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Abstract We characterise multi-candidate pure-strategy equilibria in the Hotelling–
Downs spatial election model for the class of best-worst voting rules, in which each
voter is endowedwith both a positive and a negative vote, i.e., each voter votes in favour
of their most preferred candidate and against their least preferred. The importance of
positive and negative votes in calculating a candidate’s net score may be different,
so that a negative vote and a positive vote need not cancel out exactly. These rules
combine the first-place seeking incentives of plurality with the incentives to avoid
being ranked last of antiplurality. We show that, in our simple model, arbitrary best-
worst rules admit equilibria, which (except for three candidates) are nonconvergent if
and only if the importance of a positive vote exceeds that of a negative vote. The set of
equilibria in the latter case is very similar to that of plurality, except the platforms are
less extreme due to the moderating effect of negative votes. Moreover: (i) any degree
of dispersion between plurality, at one extreme, and full convergence, at the other, can
be attained for the correct choice of the weights; and, (ii) when they exist (and there
are at least five candidates), there always exist nonconvergent equilibria in which none
of the most extreme candidates receive the most electoral support.
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260 D. Cahan, A. Slinko

1 Introduction

Hotelling’s (1929) “Main Street” model of spatial competition between firms has—
most notably thanks to its adaptation by Downs (1957) to ideological competition
among political parties—enjoyed a significant presence in the voting literature. In the
classical model, there is a society of voters whose ideal policy platforms lie along the
left-right political spectrum. A set of exogenously given political candidates or parties
choose platforms to advocate so as to maximise their support from the voters, who
vote for the candidate with the platform nearest to his or her personal ideal platform.

Most such studies of Downsian competition have focused on situations in which
elections are held under the voting system known as plurality rule. This is the simplest
system where voters have one vote each, which they cast for their favourite candidate,
and whoever gets the most votes wins. Under plurality, voters’ second, third and other
preferences—most importantly for this paper, their last place preferences—do not
matter. However, voting systems, both used in practice and studied theoretically, come
in many varieties. Many of them do take into account voters’ partial or full ranking of
candidates when producing a winner. These include, among others, approval voting,
Borda count, and single transferable vote. When the preferences beyond first matter,
candidates’ incentives change, and we expect equilibrium outcomes to vary as well.
In this paper, we analyze the equilibrium properties of a largely overlooked class
of voting rules, which combine positive and negative voting, and are referred to as
best-worst rules (García-Lapresta et al. 2010). Under these rules, each voter casts one
positive and one negative vote and a candidate’s total score is the weighted difference
of the number of positive votes and the number of negative votes. We allow the weight
of a negative vote to be different from that of a positive vote and, hence, this class
of voting systems includes as special cases plurality, anti-plurality, and the system in
which positive and negative votes are of equal importance.1

The main result of this paper is that, in a simple Hotelling-Downs model with
uniformly distributed,2 sincere voters and no exit or entry, there is a close link between
the pure-strategy equilibria of general best-worst rules and those of plurality, which
is well known to admit divergent equilibria in which candidates adopt a range of
ideologically diverse positions (Eaton and Lipsey 1975; Denzau et al. 1985). When
the importance of a positive vote exceeds that of a negative vote, equilibria take the
same general form as those of plurality, with divergent policy platforms advocated.
However, the key difference is that, while differentiated, the equilibrium platforms for
the best-worst rules exhibit less dispersion. Indeed, these rules present candidates with
a clear centrifugalmotive to seekfirst-place rankings, as occurs under plurality, butwith
the simultaneous incentive to avoid being the most unpopular candidate and receiving
negative votes. This last property encourages a degree of policymoderation—adopting
extreme platforms is discouraged as doing so is likely to single oneself out as a target
for the negative votes of citizens at the opposite end of the ideological spectrum.
As the importance of a negative vote increases relative to that of a positive vote,

1 Also known as “single-positive-and-single-negative” voting (Myerson 1999).
2 We discuss a generalisation of the uniformity assumption in Sect. 5.
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Electoral competition under best-worst voting rules 261

the equilibrium platforms move inwards towards the median voter’s ideal platform.
Eventually all platforms merge at the median as a negative vote reaches parity with
a positive vote (i.e., one negative vote cancels out one positive vote exactly). When a
negative vote becomes more important than a positive vote, only convergent equilibria
exist, with no policy differentiation.

Describing the equilibrium properties of different voting systems is an important
task (Cox 1985, 1987; Grofman and Lijphart 1986; Myerson and Weber 1993; Myer-
son 1999; Cahan and Slinko 2017). When choosing between voting rules, first of all,
we would like to know whether or not equilibria exist—their absence may lead to
permanent instability and a lack of predictability of outcomes. Second, if they exist,
an electoral designer would prefer a rule that admits equilibria with desirable proper-
ties. The main consideration here is a tradeoff between discouraging extremism and
promoting fair representation—it is undesirable if candidates are incentivised to adopt
extremist platforms rather than more centrist platforms, while at the same time the
rationale for voting in the first place is to provide citizens with political representation
of their varied interests. Besides the platforms that are advocated, which platforms are
likely to receive the most support also matters for similar reasons.

Our results show that best-worst rules do well on all counts. They admit non-
convergent equilibria, offering voters a choice over distinct platforms and avoiding
Hotelling’s “excessive sameness”. At the same time, the perhaps excessive extremism
associated with plurality (Cox 1987, 1985; Myerson and Weber 1993; Laslier and
Maniquet 2010) is moderated. Indeed, depending on the weight placed on a negative
vote, we may have any level of dispersion of platforms between that of plurality, at
one extreme, and full convergence of platforms, at the other. Moreover, the candidates
that adopt the most extreme positions in equilibrium never obtain a strictly higher vote
share than any other candidate—in fact, when there are at least five candidates, there
always exist NCNE in which the most extreme candidates receive a strictly smaller
vote share than at least one less extreme candidate. Finally, best-worst voting rules
have the additional advantage that they are simple and easily implementable, requiring
only that voters list their first and last choices and not a tedious full ranking.

Best-worst voting itself has not been used in practice, but the idea of voting against
candidates in one form or another has been around for some time. Boehm (1976) in
an unpublished essay suggested that voters in an election be allowed either to cast a
vote for or against a candidate, but not both. A candidate’s “negative” votes would be
subtracted from his “positive” votes to determine his net vote, and the candidate with
the highest net vote would win.3 Boehm—and many others after him (see, e.g., Leef
2014)—argued that the introduction of negative votes in United States presidential
elections would force the candidates to appeal to voters with positive programs, rather
than just fill the airwaves with ads attacking other candidates, sowing doubt among
their supporters. The rule suggested byBoehm is nowknownas negative voting (Brams
1983). Anti-plurality voting is a similar method in which each voter votes against a

3 Presumably, if the highest net vote is negative, then nobody is elected.
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single candidate, and the candidate with the fewest votes against wins. In other words,
anti-plurality determines who among the candidates is the least unpopular.4

The use of some form of negative voting in elections is not so uncommon. For
example, Nevada gives voters the option to vote against all candidates by having a
“None of these candidates” option on the ballot. Prior to 2000, Lithuanian voters
were allowed voters to express approval, neutrality or disapproval of candidates in
the proportional representation part of their parliamentary elections (Renwick and
Pilet 2016). Latvia does the same in allocating a party’s European Parliament seats to
individual candidates from the party list.5

A voting system in which voters cast both positive and negative votes, as occurs
under best-worst rules, may be even more advantageous. It can give a fighting chance
to major or minor centrist parties—it is not unthinkable that people on the extreme
left will vote for a leftist candidate and against a right-wing one, while the right-wing
voters will do the opposite. Their votes will cancel out and a centrist candidate will be
elected.6 Indeed, roughly speaking, this is directly in the spirit of our main results.7

The rest of this paper is organised as follows: in Sect. 2 we outline some literature
related to this work; in Sect. 3 we present the model; in Sect. 4 we present our main
results; Sect. 5 discusses a fewof the assumptions and the generalisability of the results;
and, Sect. 6 provides our concluding remarks. A few minor and auxiliary results are
presented in the Appendix.

2 Related literature

Best-worst rules specifically and notions related to them have been considered before
in other contexts. The idea that the best and worst alternatives play a special role in
the decision process has been prominent in decision theory. For example, the Arrow–
Hurwicz (1972) criterion for choice under uncertainty takes a weighted average of
the best and worst expected value/utility outcomes and does not take into account
intermediate outcomes, and Marley and Louviere (2005) look at probabilistic discrete
choice models through the best-worst lense.

García-Lapresta et al. (2010) provide an axiomatic characterisation of the class
of best-worst voting rules considered in this paper. Alcantud and Laruelle (2014)
characterise a related voting rule in which, for each candidate, voters may express
approval, indifference, or disapproval. This rule is also studied in Felsenthal (1989)
from the perspective of voter strategies. Joy and McMunigal (2016) believe that the
current system of peremptory challenges in the criminal justice system of the United

4 Anti-plurality is also sometimes referred to as negative voting as well as “veto” (Kang 2010).
5 See the following training course for election observers: https://www.cvk.lv/pub/public/30083.html.
6 See Kang (2010) for an account of more costs, benefits and tradeoffs associated with negative voting.
7 We do not model it here, but there may be further arguments in favour—e.g., the number of ways in which
voters can express themselves is further diversified, which could increase turnout by appealing to voters
who are enticed more by the ability to vote against a candidate than for one (Kang 2010; Leef 2014). In
an experimental setting, Baujard et al. (2014) find that French voters are generally positive about the use
of alternative and more expressive “evaluative” voting methods similar to best-worst rules. We leave these
considerations for future work.
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States makes it easy to exclude qualified African Americans jurors in the process of
jury selection and propose that it be replaced with a system of peremptory strikes and
peremptory inclusions. In other words, both the defense and the prosecution should
be allowed to not just rule potential jurors out, but also “rule them in”.

Baujard et al. (2014), during the first round of the 2012 French presidential election,
ran an experiment in which subjects were asked to vote for candidates using various
“evaluative voting” methods, which bear many similarities to the best-worst voting
rules considered in our paper. Voters “graded” candidates on a numerical scale: for
example, under one system they could assign each candidate 1 point, 0 points, or −1
points; under another, they could assign 2 points, 1 point or 0 points. They documented
an interesting psychological effect: these systems were not treated the same, despite
being mathematically equivalent (see also Igersheim et al. 2016).

None of these papers, thus, look at how the incentives created by these voting
systems affect political competition. Given the very natural combination of negative
and positive voting embodied in the best-worst rules, it is surprising that, to the best
of our knowledge, they have been overlooked in the spatial competition literature.
Plurality, a special case, has of course been extensively discussed, and its equilibrium
properties are characterised in Eaton and Lipsey (1975) and Denzau et al. (1985).
Anti-plurality is known to allow convergent equilibria in which all candidates adopt
the same policy platform, but not to allow nonconvergent equilibria (Cox 1987).

The two most relevant papers to this research are Cox (1987) and Cahan and Slinko
(2017). Both are concerned with Nash equilibria under the class of voting rules known
as general scoring rules, of which the best-worst rules are a subclass. Cox (1987)
characterised all scoring rules that have convergent Nash equilibria, which leads to a
straightforward description of all best-worst rules allowing convergent equilibria, as
we will describe in Sect. 4. However, Cox’s theorem says nothing about the possibility
of divergent equilibria, which is the focus of Cahan and Slinko (2017), and also this
paper.

Cahan and Slinko (2017) investigate the existence and properties of nonconvergent
equilibria under general scoring rules. In some subclasses of scoring rules—in par-
ticular, those whose score vector is convex—they managed to characterise all rules
that allow Nash equilibria. These rules appear to be truncated variants of the Borda
rule. This result is, however, inapplicable to the best-worst rules, whose score vectors
are neither convex nor concave. A general characterisation of scoring rules that allow
equilibria remains an open question.

3 The model

There is a unit mass of voters with ideal positions distributed uniformly on the interval
[0,1], the issue space.8 There arem candidates—candidate i’s position is xi , and a strat-
egy profile x = (x1, . . . , xm) ∈ [0, 1]m describes the platforms of all the candidates. A
strategy profile implies a set of distinct occupied positions, x1 < x2 < · · · < xq . We

8 See Sect. 5 for a discussion on limitations, justifications and generalisations of the uniform distribution
assumption.
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denote by ni the number of candidates at occupied position xi and we will sometimes
use the alternative notation for a strategy profile, x = ((x1, n1), . . . , (xq , nq)), which
gives the location and number of candidates at each occupied position rather than each
individual candidate’s position.

We will use notation [n] = {1, . . . , n} and if I = [a, b] is an interval, then
�(I ) = b − a is the length of the interval. We assume sincere voters with single-
peaked, symmetric utility functions who, hence, rank candidates according to the
distance between their advocated platform and the voter’s ideal position. Voters who
are indifferent between candidates decide on a strict ranking by fair lottery.

A best-worst voting rule can be described as follows: a first-place ranking earns
a candidate a normalised 1 point, while a last-place ranking earns the candidate −c
points, where c ≥ 0. Being ranked anywhere other than first or last by a voter earns
a candidate nothing. The magnitude of c describes the relative importance of the
positive vote relative to the negative vote, which is the parameter of interest here.
Thus, a rule can be described by a pair of numbers s = (c,m), where m is the number
of candidates.9

Candidate i’s score is the weighted difference between the number of positive
votes and the number of negative votes received, denoted vi (x). Candidates choose
positions simultaneously so as to maximise vi (x).10 Our equilibrium concept is the
Nash equilibrium in pure strategies. Profile x∗ = (x∗

1 , . . . , x
∗
m) is an equilibrium

if and only if vi (x∗) ≥ vi (xi , x∗−i ) for all i ∈ [m] and for all xi ∈ [0, 1], where
(xi , x∗−i ) = (x∗

1 , . . . , x
∗
i−1, xi , x

∗
i+1, . . . , x

∗
m). A convergent Nash equilibrium (CNE)

is an equilibrium in which all candidates adopt the same platform, while in a non-
convergent Nash equilibrium (NCNE), at least two of the platforms are distinct. The
notation x+

i and x−
i refer to points xi + ε and xi − ε, respectively, for vanishingly

small ε > 0.

4 Results

Our main result is a general characterisation of NCNE for rules s = (c,m) in Theo-
rem 4.3. Before we concentrate on NCNE, however, we should address the issue of
CNE—equilibria in which all candidates adopt the same platform. In fact, their char-
acterisation is straightforward, presented below in Proposition 4.1. This result follows
directly from Cox (1987), who characterised CNE for general scoring rules, a broad
class of voting rules to which best-worst rules belong.

Proposition 4.1 (Cox 1987) A rule s = (c,m) admits CNE if and only if c ≥ 1, in
which case the profile x = ((x1,m)) is a CNE for any x1 ∈ [m−1+c

m(1+c) , 1 − m−1+c
m(1+c)

]
.

Proof For x = ((x1,m)) to be a CNE, it should not be beneficial to deviate just
to the left or right of x1. That is, we have CNE if and only if: first, vi (x1−, x−i )

9 As noted in the Introduction, best-worst rules belong to the class of general scoring rules. A scoring rule
is a vector s = (s1, . . . , sm ), where s1 ≥ · · · ≥ sm , s1 > sm , and si is the number of points assigned to the
i-th ranked candidate in a voter’s ballot. A best-worst rule s = (c,m), then, is equivalent to scoring rule
s = (1, 0, . . . , 0, −c).
10 See Sect. 5 for a discussion of this assumption and plausible alternatives.
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Electoral competition under best-worst voting rules 265

= x1 −c(1− x1) ≤ 1−c
m = vi (x); and, second, vi (x1+, x−i ) = 1− x1 −cx1 ≤ vi (x).

Together, these two conditions yield the interval of possible CNE, which is nonempty
if and only if c ≥ 1. ��

Proposition 4.1 tells us that CNE can only exist if the weight on a positive vote does
not exceed that of a negative vote. In this case, a small deviation from the common
platform differentiates a candidate in a positive way for one side of the electorate, and
negatively for the other. The gain in terms of positive votes is not worth the damage
due to the negative votes that the candidate will now receive, so candidates will stay
put at the common platform. So CNE exist at any point of an interval centered at the
median voter’s ideal position. As c increases, this interval expands, meaning that a
wider range of CNE are possible.11

While Proposition 4.1 tells us everything there is to know about CNE, it is silent
about NCNE. We do know that NCNE exist for plurality (Eaton and Lipsey 1975),
but not for antiplurality (Cox 1987), both of which are examples of best-worst rules,
so the picture is not at all clear in general.

It turns out that, for NCNE to exist, it must be that c < 1. In other words, the value
of a positive vote must outweigh the value of a negative vote in order for the candidates
to be induced to adopt divergent policies. Otherwise, the centripetal incentive to avoid
being singled out as the worst candidate is too strong and only CNE can exist. This
also implies that CNE and NCNE cannot exist simultaneously for the same rule.12

Proposition 4.2 The rule s = (c,m) does not admit NCNE if c ≥ 1.

Proof Consider candidate 1 at position x1, which is occupied by n1 candidates, where
2 ≤ n1 ≤ m − 2. Consider intervals I1 = [0, x1] and I2 = [(x1 + xq)/2, 1]. If 1
makes an infinitesimal move to the right of x1, then in the rankings of voters in I1,
of which there is positive measure by Lemma A.1, she falls behind the other n1 − 1
candidates originally at x1, thus losing their positive votes. On the other hand, 1 rises
ahead of these n1 − 1 candidates in the rankings of all other voters and, in particular,
no longer receives a negative vote from any voter. Then, the score candidate 1 loses
by making this move is vlost = 1

n1
�(I1). On the other hand, 1’s gain from this move

is vgained = 1
n1
c�(I2).

For NCNE, it must be the case that vlost ≥ vgained , or �(I1) ≥ c�(I2). Since we
assume c ≥ 1, this implies that �(I1) ≥ �(I2), or x1 ≥ 1 − (x1 + xq)/2. Simi-
lar considerations with respect to candidate q yields the requirement that �([xq , 1])
≥ �([0, (x1 + xq)/2], or 1− xq ≥ (x1 + xq)/2. Together, these two conditions imply
that x1 ≥ xq , an impossibility for an NCNE. ��

Before we proceed to our characterisation, some additional notation. Let

(i) I1 = [0, (x1 + x2)/2],
(ii) Ii = [(xi−1 + xi )/2, (xi + xi+1)/2] for 2 ≤ i ≤ q − 1,
(iii) Iq = [(xq−1 + xq)/2, 1],

11 Provided m > 2; if m = 2, any rule reduces to plurality.
12 They can coexist for other scoring rules (Cahan and Slinko 2017) outside the class of best-worst rules.
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be the “full-electorates” around each of the occupied positions. A full-electorate Ii
is the set of voters for whom a given occupied position xi is the nearest, so that
any candidates located there are ranked first equal for these voters. For each i ∈ [q]
let I Li = {y ∈ Ii : y ≤ xi } and I Ri = {y ∈ Ii : y ≥ xi } be the left and right
“half-electorates” whose union is the full-electorate Ii . That is, we simply partition
a full-electorate into those voters whose ideal positions lie to the left of the given
occupied position and those who lie to the right. Note that �(I Ri ) = �(I Li+1) for
i ∈ [q − 1].

We now present our characterisation of NCNE for best-worst rules, Theorem 4.3,
which provides five necessary and sufficient conditions for a profile to be an NCNE
for a given best-worst rule. Condition (i) states that the outermost occupied positions
must be occupied by two candidates apiece. It is clear that they cannot be single
candidates, but this condition also excludes the possibility of more than two candi-
dates, as in the well-known case of plurality (see Eaton and Lipsey 1975). The second
condition says that all paired candidates’ half-electorates are the same length, exclud-
ing end electorates, while (iii) relates these interior half-electorates to the outermost
half-electorates. Conditions (iv) and (v) put restrictions on the lengths of various
electorates: first, an unpaired candidate’s full-electorate cannot be smaller than any
half-electorate (excluding end half-electorates); and, second, a paired candidate’s half-
electorate cannot be smaller than an unpaired candidate’s half-electorate (excluding
end half-electorates).

An important observation to make is that, with the exception of (iii), all the remain-
ing conditions are identical for any rule—they do not depend directly on c, as long
as c < 1. This implies that the equilibrium spacing will be affected by c, but not
the configuration of the candidates, i.e., the number of occupied positions and how
many candidates occupy them. Thus, if they exist (we will see shortly that they do
for any rule with c < 1), NCNE for best-worse rules will have the same general form
as NCNE for plurality, the only difference being the exact location of the platforms
x1, . . . , xq .

Theorem 4.3 Given a rule s = (c,m), with c < 1, the following conditions are
necessary and sufficient for a profile x to be an NCNE:

(i) ni ≤ 2 for all i ∈ [q] and n1 = nq = 2. That is, candidates at the most extreme
occupied positions are paired.

(ii) If ni = 2 for 1 < i < q, then �(I Li ) = �(I Ri ) = �(I R1 ) = �(I Lq ). Let I p denote
this common measure. That is, all paired candidates’ half-electorates are the
same length (except end half-electorates).

(iii) �(I L1 ) = �(I Rq ) = I p + c
2 .

(iv) If ni = 1, then both �(Ii ) ≥ �(I Lk ) for all k �= 1 and �(Ii ) ≥ �(I Rk ) for all k �= q.
That is, any (unpaired) candidate’s full-electorate is no smaller than any other
half-electorate (excluding end half-electorates).

(v) I p ≥ �(I Lk ) for all k �= 1 and I p ≥ �(I Rk ) for all k �= q. That is, a paired can-
didate’s half-electorate (excluding end half-electorates) is no smaller than any
other (unpaired) candidate’s half-electorate (excluding the end half-electorates).
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Electoral competition under best-worst voting rules 267

Proof That (i) is necessary follows from Lemma A.4, so we start by showing the
necessity of (ii). Suppose candidate j is at xi , where ni = 2 and suppose with-
out loss of generality that �(I Li ) > �(I Ri ). Then v j (xi−, x− j ) = �(I Li ) > �(I Ri )

= v j (xi+, x− j ), contradicting Lemma A.2. So �(I Li ) = �(I Ri ). Let I p denote this
commonmeasure.Moreover, note that v1(x1+, x−1) = �(I R1 ). Using LemmasA.2 and
A.3, we know v1(x1+, x−i ) = v1(x) = v j (x) = I p, so that �(I R1 ) = I p. Similarly,
�(I Lq ) = I p. Hence, condition (ii) is necessary.

Now condition (iii). Note that we must have �(I L1 ) = �(I Rq ). Otherwise, if �(I L1 )

> �(I Rq ), then, using Lemmas A.2 and A.3,

vq(x) = v1(x) = v1(x
1−, x−1) > vq(x

q+, x−q) = vq(x),

a contradiction. Thus, (x1 + xq)/2 = 1/2. Hence, v1(x) = 1
2 (�(I1)+ I p)− c

4 , which,
by Lemma A.2, is equal to v1(x1+, x−1) = I p, so �(I L1 ) = I p + c

2 .
Now conditions (iv) and (v). Let candidate l be at xi . Then, if ni = 1, we have

vl(x) = �(Ii ). Suppose there is some k > 1 such that �(Ii ) < �(I Lk ). Clearly the half
electorate I Lk could not be i’s half electorate, i.e. k = i or k = i + 1. So we have

vl(x
k−, x−l) = �(I Lk ) > �(Ii ) = vl(x),

so this is not an NCNE. So we must have �(I Lk ) ≤ �(Ii ). For (v), if ni = 2, then
(noting that i can be 1 or q since all paired candidates receive the same score by
Lemma A.3) vl(x) = I p, which, to avoid contradiction, implies I p ≥ �(I Lk ) for all
k �= 1. Similarly for right electorates.

Now sufficiency. We need to check that no candidate can deviate profitably. Con-
sider candidate i at x j , where n j = 2 (i could be an end candidate). We know that
all paired candidates get the same score, vi (x) = I p, and that vi (x1−, x−1) = vi (x),
so i would not want to deviate to x1− or xq+. Also, if t ∈ (xk, xk+1) for some
k < q, then vi (t, x−1) = �(I Rk ) ≤ I p = vi (x) by condition (v). Candidate i
would also not deviate to an occupied position xk , k �= j . Doing so would yield
a score of vi (xk, x−i ) = 2

3 I
p < vi (x) if nk = 2 or a score of vi (xk, x−i ) = 1

2�(Ik)
= 1

2 (�(I
L
k ) + �(I Rk )) ≤ I p = vi (x) if nk = 1, by (v). So no paired candidates would

deviate.
Consider an unpaired candidate i at position x j . Then vi (x) = �(I j ). Clearly any

moveswithin the interval (x j−1, x j+1)donot change i’s score. Suppose t ∈ (xk, xk+1)

for some k /∈ { j − 1, j, q}. Then vi (t, x−i ) = �(I Rk ) ≤ �(I j ) = vi (x), so i will
not move to any unoccupied position. Suppose nk = 2 and k /∈ { j − 1, j + 1}.
Then vi (xk, x−i ) = 2

3 I
p < I p ≤ �(I j ) = vi (x), by (iv). Suppose nk = 1 and

k /∈ { j − 1, j + 1}. Then vi (xk, x−i ) = 1
2 (�(I

L
k ) + �(I Rk )) ≤ �(I j ) = vi (x). So no

unpaired candidate wants to deviate to any occupied position that is not adjacent to
the candidate’s current position.

Finally, we check that no unpaired candidate would move to an adjacent occupied
position. If n j−1 = 2, j − 1 �= 1, then vi (x j−1, x−i ) = 1

3 (I
p + �(I j )) ≤ 2

3�(I j )
< �(I j ) = vi (x). If j − 1 = 1 then vi (x j−1, x−i ) = 1

3 (�(I
L
1 ) + �(I j )) − c

6 =
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1
3

(
I p + c

2 + �(I j )
) − c

6 ≤ 2
3�(I j ) < �(I j ) = vi (x). If n j−1 = 1, then vi (x j−1, x−i )

= 1
2 (�(I

L
j−1) + �(I j )) ≤ �(I j ) = vi (x). So no unpaired candidate wants to move to

the next left occupied position or, by similar arguments, to the next right occupied
position. We have checked all possible deviations, so x is a NCNE. ��

While Theorem 4.3 gives necessary and sufficient conditions for an NCNE, it is not
yet clear that these conditions can be satisfied for an arbitrary numberm of candidates
and any c < 1. For m = 2 only convergent equilibria may exist. For m = 3, no
equilibria can exist whatsoever by the familiar argument (Eaton and Lipsey 1975) that
one of them would have to be alone at an outermost occupied position, and would
have an incentive to move inwards. The next result addresses this question and shows
that they do indeed exist for any m ≥ 4.

Corollary 4.4 For all m ≥ 4 NCNE exist for rules s = (c,m) with c < 1, and for
m ≥ 6 there are infinitely many NCNE for a given rule. Moreover, all NCNE take the
same general form as plurality (they have NCNE with the same number of occupied
positions, q, with the same number of candidates, ni , at each one, but perhaps different
locations).

Proof Consider m ≥ 4. Suppose candidates are positioned so that all half-electorates
have the same length, except for end electorates, and n1 = nq = 2. That is, �(I Lk )

= �(I Rj ) = I p for all k �= 1, j �= q. Then, we place x1 and xq so that (iii) is satisfied,

from which it follows that I p = 1
2q (1 − c). By construction, then, (iv) and (v) are

satisfied, and we have an NCNE.
Next,we show that there are infinitelymanyNCNEform ≥ 6. Ifm is even, construct

a profile as above, but with q = (m+2)/2 occupied positions, all of them occupied by
twocandidates except for the two innermost positions, xk and xk+1,which are occupied
byonly one candidate each, and all half-electorates except for the outermost of the same
length. This will be an equilibrium by the argument of the previous paragraph, with x1

and xq chosen to satisfy (iii). Let us increase the length of each half-electorate except
for I Rk and I Lk+1 by ε > 0, so that I p

′ = I p + ε (that is, we are moving all positions
inwards at the expense of the interior two candidates). This maintains (i) and (iii).
Condition (iv) will still be satisfied since the only unpaired candidates are those at xk

and xk+1, who have full-electorates of length �(Ik) = I p
′ +�(I Rk ) > max{I p′

, �(I Rk )}.
Clearly, (v)will still be satisfied, sinceweare increasing the length of I p anddecreasing
the length I Rk and I Lk+1.

If there is an odd number of candidates m ≥ 7 we can do a similar thing. We
start with q = (m + 3)/2 occupied positions, symmetric about the median, which is
occupied by a single candidate. The two innermost occupied positions to the left and
right of themedian are also occupied by single candidates. Label the occupied position
at the median as xk . All occupied positions other than these three have two candidates
apiece, and we place them so that all half-electorates except the outermost are of the
same length. Again, choose x1 and xq so that (iii) is satisfied. Now, increase the length
of all half-electorates except for I Lk and I Rk by ε > 0. As above, this maintains (i) and
(iii). Condition (iv) will clearly still be satisfied for all i �= k. For Ik , the full electorate
is getting smaller, but �(Ik) = 2I p− Jε > I p+ε for small ε, where J is the number of
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half intervals to one side of the median that increase in length. Condition (v) will still
be satisfied, since the paired candidates’ half-electorates I p are increasing in length,
while the unpaired candidates’ half-electorates are either increasing at the same rate,
or getting smaller in the case of I Lk and I Rk . ��

An important consequence of Theorem 4.3 is that plurality rule produces the most
dispersed equilibria, while incorporating a negative vote pulls the platforms inward.
Essentially, the correct choice of c allows an election designer to pick any level of
equilibrium dispersion between that of plurality and full convergence, an important
result given the tradeoff betweenmoderation and representation discussed in the Intro-
duction. This is stated in Corollary 4.5.

Corollary 4.5 For a given configuration of candidates, i.e., fixing q and ni for i
∈ [q], but allowing xi to vary, the most extreme equilibria occur under plurality, and
increasing c lowers the attainable levels of dispersion.

Proof Given a number of occupied positions q and the number of candidates ni at each
of them, maximising dispersion consists, essentially, in minimising the location of x1.
By (iii), then, we want to minimise I p. Looking at condition (v), we can see that we
will want to to have �(I Lk ) = �(I Rk ) = I p, which will then imply that (iv) is satisfied.
This will partition the issue space into 2q intervals I p and two intervals of length c/2.
Thus, 2q I p + c = 1, so that I p = 1

2q (1 − c) and, hence, x1 = 1
2q (1 + c(q − 1)).

Increasing c, then, increases x1, leading to less dispersed equilibria. ��
It is also important to consider which candidates receive the most support in equi-

librium, as this may determine which platform will be implemented or the distribution
of power in parliament, depending on the context. Corollary 4.6 shows that, for any
m > 4, the candidates that adopt the most extreme platforms never win a strictly
larger share of the vote than any other candidate and, thus, can never outperform more
centrist candidates. Additionally, there always exist NCNE in which the candidates
that adopt the most extreme platforms receive strictly less than some other candidate.
In these NCNE, one or more less extreme (and unpaired) candidates have a strictly
larger vote share.

Corollary 4.6 In NCNE, all paired candidates receive the same vote share, which
may not strictly exceed an unpaired candidate’s share. Thus, candidates at x1 and xq

cannot do strictly better than any less extreme candidate. Moreover, for any m > 4,
there always exists an NCNE in which candidates at x1 and xq receive strictly less
votes than at least one less extreme (unpaired) candidate.

Proof The first statement follows from Lemma A.3 and Theorem 4.3(iv). For the
second statement, the case m = 5 follow by Corollary 4.7. For m ≥ 6, such NCNE
were constructed in the second and third paragraphs of the proof of Corollary 4.4.
Namely, we position the candidates so that: there is at least one unpaired candidate;
n1 = nq = 2; x1 and xq are positioned so that Theorem 4.3(iii) is satisfied; and,
all half-electorates are the same length, except for end electorates. In this NCNE, an
unpaired candidate obtains twice the score of a paired candidate, since they have the
same full-electorate, but do not have to share it. ��
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c = 0

c = 0.25

c = 0.5

c = 0.75

c = 1

Fig. 1 Maximally dispersed NCNE for different choices of c

In the case of four or five candidates, there is a unique NCNE.

Corollary 4.7 If m = 4, then there is a unique NCNE, given by profile x
= ((x1, 2), (1 − x1, 2)), where x1 = 1

4 (1 + c). If m = 5, then there is a unique
NCNE, given by profile x = ((x1, 2), (1/2, 1), (1 − x1, 2)), where x1 = 1

6 (1 + 2c).

In the four- and five-candidate cases, as expected by Corollary 4.5, the amount of
dispersion observed in the candidates’ positions depends on c and is maximal when
the rule is plurality. As c grows towards 1, the positions converge at the median voter
position. As c increases beyond 1, by Proposition 4.1, we know that infinitely many
CNE are possible in an interval that becomes increasingly wide. Hence, there is a
bifurcation point that divides CNE from NCNE when c = 1. Moving away from this
point, more extreme positions are possible—on one side they take the form of CNE,
and on the other side they are NCNE.

The six candidate case admits infinitely many equilibria for a given rule, but the
pattern is similar.

Example.With six candidates, there are two possible configurations in an NCNE:
we can have three occupied positions with two candidates apiece; or, we can have four
occupied positions where the inner two positions are occupied by single candidates.
Consider the latter profile first—the former will turn out to be a limiting case of the
latter. If (i) and (iii) of Theorem 4.3 are satisfied, condition (iv) will always be true,
since the unpaired candidate at x2 has full-electorate length �(I2) = I p + �(I R2 ),
which is clearly larger than all other half-electorates excluding end electorates, which
are of length either I p or �(I R2 ) = �(I L3 ). Thus, the only restriction is condition (v).

To get a maximally dispersed equilibrium, we want I p to be as small as pos-
sible, which means setting I p = �(I R2 ) = �(I L3 ). This gives equilibrium profile
x = ((x1, 2), (x2, 1), (1−x2, 1), (1−x1, 2))where x1 = 1

8 (1+3c) and x2 = 3
8 (1+c).

A number of these maximally dispersed equilibria are pictured in Fig. 1 for a few dif-
ferent values of c.
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c = 0

c = 0.25

c = 0.5

c = 0.75

c = 1

Fig. 2 Minimally dispersed NCNE for different choices of c

To obtain a minimally dispersed equilibrium, we want I p to be as large as possible.
Condition (iv) will always be satisfied, while condition (v) will still be satisfied if the
length of the half-electorates I R2 and I L3 go to zero. There, the interior two candidates
converge at the median and we are left with minimally dispersed equilibrium profile
x = ((x1, 2), (1/2, 2), (1 − x1, 2)) where x1 = 1

6 (1 + 2c). Thus, the unique equi-
librium with three occupied positions is the limiting case of the equilibria with four
occupied positions. These equilibria are depicted in Fig. 2.

5 Discussion and extensions

Here we discuss a number of the assumptions underlying our model and the extent to
which the results extend to more general settings.

Uniform distribution

Eaton and Lipsey (1975) showed that when the assumption of a uniform distribution is
relaxed, equilibria seldom exist under plurality. Cox (1990) conjectures that the same
is true for scoring rules, and Osborne (1993) elaborates on and extends the generality
of the arguments (see also Osborne 1995; Bol et al. 2016, and Xefteris 2016, for
discussions pertaining to a range of settings, including ours). Our results are subject
to the same critique, and small deviations from uniformity would normally lead to
nonexistence of NCNE.

While the assumption of uniformity may appear quite restrictive, it has been widely
used in the literature, and there are a number of justifications aside from its simplicity.
First, it has been noted (Aragonès and Xefteris 2012; Cahan and Slinko 2017) that the
distribution of voter ideal points does not literally need to be uniform—all we need is
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that the candidates believe the distribution to be uniform or assume it as a simplifying
assumption in their calculations, which is already substantially more realistic.

Second, our results also extend to distributions that may be arbitrarily non-uniform
in the tails. That is, if the profile x = ((x1, n1), . . . , (xq , nq)) is an NCNE for a uni-
form distribution, it will still be an NCNE if we distort the shape of the distribution
outside of the interval (x1, xq), while keeping the mass in each tail the same.13 This
observation is implicit in the result of Eaton and Lipsey (1975) and helps somewhat
to alleviate concerns about the implausible step-function nature of the uniform dis-
tribution. Perhaps more importantly, combining this argument with our results for
best-worst rules leads to a stronger converse of sorts—for any distribution that is uni-
form on some open interval containing the median voter’s ideal point, NCNE exist for
c < 1, when c is close enough to 1. This is because, as c tends towards 1, the amount of
possible dispersion is reduced to the point of full convergence at themedian position—
at some point all the candidates’ adopted positions will lie within this uniform part
of the distribution. It is not at all unlikely that the candidates assume the central part
of the distribution to be uniform. Indeed, any smooth distribution will approximate a
uniform distribution when we zoom in enough and, in many cases, this central part of
the distribution could realistically be quite large.

Candidate objectives

We focus on candidates who aim to maximise their vote share. This assumption is
natural in a proportional representation setting, where seats are assigned to parties
according to the share of the vote obtained. It is perhaps less natural in settings where
the winner takes all and the losers end up with nothing.14

When candidates seek only to win—i.e., they are indifferent between any outcomes
that give them the same probability of being ranked first among the candidates—the
well known results for vote maximisation (Eaton and Lipsey 1975; Denzau et al.
1985; Cox 1987) are substantially different. In particular, Chisik and Lemke (2006)
show that, with plurality and three candidates, NCNE exist (they do not exist for vote
maximisers) in which one candidate wins outright, and two candidates tie for second
(acting as “spoilers” for each other). In Proposition A.5 in the Appendix, we extend
this result to the case of best-worst rules. We find that NCNE for best-worst rules
take a similar form to NCNE under plurality. In addition—and highly reminiscent of
the results under vote maximisation—the importance of the negative vote should not
exceed that of a positive vote and, moreover, the negative vote acts as a moderating
force on possible equilibrium positions.

13 For a uniform distribution, the fraction of voters in an interval is proportional to the interval’s length,
which makes the vote share constant between occupied positions. Deviations from uniformity creates peaks
and troughs in the vote share function, which can induces candidates to deviate. However, the best deviation
into the tail region is always just to the left of x1 or just to the right of xq , regardless of nonlinearities
outside these points.
14 See also Stigler’s (1972) argument for the assumption of vote maximisation, as well as a discussion in
Denzau et al. (1985).
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Cox (1987) studies a few more plausible objectives. Under plurality maximisation,
candidates seek to maximise their margin with respect to the best of their competitors:
vi (x)−max j �=i v j (x). Complete plurality maximisation is similar but candidates care
about their margins with respect to all other candidates in the race. Cox’s characterisa-
tion of CNE easily extends to plurality and complete plurality maximising candidates.
With CNE, there is only one occupied position and the calculation is straightforward.
With NCNE, considering margins rather than vote shares increases the complexity of
the calculations significantly, and we do not know whether our results generalise. We
leave this as an open question for future research.

Multiple positive and negative votes

We have considered rules in which voters are endowed with a single negative vote and
a single positive vote. A natural generalisation would be a case in which voters have
d1 positive votes and d2 negative votes. As before, a positive vote earns a candidate 1
point while a negative vote is worth−c points. A rule of this kind can be described by a
four-tuple s = (c, d1, d2,m).15 We refer to this class of rules as generalised best-worst
voting rules as opposed to the standard best-worst rules where d1 = d2 = 1.

As the number of candidates grows, the combinatorics of generalised best-worst
rules quickly become daunting, as illustrated by the six-candidate example below. A
complete characterisation of NCNE is not straightforward, though we are able to make
some progress for the special cases of four, five and six candidates. In the first two
cases, only standard best-worst rules allow NCNE.

Proposition 5.1 For m = 4 or m = 5, the rule s = (c, d1, d2,m) allows NCNE only
if d1 = d2 = 1, in which case NCNE are described by Corollary 4.7.

Proof It can be verified through straightforward but tedious calculations. ��
For six candidates, on the other hand, NCNE do exist more broadly. We investigate

NCNE of the form x = ((x1, 3), (1 − x1, 3)) in Example A.6 in the Appendix. We
find that rich equilibrium behaviour may be observed for generalised best-worst voting
rules. In many cases, properties reminiscent of the standard case carry through—the
weight placed on negative votes is bounded above and increasing c reduces the amount
of dispersion that may be observed inNCNE. This behaviour, however, is no longer the
only show in town, and in one case we see quite the opposite properties. Investigating
generalised best-worst rules further would take us outside the scope of this paper, but
would be a fruitful avenue for future research.

6 Conclusion

Different voting systems provide political candidates with different incentives and,
hence, lead to different outcomes, not all of which are socially desirable. One would

15 In scoring rule notation, s = (1, . . . , 1
︸ ︷︷ ︸

d1

, 0, . . . , 0, −c, . . . , −c
︸ ︷︷ ︸

d2

).
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usually want a voting system in which adopting extremist positions is not encouraged
while, at the same time, voters are presented with some choice over the policies
advocated by the candidates. One might also prefer that the candidates that choose the
most extreme positions do not win the greatest electoral support. We have shown that
the class of best-worst rules offers a solidmiddle groundwhen voters have one positive
vote and one negative vote of relatively less importance, i.e., so that one negative vote
does not cancel out one positive vote. In particular, nonconvergent equilibria exist,
and candidates adopt different platforms in a very similar way to under plurality.
Importantly, however, the strong best-rewarding incentives of plurality are tempered
by the need to avoid negative votes and, indeed, any degree of dispersion between
the extreme cases of plurality and full convergence of antiplurality can be obtained
for the correct relative importance of the negative vote. The need to avoid negative
votes leads candidates to moderate their platforms, but without sacrificing diversity
entirely.Moreover, when there are at least five candidates, there always exist equilibria
in which the most extreme candidates do not receive the most support.

Though natural, best-worst rules have not been used in practice, as is the case for
many of the voting rules studied in the social choice literature. However, our results
provide evidence that this system is worthy of consideration and presents several
desirable properties.

Future research should investigate the properties of best-worst voting rules in
more realistic spatial models with, for example, strategic or probabilistic voting, or
endogenous candidacy. It would also be useful to comprehensively study generalised
best-worst voting rules, as well alternative candidate objectives.

Appendix A

A.1 Preliminary results and lemmata

We include here a number of lemmata that are needed for our main results. Several
of these minor results are adapted from results in Cahan and Slinko (2017), though
similar conditions have appeared in various form in the previous literature since at
least Eaton and Lipsey (1975).

The first lemma tells us that themost extreme occupied positions cannot be occupied
by single candidates, and they cannot be located at the most extreme points on the
issue space.

Lemma A.1 (Cahan and Slinko 2017) In an NCNE, we must have n1, nq ≥ 2. More-
over, no candidate may adopt the most extreme positions on the issue space. That is,
0 < x1 and xq < 1.

Proof Evidently, an unpaired candidate at x1 could move to the right and capture a
larger share of positive votes and, at the same time, reduce the number of negative
votes.

To see the second part, suppose x1 = 0. Then the at least two candidates at x1

are ranked last equal by a positive measure of voters in the interval (1 − 1
2 x

q , 1]. By
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moving to x1+, however, a candidate originally at x1 is no longer ranked last by any
voters, but still receives the same number of first-place rankings. ��

The next lemma puts a condition on the continuity of the function vi (t, x−i ) when,
in equilibrium, i is at a position occupied by one other candidate and makes a small
deviation.

Lemma A.2 Suppose at profile x candidate i is at xl and nl = 2. Then vi (xl−, x−i )

+ vi (xl+, x−i ) = 2vi (x). In particular, when x is in NCNE, we have vi (xl−, x−i )

= vi (xl+, x−i ) = vi (x).

Proof The issue space can be divided into subintervals of voters who all rank i in the
same position. The immediate interval around xl , Il = I Ll ∪ I Rl , is the set of voters
from which the candidate receives positive votes. Let J be the interval of voters from
which i receives negative votes. In particular, J is nonempty only if l = 1 or l = q,
and it is located at the opposite side of the issue space. Thus, if l /∈ {1, q}, we have
vi (x) = 1

2 (�(I
L
l ) + �(I Rl )). Then vi (xl−, x−i ) = �(I Ll ) and vi (xl+, x−i ) = �(I Rl ).

For NCNE, we need vi (xl−, x−i ) ≤ vi (x) and vi (xl+, x−i ) ≤ vi (x). Summing these
inequalities, we need vi (xl−, x−i ) + vi (xl+, x−i ) ≤ 2vi (x). This, in fact, turns out to
be an equality, so that we must have vi (xl−, x−i ) = vi (xl+, x−i ) = vi (x).

If l = 1 (symmetrically for l = q), we have vi (x) = 1
2 (�(I

L
l ) + �(I Rl )) − c

2�(J ).

Also, vi (xl−, x−i ) = �(I Ll ) − c�(J ) and vi (xl+, x−i ) = �(I Rl ). As in the previous
case, summing the requirements that these two moves not be beneficial, we find that
vi (xl−, x−i ) = vi (xl+, x−i ) = vi (x). ��
Lemma A.3 If ni = n j = 2, then vi (x) = v j (x) in NCNE.

Proof Let k be a candidate at xi and l be a candidate at x j . Note that if k moves to
x j+ or x j−, due to the nature of the voting rule, k receives exactly the same score as
l would recieve on moving to x j+ or x j−. So vk(x j+, x−k) = vl(x j+, x−l). Then,
if x is in NCNE, using Lemma A.2 gives that vl(x) = vl(x j+, x−l) = vk(x j+, x−k)

≤ vk(x). Similarly, vl(xi+, x−l) = vk(xi+, x−k), from which it follows that vk(x)
= vk(xi+, x−k) = vl(xi+, x−l) ≤ vl(x). So vk(x) = vl(x). ��

Next, we note that there cannot be more than two candidates at any position. In
particular, this implies that there cannot exist NCNE for m = 3, a well known result.

Lemma A.4 In any NCNE, at any given position there are no more than two candi-
dates. Moreover, n1 = nq = 2.

Proof By Corollary 4.2 we have to consider only the case when c < 1.
First, we show that, in NCNE, ni ≤ 2 for all 2 ≤ i ≤ q − 1. If ni > 2, where

2 ≤ i ≤ q−1, then candidate k, located at xi is not ranked last by any voter.Moreover,
she is not ranked last by any voter even on deviating to xi+ or xi−. So the only change
in her score on making these moves is from voters in the immediate subintervals
I1 = [(xi−1+ xi )/2, xi ] and I2 = [xi , (xi + xi+1)/2], where voters change candidate
k from first equal to first, and from first equal to ni th, respectively.
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In NCNE we must have

vk(x
i−, x−k) − vk(x) = �(I1) − 1

ni
(�(I1) + �(I2)) ≤ 0

and

vk(x
i+, x−k) − vk(x) = �(I2) − 1

ni
(�(I1) + �(I2)) ≤ 0.

Adding together these two inequalities we get the requirement that ni ≤ 2.
To show that n1 = nq = 2, let us introduce the following notation: I1 = [0, x1],

the voters to the left of candidate 1 (note that by Lemma A.1, this set has positive
measure); I2 = [x1, (x1 + x2)/2], the voters in half the interval between candidates
1 and 2; I3 = [(x1 + xq)/2, 1], the voters for whom 1 is ranked last equal.

Note that v1(x) = 1
n1

(�(I1) + �(I2)) − c
n1

�(I3). Consider if 1 moves to x1−. Then
v1(x1−, x−1) = �(I1) − c�(I3)). If 1 moves to x1+ then v1(x1+, x−1) = �(I2).
For NCNE we require that these moves not be beneficial to candidate 1. That is,
v1(x1−, x−1) ≤ v1(x) which implies we need

�(I1) − c�(I3)) ≤ 1

n1
(�(I1) + �(I2)) − c

n1
�(I3),

or

(
1 − 1

n1

)
c�(I3) ≥ �(I1) − 1

n1
(�(I1) + �(I2)). (1)

Similarly, for the other move we have v1(x1+, x−1) ≤ v1(x) which gives us

�(I2) ≤ 1

n1
(�(I1) + �(I2)) − c

n1
�(I3),

implying

(
1 − 1

n1

)
c�(I3) ≤

(
1 − 1

n1

)
(�(I1) + �(I2)) − (n1 − 1)�(I2).

Combining this last equation with (1) yields (2− n1)�(I2) ≥ 0, which means n1 ≤ 2.
Hence, n1 = 2, since we cannot have a lone candidate at x1. A similar argument gives
nq = 2. ��

A.2 Win maximisation and generalised best-worst voting rules

The following result and example relate to the discussion in Sect. 5.
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Proposition A.5 When candidates only care about winning, the profile x
= (x1, x2, x3), x1 ≤ x2 < x3, is an NCNE in which candidate 3 wins if and only
if the following are satisfied (by symmetry, a corresponding set of NCNE exists where
candidate 1 wins):

(i) 2(1 + c) > (2c + 3)x2 + (2c + 1)x3;
(ii) 2(1 + c) < (2c + 3)x3 + (2c + 1)x1;
(iii) x3 − x1 < 2

3 (1 − c).

Proof First, there cannot be an equilibrium with a tie for first, since candidates 1 or
3 could move inwards and break the tie. Second, 2 could never win in an NCNE
since we would then require that both v1(x2, x−1) < v3(x2, x−1) and v3(x2, x−3)

< v1(x2, x−3), that is, neither 1 nor 3 should want to deviate to x2. Summing together
these inequalities leads to the requirement that v2(x) = 1

2 (x3− x1) < 1−c
3(1+c) . If c ≥ 1,

this is impossible. If c < 1, note that v2(x) < 1−c
3(1+c) < 1

3 (1 − c), which contradicts
that 2 is winning since to be winning 2 must receive more than 1/3 of the total votes.
So there must be a unique winner—suppose without loss of generality it is candidate
3.

Assume x1 < x2 < x3. For NCNE, 1 should not want to move to x−
2 , x2 or x

+
2 . For

the first move, we need v1(x
−
2 , x−1) < v3(x

−
2 , x−1), which yields (i). If this move is

not beneficial, neither will be the other two. For the second move, 1 and 2 are now
tied, and since 3’s score does not change (that is, v3(x2, x−1) = v3(x

−
2 , x−1)), 3 must

still be winning. For the third move, 3 is still winning, since this is the same as the first
move but swapping the labels on candidates 1 and 2. Since none of these three moves
are beneficial for 1, it is clear that 2 would not want to move to x−

1 , x1 or x
+
1 (all three

moves would lead to 3 winning by an even bigger margin than if 1 deviated).
We also require that 2 not want to move to x+

3 , x3 or x−
3 . For the first move,

we need v1(x
+
3 , x−2) > v2(x

+
3 , x−2), which yields (ii). If this is true then, for the

second move, 2 and 3 are now tied, and since 1’s score does not change (that is,
v1(x3, x−2) = v1(x

+
3 , x−2)), 1 would win here too. For the third move, 1 would again

win, since this is the same as the first move but swapping the labels on candidates 2
and 3. Since 2 does not want to move to any of these three positions, it is clear that 1
would not want to move to either (candidate 2 would certainly win).

Next, suppose (iii) is not satisfied, so x3 − x1 ≥ 2
3 (1 − c). Consider if candidate 2

deviates to any point t between x1 and x3, in which case 2’s score remains constant at
(x3 − x1)/2. Note also that v1(t, x−2) and v3(t, x−2) are increasing and decreasing,
respectively, in t . By the above, when t = x+

1 , 3 is the sole winner, while 2 is the sole
winner when t = x−

3 . Therefore, at some point t ′ it must be the case that v1(t ′, x−2)

= v3(t ′, x−2). For NCNE, it must be that v1(t ′, x−2) = v3(t ′, x−2) > v2(t ′, x−2).
However, the sum of the scores is fixed at 1 − c, which contradicts the previous
statement and the assumption that x3 − x1 ≥ 2

3 (1 − c). So (iii) is necessary. Since 2
does not benefit from any move between x1 and x3, it is also the case that 1 would not
benefit from moving between x2 and x3.

Sufficiency of (i)–(iii) follows by construction, sincewehave checked all potentially
profitable deviations. The above arguments also apply when x1 = x2, and are simpler
because some of the deviations become redundant. ��
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Example A.6 We investigate equilibria of the form x = ((x1, 3), (1− x1, 3)). That is,
NCNE with three candidates apiece at two symmetric occupied positions. Recall that
for a standard best-worst rule, it is never possible to have three candidates at a single
position in an NCNE. For generalised best-worst rules, such NCNE may indeed exist.

We may apply Theorem 5 of Cahan and Slinko (2017), which characterises “bipo-
sitional symmetric” equilibria for arbitrary scoring rules. First, we find that NCNE
cannot exist for d1 ≥ 3, so there can be at most two positive votes. If d1 = 2, we find
that bipositional symmetric NCNE exist for any d2 < 5 and they exist if and only if
one of the following is true:

(i) If d2 = 0 (equivalently, d2 = 4) and 1/6 ≤ x1 ≤ 1/3.
(ii) If d2 = 1, c < 2, and (1 + c)/6 ≤ x1 ≤ (1 + c)/3.
(iii) If d2 = 2, c < 1, and (1 + 2c)/6 ≤ x1 ≤ (2 + c)/6.
(iv) If d2 = 3, c ≤ 1, and (1 + 3c)/(6(1 + c)) ≤ x1 ≤ 1/3.

In cases (ii)–(iv), we note some interesting similarities to case of standard best-worst
rules described in Theorem 4.3. First, the weight placed on the negative votes should
not be too high forNCNE to exist, although the boundneed not always be 1. Second, the
presence of negative votes again induces moderation in the set of possible equilibrium
profiles. As c approaches its upper bound, the extreme most positions possible in
NCNE move closer to the median voter (though need not converge).16

If d1 = 1, bipositional symmetric NCNE only exist if d2 = 4 and c ≥ 1. Any
x1 satisfying (2 + c)/(6(1 + c)) ≤ x1 ≤ (1 + 2c)/(6(1 + c)) is an NCNE. This
is quite different to the NCNE described above as well as NCNE for standard best-
worst rules—here, there is a lower bound on the value of c and, as c increases, the
range of possible NCNE positions becomes wider and includes NCNE that are more
dispersed. This shows that while negative votes may have similar moderating effects
for generalized best-worst rules as for standard best-worst rules in some cases, in other
cases these patterns may break down.
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