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Abstract
We propose a new class of allocation rules for cooperative games with transferable
utility (TU-games), weighted-egalitarian Shapley values, where each rule in this class
takes into account each player’s contributions and heterogeneity among players to
determine each player’s allocation. We provide an axiomatic foundation for the rules
with a givenweight profile (i.e., exogenousweights) and the class of rules (i.e., endoge-
nous weights). The axiomatization results illustrate the differences among our class
of rules, the Shapley value, the egalitarian Shapley values, and the weighted Shapley
values.

1 Introduction

The most eminent allocation rule for cooperative games with transferable utility (TU-
games) may be the Shapley value introduced by Shapley (1953b). After the celebrated
study of Shapley (1953b), many other axiomatic foundations for the rule were inten-
sively studied.1 In particular, Young (1985) shows that the Shapley value is the unique
efficient rule that satisfies strong monotonicity and symmetry. These two properties
focus on each player’s contributions in a game to determine their rewards. More pre-

1 For recent studies, see Casajus (2011; 2014) and Casajus and Yokote (2017a).
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cisely, (1) strongmonotonicity states that each player receivesmore as his/hermarginal
contributions weakly increase and (2) symmetry requires that any two players receive
the same amount if their contributions are equal. Therefore, the Shapley value can be
thought of as an allocation rule completely based on each player’s performance.

In actual situations, however, we often use an allocation rule which can assign
positive payoff to each player even if he/she cannot contribute for some reason. For
example, in the case of wage assignment in a firm, each worker may receive a basic
salary in addition to a reward for her contribution. This systemmay bemore secure than
a system without a basic salary given the possibility that employees cannot contribute
because of, for instance, raising children. Constructing an allocation rule integrating
this kind of social equity, which is often referred to as a solidarity principle, with
contribution based rule, is one of the main concerns in recent literature of cooperative
game theory (Nowak and Radzik 1994; Joosten 1996; Casajus and Huettner 2013,
2014; van den Brink et al. 2013; Joosten 2016). Also, in the same example, the wage
may be affected by some index independent of one’s contributions, such as seniority,
educational background, and entitlements. Moreover, in the case of redistribution of
income in a society, each household has a heterogeneous background, such as the
number of children or the presence of disability (Abe and Nakada 2017).2 Modern
taxation systems consider such heterogeneities. This observation raises the follow-
ing question: what allocation rule reconciles performance-based evaluation with a
solidarity principle and takes players’ heterogeneity into consideration?

To answer this question, this paper considers rules satisfying weaker monotonicity
and symmetry.We show that these axioms (elaborated later) characterize the new class
of rules, weighted-egalitarian Shapley values, where each rule in this class is given
as a convex combination of the Shapley value and the weighted division (Béal et al.
2016). Each rule in our class can be interpreted as a redistribution rule, via which
a player keeps a part of his income and offers the other part as a tax. After every
player’s tax is collected, the total tax revenue is distributed among the players, albeit
not equally. Depending on a player’s weight, the benefits received from the collected
taxes may differ. Such weights might be given externally or they might be determined
endogenously. In this paper, we study both setups.

First, we characterize the weighted-egalitarian Shapley values where a weight pro-
file is endogenously determined. For monotonicity, we employ weak monotonicity,
i.e., each player receives more if his contributions and the worth of the grand coalition
increase.3 This property does not require each player’s evaluation to depend only on
his contribution but rather allows it to depend also on the worth of the grand coalition
to reflect a solidarity principle. For the symmetry property, we consider the following
two new axioms: weak differential marginality for symmetric players and ratio invari-
ance for null players. The former axiom requires the following property. Suppose that
there are two null players, i.e., players whose marginal contributions are zero. If the
worth of the grand coalition keeps unchanged but these two players make the same

2 Abe andNakada (2017) extends amonotonic redistribution rule (Casajus 2015, 2016; Casajus andYokote
2017b) to exhibit agents’ heterogeneity. See Roth (1979), Kalai and Samet (1987), Chun (1988; 1991), and
Nowak and Radzik (1995) for other examples.
3 Weak monotonicity without weights was introduced by van den Brink et al. (2013) to characterize egali-
tarian Shapley values. We discuss this topic later.
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additional contributions, then the two players should receive the same additional pay-
off. The latter axiom is a minimal fairness requirement for null players, which requires
that the payoff ratio between two null players does not vary as long as they are null
players. We show that a rule satisfies these axioms, efficiency and nullity if and only
if it is a weighted-egalitarian Shapley value.

Second, we suppose that each player’s heterogeneity is parametrized by an exoge-
nous weight profile. In this case, how we should integrate the exogenous weights
into the two axioms, monotonicity and symmetry, is a problem. The three axioms
efficiency∗, weak monotonicity∗, and ratio invariance for null players∗ correspond to
the axioms in the first case. For the symmetry property, we consider the following
two new axioms: symmetry∗ and fair evaluation for contribution. The former axiom
states that any two players receive the same payoff if their contributions and weights
are equal. In other words, even though their contributions are equal, we admit that the
two players receive different payoffs if their weights are different. The latter axiom
states that if a player additionally contributes, then a reward for his additional contri-
butions should be evaluated impartially, regardless of his weight. That is, this axiom
requires that we should take each player’s contributions and weight into consideration
separately. We show that a rule satisfies these axioms if and only if it is a weighted-
egalitarian Shapley value with an exogenous weight profile.

Related literature

Our results contribute to the literature regarding axiomatization of variants of the Shap-
ley value to accommodate a solidarity principle and heterogeneity, in particular, the
egalitarian Shapley values (Joosten 1996) and the weighted Shapley values (Shapley
1953a).We analyze the axiomatic differences among our rules, the egalitarian Shapley
values and the weighted Shapley values.

The egalitarian Shapley values are rules that are convex combinations of the Shapley
value and the equal division. That is, each player can obtain some amount of payoff
equally and extra amount depending on his/her own contributions. In this sense, this
rule can be considered as to combine marginalism and egalitarianism. Since the equal
division is a special case of the weighted divisions, our rules subsume this class of
rules. We show that the difference between this class and ours stems from different
symmetry properties by comparing our result with that of Casajus andHuettner (2014);
they characterize their rules by efficiency, weak monotonicity, and symmetry.

The weighted Shapley values are allocation rules based on weighted contributions.
Although this rule and ours only share efficiency, the difference is understood as a
consequence of the requirement of monotonicity and symmetry by comparing our
result with that of Nowak and Radzik (1995); they characterize the class of rules by
efficiency, strongmonotonicity, mutual dependence and strict positivity, where mutual
dependence implies ratio indifference for null players butweak differentialmarginality
for symmetric players and strict positivity implies nullity under efficiency and weak
monotonicity.4 Note that strict positivity, which is formally defined in Sect. 5, is a

4 For other characterizations of the weighted Shapley values, see Kalai and Samet (1987), Chun (1991),
Hart and Mas-Colell (1989), and Yokote (2014).
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variation of the positivity axiom discussed by Kalai and Samet (1987) that guarantees
every player non-negative payoff for monotonic games. Joosten et al. (1994) consider
another weak requirement called social acceptability, which requires that all players
obtain non-negative payoff and, in particular, productive players receive more than or
as mush as null players in a unanimity game.

Joosten (2016) introduces the egalitarian weighted Shapley values, that is, a class
of rules that are convex combinations of a weighted Shapley value and the equal divi-
sion. The difference between his class and ours lies in how to address a weight profile
of players, that is, heterogeneity. In our rules, each player’s contributions are evalu-
ated without weights, while the weights determine players’ “basic payoffs,” namely,
the weighted division. In contrast, the egalitarian weighted Shapley values take into
account the weights to evaluate each player’s contributions, while the “basic payoffs”
are given as the equal division. In this sense, Joosten (2016)’s class and ours can be
thought of as two different generalizations of the egalitarian Shapley values: the egali-
tarian Shapley value takes a middle ground between the weighted-egalitarian Shapley
value and the egalitarian weighted Shapley values.5

The remainder of this paper is organized as follows. In Sect. 2, we provide basic
definitions and notation. In Sect. 3, we offer the main characterization of the weighted-
egalitarian Shapley values. In Sect. 4, we offer the characterization of the weighted-
egalitarian Shapley values in the case of exogenous weight profiles. In Sect. 5, we
conclude this paper with some remarks. All proofs are relegated to the appendix.

2 Preliminaries

Let N = {1, . . . , n} be the set of players and the function v : 2N → R with v(∅) = 0
denote a characteristic function. A coalition of players is defined as a subset of the
player set, S ⊆ N . Let |S| denote the cardinality of coalition S. A cooperative TU-
game is (N , v). Fixing the player set N , we denote by G the set of all TU-games
with the player set N . An allocation rule is denoted by f : G → R

N . Player i’s
marginal contribution to coalition S ⊆ N\{i} is defined as v(S ∪ {i}) − v(S). For
each v ∈ G, we say that player i ∈ N is a null player in v if v(S ∪ {i}) − v(S) = 0
for all S ⊆ N\{i}. We also say that two players i, j ∈ N are symmetric in v if
v(S ∪ {i}) − v(S) = v(S ∪ { j}) − v(S) for all S ⊆ N\{i, j}. For any nonempty
coalition T ⊆ N , the unanimity game uT ∈ G is defined as follows: for any S ∈ 2N ,

uT (S) =
{
1 if T ⊆ S,

0 otherwise.

The Shapley value, Sh(v), is given as follows: for any player i ∈ N ,

Shi (v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!
n! (v(S ∪ {i}) − v(S)).

5 In Sect. 5, we discuss the future direction to unify these two classes.
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The Shapley value assigns an average of marginal contributions to each player. Young
(1986) shows that the Shapley value satisfies the following properties.
Efficiency, E. For any v ∈ G, ∑i∈N fi (v) = v(N ).
Strong Monotonicity, M. For any v, v′ ∈ G and i ∈ N , if v(S ∪ {i}) − v(S)

≥ v′(S ∪ {i}) − v′(S) for all S ⊆ N\{i}, then fi (v) ≥ fi (v′).
Symmetry, SYM. For any v ∈ G and i, j ∈ N , if i, j are symmetric in v, then we
have fi (v) = f j (v).6

The following theoremshows that theShapley value is the unique solution satisfying
these three properties.

Theorem 1 (Young 1986) An allocation rule f : G → R
N satisfies (E), (M) and

(SYM) if and only if f (v) = Sh(v) for all v ∈ G .

Since the Shapley value determines each player’s payoff only depending on his/her
contributions, it ignores both equity/solidarity andheterogeneity amongplayers,which
do not depend on contributions. In the following section, we introduce our class of
rules that exhibit these features.

3 Axiomatization of the weighted egalitarian Shapley values

We define w = (wi )i∈N ∈ R
N+ with

∑
i∈N wi = 1 as a weight profile and W as the

set of all possible weight profiles.
First, we consider the following weaker version of monotonicity which was intro-

duced by van den Brink et al. (2013).
Weak monotonicity, M−. For each v, v′ ∈ G with v(N ) ≥ v′(N ), if
v(S) − v(S\{i}) ≥ v′(S) − v′(S\{i}) for all S ⊆ N with i ∈ S, then fi (v) ≥ fi (v′).

This property states that a player’s payoff weakly increases as his marginal contri-
butions and the total value weakly increase. In contrast with (M), this property does
not insist that each player’s evaluation totally depends on his contributions but rather
allows that it can depend on the total value.

The next axiom is a requirement for the treatment of null players.
Ratio invariance for null players, RIN. For any v, v′ ∈ G and i, j ∈ N such that
i, j are null players in v, v′, we have fi (v) · f j (v′) = fi (v′) · f j (v).

Ratio invariance for null players requires that as long as some players, say i, j ,
contribute zero in both games v and v′, the ratio of their payoffs, fi (v)/ f j (v), does
not vary.

The following axiom is a requirement for null players about additional contribution.
Weak differential marginality for symmetric players, WDMSP For any i, j ∈ N
and v, v′ ∈ G such that i, j are null players in v, if i, j are symmetric in v′ and
v(N ) = v′(N ), then fi (v) − fi (v′) = f j (v) − f j (v′).

Note that players i, j are also symmetric in v. Suppose that there are two null
players in v. If the worth of the grand coalition keeps unchanged but these two players
make the same additional contributions (from v to v′), then this axiom requires that

6 This is also known as the equal treatment property.
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the two players should receive the same additional payoff.7 That is, the contribution
itself is evaluated as the same as under the original symmetry axiom, but the axiom
(WDMSP) does not exclude the possibility that the payoffs of two players can differ
because of their heterogeneity, that is, fi (v) 
= f j (v) and fi (v′) 
= f j (v′) can be
allowed.

The following axiom is a harmless feasibility requirement.
Nullity, NY Let 0 be the null game. For any i ∈ N , fi (0) = 0.

Nullity is a weak feasibility condition, which requires that every player receives
nothing if every coalition’s worth is zero. Nullity is called triviality in Chun (1989).

Now, we introduce the following new class of allocation rules, which we call
weighted-egalitarian Shapley values:

fi (v) = δ · Shi (v) + (1 − δ) · wiv(N ) where δ ∈ [0, 1] and w ∈ W.

Note that the allocation rule is specified by two parameters δ ∈ [0, 1] and w ∈ W .
For δ = 1, the allocation rule coincides with the Shapley value and distributes the
surplus v(N ) based only on the players’ contributions. For δ = 0, our rule coincides
with the weighted devision (Béal et al. 2016). It is clear that rules in this class satisfy
all of the axioms. Now, we are ready to offer our main axiomatization result as follows.

Theorem 2 Suppose that n 
= 2. An allocation rule f : G → R
N satisfies (E), (M−),

(RIN), (WDMSP), and (NY) if and only if there exists a δ ∈ [0, 1] and a weight profile
w ∈ W such that fi (v) = δ · Shi (v) + (1 − δ) · wiv(N ) for all v ∈ G.
Proof See Appendix A. ��

For the independence of the axioms, examples are available in Appendix C. Note
that, when n = 2, there is an allocation rule which satisfies all the axioms, but such
a rule is not included in our class. In this sense, uniqueness of the class of rules does
not hold when n = 2. A counterexample is also available in Appendix C.

4 Axiomatization of the weighted egalitarian Shapley values with an
exogenous weight

In this section, we assume that a profile w = (wi )i∈N ∈ W is exogenously given.
That is, we consider an allocation rule in the extended domain f : G × W → R

N .
We first introduce the analogs of the axioms in the previous section.

Efficiency∗, E∗. For any v ∈ G and w ∈ W ,
∑

i∈N fi (v,w) = v(N ).
Weak monotonicity∗, M−∗. For any v, v′ ∈ G, w ∈ W and i ∈ N , if v(N ) ≥ v′(N )

andv(S∪{i})−v(S) ≥ v′(S∪{i})−v′(S) for all S ⊆ N\{i}, then fi (v,w) ≥ fi (v′, w).
Ratio invariance for null players∗, RIN∗. For any v ∈ G, w ∈ W and any null
players i, j ∈ N , we have wi · f j (v,w) = w j · fi (v,w).

7 Note that (WDMSP) is weaker than (SYM). It is also a weaker version of differ-
ential marginality defined by Casajus (2010, 2011). Formally, differential marginality is
defined as follows: for any i, j ∈ N and v, v′ ∈ G, if v(S ∪ {i}) − v(S ∪ { j})
= v′(S ∪ {i}) − v′(S ∪ { j}) for all S ⊆ N\{i, j}, then fi (v) − f j (v) = fi (v

′) − f j (v
′).
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Symmetry∗, SYM∗. For any v ∈ G, w ∈ W and i, j ∈ N , if i, j are symmetric in v

and wi = w j , then we have fi (v,w) = f j (v,w).
Symmetry∗ requires that two players whose contributions and priorities are the

same should receive the same amount. If we fix w to the equal weight ( 1n , . . . , 1
n ), this

is equivalent to usual symmetry. Note that we allow different payoffs for two players,
even if their contributions are the same, as long as their weights are different.

In addition to the axioms above, we impose the following requirement to take each
player’s contributions and weights into consideration separately, which supports our
motivation to consider heterogeneity.
Fair evaluation for contribution, FEC∗. For any v ∈ G, w,w′ ∈ W and i ∈ N ,

fi (v,w) − fi (μ
v,i , w) = fi (v,w′) − fi (μ

v,i , w′),

where μv,i = v(N )uN\{i}.
This axiom describes how the payoff of a player changes due to a shift between the

two weight profiles. The axiom requires that the payoff difference generated from this
shift should be the same as long as productivity of the other players keeps unchanged
and this player i is a null player. The following result shows that the rule satisfies
these five axioms if and only if it is the weighted-egalitarian Shapley values with an
exogenously determined weight profile w ∈ W .

Theorem 3 Suppose n 
= 2. An allocation rule f : G × W → R
N satisfies (E∗),

(M−∗), (RIN∗), (SYM∗), and (FEC∗) if and only if there exists a δ ∈ [0, 1] such that
fi (v,w) = δ · Shi (v) + (1 − δ) · wiv(N ) for all v ∈ G.

Proof See Appendix B. ��

As elaborated in the appendices, the technical difference between Theorems 2 and
3 lies in the “order” of intermediate claims of the proofs. In the proof of Theorem
3, we first specify the form of the Shapley value, while we first obtain the weighted
division in Theorem 2.

Examples for the independence of the axioms and a counterexample for n = 2 are
given in Appendix C

5 Concluding remarks

In this paper, we propose and axiomatically characterize a new class of allocation rules
called weighted-egalitarian Shapley values. This allocation rule integrates equity and
heterogeneity with the Shapley value.

As briefly argued in Sect. 1, monotonicity and symmetry distinguish our class of
rules from the other rules, such as the egalitarian Shapley values and the weighted
Shapley values. Below, we elaborate the differences amongst these classes of rules by
comparing the axioms.
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Joosten (1996) introduces the class of the egalitarian Shapley values, which are
convex combinations of the Shapley value and the equal division:

fi (v) = δ · Shi (v) + (1 − δ) · v(N )

n
where δ ∈ [0, 1].

Note that this class of rules is a subset of weighted-egalitarian Shapley values (i.e.,
w = ( 1n , . . . , 1

n )). To clarify the difference between our allocation rules and the egali-
tarianShapley values,we consider the characterization ofCasajus andHuettner (2014).

Theorem 4 (Casajus and Huettner 2014) Suppose n 
= 2. An allocation rule f :
G → R

N satisfies (E), (M−), (SYM) if and only if there exists a δ ∈ [0, 1] such that
fi (v) = δ · Shi (v) + (1 − δ) · v(N )

n for all v ∈ G.
By comparing Theorem 2 with Theorem 4, the difference between these two rules
is observed to be the requirement of symmetry. As Table 1 shows, the weighted-
egalitarian Shapley values no longer satisfy symmetry, while all egalitarian Shapley
values obey symmetry. This difference should be ascribed to the weight which each
weighted-egalitarian Shapley value contains. To see what properties the weight makes
a solution obey/violate, we briefly introduce another variation of the Shapley value,
the weighted Shapley values.

Shapley (1953a) introduces the class of weighted Shapley values Shw
i (v), which

is a unique linear solution such that for each unanimity game uT , there is a weight
w ∈ R

N++ with
∑

j∈N w j = 1 such that

Shw
i (uT ) =

{
wi∑
j∈T w j

if i ∈ T ,

0 otherwise.

Similar to the Shapley value, the weighted Shapley values satisfy (M). Therefore, this
rule can be considered as a performance-based rule. However, the weighted Shapley
values allow us to allocate players’ surplus based not only on their contributions but
also on their weights, that is, heterogeneity is taken into account.

Nowak and Radzik (1995) consider the following axioms.
Mutual dependence, MD. For any two players i, j ∈ N and v, v′ ∈ G, if i, j are
symmetric in v and v′, then fi (v) f j (v′) = fi (v′) f j (v).
Strict positivity, SP. For any monotonic v ∈ G such that there are no null players, we
have fi (v) > 0 for all i ∈ N .8

They show that these properties, together with (E) and (M), characterize the
weighted Shapley values as follows.9

Theorem 5 (Nowak and Radzik 1995) An allocation rule f : G → R
N satisfies (E),

(M), (MD) and (SP) if and only if there exists a weight w ∈ R
N++ with

∑
j∈N w j = 1

such that fi (v) = Shw
i for all v ∈ G.

8 A game v is monotonic if v(T ) ≥ v(S) for any S ⊆ T .
9 This is a corollary implied by their more general result. They consider more general weight systems.
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Table 1 Axioms andRules. Abbreviation “w-egSh”means theweighted-egalitarian Shapley values, “egSh”
means the egalitarian Shapley values, and “w-Sh” is the weighted Shapley values

E M M− SYM WDMSP RIN MD NY SP

w-egSh + + + + +

egSh + + +

w-Sh + + + +

Symbol “+” indicates that the axiom is used for the axiomatization

Note that (MD) implies (RIN) but not (WDMSP). Moreover, under (E) and (M−),
(SP) implies (NY).10 Therefore, considering Theorems 2 and 5, monotonicity and
symmetry are the differences between these two rules.

Given that our rule has an axiomatic foundation similar to that of the weighted
Shapley values, we may weaken the properties and obtain another class of meaningful
rules. For example, there exist δ ∈ [0, 1], w ∈ W and z ∈ R

N++ with
∑

j∈N z j = 1
such that

fi (v) = δ · Shzi (v) + (1 − δ) · wiv(N ).

When w = (1/n, . . . , 1/n), as briefly mentioned in Sect. 1, the rules are called the
egalitarian weighted Shapley values introduced by Joosten (2016), which is another
generalization of the egalitarian Shapley values. Hence, the class above contains both
the weighted-egalitarian Shapley values and the egalitarian weighted Shapley values,
whose intersection is the egalitarian Shapley values. We conjecture that this general
class can be characterized by weak monotonicity and a variant of symmetry.

Appendix A: Proof of Theorem 2

Let Gc ⊆ G denote the set of games such that v(N ) = c. Also, for any player i ∈ N
and c ∈ R, let Gc,i denote the set of games v such that v(N ) = c and i is null player.
Note thatGc,i ⊆ Gc for all i ∈ N and c ∈ R. LetΔi (v) = (v(S∪{i})−v(S))S⊆N\{i} ∈
R
2(N−1)

be a vector of marginal contributions of i in v. Therefore player i ∈ N is a
null player in v if Δi (v) = 0. Let Λi be the set of all vectors of marginal contribution
of i : Λi = {Δi (v)|v ∈ G}.

For each x ∈ R
N , letmx ∈ G be an additive game,mx (S) = ∑

i∈S xi for all S ⊆ N .
Let Gadd be the set of additive games. Since there is a one-to-one correspondence
between x ∈ R

N and an additive game mx , we can identify Gadd with R
N . Abe and

Nakada (2017) provide the following result, which will be useful later.

Theorem A.1 (Abe and Nakada 2017) Let n 
= 2. f : Gadd → R
n satisfies (E), (M−),

(NY), and (RIN) if and only if there exists some δ ∈ [0, 1] and w ∈ W such that
fi (x) = δ · xi + (1 − δ) · wi · ∑

l∈N xl for all x ∈ R
n and i ∈ N.

10 If fi (0) = δ < 0 for all i ∈ N , it contradicts to (E). Hence, supposing that fi (0) = δ > 0 for some i ,
we consider v ∈ GN such that v(N ) = ε ∈ (0, δ) and v(S) = 0 for S 
= N . By (M−), fi (v) ≥ fi (0) = δ.
Also, by (SP), fi (v) > 0 for all i ∈ N . This contradicts (E) because v(N ) = ε ∈ (0, δ).
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Now,we offer the proof of Theorem 2. It is clear that the rule satisfies all the axioms.
We suppose that a rule f : G → R

N satisfies (E), (M−), (RIN), (WDMSP), and (NY).

Claim 1 For each i ∈ N , there exist functions φi : Λi × R → R and αi : R → R

such that fi (v) = φi (Δi (v), v(N )) + αi (v(N )).
We first take any c ∈ R. For any i ∈ N and v ∈ Gc, we have the following equation:

for any v̄ ∈ Gc such that Δi (v) = Δi (v̄),

fi (v)
(M−)= fi (v̄) =: αi (c,Δi (v)). (A.1)

Specifically, we denote
αi (c) = αi (c, 0). (A.2)

Moreover, for any i ∈ N and v, v′ ∈ Gc, we have

fi (v) − fi (v
′) (A.1)= αi (c,Δi (v)) − αi (c,Δi (v

′))
=: φi (Δi (v),Δi (v

′), c). (A.3)

Hence, for any i ∈ N and v ∈ Gc, we obtain the following equation: for any v′ ∈ Gc,i ,

φi (Δi (v),Δi (v
′), c) (A.3)= fi (v) − fi (v

′) (A.1)= fi (v) − αi (c). (A.4)

Note that fi (v) − αi (c) is independent from v′ ∈ Gc,i . For any i ∈ N and v ∈ Gc let

φi (Δi (v), c) := fi (v) − αi (c). (A.5)

Hence, for any i ∈ N and v ∈ G, we obtain

fi (v)
(A.5)= φi (Δi (v), v(N )) + αi (v(N )). (A.6)

This completes Claim 1.

Claim 2 For any i ∈ N , and c ∈ R, the function φi (·, c) : Λi → R satisfies (M) within
Gc: for any v, v′ ∈ Gc, if v(S ∪ {i}) − v(S) ≥ v′(S ∪ {i}) − v′(S) for any S ⊂ N\{i},
then φ(Δi (v), c) ≥ φ(Δi (v

′), c). Moreover, φi (0, c) = 0.
Let c = v(N ) = v′(N ). We have

φ(Δi (v), c) − φ(Δi (v
′), c) = φ(Δi (v), c) + αi (c) − (φ(Δi (v

′), v′(N )) + αi (c))
C1= fi (v) − fi (v

′)
(M−)≥ 0.

Moreover, for any c ∈ R,

φi (0, c)
(A.5),(A.4)= φi (0, 0, c)

(A.3),(A.1)= αi (c, 0) − αi (c, 0) = 0. (A.7)
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Claim 3 The function φ is symmetric: for any v ∈ G and i, j ∈ N , if i, j is symmetric
in v, then φi (Δi (v), v(N )) = φ j (Δ j (v), v(N )).

For any i, j ∈ N and v ∈ G such that v(S ∪ {i}) − v(S) = v(S ∪ { j}) − v(S) for
all S ⊆ N\{i, j}, let v′ = v(N )uN\{i, j}. Then, we have

φi (Δi (v), v(N ))
(A.6)= fi (v)− fi (v

′) (WDMSP)= f j (v)− f j (v
′) (A.6)= φ j (Δ j (v), v(N )).

(A.8)
This completes Claim 3.

Claim 4 The function φ satisfies δ-efficiency (δ-E): there is a δ ∈ [0, 1] such that∑
i∈N φi (Δi (v), v(N )) = δv(N ) for any v ∈ G.
Let f̃ : Gadd → R be the restriction of f on Gadd . Then, by Theorem A.1, for each

mx ∈ Gadd , we have

f̃i (mx ) = φi (Δi (mx ),
∑
l∈N

xl) + αi

(∑
l∈N

xl

)

= δ · xi + (1 − δ) · wi ·
∑
l∈N

xl . (A.9)

for some δ ∈ [0, 1] and w ∈ W . In particular, for xi = 0, (A.7) implies αi (
∑

l∈N xl)
= (1 − δ) · wi · ∑

l∈N xl . Hence, from Claim 1, it follows that for each v ∈ G,

fi (v) = φi (Δi (v), v(N )) + (1 − δ) · wi · v(N ). (A.10)

Since f satisfies (E),
∑

i∈N fi (v) = ∑
i∈N φi (Δi (v), v(N )) + (1− δ)v(N ) = v(N ),

which implies that φ satisfies the following property:

(δ − E) :
∑
i∈N

φi (Δi (v), v(N )) = δv(N ).

This completes Claim 4.

Claim 5 There is a δ ∈ [0, 1] and a w ∈ W such that fi (x) = δ · Shi (v) + (1 − δ) ·
wi · v(N ) for any v ∈ G.

Fixing c ∈ R, we write φc
i (v) = φi (Δi (v), c) for each v ∈ Gc. The function

φc(v) : Gc → R
N satisfies (δ-E), (M) and (SYM) within Gc by Claims 2, 3 and 4.

Hence, by the same argument of Theorem 1, we have

φc
i (v) = δShi (v).

Since c ∈ R is arbitrarily chosen, for any v ∈ G, we have

φi (Δi (v), v(N )) = φ
v(N )
i (v) = δShi (v) (A.11)

Finally, by (A.10) and (A.11), we obtain fi (x) = δ · Shi (v) + (1 − δ) · wi · v(N ),
which completes the proof. ��
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Appendix B: Proof of Theorem 3

We first show that (E∗), (M−∗), (SYM∗) characterizes the egalitarian Shapley value
when we fix w = ( 1n , . . . , 1

n ), which can be useful in later.

Lemma 1 Suppose that W = {( 1n , . . . , 1
n )} and n 
= 2. Then, an allocation rule

f : G × W → R
N satisfies (E∗), (M−∗), (SYM∗) if and only if it is an egalitarian-

Shapley value.

Proof This follows from the axioms and arguments in Casajus and Huettner (2014) if
w = ( 1n , . . . , 1

n ). ��
Now,we offer the proof of Theorem 3. It is clear that the rule satisfies all the axioms.

We suppose that a rule f : G → R
N satisfies (E∗), (M−∗), (RIN∗), (SYM∗), and

(FEC∗). Claim 1 can be thought of as an analog of that of Theorem 2. The differences
lie in Claims 2, 3 and 4. In this proof, we first specify the form of the Shapley value,
while we first specify the weighted division in Theorem 2.

Claim 1 For each i ∈ N , there exists functions φi (v) : Λi × R

→ R and αi : W × R → R such that fi (v,w) = φi (Δi (v), v(N )) + αi (w, v(N )).
We first take any c ∈ R. For any i ∈ N , v ∈ G and w ∈ W , we have the following

equation: for any v̄ ∈ Gc such that Δi (v) = Δi (v̄),

fi (v,w)
(M−∗)= fi (v̄, w) =: αi (w, c,Δi (v)). (B.1)

Specifically, we denote
αi (w, c) = αi (w, c, 0). (B.2)

By (FEC∗), for any c ∈ R and i ∈ N , there is a function φc
i : Gc → R such that

φc
i (v) = fi (v,w) − fi (cuN\{i}, w)

(B.2)= fi (v,w) − αi (w, c).

By (B.1), we know that φc
i (v) = φc

i (v̄) if v(N ) = v̄(N ) = c and Δi (v) = Δi (v̄).
Hence, we can define φi (Δi (v), c) : Λi × R → R as φi (Δi (v), c) =: φc

i (v). There-
fore, for any i ∈ N , v ∈ G and w ∈ W , we obtain fi (v,w) = φi (Δi (v), v(N ))

+αi (w, v(N )). This completes Claim 1.

Claim 2 For any v ∈ G, there exists a δ ∈ [0, 1] and dv(N )
i ∈ R such that

φi (Δi (v), v(N )) = δShi (v) + dv(N )
i .

Let w∗ = (1/n, . . . , 1/n) ∈ W , i.e., the equal weight. For any c ∈ R and any
v ∈ Gc, by Claim 1, we have

fi (v,w∗) = φi (Δi (v), v(N )) + αi (w
∗, v(N )), (B.3)
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and, by Lemma 1, there exists δ ∈ [0, 1] such that

fi (v,w∗) = δShi (v) + (1 − δ)
1

n
c. (B.4)

Note that δ does not depend on c ∈ R. For any v′ ∈ Gc,i , we have

φi (Δi (v
′), c) + αi (w

∗, c) (B.3)= fi (v
′, w∗) (B.4)= δShi (v

′) + (1 − δ)
1

n
c

= (1 − δ)
1

n
c. (B.5)

Note that player i is a null player in game v′ ∈ Gc,i . Hence, for any v′, v′′ ∈ Gc,i , we

have φi (Δi (v
′), c) + αi (w

∗, c) (B.5)= (1− δ) 1n c
(B.5)= φi (Δi (v

′′), c) + αi (w
∗, c) and,

so, denote dci := φi (Δi (v
′), c) = φi (Δi (v

′′), c). We obtain

αi (w
∗, c)

(B.5),dci= (1 − δ)
1

n
c − dci . (B.6)

Therefore, for every v ∈ Gc, we must have

φi (Δi (v), c)
(B.3)(B.4)(B.6)= δShi (v) + dci . (B.7)

Since c ∈ R is arbitrary chosen, we obtain φi (Δi (v
′), v(N )) = δShi (v) + dv(N )

i for
all v ∈ G.

Claim 3 αi (w, v(N )) = (1 − δ) · wiv(N ) − dv(N )
i for each w ∈ W .

Consider any w ∈ W and player k∗ ∈ N such that k∗ ∈ argmini∈N ,wi>0wi . Note
that k∗ is well-defined because

∑
i∈N wi = 1 and wi ≥ 0 for any i ∈ N . By Claim 2,

for any player i 
= k∗ and any c ∈ R,

fk(cu{i}, w) =
{

δc + dck + αk(w, c) if k = i,
dck + ψc

k (w) otherwise.

Hence, we have

∑
k∈N

(αk(w, c) + dck )
(E∗)= (1 − δ)c. (B.8)

Moreover, for any i 
= k∗, j ( j 
= i, j 
= k∗) and, by considering a game cu{ j}, we
have

αi (w, c) + dci
(RIN∗)= wi

wk∗
(αk∗(w, c) + dck∗), (B.9)
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because i and k∗ are null players in cu{ j}. Therefore, for any i ∈ N , we have

αi (w, c) + dci − (1 − δ)wi c

(B.9)= wi ·
[

1

wk∗
(αk∗(w, c) + dck∗) − (1 − δ)c

]

(B.8)= wi ·
[

1

wk∗
(αk∗(w, c) + dck∗) −

∑
k∈N

(αk(w, c) + dck )

]

(B.9)= wi

wk∗
·
[
(αk∗(w, c) + dck∗) −

∑
k∈N

wk(αk∗(w, c) + dck∗)

]

∑
k wk=1= wi

wk∗
·
[
(αk∗(w, c) + dck∗) − (αk∗(w, c) + dck∗)

]

= 0.

Since c ∈ R is arbitrary chosen, we obtain αi (w, v(N )) = (1 − δ) · wiv(N ) − dv(N )
i

for all v ∈ G.
Claim 4 For any v ∈ G and w ∈ W , there exists a δ ∈ [0, 1] such that fi (v,w) =
δ · Shi (v) + (1 − δ) · wiv(N ).

For any v ∈ G and w ∈ W , we have

fi (v,w)
C1= φi (Δi (v), v(N )) + αi (w, v(N ))

C2= δShi (v) + dv(N )
i + αi (w, v(N ))

C3= δShi (v) + dv(N )
i + (1 − δ) · wiv(N ) − dv(N )

i

= δShi (v) + (1 − δ) · wiv(N ).

This completes the proof. ��

Appendix C: Independence of axioms and a counterexample for n = 2

Independence of axioms for Theorem 2

The independence of the axioms is shown in the examples listed below.

Example C.1 Consider the following function: for any i ∈ N and v ∈ G,

f Ei (v) = 0.

This function satisfies all axioms except (E).

Example C.2 Consider the following function: for any i ∈ N and v ∈ G,

f M
−

i (v) = 2Shi (v) − v(N )

n
.
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This function satisfies all axioms except (M−).

Example C.3 Consider the following function: for any i ∈ N and v ∈ G,

f RINi (v) = δShi + (1 − δ)
i + v(N )2

N̄ + n(v(N ))2
v(N ),

where N̄ = ∑
i∈N i = n(n−1)

2 and i is the natural number representing player i .
This rule satisfies (E), (M−), (WMDSP) and (NY) but not (RIN). To check (M−),
let hi (a) = i+a2

N̄+a2
a = ia+a3

N̄+a2
. Then, we have dhi (a)

da = na4+(3N̄−ni)a2+i N̄
(N̄+a2)2

> 0 for all

a ∈ R because na4 + i N̄ > 0 for all i and 3N̄ − ni ≥ n(n−3)
2 ≥ 0.

Example C.4 Consider the following function: for any i ∈ N and v ∈ G,

fWMDSP
i (v) = v(Pσ

i ∪ {i}) − v(Pσ
i )

where Pσ
i is the set of predecessors of i in σ . This function satisfies all the axioms

except (WMDSP).

Example C.5 Consider the following function: for any i ∈ N and v ∈ G,

f NYi (v) =
{
Sh1 + 10 if i = 1,
Shi − 10

n−1 if i 
= 1.

This rule satisfies all the axioms except (NY).

Independence of axioms for Theorem 3

The independence of the axioms is shown in the examples listed below.

Example C.6 Consider the following function: for any i ∈ N , v ∈ G and w ∈ W ,

f E
∗

i (v,w) = 0.

Then, the function satisfies all axioms except (E∗).

Example C.7 Consider the following function: for any i ∈ N , v ∈ G and w ∈ W ,

f M
−∗

i (v,w) = 2Shi (v) − wiv(N ).

Then, the function satisfies all axioms except (M−∗).

Example C.8 Consider the following function: for any i ∈ N , v ∈ G and w ∈ W ,

f RIN
∗

i (v,w) = δ · v(N )

|N | + (1 − δ) · wiv(N ).

The function satisfies all axioms except (RIN∗).
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Example C.9 Consider the following function: for any i ∈ N , v ∈ G and w ∈ W ,

f SYM
∗

i (v,w) = δ · Shzi (v) + (1 − δ) · wiv(N ),

where Shzi (v) is the weighted Shapley value for a given weight z ∈ RN++. Since
anonymity is defined over G andW , the function satisfies all axioms except (SYM∗).

Example C.10 Consider the following function: for any i ∈ N , v ∈ G and w ∈ W ,

f FEC
∗

i (v,w) = wmin · Shi (v) + (1 − wmin)wiv(N ),

where wmin = min j∈N w j . This function satisfies all axioms except (FEC∗).

A counterexample to Theorems 2 and 3 for n = 2

Theorems 2 and 3 fail for n = 2. Consider the following allocation rule f ♥ on
N = {1, 2}:

( f ♥
1 (v,w), f ♥

2 (v, w)) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(Sh1(v), Sh2(v)), Sh1(v) ≥ 0 and Sh2(v) ≥ 0,
(0, v(N )), Sh1(v) < 0 and Sh2(v) > 0 ∧ v(N ) ≥ 0,
(v(N ), 0), Sh1(v) < 0 and Sh2(v) > 0 ∧ v(N ) < 0,
(Sh1(v), Sh2(v)), Sh1(v) ≤ 0 and Sh2(v) ≤ 0,
(0, v(N )), Sh1(v) > 0 and Sh2(v) < 0 ∧ v(N ) ≤ 0,
(v(N ), 0), Sh1(v) > 0 and Sh2(v) < 0 ∧ v(N ) > 0,

for any v ∈ G and w ∈ W .
Note that this function does not depend on w. It is clear that f ♥ satisfies (E∗) and

(M−∗). It satisfies (SYM∗) because if the players 1 and 2 are symmetric in the sense
of marginal contribution and have the same weight, they receive (Sh1(v), Sh2(v)). It
satisfies (RIN∗) because if the players 1 and 2 are null players, the game v is the null
game: v(12) = v(1) = v(2) = 0. Since f ♥ does not depend on w, it clearly satisfies
(FEC∗). The same argument applies to Theorem 2.
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