it follows that for Cmir the concepts of Gärdenfors

strategyproofness and maxi–min strategyproofness coincide (Lemma 2 below). In
general—and, in particular for Ccs and Cpo—this is not the case; we provide an exam-
ple for Ccs and refer to Theorems 14 and 15 for Cpo.

Example 2 Let N = {1, 2, 3} and A∗ = {a, b}, with P given by �1: (a, 2) �1
(b, 2) �1 a∅, and �i : (b, 2) �i (a, 2) �i a∅ for i ∈ {2, 3}. In (N , A, P), the unique
core stable assignment is assignment π with π(1) = a∅, π(2) = π(3) = b. Observe
that Ccs is not maxi–min manipulable at profile P: Clearly, agents 2 and 3 cannot
maxi–minmanipulate since π assigns them to their top-ranked alternative. Also, agent
1 cannot maxi–min manipulate at P since π is core stable in any manipulated profile
P

′
with P

′ |{2,3} = P|{2,3} unless agent 1 approves of (a, 1) in P
′
; this, however, would

result in an assignment π
′
which is core stable in P

′
with a∅ �1 (a, 1), which would

hence make agent 1 worse off.
On the other hand, Ccs is Gärdenfors manipulable at profile P by agent 1. Let P

′

with P
′ |{2,3} = P|{2,3}, and �′

1: (b, 2) �′
1 a∅. Then, Ccs(P

′
) = {π, λ, μ}, with λ(1)

= λ(2) = b, λ(3) = a∅, and μ(1) = μ(3) = b, μ(2) = a∅. Thus, Ccs(P
′
) ⊃ Ccs(P).

With Ccs(P
′
)\Ccs(P) = {λ,μ} and (b, 2) �1 a∅ it follows that Ccs(P

′
) �G

1 Ccs(P)

holds.

Lemma 2 Given instance I = (N , A, P) of o-GASP, Cmir is Gärdenfors manipulable
at P if and only if Cmir is maxi–min manipulable at P.

Proof “⇒”: Assume Cmir is Gärdenfors manipulable at profile P by agent i ; let
I ′ = (N , A, P

′
) be the respective manipulated instance. With Lemma 1 and the

subsequent remarks we can assume that we either have Cmir(P
′
) ⊆ Cmir(P) or

Cmir(P
′
) ∩ Cmir(P) = ∅.

Case I Cmir(P
′
) ⊆ Cmir(P). Clearly, manipulability yields Cmir(P

′
) ⊂ Cmir(P).

Also, Gärdenfors manipulability implies (i) (v(i), |vi |) �i (w(i), |wi |) or (ii)
(v(i), |vi |) = (w(i), |wi |) for v ∈ mini Cmir(P

′
), w ∈ maxi Cmir(P)\Cmir(P

′
).

Therewith v(i) 	= a∅ follows, since otherwise (1) contradicts with the individual
rationality of w, and (2) implies that for all π ∈ Cmir(P)\Cmir(P

′
) π(i) = a∅

holds— which, in turn, would imply Cmir(P)\Cmir(P
′
) = ∅ (and thus contradict to

Cmir(P
′
) ⊂ Cmir(P)), because any individually rational assignment in I that assigns

i to a∅ is also individually rational in I ′
.

In addition, due to Gärdenfors manipulability (x(i), |xi |) �i (y(i), |yi |) for x
∈ maxi Cmir(P

′
), y ∈ mini (Cmir(P)\Cmir(P

′
)). Thus, for the profile P

′′
which

results from P
′
by agent i disapproving of all alternatives ranked below (x(i), |xi |),

we get Cmir(P
′′
) ⊆ Cmir(P

′
). In particular, for all z ∈ Cmir(P

′′
) we have (z(i), |zi |)

= (x(i), |xi |), because any assignment π
′′ ∈ Cmir(P

′′
) is also contained in Cmir(P

′
).

Therewith, Cmir is maxi–min manipulable at profile P by agent i .

Case IICmir(P
′
)∩Cmir(P) = ∅. Gärdenforsmanipulability implies (1) (v(i), |vi |) �i

(w(i), |wi |) or (2) (v(i), |vi |) = (w(i), |wi |) for v ∈ mini Cmir(P
′
), w
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∈ maxi Cmir(P). Analogously to Case I, π
′
(i) 	= a∅ for all π

′ ∈ Cmir(P
′
) follows

[here, (2) contradicts with Cmir(P ′) ∩ Cmir(P) = ∅]. In addition, as above instance
I ′′ defined in Case I yields maxi–min manipulability of Cmir.

“⇐”: Assume Cmir is maxi–min manipulable at profile P by agent i ; let P ′ be
the respective manipulated profile, with I ′ = (N , A, P ′). Observe that, by Lemma 1,
we can assume that any individually rational assignment in I with π(i) = a∅ is also
individually rational in I ′; hence, any maximum individually rational assignment π

in I with π(i) = a∅ must be maximum individually rational also in I ′. Thus,

π(i) 	= a∅ (1)

must hold for each π ∈ Cmir(P) since otherwise Cmir is not maxi–min manipulable
at profile P by agent i . We distinguish the following cases.

Case I for all π, λ ∈ Cmir(P) we have (π(i), |πi |) = (λ(i), |λi |). Then, for
π ∈ Cmir(P), maxi–min manipulability implies that for π ′ ∈ mini Cmir(P ′) we
have (π ′(i), |π ′

i |) �i (π(i), |πi |), and thus (μ(i), |μi |) �i (π(i), |πi |) for all
μ ∈ Cmir(P ′). Clearly, this implies Gärdenfors manipulability.

Case II There are π, λ ∈ Cmir(P) with (π(i), |πi |) 	= (λ(i), |λi |). Now, con-
struct profile P

′′′ = (�′′′
1 , . . . ,�′′′

n ) from profile P by agent i disapproving of all
alternatives ranked below (w(i), |wi |), where w ∈ maxi Cmir(P). Then, Cmir(P ′′′)
= maxi Cmir(P) follows. But this implies Cmir(P ′′′) �G

i Cmir(P), i.e., Cmir is Gär-
denfors manipulable by agent i at profile P . ��

Let us now, for the preference extensions considered, turn to manipulability in con-
nection with the considered solution concepts with respect to the number of activities
involved.

4 Manipulability in o-GASP with a single activity

In the case of only one activity a, the size of a maximum individually rational assign-
ment is given by the maximum number k for which (a, k) is approved by at least k
agents; i.e., for π ∈ Cmir(P) we have #(π) = max{k ∈ N : |{i ∈ N with (a, k)
∈ Si }| ≥ k}.

Assume that all agents have increasing preferences. Then, since each agent approves
of at least one alternative (which is different from a∅), each agent approves of (a, n)

and hence #(π) = n for π ∈ Cmir(P) holds. In particular, the unique maximum indi-
vidually rational assignment is to assign each agent to a. Observe that this assignment
is also the unique core stable and the unique Pareto optimal assignment: the whole
set N of agents would prefer to jointly participate in a over any other assignment.
Thus, by the nature of increasing preferences—each agent prefers (a, n) over any
other alternative—no agent has an incentive to manipulate.

In the remainder of this section, we will hence consider the aspect of strategic
manipulation involved in maximum individually rational, core stable, and Pareto opti-
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mal assignments respectively in the single-activity case, with focus on the special
cases of single-peaked and decreasing preferences.

4.1 Maximum individually rational assignments

Considering maximum individually rational assignments in the case of a single
activity, when all agents have decreasing preferences it turns out that the mir-
aggregation correspondence Cmir is maxi–min and Gärdenfors strategyproof (but
maxi–max manipulable). On the negative side, that strategyproofness result for the
mir-aggregation correspondence Cmir cannot be extended from decreasing to single-
peaked preferences—in particular, in the latter case Cmir is ε-manipulable for each
preference extension ε (see Theorem 2). We begin with a short example which will
be useful for the proofs of Theorem 1 and Proposition 1.

Example 3 Instance I = (N , A, P) of o-GASP is given by N = {1, 2} and A∗ = {a},
and �i : (a, 1) �i (a, 2) �i a∅ for i ∈ N ; hence, S1 = S2 = {(a, 1), (a, 2)}.
The unique maximum individually rational assignment in I is assignment π with
π(1) = π(2) = a.
In instance I ′ = (N , A, P ′), agent 1 reports �′

1: (a, 1) �′
1 a∅, while �′

2=�2. Then,
Cmir(P ′) = {λ,μ}, where λ(1) = a, λ(2) = a∅ and μ(1) = a∅, μ(2) = a.

Theorem 1 When all agents have decreasing preferences and A∗ consists of one activ-
ity, then the mir-aggregation correspondence Cmir is

• maxi–min and Gärdenfors strategyproof, and
• maxi–max manipulable.

Proof Maxi–max manipulability Consider the instances I, I ′ of Example 3. Com-
paring the max-assignments of the instances yields (λ(1), 1) �1 (π(1), 2) because
(a, 1) �1 (a, 2) holds. Hence, Cmir is maxi–max manipulable by agent 1 at profile P .

maxi–min strategyproofnessAssume that Cmir is maxi–min manipulable, i.e., there
are instances I = (N , A, P), I ′ = (N , A, P ′) with A∗ = {a} such that for some
i ∈ N we have P ′|N\{i} = P|N\{i}, agent i’s true preferences are �i , but she is better
off with misreporting her true preferences in terms of�′

i . By Lemma 1 we can assume
that agent i misreports by ranking some approved alternatives below a∅, i.e., removing
alternatives from her approval set. Let π ∈ mini Cmir(P). We distinguish two cases.

Case I π(i) = a∅. Clearly, due to P ′|N\{i} = P|N\{i} it follows that π is individually
rational —and hence maximum individually rational —also in instance I ′. Since a∅
is the worst possible alternative for agent i in any individually rational assignment we
thus cannot get Cmir(P ′) �min

i Cmir(P).

Case II π(i) = a. Let k := #(π). Since π is individually rational, (a, k) ∈ Si holds.
If (a, k) ∈ S′

i it follows that π ∈ Cmir(P ′) and hence Cmir(P ′) �min
i Cmir(P) cannot

hold. Otherwise, let � := #(π ′) for a maximum individually rational assignment π ′ in
instance I ′. By assumption, each agent approves of at least one alternative (see also
end of Sect. 2); thus � ≥ 1 must hold. If � = k, by (a, k) /∈ S′

i we can conclude
π ′(i) = a∅; therefore, Cmir(P) �min

i Cmir(P ′) holds. If � 	= k, by Lemma 1 we
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can conclude � < k. Now, in the case (a, �) /∈ S′
i clearly π ′(i) = a∅ follows, again

implying Cmir(P) �min
i Cmir(P ′). Recall that by decreasing preferences all j ∈ N

with (a, k) ∈ S j have (a, �) ∈ S j ; thus, if (a, �) ∈ S′
i then more than � agents approve

of (a, �) in I ′. Hence, in I ′ there is a maximum individually rational assignment λ

with λ(i) = a∅; again, this implies Cmir(P) �min
i Cmir(P ′). Either way, we get a

contradiction with maxi–min manipulability.

Finally, with Lemma 2Gärdenfors strategyproofness follows frommaxi–min strat-
egyproofness. ��

Unfortunately, the above strategyproofness result does not generalize to single-
peaked preferences; in particular, in that more general domain strategyproofness of
Cmir cannot be achieved for any preference extension ε.

Example 4 Let instance I = (N , A, P) with N = {1, 2} and A∗ = {a}, with �1:
(a, 1) �1 (a, 2) �1 a∅ and �2: (a, 2) �2 a∅ �2 (a, 1). Note that the agents’
preferences are single-peaked. The only maximum individually rational assignment
in instance I is π(1) = π(2) = a.
Let, in instance I ′ = (N , A, P ′), P ′ be given by �′

2=�2 and �′
1: (a, 1) �′

1 a∅ �′
1

(a, 2). Thus, in I ′ the only maximum individually rational assignment is λ with λ(1)
= a, λ(2) = a∅.

Theorem 2 When all agents have single-peaked preferences and A∗ consists of one
activity, Cmir is ε-manipulable for every preference extension ε.

Proof Consider instances I, I ′ in Example 4. Agent 1’s true preference yields
(a, 1) �1 (a, 2), hence agent 1 is better off with (N , A, P ′) than with (N , A, P).
Therewith, for each preference extension ε, {π ′} �ε

1 {π} holds by definition. Hence,
due to Cmir(P) = {π} and Cmir(P ′) = {π ′} it follows that Cmir is ε-manipulable for
each preference extension ε. ��

From the proof of the above theoremwe can also conclude that anymir-aggregation
function is manipulable over the domain of single-peaked preferences. This, however,
holds even for the case of decreasing preferences as the following proposition shows.

Proposition 1 When all agents have decreasing preferences and A∗ consists of one
activity, every mir-aggregation function is manipulable.

Proof Assume there is a strategyproof mir-aggregation function f . Again, consider
instance I of Example 3; assignmentπ withπ(1) = π(2) = a is the uniquemaximum
individually rational assignment in I. Thus, f (P) = π holds. Now, consider the
following three preference profiles P( j) = (�( j)

1 ,�( j)
2 ) with corresponding instances

I( j) = (N , A, P( j)) for j = {1, 2, 3}, and the individually rational assignments λ,μ

given by λ(1) = a, λ(2) = a∅ and μ(1) = a∅, μ(2) = a.

1. Consider P(1) with �(1)
1 =�1 and �(1)

2 : (a, 1) �(1)
2 a∅. In I(1) there are two

maximum individually rational assignments: λ and μ. Assume that we have
f (P(1)) = μ. Then, at profile P agent 2 can manipulate by ranking (a, 2) below
a∅, i.e., removing (a, 2) from S2, since she prefers (a, 1) to (a, 2). Therefore, we
must have f (P(1)) = λ.
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2. Let P(2) be given by �(2)
1 : (a, 1) �(2)

1 a∅ and �(2)
2 =�2. Analogously to 1.,

f (P(2)) = λ implies that at profile P agent 1 can manipulate by ranking (a, 2)
below a∅. Therefore, we must have f (P(2)) = μ.

Finally, consider profile P(3) with �(3)
i : (a, 1) �i a∅ for i ∈ N .

Case I f (P(3)) = λ. Then at P(3) agent 2 can manipulate by reporting �2 instead
of �(3)

2 , i.e., “creating” P(2): this guarantees her to be the only agent assigned to a

(see 2.), which she prefers to a∅ in �(3)
2 .

Case II f (P(3)) = μ. At P(3) now agent 1 is able to manipulate by reporting �1

instead of �(3)
1 , i.e., “creating” P(1). In this way, agent 1 is the only agent assigned to

a (see 1.), which she prefers to a∅ in �(3)
1 .

Thus, either choice of f (P(3)) admits a possibility to manipulate. Therefore, there
is no strategyproof mir-aggregation function in the case of one activity and decreasing
preferences. ��

4.2 Core stable and Pareto optimal assignments

In the single-activity case, it turns out that core stable assignments are less prone to
strategic manipulation than maximum individually rational assignments. Providing a
general result, Theorem 3 states that the cs-aggregation correspondence Ccs is always
maxi–max strategyproof. In addition, for decreasing preferences, Ccs is strategyproof
for each of the considered preference extensions (Theorem 4). On the negative side,
only maxi–max strategyproofness is provided when the preferences of the agents
are single-peaked (see Theorem 5). Also, observe that in the single activity case, an
assignment is core stable if and only if it is Pareto optimal (see Lemma 3 below),
which allows us to restrict our attention to core stable assignments in the remainder
of this section.

Lemma 3 In an instance of o-GASP with a single non-void activity an assignment is
core stable if and only if it is Pareto optimal.

Proof In instance (N , A, P) of o-GASP let A∗ = {a}. Assume π is core stable but not
Pareto optimal. Then, there is an assignment μ in which at least one agent is better
off an no agent is worse off under μ than under π . Since there is only one non-void
activity, this means that πa ⊆ μa holds, because otherwise μ assigns an agent of πa

to a∅, making that agent worse off. In particular, πa ⊂ μa must follow by μ 	= π .
Observe that this means (a, |μa |) �i (a, |πa |) for all i ∈ μa . This, however, implies
that π is not core stable which contradicts with our assumption.
On the other hand, assume that an assignment π is Pareto optimal. If it is not core
stable, then there is an assignment μ with πa ⊂ μa such that (a, |μa |) �i (a, |πa |)
for all i ∈ μa . This contradicts with Pareto optimality of π . ��
Theorem 3 When A∗ consists of one activity, the cs-aggregation correspondence Ccs
is maxi–max strategyproof.
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Proof Assume the opposite.Given instanceI = (N , A, P)with A∗ = {a}, some agent
i misreports the preferences, resulting in instance I ′ such that for μ ∈ maxi Ccs(P ′)
and π ∈ maxi Ccs(P) we have

(a, |μa |) �i (a, |πa |). (2)

Clearly, μ /∈ Ccs(P) holds. If μ is not individually rational in instance I, then
(a, |μa |) ≺i a∅ follows since μ is individually rational in I ′ and for each agent
j ∈ N\{i}we have�′

j=� j ; this contradicts with (2) and the fact that π is individually
rational in I. Thus,μ is individually rational in I. Sinceμ is not core stable in instance
I, there is a set E ⊃ μa such that for each e ∈ E we have (a, |E |) �e (μ(e), |μe|).
Let E ′ be the largest of these sets. The assignment λ which assigns each agent of
E ′ to a and the remaining agents to a∅ hence is preferred over μ by each member
of E ′, and in particular by agent i . Observe that λ must be core stable in I because
otherwise a superset F of E ′ exists which makes each of its members better off, and
hence (a, |F |) � f (a, |E ′|) � f (μ(e), |μe|) holds for each f ∈ F ; this contradicts
with the choice of E ′. Thus, we have (a, |λa |) �i (a, |πa |) with λ ∈ Ccs(P), which
contradicts with π ∈ maxi Ccs(P). ��
Theorem 4 When all agents have decreasing preferences and A∗ consists of one activ-
ity, then the cs-aggregation correspondence Ccs is

• maxi–min strategyproof,
• maxi–max strategyproof, and
• Gärdenfors strategyproof.

Proof Maxi–max strategyproofness follows from Theorem 3.
maxi–min/Gärdenfors strategyproofness:Consider an instanceI = (N , A, P)with

A∗ = {a} and each agent having decreasing preferences. Note that in any assignment,
each agent assigned to a objects to other agents joining a because of decreasing
preferences. Thus, the set Ccs(P) of core stable assignments is the set of non-trivial
individually rational assignments; i.e., the set of assignments that assign exactly k
agents approving of (a, k) to a, for any choice of k ≥ 1.
Assume some agent i tries to manipulate and let the resulting instance be denoted by
I ′ = (N , A, P ′). We first show that Ccs(P ′) ⊆ Ccs(P) follows.

Assume there is an assignment π ′ ∈ Ccs(P ′)\Ccs(P). Suppose π ′(i) = a∅. Then
π ′ is also individually rational in instanceI because of P|N\{i} = P ′|N\{i}. Also,π ′( j)
= a must hold for at least some j ∈ N since otherwise π ′ is not core stable in instance
I ′ by decreasing preferences. Hence, π ′ is a non-trivial individually rational and hence
core stable assignment in instance I which contradicts our assumption.
Suppose π ′(i) = a. Then it must follow that π ′ fails individual rationality in I
since otherwise it must be core stable in I. However, this implies a∅ �i (a, #(π ′)).
It is not difficult to verify that this contradicts both with maxi–min and Gärdenfors
manipulability. Therewith, Ccs(P ′) ⊆ Ccs(P) holds.
The case Ccs(P ′) = Ccs(P) is trivial. Assume Ccs(P ′) ⊂ Ccs(P). By decreasing
preferences, for each agent the top-ranked alternative is (a, 1). Thus, there is a core
stable assignment in I ′ that assigns an agent j ∈ N\{i} alone to a and each other
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agent to a∅. Agent i is hence assigned to a∅ in a min-assignment for i in Ccs(P ′),
which contradicts with maxi–min manipulability.
For the Gärdenfors extension, consider the set Ccs(P)\Ccs(P ′). Note that each
assignment in Ccs(P) that assigns i to a∅ must also be in Ccs(P ′) due to decreas-
ing preferences of the agents assigned to a. Thus, for each μ ∈ Ccs(P)\Ccs(P ′),
μ(i) = a holds. Ccs(P ′) �G

i Ccs(P) hence would require that a∅ �i (a, |μa |) holds,
which contradicts with the individual rationality of μ. Therewith, Ccs is Gärdenfors
strategyproof. ��
Theorem 5 When all agents have single-peaked preferences and A∗ consists of one
activity, then the cs-aggregation correspondence Ccs is

• maxi–max strategyproof,
• maxi–min manipulable, and
• Gärdenfors manipulable.

Proof Maxi–max strategyproofness follows fromTheorem 3. Consider instances I, I ′
in Example 4. In I, there are two core stable assignments π and λ, given by π(1) =
π(2) = a and λ(1) = a, λ(2) = a∅. In instance I ′ the assignment λ is the unique core
stable assignment. Therewith, Ccs is both maxi–min and Gärdenfors manipulable by
agent 1 at profile P . ��

5 Manipulability in o-GASP with at least two activities

In what follows, we consider the scenario in which at least two activities are involved
in the ordinal group activity selection problem. Our results show that again the mir-
aggregation correspondenceCmir is less robust tomanipulation than the cs-aggregation
correspondence Ccs and the po-aggregation correspondence Cpo. However, all three
considered aggregation correspondences turn out to be prone to strategicmanipulation.
Even worse, it turns out that each aggregation correspondence that satisfies a natural
unanimity property (and hence basically any reasonable individually rational aggre-
gation correspondence) is prone to strategic manipulation (see Sect. 5.4).

5.1 Maximum individually rational assignments

In this section we show that Cmir is manipulable for each of the considered preference
extensions when there are two activities, in both the special cases of decreasing and
increasing preferences. In the latter case this negative result holds for each possible
preference extension.

Theorem 6 Even when all agents have increasing preferences and A∗ consists of two
activities, Cmir is ε-manipulable for every preference extension ε.

Proof Given instance (N , A, P) with N = {1, 2}, A∗ = {a, b}, �1: (a, 2) �1
(a, 1) �1 (b, 2) �1 a∅ �1 (b, 1), and �2: (b, 2) �2 a∅ �2 (b, 1) �2 (a, 2) �2
(a, 1). The only maximum individually rational assignment is π(1) = π(2) = b.
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However, in instance (N , A, P ′) with �′
1: (a, 2) �′

1 (a, 1) �′
1 a∅ �′

1 (b, 2) �′
1 (b, 1)

and�′
2=�2, the only maximum individually rational assignment is π ′ with π ′(1) = a

and π ′(2) = a∅. By (a, 1) �1 (b, 2), we get that Cmir is ε-manipulable for every pref-
erence extension ε. ��

The above proof immediately yields the following proposition.

Proposition 2 Even when all agents have increasing preferences and A∗ consists of
two activities, every mir-aggregation function is manipulable.

Consider the following example to which we will refer in the proofs of Theorem 7
and 9.

Example 5 Instance I = (N , A, P) of o-GASP with decreasing preferences is given
by N = {1, 2}, A∗ = {a, b}, �1: (b, 1) �1 (a, 1) �1 a∅ �1 (b, 2) �1 (a, 2) and
�2: (a, 1) �2 (b, 1) �2 a∅ �2 (a, 2) �2 (b, 2).
Let agent 1 report �′

1: (b, 1) �′
1 a∅ �′

1 (a, 1) �′
1 (a, 2) �′

1 (b, 2) instead of �1
(ceteris paribus).

Consider the assignments π, λ defined by π(1) = b, π(2) = a and λ(1) = a,
λ(2) = b. Observe that Cmir(P) = Ccs(P) = {π, λ}. Also, note that we have
Cmir(P ′) = Ccs(P ′) = {π}. Thus, both Cmir and Ccs are maxi–min and Gärden-
fors manipulable at profile P by agent 1.

Theorem 7 Even when all agents have decreasing preferences and A∗ consists of two
activities, the mir-aggregation correspondence Cmir is

• maxi–max manipulable, and
• maxi–min and Gärdenfors manipulable.

Proof Maxi–max manipulability follows from Theorem 1; maxi–min and Gärdenfors
manipulability follow from Example 5. ��

5.2 Core stable assignments

As a general positive result, we can show that Ccs is maxi–max strategyproof when all
agents have decreasing preferences (irrespective of the number of activities available).
Unfortunately, for the maxi–min extension and the Gärdenfors extension an analogous
result does not hold.

Theorem 8 When all agents have decreasing preferences then the cs-aggregation cor-
respondence Ccs is maxi–max strategyproof.

Proof It suffices to show that for each agent i there is a core stable assignment that,
for her top-ranked alternative (ai , 1), assigns i alone to ai . Fix agent i . Consider
assignment π which assigns agent i alone to ai , and assigns the remaining agents to
activities sequentially according to some fixed order s over these agents as follows. As
long as there are unassigned agents, activities to which no agent has been assigned yet
and corresponding alternatives approved by some of these agents, π assigns the first
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(w.r.t. s) of these agents, say j , to b j , where (b j , 1) denotes j’s top-ranked approved
alternative among the still available activities.

The resulting assignment π is core stable by construction: no agent assigned to an
activity wants an additional agent to join; at the same time, no agent assigned to the
void activity approves of an alternative to whose corresponding activity no agent has
been assigned. ��

Observe that the above proof implies that the case of decreasing preferences admits a
(single-valued) strategyproof cs-aggregation function. Consider the serial dictatorship
aggregation function f sd which lets, according to some pre-defined order, agents
sequentially pick their best ranked approved alternative (a, k) among the yet unused
activities a ∈ A∗ and assign a total of k agents including herself to a (or assign
themselves to a∅ if such an alternative does not exist). In the case of decreasing
preferences, that means the agents in turn assign themselves alone to a for their best
ranked available alternative (a, 1) (or to a∅ if no such alternative is available). Also,
observe that for decreasing preferences the resulting assignment is both core stable
and Pareto optimal. We hence get the following proposition.

Proposition 3 When all agents have decreasing preferences, f sd is a strategyproof cs-
and po-aggregation function.

Theorem 9 When all agents have decreasing preferences and A∗ consists of two activ-
ities, then the cs-aggregation correspondence Ccs is

• maxi–max strategyproof,
• maxi–min manipulable,
• and Gärdenfors manipulable.

Proof Maxi–max strategyproofness is implied by Theorem 8, while maxi–min and
Gärdenfors manipulability follow from Example 5. ��

In the remainder of this section, we first show that Ccs is Gärdenfors- and maxi–
min manipulable for two activities and increasing preferences already (see Example 6
below); on the positive side, in this caseCcs is maxi–max strategyproof (Theorem 10).
This result, however, establishes a boundary for maxi–max strategyproofness of Ccs:
Neither can maxi–max strategyproofness be achieved in the two activity case with
single-peaked preferences (Theorem 11) nor in the case of increasing preferences and
three activities (Theorem 12).

Example 6 In instance I = (N , A, P) with N = {1, 2} and A∗ = {a, b}, let
�1: (a, 2) �1 (b, 2) �1 a∅
�2: (b, 2) �2 (a, 2) �2 a∅.

Observe that Ccs(P) = Cpo(P) = {π,μ} holds, with π(1) = π(2) = a and
μ(1) = μ(2) = b. However, if agent 1 misreports �′

1: (a, 2) �′
1 a∅ instead of �1

(ceteris paribus), then for the resulting profile P ′ we have Ccs(P ′) = Cpo(P ′) = {π}.
Therewith, bothCcs andCpo are Gärdenfors- andmaxi–minmanipulable at P by agent
1.
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Fig. 1 Relations between the sets of agents assigned to activities by assignments π and μ in the proof of
Theorem 10

Theorem 10 When all agents have increasing preferences and A∗ consists of two
activities, then the cs-aggregation correspondence Ccs is

• maxi–max strategyproof,
• maxi–min manipulable, and
• Gärdenfors manipulable.

Proof maxi–min/Gärdenfors manipulability: follows from Example 6.
Maxi–max strategyproofness: Assume the opposite. That is, for some instance

I = (N , A, P) with A∗ = {a, b}, some agent i ∈ N can maxi–max manip-
ulate by misreporting her preferences resulting in instance I ′ = (N , A, P ′). Let
π ∈ maxi Ccs(P ′). Clearly, π(i) 	= a∅ must hold due to (π(i), |πi |) �i (λ(i), |λi |)
for λ ∈ maxi Ccs(P). W.l.o.g., let π(i) = a, k := |πa | and � := |πb|. Note that the
sets πa, πb, πa∅ form a partition of the set N of agents (see also Fig.1).

Observe that for each j ∈ N\{i} the preferences in P correspond to those in P ′,
i.e., we have � j=�′

j . Thus, for any choice of h ≥ 1 there can be at most h − 1 agents
of πa∅ with (b, � + h) ∈ S j since otherwise π is not core stable in I ′:

|{ j ∈ πa∅ | (b, � + h) ∈ S j }| ≤ h − 1 (3)

By assumption, π is not core stable in instance I. In this respect, we distinguish the
following cases in instance I.
Case 1 In I, there is no set of agents containing πa that wants to deviate to a. Since π

is not core stable in I, there hence must be a set of agents containing πb that wants to
deviate to b. I.e., there is a non-empty set D ⊃ πb such that (b, |D|) � j (π( j), |π j |)
holds for each j ∈ D. Note that i ∈ D must hold by core stability of π in instance
I ′. In the remainder of Case 1 consider the original instance I. Starting from π , the
idea is to construct another assignment which augments the set of agents assigned to
b and from which again no set of agents wants to deviate to a. Stepwise application of
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this idea finally leads to an assignment from which no set of agents wants to deviate
at all but making agent i better off than under π , which contradicts with the choice of
π and hence with maxi–max manipulability.

Starting from π , construct assignment μ by assigning each agent of D to b; from
the remaining agents (i.e., agents from N\D), determine the largest set F of agents
that satisfies (a, |F |) ∈ S f for each f ∈ F , and assign each of these agents to a. Note
that F ⊆ N\D and in particular

F ⊂ (πa ∪ πa∅) (4)

hold.
Next, we show that F ⊂ πa must hold. Assume F 	⊂ πa ; due to (4) this implies

F ∩ πa∅ 	= ∅. In particular, |F ∩ πa∅ | ≥ 1 agents of πa∅ approve of (a, |F |). By (4)
and i ∈ D, |F | < k + |F ∩ πa∅ | holds. Thus, each j ∈ (F ∩ πa∅) approves of
(a, k + |F ∩ πa∅ |) since she approves of (a, |F |) and due to increasing preferences.
Also by increasing preferences, each agent j ∈ πa prefers (a, k + |F ∩ πa∅ |) over
(a, k). Hence, each agent of πa ∪ (F ∩πa∅) prefers (a, k +|F ∩πa∅ |) to the assigned
alternative under π . This contradicts with our assumption in Case 1. Therewith, we
have F ⊂ πa . In particular, observe that

μa ⊂ πa and μb ⊃ πb (5)

hold (see also Fig. 1).
Next, we show that in assignment μ there is no set of agents including μa that

wishes to deviate to a. For the sake of contradiction, assume that, in assignment μ,
there is a set R ⊃ μa of agents that prefers (a, |R|) over the alternative assigned under
μ. Observe that R ⊆ πa cannot hold: each j ∈ πa ∩ μb prefers (b, |μb|) over (a, k)
and thus over (a, |R|); hence R ⊆ πa implies R ⊆ (πa\μb), which is ruled out by
the choice of F .

Therefore, R must contain some agents of the set πb ∪ πa∅ . Observe that R can
be rewritten as |R| = |R ∩ πa | + |R ∩ πb| + |R ∩ πa∅ | because the sets πa, πb, πa∅

form a partition of the set N of agents. Recall that k ≥ |R ∩πa | holds and no agent of
πb ∪ πa∅ is better off with π than with μ. Hence, the fact that j ∈ πb ∪ πa∅ prefers
(a, |R|) over (μ( j), |μ j |) implies that j prefers (a, k + |R ∩ πb| + |R ∩ πa∅ |) over
(π( j), |π j |), which, with the deviating set of agents E = πa ∪ (R ∩ (πb ∪ πa∅)),
contradicts with our assumption in Case 1.

Thus, also in assignmentμ there is no coalition thatwishes to deviate to a in instance
I. Recall that agent i is assigned to b under μ and we have (b, |μb|) �i (a, k). If μ is
core stable in I, we thus have a contradiction with maxi–max manipulability. Hence,
again there must be a coalition that wants to deviate to b. Arguing for assignment μ in
analogousmanner as for assignment π , we end upwith an assignment γ with γ b ⊃ μb

and γ a ⊆ μa from which no coalition of agents wishes to deviate to a. By increasing
preferences and i ∈ μb, for agent i we get (b, |γ b|) �i (b, |μb|). By the fact that
the number of agents assigned to b is strictly growing in each step, repeating this
argumentation we finally must end up with an assignment under which no coalition of
agents wishes to deviate at all. Thus, in instance I there is a core stable assignment η
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which assigns agent i to activity b such that (b, |ηb|) �i (a, k) holds. This contradicts
with maxi–max manipulability.

Case 2 In I, there is a set of agents containing πa that wants to deviate to a. In this
case, starting from π we will construct an assignment ρ with ρa ⊃ πa and ρb ⊆ πb

from which no set of agents wants to deviate to a. Under ρ, some set of agents might
wish to deviate to b, but that set has to contain i ; making use of Case 1 then concludes
the proof.

Consider assignment π . In this case, in instance I there hence is a non-empty
set E ⊃ πa such that (a, |E |) � j (π( j), |π j |) holds for each j ∈ E . We proceed as
follows. Construct assignment δ by assigning each agent of E to a; from the remaining
agents (i.e., agents of N\E) assign the largest set H of agents to b that satisfies
(b, |H |) ∈ Sh for each h ∈ H . If under δ there is no set of agents including δa that
wishes to deviate to a, setρ = δ. Otherwise,we stepwise derive our desired assignment
ρ: in the next step we repeat the above procedure for assignment δ instead of π , and
so on, until we end up with assignment ρ under which no set of agents (including
ρa) wishes to deviate to a. This requires less than n such steps due to increasing
preferences and the fact that in each step the number of agents assigned to a is strictly
increasing.
From the latter fact and by construction we immediately get ρa ⊃ πa , which in turn
implies ρb ⊂ (πb ∪ πa∅). We now show that ρb ⊆ πb holds as well. In order to
do so, it is sufficient to show that ρb ∩ πa∅ = ∅ holds. Assume the opposite, that is,
the set ρb ∩ πa∅ is non-empty. Then, each agent of ρb ∩ πa∅ approves of (b, |ρb|).
Recall that ρb = (ρb ∩ πb) ∪ (ρb ∩ πa∅) holds, and thus |ρb| ≤ � + |ρb ∩ πa∅ | is
satisfied. Therefore, due to increasing preferences each j ∈ ρb ∩ πa∅ approves of
(b, � + |ρb ∩ πa∅ |), violating (3).

Now, assume that there is a set D of agents including ρb that prefers (b, |D|) over
the alternative assigned under ρ. In what follows, we show that D has to contain agent
i . Assume D ⊆ πb. Since D is a superset of ρb, by the choice of H in constructing ρ,
Dmust contain at least one agent assigned to a under ρ. Now, in the above procedure to
constructρ, consider the last assignmentγ where all agents of Dwhere jointly assigned
to b. Such an assignment must exist due to our assumption D ⊆ πb. In the assignment
constructed from γ , some of the agents of D must have been assigned to a; by the
fact that the number of agents assigned to a is increasing during the construction of ρ,
this means these agents prefer (a, |ρa |) over (b, |D|) due to increasing preferences.
This, however, contradicts with our assumption that all agents of D are better off with
joining b.
Thus, any set D of agents that, under ρ, wants to deviate to b hence has to contain at
least one agent of πa ∪ πa∅ . Let D′ = D ∩ (πa ∪ πa∅). Then, |D′| + � ≥ |D| holds
due to D = D′ ∪ (D ∩ πb). Recall that by increasing preferences each agent of πa

is better off under ρ than under π . Also, no agent of πa∅ is made worse off under ρ.
Hence, each agent of D′ prefers (b, |D|) and thus (b, |D′| + �) over the alternative
assigned by π . As a consequence, D has to contain agent i because otherwise π is not
core stable in I ′. Then, since there is no set of agents under ρ that wishes to deviate
to a, we can apply Case 1 (starting with ρ instead of π ) and again get a contradiction
to maxi–max manipulability. ��
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Table 1 Preference profile P
used in the proof of Theorem 11

1 2 3

(a, 1) (b, 2) (a, 2)

(b, 2) (a, 2) a∅
a∅ a∅ (a, 1)

(a, 2) (b, 1) (a, 3)

(a, 3) (b, 3) (b, 3)

(b, 1) (a, 1) (b, 2)

(b, 3) (a, 3) (b, 1)

Unfortunately, the above maxi–max strategyproofness result for two activities and
increasing preferences cannot be generalized to the domain of single-peaked prefer-
ences, as we show in Theorem 11 below.

Theorem 11 When all agents have single-peaked preferences and A∗ consists of two
activities, then the cs-aggregation correspondence Ccs is maxi–max manipulable.

Proof Instance I of o-GASP with 3 agents and 2 activities a, b is given by the profile
P displayed in Table 1. Note that the preferences of the agents are single-peaked. In
this instance, there is a unique core stable assignment π ; i.e., Ccs(P) = {π} with
π(1) = a, π(2) = π(3) = a∅. However, let P ′ be the profile resulting from P
when agent 2 swaps (a, 2) and (b, 2), i.e., reports �′

2 instead of �2 (ceteris paribus),
where �′

2: (a, 2) �′
2 (b, 2) �′

a∅ �′
2 . . . �′

2 (a, 3). Then, Ccs(P ′) = {π,μ} with
μ(1) = a∅, μ(2) = μ(3) = a. Thus, Ccs is maxi–max manipulable at profile P by
agent 2.

Finally, for the sake of completeness we provide the details for the above sets of
core stable assignments. In I, for identifying the set of core stable assignments, let us
consider all individually rational assignments. The trivial assignment is not core stable
since, e.g., agent 1 would like to deviate to a. Assignment γ with γ (1) = γ (2) = b,
γ (3) = a∅ is not core stable because agent 1 prefers (a, 1) over (b, 2). Assignment
μ with μ(1) = a∅, μ(2) = μ(3) = a is not core stable either, because agents 1
and 2 prefer (b, 2) over their assigned alternative and hence want to deviate to b.
Finally, assignment π with π(1) = a, π(2) = π(3) = a∅ is core stable because
agent 1 is the only agent assigned to a and (a, 1) is the agent’s top-ranked alternative;
thus, (1) agent 1 would be worse off with a set of agents joining a, and (2) no set of
agents can deviate to b, because the latter would require also agent 1 to deviate to
b. Considering P ′ instead of P , the set of individually rational assignments remains
unchanged. Exactly as argued above it follows that π is core stable whereas γ and
the trivial assignment are not core stable. On the other hand, given P ′ instead of P ,
assignment μ is core stable, because (1) (a, 2) is the top-ranked alternative of agents
2 and 3 in P ′, and (2) agent 2 does not want to deviate to b. ��

As the maxi–max strategyproofness result of Ccs stated in Theorem 10 cannot be
generalized to the more general domain of single-peaked preferences, we might be
interested whether, keeping restricted to increasing preferences, the result still holds
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Table 2 Preference profiles P (left) and P ′(right) used in the proof of Theorem 12

1 2 3 4 1 2 3 4

(c, 4) (c, 4) (c, 4) (b, 4) (c, 4) (c, 4) (c, 4) (a, 4)

(c, 3) (a, 4) (c, 3) (b, 3) (c, 3) (a, 4) (c, 3) (a, 3)

(b, 4) (a, 3) (b, 4) (a, 4) (b, 4) (a, 3) (b, 4) (a, 2)

(b, 3) (a, 2) (b, 3) (a, 3) (b, 3) (a, 2) (b, 3) (b, 4)

a∅ (c, 3) a∅ (a, 2) a∅ (c, 3) a∅ (b, 3)

a∅ (c, 4) a∅ (c, 4)

a∅ a∅

when we increase the number of activities involved. However, this is not the case as
the following theorem shows.

Theorem 12 When all agents have increasing preferences and A∗ consists of three
activities, then the cs-aggregation correspondence Ccs is maxi–max manipulable.

Proof Let A∗ = {a, b, c}, N = {1, 2, 3, 4}, and let the (truncated) profiles P, P ′ be
given as in Table 2. Let I = (N , A, P). Note that the preferences of each agent are
increasing.4 The only core stable assignment in I is π with π(i) = c for all i ∈ N (see
below for details); i.e., Ccs(P) = {π}. Observe that P ′|N\{4} = P|N\{4}. In addition,
we have Ccs(P ′) = {π,μ} with μ(2) = μ(4) = a and μ(1) = μ(3) = a∅. Hence,
Ccs is maxi–max manipulable at profile P by agent 4.

The details concerning the sets of core stable assignments are as follows. In both
instances I = (N , A, P) and I ′ = (N , A, P ′), there are four non-trivial individually
rational assignments: π with π(i) = c for all i ∈ N ; μ with μ(2) = μ(4) = a and
μ(1) = μ(3) = a∅; λ with λ(1) = λ(3) = λ(4) = b and λ(2) = a∅; and γ with
γ (1) = γ (2) = γ (3) = c and γ (4) = a∅. Consider instance I with profile P . In that
instance,μ is not core stable because agents 1, 3, 4 want to deviate to b. Assignment λ
is not core stable either since the agents 1, 2, 3want to deviate to c. In addition, γ is not
core stable because all four agents would prefer (c, 4) over the assigned alternative.
For the same reason, the trivial assignment is not core stable. In contrast, π is core
stable because, due to the agents’ preferences, it would require at least two agents for
a deviation but under π the agents 1, 2, 3—and hence three out of four agents—are
assigned to their top-ranked alternative (c, 4). Thus, we have Ccs(P) = {π}.
On the other hand, consider profile P ′.With the same argumentation as above it follows
that in I ′ none of λ, γ or the trivial assignment is core stable. Also analogously to
above it follows that π is core stable in I ′. In addition, it turns out that now μ is
core stable as well. In order to verify this, observe that agents 1, 3 do not approve of
(a, k) for any choice of k, hence there is no group of agents that wishes to deviate to
a. Consider a possible deviation to c. Agents 1, 2, 3 prefer (c, 4) over the assigned
alternative, but agent 4 does not; furthermore, agents 1 and 3 prefer (c, 3) over a∅, but

4 In the description of the profile the alternatives ranked below a∅ are omitted for the sake of brevity. In
fact, it is easy to complete the profile such that each agents’ preferences are indeed increasing.
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agent 2, the only remaining agent approving of (c, 3), prefers the assigned alternative
(a, 2) over (c, 3). Hence, no deviation to c would make all members of the deviating
group of agents better off. Finally, consider a possible deviation to b. Since (b, 4) is
not approved by 4 agents, we can restrict to (b, 3). Whereas agents 1, 3 want to deviate
to b, the only remaining agent approving of (b, 3), agent 4, prefers (a, 2) over (b, 3).
Therefore, we can rule out also such a deviation, and μ is core stable in I ′. Hence,
Ccs(P ′) = {π,μ}. ��

5.3 Pareto optimal assignments

Consider an agent i ∈ N , and let, among the alternatives i approves of, (a, k) be the
best-ranked (w.r.t.�i ) among the alternatives (b, �) approved by at least � agents. Then
there is always a Pareto optimal assignment which assigns i to a such that exactly k
agents are assigned to a (see Darmann 2018). Thus, it immediately follows that Cpo
is maxi–max strategyproof.

Theorem 13 The po-aggregation correspondence Cpo is maxi–max strategyproof.

In the case of decreasing preferences, Cpo also turns out to be maxi–min strat-
egyproof; on the negative side, Cpo is Gärdenfors manipulable even if restricted to
instances with only two activities.

Theorem 14 When all agents have decreasing preferences, then the po-aggregation
correspondence Cpo is maxi–min strategyproof.

Proof Given instance I = (N , A, P) of o-GASP, assume some agent i ∈ N tries to
maxi–min manipulate at P . Let P ′ the respective profile with P ′|N\{i} = P|N\{i},
and let I ′ = (N , A, P ′). Assume Cpo is maxi–min manipulable at P by agent i . Let
π ∈ mini Cpo(P). Consider assignment π̃ with π̃(i) = a∅ and π̃( j) = π( j) for all
j ∈ N\{i}. Observe that in instance I ′, assignment π̃ is individually rational because
the agents have decreasing preferences and for each activity a ∈ A∗ we have |π̃a | ≤
|πa |. Due to π̃(i) = a∅, assignment π̃ cannot be Pareto optimal in I ′ since this would
contradict with our assumption that Cpo is maxi–min manipulable at P by agent
i . Thus, in I ′ there is a Pareto-optimal assignment π∗ which Pareto-dominates π̃ . If
(π∗(i), |π∗(i)|) �i (π(i), |π(i)|), then in I assignmentπ∗ is individually rational and
also Pareto-dominatesπ ; this contradictswith the Pareto optimality ofπ . Hence, either
(π∗(i), |π∗(i)|) = (π(i), |π(i)|) or (π(i), |π(i)|) �i (π∗(i), |π∗(i)|) holds, which
both contradicts with maxi–min manipulability. ��
Theorem 15 When all agents have decreasing preferences and A∗ consists of two
activities, then the po-aggregation correspondence Cpo is Gärdenfors manipulable.

Proof Let I = (N , A, P) with N = {1, 2, 3}, A∗ = {a, b} and the profile P be given
as displayed on the left-hand side of Table 3. Let agent 1 misreport her preferences
as stated in profile P ′ (also displayed in Table 3). In I, there are six Pareto optimal
assignments: Cpo(P) = {π, λ, μ, δ, ρ, ω}, where π(1) = a, π(2) = b, π(3) = a∅;
λ(1) = a, λ(2) = a∅, λ(3) = b; μ(1) = b, μ(2) = b, μ(3) = a; δ(1) = a,
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Table 3 Preference profiles P
(left) and P ′(right) used in the
proof of Theorem 15

1 2 3 1 2 3

(a, 1) (b, 1) (b, 1) (b, 1) (b, 1) (b, 1)

(b, 1) (a, 1) (a, 1) (a, 1) (a, 1) (a, 1)

(b, 2) (a, 2) a∅ (a, 2) (a, 2) a∅
(a, 2) (b, 2) (b, 2) (b, 2)

a∅ a∅ a∅ a∅

δ(2) = a, δ(3) = b; ρ(1) = a∅, ρ(2) = a, ρ(3) = b; ω(1) = a∅, ω(2) = b,
ω(3) = a. Observe that all of these assignments but μ are also Pareto optimal in
I ′ = (N , A, P ′). Therefore, Cpo(P)\Cpo(P ′) = {μ}.
On the other hand, Cpo(P ′) = (Cpo(P)\{μ}) ∪ {α, β}, where α(1) = b, α(2) = a,
α(3) = a∅ and β(1) = b, β(2) = a∅, β(3) = a. Thus, Cpo(P ′)\Cpo(P) = {α, β}.
Observe that both under α and β agent 1 is the only agent assigned to b, whereas μ

assigns both agents 1 and 2 to b. By the decreasing preferences of agent 1, however,
we have (b, 1) �1 (b, 2). Hence, Cpo is Gärdenfors manipulable by agent 1 at profile
P . ��

For increasing (and thus, for single-peaked) preferences, and two activities it turns
out thatCpo ismaxi–min andGärdenforsmanipulable (Theorem 16 below summarizes
the results for increasing preferences); more generally, for that case in the subsequent
section we provide a manipulability result for each individually rational aggregation
correspondence satisfying the mild condition of unanimity.

Theorem 16 When all agents have increasing preferences and A∗ consists of two
activities, then the po-aggregation correspondence Cpo is

• maxi–max strategyproof,
• maxi–min manipulable, and
• Gärdenfors manipulable.

Proof Maxi–min and Gärdenfors manipulability follow from Example 6, maxi–max
strategyproofness from Theorem 13. ��

5.4 A general impossibility result

Unfortunately, it turns out that any individually rational aggregation correspondence is
susceptible to strategic manipulation under a very mild and natural condition already.
This condition states that, if there is a unique activity a such that all agents prefer that
the whole group of agents takes part in that activity a over each other alternative, then
the aggregation correspondence should—if there is no other non-trivial individually
rational assignment—guarantee that each agent is assigned to a. This property is in the
spirit of the unanimity property for social choice functions [see, e.g., Moulin (1983)
and Özyurt and Sanver (2008)] in the setting of o-GASP.
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Definition 9 An aggregation correspondenceC satisfies unanimity, if, for any instance
(N , A, P) of o-GASP such that for some a ∈ A∗ (1) each agent’s top-ranked alter-
native is (a, n), and (2) π(i) = a for all i ∈ N is the only non-trivial individually
rational assignment, C(P) = {π} holds.

Observe that Cmir, Ccs, and Cpo satisfy the unanimity condition.

Theorem 17 Even when A∗ consists of only two activities and each agent has increas-
ing preferences, any individually rational aggregation correspondence that satisfies
unanimity is maxi–min and Gärdenfors manipulable.

Proof Consider again instance I = (N , A, P) of Example 6, which is given by N
= {1, 2}, A∗ = {a, b}, and

�1: (a, 2) �1 (b, 2) �1 a∅
�2: (b, 2) �2 (a, 2) �2 a∅.

In this instance, there are three individually rational assignments: π with π(1)
= π(2) = a, μ with μ(1) = μ(2) = b, and π∅ with π∅(1) = π∅(2) = a∅.

Now, consider the following four preference profiles P( j) = (�( j)
1 ,�( j)

2 ) with
corresponding instances I( j) = (N , A, P( j)), for 1 ≤ j ≤ 4:

• preference profile P(1) with �(1)
1 =�1 and �(1)

2 : (b, 2) �(1)
2 a∅, and profile P(2)

with �(2)
i : (b, 2) �(2)

i a∅ for i ∈ {1, 2};
• preference profile P(3) with �(3)

2 =�2 and �(3)
1 : (a, 2) �(3)

1 a∅, and profile P(4)

with �(4)
i : (a, 2) �(4)

i a∅ for i ∈ {1, 2}.
Note that in all five instances both agents have increasing preferences. Let C be

an individually rational aggregation correspondence that satisfies unanimity. By una-
nimity, we must have C(P(2)) = {μ}. Observe that in I(1), the only two individually
rational assignments are μ and π∅. If π∅ ∈ C(P(1)), then agent 1 can maxi–min
and Gärdenfors manipulate at P(1) by “creating” P(2) by removing (a, 2) from her
approval set. In what follows, we hence assume π∅ /∈ C(P(1)), i.e., C(P(1)) = {μ}.

Also, C(P(4)) = {π} holds due to unanimity. Analogously to above we hence may
assume that C(P(3)) = {π} must hold because otherwise agent 2 can maxi–min and
Gärdenfors manipulate at P(3).

Now, consider instance I. Assume π ∈ C(P) or π∅ ∈ C(P). Then, agent 2
can maxi–min and Gärdenfors manipulate at profile P (resulting in the above profile
P(1)), because C(P(1)) = {μ} holds by assumption and (b, 2) is agent 2’s top-ranked
alternative according to �2. Hence, we may assume C(P) = {μ}. But then agent
1 can Gärdenfors and maximin manipulate at profile P by dropping (b, 2) from her
approval set, resulting in profile P(3) with C(P(3)) = {π}. ��

Theabove theorem immediately implies the followingproposition for ir-aggregation
functions.

Proposition 4 Evenwhen A∗ consists of only twoactivities and each agent has increas-
ing preferences, any ir-aggregation function that satisfies unanimity is manipulable.
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With respect to ir-aggregation functions, Proposition 4 rules out a general strat-
egyproofness result for increasing preferences even for two activities only. Observe
that also the serial dictatorship function f sd satisfies unanimity. Thus, in contrast to
the case of increasing preferences (Proposition 4) by Proposition 3 irrespective of
the number of activities involved the domain of decreasing preferences allows for a
strategyproof cs- and po-aggregation function (respecting unanimity).

6 Conclusion and outlook

We have analyzed the aspect of strategic manipulation in the group activity selection
problemwhen theminimum requirement of individual rationality should be respected.
Even when restricted to instances with increasing preferences and two activities, it
turns out that a strategyproof aggregation correspondence (w.r.t. maximin and Gär-
denfors extension) or a strategyproof aggregation function meeting the mild condition
of unanimity does not exist. Observe that basically all reasonable aggregation pro-
cesses satisfy unanimity, including the main solution concepts considered in the group
activity selection problem—maximum individually rational, core stable, and Pareto
optimal assignments—towhichwe paid our particular attention. Thus, a strategyproof-
ness result (w.r.t. maximin and Gärdenfors extension) in that domain is ruled out for
basically all reasonable aggregation processes respecting individual rationality.
The latter also applies for single-valued aggregation functions. Concerning the par-
ticular ir-aggregation functions considered, we have shown that in the decreasing
preference case a strategyproof cs- and po-aggregation function always exists, while
a strategyproof mir-aggregation function is ruled out even in restricted instances with
only one activity.

For the considered aggregation correspondences an overview of our results is given
in Tables 4 and 5.While in the one activity case several positive results could be derived
all three correspondences turn out to be susceptible to strategic manipulation when
two activities are involved, even for restricted instances of our problem. However,
compared to the mir-aggregation correspondence, the aggregation correspondence
that outputs all core stable assignments is more robust against manipulation in so far
that it is maxi–max strategyproof in the case of one activity, for decreasing preferences
irrespective of the number of activities involved, and for two activities in the case of
increasing preferences; if a third activity is contained in the setting, the latter result
unfortunately does not hold anymore. The aggregation correspondence that outputs
all Pareto optimal assignments turns out to be the one least prone to manipulation
among the three correspondences. In particular, it is always maxi–max strategyproof,
and remains maxi–min strategyproof in the case of decreasing preferences.

There are different approaches for further work on strategic manipulation in the
group activity selection problem. For instance, other preference extensions could be
adapted to the setting and analyzed with respect to manipulability. Of course, also
a characterization of preference extensions and corresponding domains for which
strategyproofness is guaranteed would be of interest.

Alternatively, one could hope for positive results at the price of dropping the require-
ment of individual rationality. This is, for instance, the case in serial dictatorship where
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Table 5 Overview over the results for correspondence Cpo w.r.t. different preference extensions

Preferences, #activities Cpo
Maxi–min Gärdenfors Maxi–max

Decreasing, 1 sp sp sp (Theorem 4)

Decreasing, ≥ 2 sp man sp (Theorems 14, 15, 13)

Increasing, 1 sp sp sp

Increasing, ≥ 2 man man sp (Theorems 17, 13)

Single-peaked, ≥ 1 man man sp (Theorems 5, 13)

essentially, according to some pre-defined order, not-yet assigned agents sequentially
pick their top-ranked alternative (a, k) among the yet unused activities a with at least
k unassigned agents remaining, and assign herself and k − 1 other unassigned agents
to a—irrespective of whether or not they approve of (a, k). An interesting approach
for future research in this respect could be to find meaningful aggregation functions
and correspondences, as well as corresponding domains for which strategyproofness
can be guaranteed.
Finally, also with respect to practical applications it might be reasonable to consider
alternative, less strict notions of strategyproofness.
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