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Abstract In the private values single object auction model, we construct a satis-
factory mechanism—a dominant strategy incentive compatible and budget-balanced
mechanism satisfying equal treatment of equals. Our mechanism allocates the object
with positive probability to only those agents who have the highest value and satisfies
ex-post individual rationality. This probability is at least (1− 2

n ), where n is the num-
ber of agents. Hence, our mechanism converges to efficiency at a linear rate as the
number of agents grow. Our mechanism has a simple interpretation: a fixed allocation
probability is allocated using a second-price Vickrey auction whose revenue is redis-
tributed among all the agents in a simple way.We show that ourmechanismmaximizes
utilitarian welfare among all satisfactory mechanisms that allocate the object only to
the highest-valued agents.

1 Introduction

This paper considers the problem of allocating a unit of resource among a set of agents
who have private valuation for it. Transfers are allowed but preferences over transfers
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are quasilinear. Furthermore, transfers have to balance. Examples of such problems
include: allocating a bequest among claimants, deciding on a venue of a public good
(hospital) among various municipalities, sharing a unit of time on a supercomputer
owned jointly by various firms etc.

Efficiency in this problem requires that the agent with the highest valuation be
given the entire resource. We follow a mechanism design approach to construct a new
dominant strategy incentive compatible (DSIC), budget-balanced, and nearly efficient
mechanism for this problem. The mechanism design literature on this topic centers
around an impossibility result of Green and Laffont (1979): there is no efficient, DSIC,
and budget-balanced mechanism. This paper presents a new avenue for escaping this
impossibility result by burning probabilities.
Relax efficiency by burning probabilities We describe a DSIC, budget-balanced, and
individually rational mechanism that only allocates probabilities to the highest-valued
agent(s) and burns (wastes) the remaining probabilities. With n ≥ 3 agents and at a
generic valuation profile v1 > v2 > · · · > vn , our mechanism allocates the object to
agent 1 (highest valuation agent)with probability (1− 2

n )+ 2
n

v3
v2
. Themechanism can be

simply stated as: a second-price auction of this probability followed by a redistribution
of the revenue of the second-price auction among all the agents, where agents 1 and
2 receive an amount v3

n , each and every other agent receives an amount v2
n . Such a

redistribution is crucial to maintain incentives. Notice that the mechanism converges
to efficiency at a linear rate. Our mechanism can be thought to be an answer to the
following question:

What allocation probability can be auctioned using a second-price auctionwhose
revenue can be redistributed among all the agents?

By the Green–Laffont impossibility result, this allocation probability is strictly
less than 1, and our mechanism shows that it is larger than (1 − 2

n ). We show that
in the class of all mechanisms that allocate the object to only the highest valued
agent, our mechanism is welfare-undominated, i.e., every mechanism in this class
gives less welfare at some valuation profile. Specifically, our mechanism maximizes
the utilitarian welfare among all DSIC and budget-balanced mechanisms that allocate
the object only to the highest-valued agents and satisfy a mild fairness property called
the equal treatment of equals.

We now discuss some of the other attempts to escape the Green–Laffont impossi-
bility theorem and argue how they compare to burning probabilities.

Relax solution concept Cramton et al. (1987) show that there is an efficient, Bayesian
incentive compatible, budget-balanced, and individually rational mechanism for this
problem.1 Hence, the Green–Laffont impossibility can be completely overcome by
relaxing the solution concept to Bayesian incentive compatibility. We also point
out that d’Aspremont and Gérard-Varet (1979) and Arrow (1979) construct mech-
anisms (now called the dAGV mechanisms), which are efficient, Bayesian incentive

1 They consider a more general problem with property rights. In our problem, there are no property rights.
We can assign equal property rights to all the agents and apply their result.
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compatible, and budget-balanced. But the dAGV mechanisms are not individually
rational.

The advantage of aDSICmechanism is that it is prior-free andmore robust to strate-
gic manipulation. This is probably the reason that a long literature exists investigating
the possibility and impossibility boundaries of DSIC, efficient, and budget-balanced
mechanisms—seeHurwicz andWalker (1990), Laffont andMaskin (1980), Green and
Laffont (1979), Walker (1980). Our mechanism adds to this literature and provides a
new reason to look at DSIC mechanisms.

Relax budget-balance by burning money Another way of overcoming the Green–
Laffont impossibility result is to relax the budget-balance constraint. Recent papers
follow this approach by relaxing budget-balance to a no-deficit condition (i.e., the
designer can only earn revenue). Their objective is to redistribute as much revenue as
possible from an efficient and DSIC mechanism—Cavallo (2006), Guo and Conitzer
(2009) and Moulin (2009, 2010) are notable contributions. By the well-known rev-
enue equivalence results, the only class of efficient and DSIC mechanisms are Groves
mechanisms (Holmström 1979). In Guo and Conitzer (2009) and Moulin (2009), they
propose Groves mechanisms that redistribute a large fraction of revenue as number of
agents grow—unlike the mechanism in Cavallo (2006), these mechanisms are compli-
cated to describe. Themain difference from this literature to ours is that budget-balance
is a necessary constraint for us, and we are interested in exploring the limitations of
imposing DSIC and budget-balance as constraints.

Relax efficiency by giving to others If we burn money, we need not relax efficiency,
and we can restrict attention to the Groves class of mechanisms. On the other hand,
we may relax efficiency and search within the class of all DSIC and budget-balanced
mechanisms. In Long et al. (2017), we describe a class of such mechanisms that we
call ranking mechanisms. We further showed that it includes a mechanism which
asymptotically converges to efficiency at an exponential rate as the number of agents
grow.

Ranking mechanisms include a simple mechanism proposed by Green and Laffont
(1979), called the residual claimant mechanism. In that mechanism, an agent is uni-
formly randomly picked to be a residual claimant, and a Vickrey auction is held among
the remaining agents. The revenue from the Vickrey auction is given to the residual
claimant. This mechanism is DSIC and budget-balanced. It allocates the object to the
highest valued agent with probability (1 − 1

n ), where n is the number of agents, and
the remaining probability goes to the second highest valued agent.

Relaxing efficiency takes one out of the comfortable class of Groves mechanisms—
this means, one needs to worry about both the allocation rule and payment rule. This
is the reason we see less work on non-efficient, DSIC, and budget-balanced mecha-
nisms. Besides Long et al. (2017), papers by Hashimoto (2015) and Guo et al. (2011)
discuss variants of the Green–Laffont mechanism and its properties. These mecha-
nisms are very close to the Green–Laffont mechanism and differ from our mechanism
significantly. Sprumont (2013) characterizes the class of DSIC, individually ratio-
nal, deficit-free, and envy-free mechanisms. But he does not impose budget-balance.
Drexl and Kleiner (2015) investigate expected welfare maximizing DSIC and budget-
balanced mechanisms but only consider the case of two agents. Nath and Sandholm
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(2016) look at a more general mechanism design problem than ours but restrict atten-
tion to mostly deterministic mechanisms. Their main result says that deterministic
mechanisms are like Green–Laffont mechanisms but without randomization. With
randomization, they give some approximation guarantees using Green–Laffont type
mechanisms.

In the papers described above, efficiency is relaxed by allocating the object with
positive probability to agents who do not have the highest value—the Green–Laffont
(GL) mechanism allocates the object to the second highest valued agent with 1

n prob-
ability and the mechanism in Long et al. (2017) allocate the object to almost n

2 agents
with positive probability.

There are reasons to worry about mechanisms which allocates the object to non-
highest valued agent. One clear reason is that whenever the object is not assigned to the
highest valued agent, it can be resold to the highest valued agent ex-post. Thoughwe do
not model resale formally (for instance, as in Krishna 2009), such resale opportunities
will destroy the incentives of the original mechanism.2

From a practical standpoint, this may lead to unpleasant situations sometimes. Con-
sider a scenario where the highest valued agent has valuation 1 million and the second
highest valued agent has valuation close to zero.Both theGLmechanismand themech-
anisms in Long et al. (2017) allocates the object with positive probability to the second
highest valued agent. Giving the object with positive probability to really low-valued
agents when a high-valued agent is present may be problematic in certain practical set-
tings. For instance, allocation of spectrum licenses using “first-cum-first-serve” policy
led to huge controversies in Indian 2G spectrum allocation.3 Besides corruption, the
Supreme Court of India termed such an allocation as “arbitrary”—probably, hinting
that higher valued bidders were not allocated spectrum. Such allocations also led to
wide-spread resale of spectrum.4

This motivates us to explore a new direction for overcoming the Green–Laffont
impossibility result. Compared to the mechanism in Long et al. (2017), our mech-
anism does not converge to efficiency at an exponential rate. However, unlike their
mechanism, this mechanism is simpler to describe and only allocates the object to the
highest valued agents.

Thoughwe show that ourmechanismmaximizes (ex-post) utilitarianwelfare among
all DSIC and budget-balanced mechanisms that satisfy equal treatment of equals and
allocate only to the highest-valued agents, the welfare comparison between our mech-
anism and the Green–Laffont mechanism is ambiguous if we do it profile-by-profile.
However, we show that if values of each agent is uniformly distributed in [0, 1], then
the expected welfare of our mechanism is less than that of the Green–Laffont mech-
anism, but the difference in expected welfare approaches zero at 1

n2
rate, where n is

the number of agents.

2 We are grateful to an anonymous referee for suggesting this.
3 https://en.wikipedia.org/wiki/2G_spectrum_scam.
4 See a news article on this here: http://timesofindia.indiatimes.com/india/2G-scam-SC-scraps-122-licenc
es-granted-under-Rajas-tenure-trial-court-to-decide-on-Chidambarams-role/articleshow/11725097.cms?
referral=PM.
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2 The model

We consider the standard single object independent private values model with N =
{1, . . . , n} as the set of agents. Throughout, we assume that n ≥ 3. Each agent i ∈ N
has a valuation vi for the object. If he is given the object with probability αi , and
he pays pi for it, then his net utility is αivi − pi . The set of all valuations for any
agent is given by V ≡ [0, β], where β ∈ R. A valuation profile will be denoted by
v ≡ (v1, . . . , vn).

An allocation rule is a map f : V n → [0, 1]n , where we denote by fi (v) the
probability of agent i getting the object at valuation profile v. We assume that at all
v ∈ V n ,

∑
i∈N fi (v) ≤ 1.

A payment rule of agent i is a map pi : V n → R. A collection of payment rules of
all the agents will be denoted by p ≡ (p1, . . . , pn). Amechanism is a pair ( f,p). We
require our mechanism to satisfy the following three properties—all these properties
and the individual rationality notion we use are ex-post properties, and we suppress
the qualifier ex-post throughout the paper.

• A mechanism ( f,p) is dominant strategy incentive compatible (DSIC) if for
every i ∈ N , for every v−i ∈ V n−1, and for every vi , v

′
i ∈ V , we have

vi fi (vi , v−i ) − pi (vi , v−i ) ≥ vi fi (v
′
i , v−i ) − pi (v

′
i , v−i ).

• A mechanism ( f,p) is budget-balanced (BB) if for every v ∈ V n , we have

∑

i∈N
pi (v) = 0.

• Amechanism ( f,p) satisfies equal treatment of equals (ETE) if for every v ∈ V n

and for every i, j ∈ N with vi = v j , we have

fi (v) = f j (v), pi (v) = p j (v).

We call a mechanism satisfactory if it is DSIC, BB, and ETE and call an allocation
rule f satisfactorily implementable if there exists p such that ( f,p) is satisfactory.
ETE allows us to consider a mild notion of fairness in our mechanism. It also explicitly
rules out dictatorial mechanisms, where a dictator agent is given the object for free
at all valuation profiles. We are interested in finding satisfactory mechanisms that are
almost efficient in the following sense.

At any valuation profile v, denote by v[k] the set of agents who have the k-th highest
valuation at v. More formally,

v[1] := {i ∈ N : vi ≥ v j ∀ j ∈ N }.

Having defined v[k − 1], we recursively define v[k] as

v[k] :=
{
i ∈ N\

(
∪k−1
k′=1v[k′]

)
: vi ≥ v j ∀ j ∈ N\

(
∪k−1
k′=1v[k′]

)}
.
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Definition 1 An allocation rule f is efficient at v if

∑

i∈v[1]
fi (v) = 1.

An allocation rule f is efficient if it is efficient at all v ∈ V n . A mechanism ( f,p) is
efficient if f is efficient.

The efficiency of a BB mechanism is equivalent to maximizing the total welfare of
agents at every profile of valuations. To see this, note that the total welfare of agents
at a valuation profile v from a mechanism ( f,p) is

∑

i∈N
[vi fi (v) − pi (v)] =

∑

i∈N
vi fi (v),

where the second equality followed from BB. This is clearly maximized by assigning
the object to the highest valued agents.

3 A top-only satisfactory mechanism

We now define our mechanism. Informally, the mechanism can be described in very
simple terms as follows.

1. Agents are asked to report their values, and suppose the reported values are v1 >

v2 > · · · > vn—we consider reported values to be strictly ordered for simplicity.
2. Probability π(v2, v3) = (1− 2

n ) + 2
n

v3
v2

is auctioned using a second-price auction.
In particular,
(a) Agent 1 wins the probability π(v2, v3).
(b) Agent 1 pays v2π(v2, v3) ≡ (1 − 2

n )v2 + 2
n v3.

3. To maintain budget-balance, the generated revenue from the second-price auction,
v2π(v2, v3), is redistributed among agents as follows:
(a) Agents 1 and 2 receive an amount v3

n each.
(b) Each agent j , where j > 2, receives an amount v2

n .

Before formally defining the mechanism, we comment on some obvious proper-
ties of the mechanism. The probability auctioned in the mechanism depends on the
(reported) values of second and third highest valued agents. Loosely, this cannot dis-
tort the incentives in the auction because all the allocation probabilities only go to
the highest valued agent. Further, the redistribution amount of each agent does not
depend on his own reported valuation, and hence, maintains incentive compatibility.
This makes the overall mechanism DSIC. It is clearly budget-balanced. By breaking
the ties carefully, we make it satisfy ETE. Finally, each agent gets non-negative payoff
in the mechanism, ensuring individual rationality. Also, by definition, only the highest
valued agent gets the object with positive probability.

We now define the mechanism carefully to handle ties in reported values.
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Definition 2 Mechanism M∗ ≡ ( f ∗,p∗) is defined as follows. The allocation rule
f ∗ is defined as: for every v with v1 ≥ v2 ≥ v3 ≥ · · · ≥ vn , we have

f ∗
i (v) :=

{
1

|v[1]|
[(
1 − 2

n

) + ( 2
n

)
v3
v2

]
if i ∈ v[1]

0 otherwise

where 0
0 is assumed to be 1. The payment of each agent i ∈ N is given by

p∗
i (v) := p∗

i (0, v−i ) + vi f
∗
i (v) −

∫ vi

0
f ∗
i (xi , v−i )dxi ,

where p∗
i (0, v−i ) is defined as

p∗
i (0, v−i ) =

{− v3
n if i ∈ {1, 2}

− v2
n otherwise.

In the definition above, we can write p∗
i (0, v−i ) equal to the second highest value

in v−i , which makes it clear that it is independent of the value of agent i .
Though the formal definition involves defining payments using a Myersonian for-

mula, it coincides with our informal description for the generic case when v1 > v2 >

v3 > · · · > vn . To see this, note that in this case, f1(v) = π(v2, v3) = (1− 2
n ) + 2

n
v3
v2

and fi (v) = 0 for all i > 1. Further, f1(x1, v−1) = π(v2, v3) for all x1 ∈ (v2, v1] and
f1(x1, v−1) = 0 for all x1 < v2. Finally, fi (xi , v−i ) = 0 for all xi ≤ vi for all i �= 1.
These observations imply that the payment defined using the Myersonian formula in
the above description coincides with the payments in the informal description.
Tie-Breaking Tie-breaking in our mechanism is done in a symmetric way.We illustrate
this with an example. Suppose N = {1, 2, 3}. There are three possible ties that can
happen, and we describe our mechanism in each of the cases.

1. Suppose v1 = v2 = v3. Then the object is given to each agent with equal proba-
bility and no probability is burnt. Further for every i , p∗

i (0, v−i ) = − v1
3 = − v2

3 =
− v3

3 . Hence, using the revenue equivalence formula, we get that the payment of
every agent is zero. So, agents are distributed equal share of the object for free.

2. Suppose v1 = v2 > v3. Then, the object is given with equal probability to agents
1 and 2, but some probability is burnt. In this case, agent 3 receives a payment of
v2
3 . For every i ∈ {1, 2}, using the fact that p∗

i (0, v−i ) = − v3
3 and the revenue

equivalence formula, we get p∗
i (v1, v2, v3) = vi

6 .

These amounts correspond to a uniform randomization over two asymmetric Vick-
rey auction. In the first auction, the tie is broken in favor of agent 1, and the other,
it is broken in favor of agent 2. In each auction, a probability of 1

3 + 2
3

v3
v2

is
auctioned—in one auction, the winner is agent 1 and the other the winner is agent
2. In either case, the winner pays an amount equal to v2

3 + 2v3
3 . This amount is

shared between the agents as follows: agents 1 and 2 get v3
3 each and agent 3 gets

v2
3 . Uniform randomization over these two auctions exactly give us ourmechanism,
and generates a mechanism satisfying ETE.
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3. Suppose v1 > v2 = v3. Then, the object is given with probability 1 to agent 1. In
this case, agent 2 receives a payment equal to v3

3 and agent 3 receives a payment
equal to v2

3 = v3
3 . Hence, payment of agent 1 is 2v3

3 .

This amount exactly corresponds to the fact that a Vickrey auction of the entire
object is conducted. This generates a revenue of v2, which is distributed equally
among all the agents, including agent 1 (the winner).

3.1 The result

In this section, we state the main result of the paper. Before describing the main result,
we introduce some notation. For satisfactory mechanism M ≡ ( f,p), letW (v; M) be
the welfare generated at a valuation profile v by this mechanism:

W (v; M) :=
∑

i∈N
[vi fi (v) − pi (v)] =

∑

i∈N
vi fi (v),

where the second equality follows from budget-balance.

Definition 3 An allocation rule f is top-only if at every valuation profile v, fi (v) = 0
if i /∈ v[1]. A mechanism M ≡ ( f,p) is a top-only mechanism if f is a top-only
allocation rule.

The next definition is about the participation constraint of a mechanism.

Definition 4 Amechanism M ≡ ( f,p) satisfies individual rationality if for every v
and every i ∈ N , we have

vi fi (v) − pi (v) ≥ 0.

Finally, we make the definition of maximization of utilitarian welfare precise.

Definition 5 For a class of satisfactory mechanisms M, a satisfactory mechanism
M ∈ M maximizes utilitarian welfare in M if there exists no other satisfactory
mechanism M ′ ∈ M such that

W (v; M ′) ≥ W (v; M) ∀ v,

with strict inequality holding for some v.

So, maximizing utilitarian welfare gives us a mechanism in the Pareto frontier of
M. We are now ready to state the main result of the paper.

Theorem 1 The mechanism M∗ ≡ ( f ∗,p∗) is a top-only satisfactory mechanism
satisfying individual rationality. Further, it maximizes utilitarian welfare in the class
of all top-only satisfactory mechanisms.

The proof of this theorem is in the Appendix.
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4 Welfare comparison

In this section,we compare thewelfare properties of ourmechanismwith some existing
DSIC and almost efficientmechanisms. The comparisons are done in three subsections
and we provide a brief preview of these results before formally stating them.

In Sect. 4.1, we attempt to do an ex-ante welfare comparison of ourmechanismwith
the celebrated Green–Laffont (GL) mechanism. For uniform iid draws of values, the
GLmechanism generates more expected welfare than our mechanism. In Sect. 4.2, we
provide the following foundation for the GLmechanism: there is a modification of the
GL mechanism (GL mechanism is only modified at measure zero valuation profiles)
that maximizes utilitarian welfare among all satisfactory mechanisms. Hence, for
uniform iid drawsof values, thismodifiedGLmechanismalso generatesmore expected
welfare than our mechanism. However, the computations for other distributions turn
out to be intractable. Even for uniform iid draws of values, the difference in expected
welfare between the GL (or modified GL) mechanism and our mechanism goes to
zero at a quadratic rate as we increase the number of agents. Further, there is a positive
measure of valuation profiles where our mechanism generates more (ex-post) welfare
than the GL mechanism and the modified GL mechanism.

Finally, in Sect. 4.3, we show that if we are willing to relax budget-balance to
no deficit there is a family of modifications of Vickrey auction that generates more
(ex-post) welfare than our mechanism.

4.1 Welfare comparison with the GL mechanism

The literature has exclusively dealt with DSIC and budget-balanced mechanisms that
never burn probabilities but allocate the objectwith positive probability to non-highest-
valued agents. One simple mechanism that achieves this is the GL mechanism.

We discuss efficiency of the GL mechanism and our mechanism. To remind the
readers, the GL mechanism is a DSIC and budget-balanced mechanism that allocates
the object to the highest valued agent with probability (1− 1

n ) and to the second highest
valued agent with probability 1

n . Hence, the total welfare (sum of utilities of agents)
at a valuation profile v with v1 ≥ v2 ≥ · · · ≥ vn in the GL mechanism is

(

1 − 1

n

)

v1 + 1

n
v2

and in our mechanism M∗
(

1 − 2

n

)

v1 + 2

n

v3

v2
v1.

Hence, our mechanism generates more welfare than the GL mechanism if and only if
2
n

v1v3
v2

≥ 1
n (v1 + v2). This is equivalent to requiring

2
v3

v2
≥ 1 + v2

v1
.
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Notice that if valuations are drawn from some compact interval [0, β], where β > 0,
the set of profiles where this condition is satisfied has positive Lebesgue measure.
In particular, from an ex-ante perspective, it is not clear which of these two simple
mechanisms can give higher expected welfare—it will depend on the prior distribution
being considered.

Such a comparison seems difficult to do for general value distributions. However,
for uniform distribution, the expected welfare terms become tractable. So, we assume
that values of all the agents are uniformly drawn from [0, 1].

We use the following important fact from statistics for this. Let U(1):n ≤ U(2):n ≤
· · · ≤ U(n):n be the order statistics of n IID random variables, whereU( j):n is the j-th
lowest of the ordered sample.

Fact 1 (Malmquist 1950; Reiss 2012) The following are true about ratios of order
statistics.

1. The ratios U(1):n
U(2):n , . . . ,

U(n−1):n
U(n):n ,

U(n):n
U(n+1):n , where U(n+1):n ≡ 1, are independent ran-

dom variables.
2. The random variable

U(k):n
U(k+1):n is distributed the same as U(k):k .

Using the expressions for total welfare of both the mechanisms, we now compute
the expected total welfares. The computations are fairly straightforward for the GL
mechanism (below, we use E[·] to denote the expectation operator):

WGL = E

[(

1 − 1

n

)

U(n):n + 1

n
U(n−1):n

]

=
(

1 − 1

n

)
n

(n + 1)
+ 1

n

(n − 1)

(n + 1)

= (n − 1)

n
.

For computing the expected welfare from our mechanism, we use Fact 1:

WM∗ = E

[(

1 − 2

n

)

U(n):n + 2

n

U(n−2):n
U(n−1):n

U(n):n
]

=
(

1 − 2

n

)
n

(n + 1)
+ 2

n
E

[
U(n−2):n
U(n−1):n

]

E[U(n):n]
(Using (1) of Fact 1 with the fact that if X and Y are independent, then

E[XY ] = E[X ]E[Y ].)
=

(

1 − 2

n

)
n

(n + 1)
+ 2

n

(n − 2)

(n − 1)

n

(n + 1)
(Using (2) of Fact 1)

= (n − 2)

(n − 1)

Now, we can easily see that,

WGL − WM∗ = (n − 1)

n
− (n − 2)

(n − 1)
= 1

n(n − 1)
> 0
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We document this fact as a proposition. For any functions a : N → R and
b : N → R, where N is the set of positive integers, we write a(n) ∼ b(n) to mean that
limn→∞ a(n)

b(n)
= 1.

Proposition 1 If values are uniformly distributed in [0, 1], then WGL > WM∗
, but

(
WGL − WM∗) ∼ 1

n2
.

Proposition 1 shows that for uniform distribution, our mechanism does worse
than the celebrated GL mechanism in terms of ex-ante welfare. But the difference
approaches zero at 1

n2
rate.5 Given that both the mechanisms are relatively simple

to describe, such asymptotic equivalence of the two mechanisms in terms of ex-ante
welfare gives another practical reason to consider our mechanism besides the top-only
property. The computations for other distributions turn out to be intractable.

4.2 A foundation for the GL mechanism

A natural question to ask is whether a counterpart of our main result can be established
if we allow for top two highest valued agents to get the object. A candidate mechanism
in this class is the GL mechanism. We show that the GL mechanism can be welfare-
dominated in the sense of Theorem 1. In particular, we will show that a simple/non-
generic modification of the GL mechanism welfare-dominates the GL mechanism.
Further, this modified GL mechanism maximizes utilitarian welfare in the class of all
satisfactory mechanism.

We now propose a modification of the Green–Laffont mechanism that reduces
the set of valuation profiles where inefficiency occurs. To remind readers, the GL
mechanism is efficient whenever there are more than one agent with highest valuation.
The modification we propose modifies the GL mechanism at valuation profiles where
there is auniquehighest-valued agent butmore thanone second-highest valued agent—
in these valuation profiles, the modified GL will allocate the object with probability
1 to the highest valued agent (the GL mechanism allocates the object with probability
1 − 1

n to the highest valued agent and probability 1
n is equally shared between all

second-highest valued agents). The payments are modified accordingly to maintain
incentive compatibility. This is the only difference between the GL and the modified
GL mechanism. We now formally define the modified GL mechanism.
NotationAt a valuation profile v, we use v( j) to denote the valuation of agents in v[ j].

Definition 6 The mechanism MG ′ ≡ ( f G
′
,pG

′
) is the modified Green–Laffont

(MGL) mechanism if at every profile of valuations v with v1 ≥ v2 ≥ v3 ≥ · · · ≥ vn

5 This means that for n = 5, the difference in expected welfare is 0.05.
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• if |v[1]| = 1 and |v[2]| = 1 we have

f G
′

j (v) =
⎧
⎨

⎩

1 − 1
n if j ∈ v[1]

1
n if j ∈ v[2]
0 otherwise

and

pG
′

j (v) =
⎧
⎨

⎩

v2
(
1 − 2

n

)
if j ∈ v[1]

0 if j ∈ v[2]
− v2

n otherwise.

• if |v[1]| = 1 and |v[2]| > 1, then f G
′
is efficient at v (i.e., f G

′
j (v) = 1 if j ∈ v[1]

and f G
′

j (v) = 0 for all j /∈ v[1]) and

pG
′

j (v) =
{

v2
(
1 − 1

n

)
if j ∈ v[1]

− v2
n otherwise.

• else f G
′
is efficient at v with f G

′
j (v) = f G

′
k (v) for all j, k ∈ v[1] and

pG
′

j (v) =
{ v1|v[1]| − v1

n if j ∈ v[1]
− v1

n if j /∈ v[1].

The allocation rule used in the MGL mechanism will be called the MGL allocation
rule.

Note that if {i} = v[1] and |v[2]| > 1, then f G
′

i (v) = 1—these are the only
valuation profiles where the MGL mechanism achieves efficiency but the Green–
Laffont mechanism is not efficient. Thus, clearly, the modified GL generates more
utilitarian welfare than the GL mechanism. We are now ready to state the main result
of this section.

Theorem 2 The MGL mechanism MG ′
is satisfactory. Further, it maximizes utilitar-

ian welfare in the class of all satisfactory mechanisms.

The proof of this theorem is in the Appendix. We make some remarks about the
MGL mechanism and Theorem 2.

1. Independent of our work, Hashimoto (2015) discovers the MGL mechanism. He
proves a welfare optimality property of the MGL mechanism which is weaker
than the utilitarian welfare maximization proved in Theorem 2. According to his
criteria, a satisfactory mechanism is Pareto optimal if there does not exist another
satisfactory mechanism such that every agent gets more utility at every valuation
profile in the new mechanism. On the other hand, our notion requires the same
property but on the aggregate utility of agents. Hence, our Theorem 2 is not implied
by the result in Hashimoto (2015).
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2. The MGL mechanism only allocates the object to top two highest-valued agents
and it does not waste any object. Hence, Theorem 2 shows that there is a utilitar-
ian welfare maximizing mechanism that only allocates to top two highest-valued
agents. On the other hand, we can show such utilitarian welfare maximizing prop-
erty for our top-only mechanism M∗ only inside the class of top-only satisfactory
mechanisms. Whether M∗ also maximizes utilitarian welfare in the class of all
satisfactory mechanisms remain an open question.

3. The set of valuation profiles where the GL and the MGL mechanisms differ has
measure zero. Hence, by Proposition 1, our top-only mechanism M∗ generates
less expected welfare than the MGL mechanism if the values are iid draws from
uniform distribution. But the difference in expected welfare approaches zero at the
rate 1

n2
.

4.3 A class of no-deficit mechanisms

Now, we return to the issue of burning money instead of burning probabilities to
escape the Green–Laffont impossibility. We describe a class of no-deficit mecha-
nisms that welfare dominates our mechanism. This essentially hints that burning
money may be better than burning probabilities to increase welfare—we are being
careful here because we have not explored the entire class of top-only mechanisms.
However, we stress here that asymptotically these mechanisms have similar welfare
properties. Moreover, money-burning mechanisms are impractical in settings where
budget-balance is a hard constraint.

Before describing our new class of mechanisms, we first give a formal definition
of no-deficit mechanisms.

Definition 7 A mechanism ( f,p) satisfies no-deficit if for every v ∈ V n , we have

∑

i∈N
pi (v) ≥ 0.

We use the idea of our mechanism to construct a class of no-deficit mechanism.
The extremes of this class is our mechanism and the mechanism by Cavallo (2006).
As we go from our mechanism to the Cavallo mechanism inside this class, the utility
of every agent increases, achieving the maximum at the Cavallo mechanism. At the
same time, as we go from our mechanism to the Cavallo mechanism inside this class,
(a) the amount money burning increases and (b) the amount of probability burning
decreases.

The class of mechanisms we define are parametrized by λ ∈ [0, 1]. We call such a
mechanism λ-Vickrey-Redistribution mechanism.

1. Agents are asked to report their values, and suppose the reported values are v1 >

v2 > · · · > vn—we consider reported values to be strictly ordered for simplicity.
2. Probability

πλ(v2, v3) = λ

[(

1 − 2

n

)

+ 2

n

v3

v2

]

+ (1 − λ)
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is auctioned using a second-price auction. In particular,
(a) Agent 1 wins the probability πλ(v2, v3).
(b) Agent 1 pays v2π

λ(v2, v3) ≡ λ
[
(1 − 2

n )v2 + 2
n v3

] + (1 − λ)v2.
3. Part of the generated revenue from the second-price auction, v2πλ(v2, v3), is redis-

tributed among agents as follows:
(a) Agents 1 and 2 receive an amount v3

n each.
(b) Each agent j , where j > 2, receives an amount v2

n .

The 1-Vickrey-redistribution mechanism is our mechanism and 0-Vickrey-redis-
tribution mechanism is the Cavallo mechanism. In the Cavallo mechanism, a Vickrey
auction of the entire unit of resource is conducted. The revenue raised from the auction
is redistributed exactly like our auction, but this leaves some surplus, which is burnt.

We can formally break ties in our class of no-deficit mechanisms by maintaining
ETE—this can be analogously done to the formal definition of our mechanism Mλ.

Definition 8 The mechanism Mλ ≡ ( f λ,pλ) for any λ ∈ [0, 1] is defined as follows.
The allocation rule f λ is defined as: for every v with v1 ≥ v2 ≥ v3 ≥ · · · ≥ vn , we
have

f λ
i (v) :=

{
1

|v[1]|
[
λ

((
1 − 2

n

) + ( 2
n

)
v3
v2

)
+ (1 − λ)

]
if i ∈ v[1]

0 otherwise

where 0
0 is assumed to be 1. The payment of each agent i ∈ N is given by

pλ
i (v) := p∗

i (0, v−i ) + vi f
λ
i (v) −

∫ vi

0
f λ
i (xi , v−i )dxi ,

where p∗
i (0, v−i ) is defined as

p∗
i (0, v−i ) =

{− v3
n if i ∈ {1, 2}

− v2
n otherwise.

Notice that the redistribution amounts p∗
i remains the same irrespective of the value

of λ. The proof that any such mechanism is DSIC follows arguments similar to Theo-
rem 1, and is skipped—it can also be shown using the fact that each mechanism in Mλ

is a convex combination of M∗ and the Cavallo mechanism. It clearly satisfies individ-
ual rationality. The surplus generated by such a λ-Vickrey redistribution mechanism
is the following at valuation profile v.

λ

[(

1 − 2

n

)

v2 + 2

n
v3

]

+ (1 − λ)v2 − 2

n
v3 −

(

1 − 2

n

)

v2

= 2

n
(1 − λ)(v2 − v3) ≥ 0.

Hence, eachλ-Vickrey-redistributionmechanismsatisfies no-deficit, and forλ = 1,we
have budget-balance. We summarize these conclusions in the following proposition.
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Proposition 2 Every λ-Vickrey redistribution mechanism is DSIC and satisfies indi-
vidual rationality and no-deficit.

Fix any λ-Vickrey-redistribution mechanism. At any valuation profile v (consider
a strict valuation profile v1 > v2 > · · · > vn), the utility of agent j , where j /∈ {1, 2}
is v2

n . The utility of agent 2 is v3
n . The utility of agent 1 is

(v1 − v2)π
λ(v2, v3) + v3

n
= λ(v1 − v2)

[(

1 − 2

n

)

+ 2

n

v3

v2

]

+ (1 − λ)(v1 − v2) + v3

n

= (v1 − v2)

[(

1 − 2

n

)

+ 2

n

v3

v2

]

+ v3

n
+ (1 − λ)(v1 − v2)

2

n

(

1 − v3

v2

)

Hence, the utility of agent 1 is strictly increasing with decreasing λ. On the other hand,
the utilities of other agents are unchanged. Hence, by reducing λ, we increase the sur-
plus that needs to be burnt but make the highest valued agent better off. This illustrates
that the ability to burn some surplus allows one greater flexibility to increase welfare.
The budget-balance condition constraints our mechanism, though asymptotically both
the mechanisms have similar welfare.

5 Conclusion

We argued that the top-only feature is compelling because it prevents potential resale
markets and avoids the pitfall of assigning the object to low-valued agents in the pres-
ence of high-valued agents. However, we observed that the GL mechanism generates
more expected welfare than our mechanism for uniformly distributed values. Further,
a modified GL mechanism maximizes utilitarian welfare over all satisfactory mecha-
nisms. We also observed that there are simpler variants of the Vickrey auction which
satisfies no-deficit, DSIC, and individual rationality that can generate more welfare
than our mechanism. Hence, it is not clear that our mechanism is a clear winner in
the class of mechanisms available in this setting. But we believe that it is a valuable
addition to this class ofmechanisms because of (a) the importance of the top-only prop-
erty (that we highlight in the Introduction), (b) its simplicity and asymptotic efficiency
property, and (c) its asymptotic equivalence to the celebrated GL mechanism.

Besides, our mechanism sheds insights into some technical issues on designing
satisfactory mechanisms. First, our mechanism M∗ cannot be expressed as a convex
combination of deterministic, DSIC, and budget-balanced mechanisms6—note that
the GL mechanism can be expressed in that form.

Second, our mechanism is a non-rankingDSIC and budget-balanced mechanism—
Long et al. (2017) define a ranking mechanism as one which allocates a fixed

6 This follows from the top-only property of our mechanism.
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probability πk to the k-th highest valued agent at every valuation profile. Our mech-
anism is a non-ranking mechanism because it allocates different probabilities to the
highest-valued agent. Ours is the first paper to carefully analyze a non-ranking DSIC
and budget-balanced mechanism and establish its optimality and asymptotic proper-
ties.

Finally, ours is the first paper to explore the power of a top-only mechanism and
illustrate that probability burning may help in partially overcoming the Green–Laffont
impossibility result.

Appendix

Proof of Theorem 1

First, we show that M∗ is a satisfactory mechanism—it is clearly a top-only mecha-
nism. Fix a valuation profile v with v1 ≥ v2 ≥ · · · ≥ vn , and observe the following
using the definition of pi (v) for each i :

∑

i∈N
p∗
i (v) =

∑

i∈N
p∗
i (0, v−i ) +

∑

i∈N
vi f

∗
i (v) −

∑

i∈N

∫ vi

0
f ∗
i (xi , v−i )dxi

=
∑

i∈N
p∗
i (0, v−i ) + v1 f

∗
1 (v) −

∑

i∈N

∫ vi

0
f ∗
i (xi , v−i )dxi (by ETE)

=
∑

i∈N
p∗
i (0, v−i ) + v1 f

∗
1 (v) − (v1 − v2) f

∗
1 (v) (by definition of f ∗)

=
∑

i∈N
p∗
i (0, v−i ) + v2 f

∗
1 (v)

=
∑

i∈N
p∗
i (0, v−i ) + v2

(

1 − 2

n

)

+ v3
2

n

= 0 (by definition of p∗
i (0, v−i ) for each i).

This establishes that M∗ is budget-balanced. For DSIC, we invoke the character-
ization of Myerson (1981), which states that an arbitrary mechanism M ≡ ( f,p) is
DSIC if and only if

1. Monotonicity. for all i ∈ N , for all v−i , and for all vi , v′
i with vi > v′

i , we have

fi (vi , v−i ) ≥ fi (v
′
i , v−i ). (1)

2. Revenue equivalence. for all i ∈ N , for all v−i , and for all vi , we have

pi (vi , v−i ) = pi (0, v−i ) + vi fi (vi , v−i ) −
∫ vi

0
fi (xi , v−i )dxi . (2)

Monotonicity is clearly satisfied by f ∗ and revenue equivalence is satisfied by p∗ by
definition. Hence,M∗ is DSIC. Finally, since f ∗ is symmetric, p∗ is also symmetric by
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construction. Hence, M∗ satisfies ETE. This implies that M∗ is a top-only satisfactory
mechanism.

For individual rationality, note that for every i ∈ N and for all v, using revenue
equivalence, we have

vi f
∗
i (v) − p∗

i (v) =
∫ vi

0
f ∗
i (xi , v−i )dxi − p∗

i (0, v−i ) ≥ 0,

where the inequality follows since p∗
i (0, v−i ) ≤ 0 by definition.

Now, we move to the second part of the proof where we show that our top-only
satisfactory mechanismmaximizes utilitarian welfare in the class of all top-only satis-
factory mechanisms. To do this, we define some additional properties of an allocation
rule, which is satisfied by f ∗.

Definition 9 An allocation rule f satisfies property

P0. if for every v with |v[1]| = 2, we have fi (v) = 0 for all i /∈ v[1].
P1. if for every v with |v[1]| > 2, we have

∑
i∈v[1] fi (v) = 1.

P2. if for every v with v[1] = {k} and |v[2]| > 1, we have fk(v) = 1.

Notice that f ∗ satisfies Properties P0, P1, and P2. Before completing the proof of the
theorem, we state and prove an important proposition.

Proposition 3 Suppose ( f,p) is a satisfactory mechanism and f satisfies Properties
P0, P1, and P2. Then, for every v with v1 ≥ v2 ≥ v3 ≥ · · · ≥ vn, we have

∑

i∈N
pi (0, v−i ) = −1

n
[(n − 2)v2 + 2v3].

Proof We start off by establishing a property of payments.

Lemma 1 Suppose ( f,p) is a satisfactory mechanism and f satisfies Properties P0,
P1, and P2. For every v−1 ≡ (v2, v3, . . . , vn) with v2 ≥ v3 ≥ · · · ≥ vn, we have

p1(0, v−1) = −v3

n
.

Proof We do the proof in three steps.

Step 1. Pick v−1 such that v2 = v3 = θ ≥ v4 ≥ · · · ≥ vn . Pick a type profile
v ≡ (v1, v−1) such that v1 = θ . If θ = 0 this is the zero type profile, and by ETE and
budget-balance, the claim is true. Hence, suppose that θ > 0. Let K := |(0, v−1)[1]|.
Since K ≥ 2, we have |v[1]| > 2, and Property P1 implies that

∑
i∈v[1] fi (v) = 1.

Further, consider a type profile (x1, v−1), where x1 < θ . Such a type profile also
satisfies |(x1, v−1)[1]| > 1, and Property P0 and P1 imply that f1(x1, v−1) = 0.

We now do the proof using induction on K . Using the observations in the previous
paragraph along with ETE and revenue equivalence formula, we get for all i ∈ v[1],

pi (v) = pi (0, v−i ) + 1

K + 1
θ. (3)
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If K = n − 1, then v[1] = N , and adding the above inequalities and using ETE and
BB, we get

p1(0, v−1) = −θ

n
.

Else, we assume that for all K ′ > K , the claim is true. Then, we have for all i /∈ v[1],
|(0, v−i )[1]| = |v[1]| = K + 1, and induction hypothesis implies that

pi (v) = pi (0, v−i ) = −θ

n
, (4)

Adding Eqs. (3) and (4), and using BB and ETE, we get

0 = (K + 1)p1(0, v−1) + θ − (n − K − 1)
θ

n
.

Simplifying, we get,

p1(0, v−1) = −θ

n
.

This shows that if |(0, v−1)[1]| > 1, then the claim is true.

Step 2. Let v be a type profile such that for all k > 2 and for all i ∈ v[k], we have
vi = 0, and |v[1]| = 1 and |v[2]| > 1. In this step, we show that if θ = vi > 0 for
every i ∈ v[2], then

pi (0, v−i ) = −θ

n
.

Suppose v[1] = {1}. By step 1,

p1(0, v−1) = −θ

n
. (5)

Further, byPropertyP2, f1(v) = 1. Further, for all x1 ∈ (θ, v1),wehave f1(x1, v−1) =
1 and for all x1 < θ , we have f1(x1, v−1) = 0—the latter observation follows from
the fact that |(x1, v−1)[1]| > 1 and Properties P0 and P1. Hence, using Eqs. (2) and
(5), we get

p1(v) = −θ

n
+ v1 − (v1 − θ) = (1 − 1/n)θ. (6)

Suppose |v[2]| = K . By Property P2, fi (v) = 0 for all i ∈ v[2]. Hence, for each
i ∈ v[2], Eq. (2) implies that

pi (v) = pi (0, v−i ). (7)
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If K = n − 1, by adding Eqs. (6) and (7), and using BB and ETE, we get for every
i ∈ v[2],

0 = (n − 1)pi (0, v−i ) + (1 − 1/n)θ.

This simplifies to pi (0, v−i ) = − θ
n .

Now, we use induction on K . Suppose the claim is true for all K ′ > K and
K < n − 1. By construction, for all j > 2 and for all i ∈ v[ j], vi = 0. We can
construct another type profile v′ such that v′

i = θ and v′
j = v j for all j �= i . Note that

|v′[2]| = K + 1. Hence, induction hypothesis implies that

pi (0, v
′−i ) = pi (0, v−i ) = pi (v) = −θ

n
. (8)

Adding Eqs. (6)–(8), and using BB and ETE we get for every i ∈ v[2],

0 = Kpi (0, v−i ) + (1 − 1/n)θ − n − K − 1

n
θ.

This simplifies to pi (0, v−i ) = − θ
n , as desired.

Step 3Now, we complete the proof. Pick a vwith v[1] = {1} and |v[2]| > 1. Suppose
vk = θ > 0 for all k ∈ v[2]. Note that by Step 1, the claim is proved if we show that
for all i /∈ v[1], we have pi (0, v−i ) = − θ

n—in this case (0, v−i ) is a type profile such
that |(0, v−i )[1]| = 1.

Suppose K = |v[2]|. We use induction on K . If K = n − 1, the claim follow
from step 2. Suppose the claim is true for all K ′ > K . Pick i ∈ v[k], where k > 2.
We can construct a type profile v′ with v′

i = θ and v j = v′
j for all j �= i . Since

|v′[2]| = K + 1, induction hypothesis implies that

pi (0, v
′−i ) = pi (0, v−i ) = −θ

n
. (9)

Now, at type profile v, we know that v[1] = {1} and |v[2]| > 1. By Property P2,
f1(v) = 1 and for all x1 ∈ (θ, v1), we have f1(x1, v−1) = 1. Further, by Properties P0
and P1, f1(x1, v−1) = 0 for all x1 < θ . Using these observations and Eq. (2), we get

p1(v) = p1(0, v−1) + v1 − (v1 − θ) = −θ

n
+ θ = (1 − 1/n)θ, (10)

where the second equality follows from step 1. Since fi (v) = 0 for all i �= 1, we can
argue the following. For every i ∈ v[2], we have

pi (v) = pi (0, v−i ). (11)

For every i ∈ v[k], where k > 2, using Eq. (9),

pi (v) = pi (0, v−i ) = −θ

n
. (12)
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Adding Eqs. (10)–(12), and using ETE we get for every i ∈ v[2],

0 = Kpi (0, v−i ) + (1 − 1/n)θ − (n − K − 1)
θ

n
.

Simplifying, we get pi (0, v−i ) = − θ
n , as desired. ��

Now, we complete the proof of Proposition 3. Suppose ( f,p) is a satisfactory
mechanism and f satisfies Properties P0, P1, and P2. Using Lemma 1, we immediately
get that pi (0, v−i ) = − v3

n if i ∈ {1, 2} and pi (0, v−i ) = − v2
n if i /∈ {1, 2}. Using

these equations, we get
∑

i∈N pi (0, v−i ) = − 1
n [(n − 2)v2 + 2v3]. ��

Now, we complete the remaining part of Proof of Theorem 1. Assume for contra-
diction that mechanism M̃ ≡ ( f̃ , p̃) is a top-only satisfactory mechanism such that
for all v, we have

W (v;M̃) ≥ W (v, M∗), (13)

with strict inequality holding for some v.
Every top-only allocation rule satisfies Property P0. Since f ∗ satisfies Properties P1

and P2, Eq. (13) implies that f̃ satisfies Properties P1 and P2—this is because an
implication of Eq. (13) is that f̃ is efficient at all valuation profiles where f ∗ is
efficient, and f ∗ is efficient at the profiles mentioned in Properties P1 and P2.

Then, by Proposition 3, we have for all v with v1 ≥ v2 ≥ · · · ≥ vn ,

∑

i∈N
p̃i (0, v−i ) =

∑

i∈N
p∗
i (0, v−i ) = −1

n
[(n − 2)v2 + 2v3]. (14)

Note that if v2 = v3, then Properties P1 and P2 imply that f̃1(v) = f ∗
1 (v) = 1. Now

suppose v2 > v3. If v1 = v2, then by revenue equivalence formula and using the fact
that f̃1(x1, v−1) = f̃2(x2, v−2) = 0 for all x1, x2 < v1(= v2), we get

p1(v) = p1(0, v−1) + v1 f̃1(v)

p2(v) = p2(0, v−2) + v2 f̃2(v)

p j (v) = p j (0, v− j ) ∀ j /∈ {1, 2}.

Adding and using budget-balance and ETE, we have

∑

i∈N
pi (0, v−i ) = −2v1 f̃1(v) = −2v2 f̃1(v).

Using Eq. (14), we get

f̃1(v) = f̃2(v) = 1

2n

[

(n − 2) + 2
v3

v2

]

= f ∗
1 (v) = f ∗

2 (v).
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Hence, if v1 = v2 or v2 = v3, by top-only property f̃ = f ∗. Since Eq. (13) holds
strictly for some v, such a valuation profile must satisfy v1 > v2 > v3. By top-only
property and Eq. (13), we must have

f̃1(v) > f ∗
1 (v). (15)

But then,

0 =
∑

i∈N
p̃i (v)

=
∑

i∈N
p̃i (0, v−i ) +

∑

i∈N
vi f̃i (v) −

∑

i∈N

[∫ vi

0
f̃i (xi , v−i dxi

]

(by revenue equivalence)

=
∑

i∈N
p̃i (0, v−i ) + v1 f̃1(v) −

∫ v1

v2

f̃1(x1, v−1)dx1 (by top-only property of f̃ )

≥
∑

i∈N
p̃i (0, v−i ) + v1 f̃1(v) − (v1 − v2) f̃1(v) (from monotonicity of f̃1)

=
∑

i∈N
p̃i (0, v−i ) + v2 f̃1(v)

> −1

n
[(n − 2)v2 + 2v3] + v2 f

∗
1 (v) (from Eq. (14) and Inequality (15))

= 0 (by definition of f ∗),

which is a contradiction.
This completes the proof of Theorem 1.

Proof of Theorem 2

We do the proof with the help of some lemmas.

Lemma 2 Suppose f is a satisfactorily implementable and satisfies Properties P0,
P1, and P2. Then, for all valuation profiles v ∈ V n and for i ∈ v[k] with k > 2, we
have

fi (v) = 0.

Proof Consider a valuation profile v. Denote the valuation of agents in v[k] for any k
as θk . Pick an agent i ∈ v[3] and consider a valuation profile v′ as follows: v′

j = v j

if j �= i and v′
i = θ2 (in other words, valuation of agent i is increased to second

ranked valuation). Note that |v′[2]| > 1 and i ∈ v′[2]. Hence, by Properties P0, P1,
and P2, we have fi (v′) = 0. By monotonicity of f and ETE, we get that fi (v) = 0
and f j (v) = 0 for all j ∈ v[3].
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We now use induction. We assume that at any valuation profile v and for all k < K
and k ≥ 3, we have f j (v) = 0 for all j ∈ v[k]. We now show that f j (v) = 0 for all
j ∈ v[K ]. To do so, we pick an agent i ∈ v[K ] and construct a valuation profile v′
as follows: v′

j = v j if j �= i and v′
i = θK−1. Since i ∈ v′[K − 1], by the induction

hypothesis, fi (v′) = 0. By monotonicity of f and ETE, we get that fi (v) = 0 and
f j (v) = 0 for all j ∈ v[K ]. This completes the proof. ��
The next lemma uses the following strengthening of Properties P0 and P1.

Definition 10 An allocation rule f satisfies Property C1 if for every vwith |v[1]| > 1,
we have

∑
i∈v[1] fi (v) = 1.

Note that Property C1 implies Properties P0 and P1.

Lemma 3 Suppose f is a satisfactorily implementable allocation rule satisfying
Properties C1 and P2. Then, for every v−2 ≡ (v1, v3, v4, . . . , vn) with v1 > v3 ≥
v4 ≥ · · · ≥ vn, we have

∫ v1

v3

f2(x2, v−2)dx2 = 1

n
.

Proof Consider v−2 ≡ (v1, v3, v4, . . . , vn) with v1 > v3 ≥ v4 ≥ · · · ≥ vn . Further,
consider a type profile v′ such that v′

2 = v1 and v′
j = v j for all j �= 1. Since C1

implies Properties P0 and P1, Proposition 3 gives
∑

i∈N
pi (0, v

′−i ) = 1

n
[(n − 2)v1 + 2v3]. (16)

Observing that |v′[1]| > 1 and using Property C1, we get f1(v′) + f2(v′) = 1. By
the revenue equivalence formula, pi (v′) = pi (0, v′−i ) for all i /∈ {1, 2} and for all
i ∈ {1, 2},

pi (v′) = pi (0, v
′−i ) + 1

2
v1 −

∫ v1

v3

f2(x2, v−2)dx2,

where we used the fact that v′
j = v j for all j �= 2 and ETE. Using budget-balance,

we get that

∑

i∈N
pi (0, v

′−i ) = v1 − 2
∫ v1

v3

f2(x2, v−2)dx2. (17)

Using Eqs. (16) and (17), and simplifying we get

∫ v1

v3

f2(x2, v−2)dx2 = 1

n
(v1 − v3).

��
We are now ready to complete the proof of Theorem 2.
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Proof of Theorem 2. The fact that the MGL mechanism is satisfactory is routine to
check—BB and ETE is clear, and for DSIC, one can either do a direct check of
incentive constraints or verify that the revenue equivalence formula holds.

To prove that the MGL mechanism maximizes utilitarian welfare across all sat-
isfactory mechanisms, suppose there is a satisfactory mechanism M ≡ ( f,p) such
that

W (v; M) ≥ W (v; MG ′
) ∀ v, (18)

with strict inequality satisfying for some v. This implies that f is efficient at all
valuation profiles where f G

′
is efficient. Then f must satisfy Properties C1 and P2.

Choose a type profile v with v1 ≥ v2 ≥ · · · ≥ vn . Note that if v1 = v2 or v2 = v3,
then Properties C1 and P2 imply that f G

′
(v) = f (v). So, we consider v such that

v1 > v2 > v3 ≥ v4 ≥ · · · ≥ vn .
Now, for any x2 ∈ (v3, v1), Lemma 2 implies that f j (x2, v−2) = 0 for all j > 2.

Hence, Eq. (18) implies that

v1 f1(x2, v−2) + x2 f2(x2, v−2) ≥ v1(1 − 1/n) + x2/n.

Using f1(x2, v−2) + f2(x2, v−2) ≤ 1, we simplify this to get

(v1 − x2) f1(x2, v−2) ≥ (v1 − x2)(1 − 1/n).

But v1 > x2 implies that f1(x2, v−2) ≥ 1 − 1/n and f2(x2, v−2) ≤ 1/n. Using
Lemma 3 along with monotonicity of f2, we get f2(x2, v−2) = 1/n, and hence,
f1(x2, v−2) = 1 − 1/n for all x2 ∈ (v3, v1). This implies that f1(v) = 1 − 1/n and
f2(v) = 1/n as desired.
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