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Abstract We consider the problem of assigning objects probabilistically among a
group of agents who may have multi-unit demands. Each agent has linear preferences
over the (set of) objects. The most commonly used extension of preferences to com-
pare probabilistic assignments is by means of stochastic dominance, which leads to
corresponding notions of envy-freeness, efficiency, and strategy-proofness. We show
that equal treatment of equals, efficiency, and strategy-proofness are incompatible.
Moreover, anonymity, neutrality, efficiency, and weak strategy-proofness are incom-
patible. If we strengthen weak strategy-proofness to weak group strategy-proofness,
then when agents have single-unit demands, anonymity, neutrality, efficiency, and
weak group strategy-proofness become incompatible.
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1 Introduction

We consider the problem of allocating indivisible goods, or objects, among a group of
agents who have linear preference relations over the (sets of) objects.1 The problem has
been widely studied in computer science and economics (Gärdenfors 1973; Svensson
1994, 1999; Young 1995; Abraham et al. 2005; Bouveret et al. 2010). The problem
may involve single-unit demands, when each agent receives exactly one object, or
multi-unit demands, when each agent receives more than one object. An example of
a situation when agents have single-unit demands is when dormitory rooms have to
be assigned to new university students (Abdulkadiroğlu and Sönmez 1999; Abraham
et al. 2005). The objects could be car-park spaces, kidneys, school seats, etc. A typical
example for the case when agents have multi-unit demands is a sport draft, i.e., when
non-professional sport players have to be assigned to professional sport teams. Another
example is assigning courses to professors in a university department. We assume that
each agent receives the same number of objects (Hatfield 2009). This assumption
is restrictive and some of the examples mentioned above may not always satisfy it.
However, as our results (Theorems 1, 2, and 3) are negative, they hold for any situation
that contains the situation we consider.

If the outcome of the problem is deterministic, then it can be inherently unfair.
Suppose that agents have single-unit demands. Consider two agents having identical
preferences over two objects. Any deterministic allocation will assign one object to
one agent and the other object to the other agent. However, such an allocation will
violate any reasonable notion of fairness. This difficulty remains when agents have
multi-unit demands: consider four objects to be allocated to two agents, each having
to receive two, and they have the same strict rankings over pairs of objects. In contrast
to the case of single-unit demands, we do not have to assign one of them the set they
both most prefer. However, for any deterministic allocation, one agent receives the
set less preferred than the set assigned to the other agent. To restore fairness, and as
is commonly done in practice, we resort to lotteries over allocations (Hylland and
Zeckhauser 1979; Young 1995; Sasaki 1997). Thus, we aim to achieve fairness in a
probabilistic sense.

The outcome of a problem is a probabilistic allocation, namely a matrix with rows
indexed by agents and columns indexed by objects. Each entry in the matrix speci-
fies the probability of the corresponding object being assigned to the corresponding
agent. Each row is the corresponding agent’s probabilistic assignment. For the problem
of probabilistic assignment, the earlier work focuses on single-unit demands (Bogo-
molnaia and Moulin 2001; Katta and Sethuraman 2006). However, as we mentioned
earlier, we also consider the case of multi-unit demands (Kojima 2009; Budish et al.
2013; Heo 2014).2 The problem of discrete assignment with multi-unit demands has
attracted certain attention (Ehlers and Klaus 2003; Hatfield 2009; Bouveret et al. 2010;

1 We also consider the possibility that agents receive more than one object. They thus have preferences
over “sets of” objects.
2 Probabilistic assignment problems have received much attention in recent literature, e.g., Che and Kojima
(2010); Kojima and Manea (2010); Bogomolnaia and Heo (2012); Cho (2016); Aziz et al. (2013); Kasajima
(2013); Hashimoto et al. (2014); and Heo and Yilmaz (2015).
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Bouveret and Lang 2011; Budish 2011).3 A rule is a function which associates with
each problem a probabilistic allocation.4

When agents express preferences over objects but the outcomes are probabilistic
allocations, then we need to extend their preferences over objects to preferences over
probabilistic assignments. The most common extension is by means of stochastic dom-
inance: a probabilistic assignment is preferred to another one if and only if the former
first-order stochastically dominates the latter. 5 Note that in general, two assignments
may not be related by stochastic dominance. Thus, this relation is not complete. The
stochastic dominance relation can be used to define corresponding notions of envy-
freeness, efficiency, and strategy-proofness (Bogomolnaia and Moulin 2001; Katta
and Sethuraman 2006). Our goal is to investigate which levels of fairness, efficiency,
and strategy-proofness can be attained simultaneously.6 We assume that preferences
are “additive” and comply with von-Neumann-Morgenstern framework, yet we do not
know the cardinal utilities nor are we trying to elicit them.7 We ask for the least, that
is, the ranking over objects. Moreover, additive preferences imply that the standard
definition of first-order stochastic dominance applies here as well (by checking the
cumulative probabilities over the objects in the upper-contour set for each object).
Since our results are negative, they hold for any class of preferences that include
additive preferences.

We consider several requirements on rules. A rule satisfies equal treatment of equals
if when two agents have the same preference, then they receive the same probabilistic
assignment. Next, we require that agents do not “envy” each other. A rule is stochastic
dominance envy-free (henceforth sd-envy-free) (Bogomolnaia and Moulin 2001) if for
each pair of agents, i and j , agent i’s probabilistic assignment either stochastically
dominates agent j’s probabilistic assignment according to agent i’s preference, or
the two assignments are the same.8 As noted earlier, two assignments may not be
related by stochastic dominance. This motivates our next definition. A rule is weakly
sd-envy-free (Bogomolnaia and Moulin 2001) if for each pair of agents, i and j , agent
j’s assignment does not stochastically dominate agent i’s assignment according to
agent i’s preference. We also require rules to satisfy efficiency requirement. A rule
is stochastic dominance efficient (henceforth sd-efficient) (Bogomolnaia and Moulin

3 Beviá (1998) provides a general analysis for a problem of assigning objects deterministically to agents
who receive several when there is an infinitely divisible good (or money). See also Kazumura and Serizawa
(2016).
4 Several interesting rules and their extension had been proposed and studied in the literature: the “serial
rule” (Bogomolnaia and Moulin 2001; Katta and Sethuraman 2006; Athanassoglou and Sethuraman 2011;
Kojima 2009; Yilmaz 2009, 2010; Heo 2014), the “random priority rule” (Abdulkadiroğlu and Sönmez
1998; Kojima 2009), the “uniform rule” (Chambers 2004), and the “priority rule” (Svensson 1994, 1999).
5 Under this relation, one probabilistic assignment stochastically dominates another one if and only if
the former yields at least as much expected utility as the latter for any von-Neumann-Morgenstern utility
representation consistent with the ordinal preferences (Bogomolnaia and Moulin 2001; Aziz et al. 2013).
6 See Thomson (2011) for various fairness notions proposed in the literature of resource allocation problems.
7 Preference is additive if there is a function that assigns a real number to each object, and the rankings
over sets of objects are compared by adding these numbers.
8 We use the abbreviation “sd” in other axioms as well. The terminology is suggested by Thomson (2008).
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2001) if it always selects a probabilistic allocation which is not stochastically Pareto
dominated by any other probabilistic allocation.9

Next, we require that no agent benefits from misrepresenting her preference. A rule
is stochastic dominance strategy-proof (henceforth sd-strategy-proof ) (Bogomolnaia
and Moulin 2001) if for each agent, her probabilistic assignment when telling the truth
either stochastically dominates her probabilistic assignment when lying according
to her true preference, or the two assignments are the same. Again, because two
probabilistic assignments may not be related by stochastic dominance, we consider a
weaker definition. A rule isweakly sd-strategy-proof (Bogomolnaia and Moulin 2001)
if for each agent, her probabilistic assignment when lying does not stochastically
dominate her probabilistic assignment when telling the truth according to her true
preference. Finally, we require that no group of agents benefit from misrepresenting
their preferences together. A rule is weakly group sd-strategy-proof if for each group
of agents and each list of false announcements that agents in the group could make,
it is not the case that for each agent in the group, her probabilistic assignment when
lying (by the group of agents) stochastically dominates her probabilistic assignment
when telling the truth (by the group of agents) according to her true preference.10

Kojima (2009) investigates the compatibility of fairness, efficiency, and strategy-
proofness for the multi-unit demands case. His main result is that no rule is
sd-envy-free, sd-efficient, and weakly sd-strategy-proof. Moreover, as he shows, this
impossibility holds even under additive preferences and preferences over individual
objects are strict.

We add to our understanding of probabilistic assignment by studying the implica-
tions of other axiom combinations. First, we weaken sd-envy-freeness to equal treat-
ment of equals, but strengthen weak sd-strategy-proofness to sd-strategy-proofness.
We show that, when agents have multi-unit demands, and as soon as there are at least
two agents, equal treatment of equals, sd-efficiency, and sd-strategy-proofness are
incompatible. As in Kojima (2009), this result holds even under additive preferences
with preferences over individual objects being strict. It is worth noting that when
agents have single-unit demands, and there are at least four agents, these three axioms
are incompatible (Bogomolnaia and Moulin 2001). Their result does not imply ours
since our impossibility holds as soon as there are at least two agents.

The above result and Kojima (2009)’s result require comparability of probabilistic
assignments.11 Indeed, they require sd-strategy-proofness (not the weak form of it) or

9 This requirement is referred to as “ordinal efficiency” in Bogomolnaia and Moulin (2001).
10 One could require that (under the same hypothesis), it is not the case that (1) for each agent in the group,
her probabilistic assignment when lying stochastically dominates her probabilistic assignment when telling
the truth, or the two assignments are the same, and (2) there is at least one agent in the group that her
probabilistic assignment when lying stochastically dominates her probabilistic assignment when telling the
truth. This requirement is stronger than the one we consider here. Since our result (Theorem 3) is negative,
it also holds under this stronger requirement.
11 A probabilistic assignment for an agent i is “comparable” (with respect to stochastic dominance) with
another probabilistic assignment if either one assignment first-order stochastically dominates the other
under agent i’s preference, or the entries in the two assignments are the same. Given an axiom (or a result
involving that axiom), if it requires that for each problem and each agent i , (1) a probabilistic assign-
ment for an agent i (given by a rule) is comparable with at least one other probabilistic assignment and (2) the
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sd-envy-freeness (here too, not the weak form of it).12 In fact, the axioms involving
comparability of probabilistic assignments often appear in characterizations or impos-
sibility statements (Bogomolnaia and Moulin 2001; Ehlers and Klaus 2003; Kojima
2009; Bogomolnaia and Heo 2012; Hashimoto et al. 2014; Heo and Yilmaz 2015).
Next we ask what happens if we do not require comparability.

We impose two auxiliary properties. A rule is anonymous if the names of agents do
not matter, and it is neutral if the names of objects do not matter. Our second result is
also negative. When agents have multi-unit demands, and there are at least two agents,
anonymity, neutrality, sd-efficiency, and weak sd-strategy-proofness are incompatible.
Again this result holds even on the restricted domain of strict and additive preferences.
When agents have single-unit demands, these four axioms are compatible, however.

Finally, concerning the four axioms just mentioned, we investigate the implications
of strengthening weak sd-strategy-proofness to weak group sd-strategy-proofness. We
show that even when agents have single-unit demands, and there are at least four
agents, anonymity, neutrality, sd-efficiency, and weak group sd-strategy-proofness are
incompatible.

The remainder of the paper is organized as follows. Section 2 presents the model
and Section 3 presents the results.

2 The model

Let O be a finite set of distinct indivisible goods, or objects. A typical object is denoted
by k ∈ O . Let N ≡ {1, 2, . . . , n} be a set of agents. A typical agent is denoted by
i ∈ N . Let q ∈ Z be such that q ≥ 1. Each agent is supposed to receive q objects. We
assume that |O| = q|N |. When q = 1, we say that agents have single-unit demands.
When q ≥ 2, we say that agents have multi-unit demands. Each agent i ∈ N has
a complete and transitive binary relation Ri over sets of objects. We refer to Ri as
agent i’s preference relation. Preferences have additive representations, i.e., for each
i ∈ N , there is a function vi : O → R+ such that for each pair O ′, O ′′ ⊆ O , O ′ Ri O ′′
if and only if

∑
k∈O ′ vi (k) ≥ ∑

k∈O ′′ vi (k) (when an agent receives one object, each
of the sets O and O ′ contains one element).13 Furthermore, preferences restricted
to individual objects are strict, i.e., for each i ∈ N and each pair k, k′ ∈ O such
that k �= k′, vi (k) �= vi (k′). These restrictions are strong. However, as our results
(Theorems 1, 2, and 3) are negative, they are made stronger by the restrictions (our
results hold for any domain that contains the domain we consider). Let R be a domain
of preferences. Let R ≡ (Ri )i∈N be the preference profile. Let RN be a domain of

Footnote 11 continued
former assignment is at least as desirable as the latter assignment for agent i , then we say that it “requires
comparability of probabilistic assignments” (except for invariance properties). As noted in the next footnote,
in fact, sd-strategy-proofness and sd-envy-freeness require that an assignment to be comparable with all
other relevant assignments.
12 Note that sd-strategy-proofness requires that an agent i’s probabilistic assignment under truth-telling
should be comparable with an assignment under any of agent i’s report . Similarly, sd-envy-freeness
requires that an agent’s probabilistic assignment should be comparable with each other agent’s assignment.
13 O ′ Ri O ′′ means that O ′ is at least as desirable as O ′′ for agent i .
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preference profiles. Since we vary neither O nor N , we simply write a problem as a
list R ∈ RN .

A probabilistic allocation is a |N | × |O| matrix M ≡ [Mik]i∈N ,k∈O such that (1)
for each i ∈ N and each k ∈ O , 0 ≤ Mik ≤ 1, (2) for each i ∈ N ,

∑
k∈O Mik = q,

and (3) for each k ∈ O ,
∑

i∈N Mik = 1. Each entry is interpreted as the probability
with which the agent indexing the row receives the object indexing the column. For
each i ∈ N , the i-th row of M (i.e., a vector Mi ≡ [Mik]k∈O ) represents her prob-
abilistic assignment in M . A probabilistic allocation M ≡ [Mik]i∈N ,k∈O is called a
deterministic allocation if for each i ∈ N and each k ∈ O , Mik ∈ {0, 1}.

Every probabilistic allocation can be written as a convex combination of determin-
istic allocations (this is a straightforward generalization of the Birkhoff-von Neumann
theorem; see Kojima and Manea 2010).14 Let M be the set of all probabilistic allo-
cations. A rule is a function which associates with each problem a matrix in M. The
generic rule is denoted ϕ.

For simplicity, hereafter we simply call a probabilistic allocation an allocation and
a probabilistic assignment an assignment.

We consider several requirements on rules. Again, let ϕ be an arbitrary rule.
First, if the names of agents are permuted, the rule should permute the rows of

the allocation it selects in the same way (in short, the names of agents should not
matter). Formally, let π be a bijection from N to itself. Let ΠN be a class of such
bijections. Given π ∈ ΠN and R ∈ RN , we write π(R) for the preference profile
(Rπ(1), Rπ(2), ..., Rπ(n)) . Similarly, given π ∈ ΠN and M ∈ M, we write π(M) for
the list (Mπ(1), Mπ(2), ..., Mπ(n)) .

Anonymity: For each R ∈ RN and each π ∈ ΠN , ϕ(π(R)) = π(ϕ(R)).

Second, if the names of objects are permuted, the rule should permute the columns
of the chosen allocation in the same way (in short, the names of objects should not

matter). Formally, let π be a bijection from O to itself. Let Π
O

be a class of such

bijections. Given π ∈ Π
O

and O ′ ≡ {a′, b′, . . . } ⊆ O , we write π(O ′) for the set

{π(a′), π(b′), . . . }. Given π ∈ Π
O

, we write π(R) for the preference profile such that
for each agent i ∈ N , Ri is permuted according to π , i.e., for each pair O ′, O ′′ ⊆ O ,

O ′ Ri O ′′ if and only if π(O ′) Ri π(O ′′). Similarly, given π ∈ Π
O

and M ∈ M, we
write π(M) for the list (Mπ(a), Mπ(b), ...) .

Neutrality: For each R ∈ RN , and each π ∈ Π
O

, ϕ(π(R)) = π(ϕ(R)).

Third, agents with the same preferences should receive the same assignment.

Equal treatment of equals: For each R ∈ RN and each pair i, j ∈ N , if Ri = R j ,
then ϕi (R) = ϕ j (R).

Note that anonymity implies equal treatment of equals.

14 Such combination may not be unique, however. The Birkhoff-von Neumann theorem is due to Birkhoff
(1946); and von Neumann (1953). Budish et al. (2013) further generalize the theorem.
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Next, we define how an agent compares her assignment to another agent’s assign-
ment. An assignment M i ≡ [Mik]k∈O for i ∈ N weakly stochastically dominates
an assignment M j ≡ [Mjk]k∈O for j ∈ N at Ri (or Mi is at least as sd-desirable as
Mj at Ri ), which we write M i Rsd

i M j , if for each k ∈ O ,
∑

{x∈O:vi (x)≥vi (k)} Mix ≥∑
{x∈O:vi (x)≥vi (k)} Mjx . If strict inequality holds for some k, then Mi stochastically

dominates M j at Ri (or Mi is sd-better than Mj at Ri ), which we write M i Psd
i M j .

Note that two different assignments Mi and Mj may not be comparable in the stochas-
tic dominance sense.

An allocation M is stochastic dominance envy-free (simply, sd-envy-free) at R
if for each pair i, j ∈ N , Mi Rsd

i M j . At an sd-envy-free allocation, each agent finds
her assignment at least as sd-desirable as anyone else’s assignment. Thus it requires
comparability of the assignments. The next requirement says that the rule should
always select an sd-envy-free allocation.

Stochastic dominance envy-freeness, (simply, sd-envy-freeness): For each R ∈ RN ,
ϕ(R) is sd-envy-free at R.

Instead of insisting that two agents’ assignments be comparable, the next axiom
only requires the rule to select an allocation such that no agent finds some other agent’s
assignment sd-better than her own assignment. An allocation M is weakly stochastic
dominance envy-free (simply, weakly sd-envy-free) at R if there are no i, j ∈ N
such that Mj Psd

i Mi .

Weak stochastic dominance envy-freeness, (simply, weak sd-envy-freeness): For
each R ∈ RN , ϕ(R) is weakly sd-envy-free at R.

How an agent compares two of her assignments is defined similarly. An assignment
M i ≡ [Mik]k∈O for i ∈ N weakly stochastically dominates another assignment
M ′

i ≡ [M ′
ik]k∈O for i ∈ N at Ri (or Mi is at least as sd-desirable as M ′

i at
Ri ), which we write M i Rsd

i M ′
i , if for each k ∈ O ,

∑
{x∈O:vi (x)≥vi (k)} Mix ≥

∑
{x∈O:vi (x)≥vi (k)} M

′
i x . If strict inequality holds for some k, then Mi stochastically

dominates M ′
i at Ri (or Mi is sd-better than M ′

i at Ri ), which we write M i Psd
i M ′

i .
An allocation M ≡ [Mik]i∈N ,k∈O stochastically Pareto dominates another alloca-
tion M ′ ≡ [M ′

ik]i∈N ,k∈O at R, which we write M Rsd M ′, if (1) for each i ∈ N ,
Mi Rsd

i M ′
i , and (2) for some i ∈ N , Mi Psd

i M ′
i .

An allocation M is stochastic dominance efficient (simply, sd-efficient) at R if
there is no M ′ ∈ M such that M ′ Rsd M . The next requirement says that the rule
should always select an sd-efficient allocation.

Stochastic dominance efficiency, (simply, sd-efficiency): For each R ∈ RN , ϕ(R)

is sd-efficient at R.

Next, consider an arbitrary agent, say agent i , and fix the other agents’ preferences.
The next axiom requires the rule to select an allocation such that according to her true
preference, her assignment when she tell the truth is at least as sd-desirable as her
assignment when she lies.
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Stochastic dominance strategy-proofness, (simply, sd-strategy-proofness): For
each R ∈ RN , each i ∈ N , and each R′

i ∈ R, ϕi (R) Rsd
i ϕi (R′

i , R−i ).15

Again, consider an arbitrary agent, say agent i , and fix the other agents’ preferences.
In the previous axiom, we insist that two assignments (when telling the truth and lying)
be comparable. The next axiom only requires the rule to select an allocation such that
according to agent i’s true preference, she never finds her assignment when she lies,
to be sd-better than her assignment when she tells the truth.

Weak stochastic dominance strategy-proofness, (simply, weak sd-strategy-
proofness): For each R ∈ RN , each i ∈ N , and each R′

i ∈ R, it is not the case
that ϕi (R′

i , R−i ) Psd
i ϕi (R).

Finally, consider an arbitrary group of agents, say group S, and fix the other agents’
preferences. As in the previous axiom, we do not insist on two assignments (when
telling the truth and lying) to be comparable. The next axiom requires the rule to select
an allocation such that according to the true preferences of each of the agents in S, it
is not the case that the agent finds her assignment when agents in S lie, to be sd-better
than her assignment when agents in S tell the truth.

Weak group stochastic dominance strategy-proofness, (simply, weak group sd-
strategy-proofness): For each R ∈ RN , each S ⊆ N , each i ∈ S, and each R′

S ∈ RS ,
it is not the case that for each i ∈ S, ϕi (R′

S, R−S) Psd
i ϕi (R).16

3 Results

We present three results.
First, we investigate the compatibility of equal treatment of equals, sd-efficiency,

and sd-strategy-proofness. When agents have single-unit demands, and there are at
least four agents, Bogomolnaia and Moulin (2001) [Theorem 2, p.310] show that these
three axioms are incompatible. Our first theorem states that, when agents have multi-
unit demands, they are again incompatible —but here, the result holds as soon as there
are two or more agents and even when preferences have additive representations.17

Theorem 1 For n ≥ 2 and q ≥ 2, no rule satisfies equal treatment of equals, sd-
efficiency, and sd-strategy-proofness.

Proof Let N ≡ {1, 2}, O ≡ {a, b, c, d} and q = 2. Suppose by way of contradiction
that there exists a rule ϕ that satisfies the three axioms.

15 R−i ≡ RN\{i}, i.e., the restriction of R to N\{i}.
16 R−S ≡ RN\{S}, i.e., the restriction of R to N\{S}.
17 When there are at least four agents, one can extend the proof of Bogomolnaia and Moulin (2001)
[Theorem 2] to show that if agents receive more than one objects, the three axioms are incompatible. Thus
our theorem is distinguished from theirs for the cases of two and three agents.
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Step 1: Let (R1, R2) ∈ RN be the following:18

R1 : a, b, c, d

R2 : a, b, c, d.

By equal treatment of equals,

ϕ(R1, R2) =
(

1/2 1/2 1/2 1/2
1/2 1/2 1/2 1/2

)

.

Step 2: Let (R1, R′
2) ∈ RN be the following:

R1 : a, b, c, d

R′
2 : b, a, c, d.

We claim that

ϕ(R1, R
′
2) =

(
1 0 1/2 1/2

0 1 1/2 1/2

)

.

By sd-strategy-proofness and Step 1,

(i) If agent 2’s true preference is R2, but she announces R′
2, then

ϕ2a(R1, R2) = 1

2
≥ ϕ2a

(
R1, R

′
2

)
,

∑

k∈{a,b}
ϕ2k(R1, R2) = 1 ≥

∑

k∈{a,b}
ϕ2k

(
R1, R

′
2

)
, and

∑

k∈{a,b,c}
ϕ2k(R1, R2) = 3

2
≥

∑

k∈{a,b,c}
ϕ2k

(
R1, R

′
2

)
.

(ii) If agent 2’s true preference is R′
2, but she announces R2, then

ϕ2b(R1, R2) = 1

2
≤ ϕ2b

(
R1, R

′
2

)
,

∑

k∈{b,a}
ϕ2k(R1, R2) = 1 ≤

∑

k∈{b,a}
ϕ2k

(
R1, R

′
2

)
, and

∑

k∈{b,a,c}
ϕ2k(R1, R2) = 3

2
≤

∑

k∈{b,a,c}
ϕ2k

(
R1, R

′
2

)
.

Thus,
∑

k∈{a,b} ϕ2k(R1, R′
2) = 1 and

∑
k∈{a,b,c} ϕ2k(R1, R′

2) = 3
2 .

18 Recall that preferences have additive representations and preferences over O are strict. For each i ∈ N ,
if vi (a) > vi (b) > vi (c) > · · · , then we write

Ri : a, b, c, . . .

123



264 H. Aziz, Y. Kasajima

Hence,

ϕ(R1, R
′
2) =

(
ϕ1a(R1, R′

2) ϕ1b(R1, R′
2)

1/2 1/2

ϕ2a(R1, R′
2) ϕ2b(R1, R′

2)
1/2 1/2

)

.

Then ϕ1a(R1, R′
2) + ϕ1b(R1, R′

2) = ϕ2a(R1, R′
2) + ϕ2b(R1, R′

2) = 1. By sd-
efficiency, ϕ1a(R1, R′

2) = ϕ2b(R1, R′
2) = 1. Thus, the claim is true.

Step 3: Let (R′
1, R

′
2) ∈ RN be the following:

R′
1 : a, c, b, d

R′
2 : b, a, c, d.

We claim that

ϕ(R′
1, R

′
2) =

(
1 0 1/2 1/2

0 1 1/2 1/2

)

.

By sd-strategy-proofness and Step 2,

(i) If agent 1’s true preference is R1, but she announces R′
1, then

ϕ1a
(
R1, R

′
2

) = 1 ≥ ϕ1a
(
R′

1, R
′
2

)
,

∑

k∈{a,b}
ϕ1k

(
R1, R

′
2

) = 1 ≥
∑

k∈{a,b}
ϕ1k

(
R′

1, R
′
2

)
, and

∑

k∈{a,b,c}
ϕ1k

(
R1, R

′
2

) = 3

2
≥

∑

k∈{a,b,c}
ϕ1k

(
R′

1, R
′
2

)
.

(ii) If agent 1’s true preference is R′
1, but she announces R1, then

ϕ1a(R1, R
′
2) = 1 ≤ ϕ1a

(
R′

1, R
′
2

)
,

∑

k∈{a,c}
ϕ1k

(
R1, R

′
2

) = 3

2
≤

∑

k∈{a,c}
ϕ1k

(
R′

1, R
′
2

)
, and

∑

k∈{a,c,b}
ϕ1k

(
R1, R

′
2

) = 3

2
≤

∑

k∈{a,c,b}
ϕ1k

(
R′

1, R
′
2

)
.

Thus, ϕ1a(R′
1, R

′
2) = 1 and

∑
k∈{a,b,c} ϕ1k(R′

1, R
′
2) = 3

2 .
Hence,

ϕ(R′
1, R

′
2) =

(
1 ϕ1b

(
R′

1, R
′
2

)
ϕ1c

(
R′

1, R
′
2

)
1/2

0 ϕ2b
(
R′

1, R
′
2

)
ϕ2c

(
R′

1, R
′
2

)
1/2

)

.

By (i),
∑

k∈{a,b} ϕ1k(R′
1, R

′
2) ≤ 1. Then, ϕ1b(R′

1, R
′
2) = 0. Therefore, the claim is

true.
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Step 4: Let (R′
1, R2) ∈ RN be the following:

R′
1 : a, c, b, d

R2 : a, b, c, d.

We claim that

ϕ(R′
1, R2) =

(
1/2 1/2 1/2 1/2
1/2 1/2 1/2 1/2

)

.

By sd-strategy-proofness and Step 3,

(i) If agent 2’s true preference is R′
2, but she announces R2, then

ϕ2b
(
R′

1, R
′
2

) = 1 ≥ ϕ2b
(
R′

1, R2
)
,

∑

k∈{b,a}
ϕ2k

(
R′

1, R
′
2

) = 1 ≥
∑

k∈{b,a}
ϕ2k

(
R′

1, R2
)
, and

∑

k∈{b,a,c}
ϕ2k

(
R′

1, R
′
2

) = 3

2
≥

∑

k∈{b,a,c}
ϕ2k

(
R′

1, R2
)
.

(ii) If agent 2’s true preference is R2, but she announces R′
2, then

ϕ2a
(
R′

1, R
′
2

) = 0 ≤ ϕ2a(R
′
1, R2),

∑

k∈{a,b}
ϕ2k

(
R′

1, R
′
2

) = 1 ≤
∑

k∈{a,b}
ϕ2k

(
R′

1, R2
)
, and

∑

k∈{a,b,c}
ϕ2k

(
R′

1, R
′
2

) = 3

2
≤

∑

k∈{a,b,c}
ϕ2k

(
R′

1, R2
)
.

Thus,
∑

k∈{a,b} ϕ2k(R′
1, R2) = 1 and

∑
k∈{a,b,c} ϕ2k(R′

1, R2) = 3
2 .

Hence,

ϕ(R′
1, R2) =

(
ϕ1a

(
R′

1, R2
)

ϕ1b
(
R′

1, R2
)

1/2 1/2

ϕ2a
(
R′

1, R2
)

ϕ2b
(
R′

1, R2
)

1/2 1/2

)

.

By sd-strategy-proofness and Step 1,

(i) If agent 1’s true preference is R1, but she announces R′
1, then ϕ1a(R1, R2) = 1

2 ≥
ϕ1a(R′

1, R2).
(ii) If agent 1’s true preference is R′

1, but she announces R1, then ϕ1a(R1, R2) = 1
2 ≤

ϕ1a(R′
1, R2).

Thus, ϕ1a(R′
1, R2) = 1

2 . Therefore, the claim is true.

Step 5:
(

1/2 0 1 1/2
1/2 1 0 1/2

)

(R′
1, R2)

sd
(

1/2 1/2 1/2 1/2
1/2 1/2 1/2 1/2

)

= ϕ(R′
1, R2),

in violation of sd-efficiency.
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For n > 2, we let each agent receives two objects from among the set of objects
{a, b, c, d, o5, o6, . . . , o2n}. For each new agent i ∈ {3, . . . , n}, her top two objects are
o2i−1, o2i and for each existing agent i ∈ {1, 2}, her top four objects are a, b, c, d. By
sd-efficiency, each agent i ∈ {3, . . . , n} is assigned the probability 1 for both objects
o2i−1 and o2i . For q > 2, we add new objects as bottom objects for the existing agents
and each agent receives a equal fraction of these objects at the bottom of the preference
lists. 
�

Theorem 1 is tight. The serial rule (Bogomolnaia and Moulin 2001; Kojima 2009)
satisfies all the properties but sd-strategy-proofness.19

The random priority rule (Abdulkadiroğlu and Sönmez 1998; Kojima 2009) sat-
isfies all the properties but sd-efficiency.20

LetON be the set of strict orders on N . For each ≺∈ ON , the priority rule associated
with ≺ is defined as follows: for each R ∈ RN , each agent selects her q best objects
among the remaining ones according to the order ≺. This rule satisfies all the properties
but equal treatment of equals. 21

A related result is that of Zhou (1990) who proved that when each agent receives at
most one object, there exist no rule that satisfies “equal treatment of equals,” “ex-ante
efficiency,” and “strategy-proofness.” The result is for n ≥ 3 and concerns cardinal
rules that elicit von-Neumann-Morgenstern utilities.

Second, we investigate the compatibility of anonymity, neutrality, sd-efficiency, and
weak sd-strategy-proofness. Notice that these four axioms do not require comparabil-
ity of assignments. When agents have single-unit demands, they are compatible.22

However, our next theorem states that, when agents have multi-unit demands, they
become incompatible.

Theorem 2 For n ≥ 2 and q ≥ 2, no rule satisfies anonymity, neutrality, sd-
efficiency, and weak sd-strategy-proofness.

Proof Let N ≡ {1, 2}, O ≡ {a, b, c, d} and q = 2. Suppose by way of contradiction
that there exists a rule ϕ that satisfies the four axioms.

19 The serial rule is referred to as the “probabilistic serial mechanism” in Bogomolnaia and Moulin (2001)
and Kojima (2009). Under the serial rule, each object is considered as an infinitely divisible good whose
supply is 1. Agents “consume” the most favored available object at an equal speed until the supplies of all
objects (q|N |) are exhausted. When the supply of a most preferred object is exhausted, agents consume
their next most preferred object that is not exhausted, and so on. The fraction of object consumed by an
agent is the probability of the agent receiving that object. If instead each agent starts consuming the most
preferred q objects, then such a rule violates sd-efficiency (Che and Kojima 2010).
20 The random priority rule is referred to as the “random serial dictatorship” in Abdulkadiroğlu and Sönmez
(1998) and “random priority mechanism” in Kojima (2009). Under the random priority rule, we take an
order on the set of agents and let each agent choose her q most preferred objects among the remaining
ones according to the order. Then, we consider all possible orders on the set of agents and place equal
probabilities on the allocations obtained for such orders. If instead each agent only selects one object when
her turn comes (and move to the second round if there are still remaining objects, and so on), then such a
rule violates sd-strategy-proofness.
21 As for the random priority rule, if instead each agent only selects one object when her turn comes, then
such a rule violates sd-strategy-proofness.
22 The serial rule (Bogomolnaia and Moulin 2001) satisfies these properties.
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Step 1: Let R ≡ (R1, R2) ∈ RN be the following:

R1 : a, b, c, d

R2 : b, a, c, d.

We claim that

ϕ(R1, R2) =
(

1 0 1/2 1/2

0 1 1/2 1/2

)

.

Let (R̃1, R̃2) ∈ RN be the following:

R̃1 : b, a, c, d

R̃2 : a, b, c, d.

By neutrality (a → b, b → a, c → c, d → d),

ϕ(R̃1, R̃2) =
(

ϕ1b(R) ϕ1a(R) ϕ1c(R) ϕ1d(R)

ϕ2b(R) ϕ2a(R) ϕ2c(R) ϕ2d(R)

)

.

By anonymity,

ϕ(R1, R2) =
(

ϕ2b(R) ϕ2a(R) ϕ2c(R) ϕ2d(R)

ϕ1b(R) ϕ1a(R) ϕ1c(R) ϕ1d(R)

)

.

Thus, ϕ1c(R) = ϕ2c(R) and ϕ1d(R) = ϕ2d(R).
Since ϕ1c(R) + ϕ2c(R) = 1, ϕ1c(R) = ϕ2c(R) = 1

2 .
Similarly, since ϕ1d(R) + ϕ2d(R) = 1, ϕ1d(R) = ϕ2d(R) = 1

2 .
Therefore,

ϕ(R1, R2) =
(

ϕ1a(R) ϕ1b(R) 1/2 1/2

ϕ2a(R) ϕ2b(R) 1/2 1/2

)

.

Then ϕ1a(R) + ϕ1b(R) = ϕ2a(R) + ϕ2b(R) = 1. By sd-efficiency, ϕ1a(R) =
ϕ2b(R) = 1. Thus, the claim is true.

Step 2: Let (R′
1, R

′
2) ∈ RN be the following:

R′
1 : b, a, c, d

R′
2 : b, c, a, d.

By an argument similar to that used to prove Step 1, anonymity, neutrality, and
sd-efficiency imply that

ϕ(R′
1, R

′
2) =

(
1 1/2 0 1/2

0 1/2 1 1/2

)

.
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Step 3: Consider the profile (R1, R′
2) ∈ RN . First, we claim that

∑

k∈{a,b,c}
ϕ1k(R1, R

′
2) >

3

2
. (1)

If
∑

k∈{a,b,c} ϕ1k(R1, R′
2) < 3

2 , then by Step 2,

ϕ1a
(
R′

1, R
′
2

) = 1 ≥ ϕ1a
(
R1, R

′
2

)
,

∑

k∈{a,b}
ϕ1k

(
R′

1, R
′
2

) = 3

2
>

∑

k∈{a,b}
ϕ1k

(
R1, R

′
2

)
,

∑

k∈{a,b,c}
ϕ1k

(
R′

1, R
′
2

) = 3

2
>

∑

k∈{a,b,c}
ϕ1k

(
R1, R

′
2

)
, and

∑

k∈{a,b,c,d}
ϕ1k

(
R′

1, R
′
2

) = 2 ≥
∑

k∈{a,b,c,d}
ϕ1k

(
R1, R

′
2

)
.

But then (given that agent 2 announces R′
2), if R1 is agent 1’s true preference, she

is sd-better off by announcing R′
1, i.e., ϕ1(R′

1, R
′
2) Psd

1 ϕ1(R1, R′
2), a contradiction

to ϕ being weakly sd-strategy-proof.
If

∑
k∈{a,b,c} ϕ1k(R1, R′

2) = 3
2 , then ϕ1a(R1, R′

2) = 1, ϕ1b(R1, R′
2) = 1

2 , and

ϕ1c(R1, R′
2) = 0, otherwise ϕ1(R′

1, R
′
2) Psd

1 ϕ1(R1, R′
2), a contradiction to ϕ

being weakly sd-strategy-proof. Thus, ϕ2a(R1, R′
2) = 0, ϕ2b(R1, R′

2) = 1
2 , and

ϕ2c(R1, R′
2) = 1. But then, by Step 1,

ϕ2b(R1, R2) = 1 > ϕ2b(R1, R
′
2) = 1

2
,

∑

k∈{b,c}
ϕ2k(R1, R2) = 3

2
≥

∑

k∈{b,c}
ϕ2k(R1, R

′
2) = 3

2
,

∑

k∈{b,c,a}
ϕ2k(R1, R2) = 3

2
≥

∑

k∈{b,c,a}
ϕ2k(R1, R

′
2) = 3

2
, and

∑

k∈{b,c,a,d}
ϕ2k(R1, R2) = 2 ≥

∑

k∈{b,c,a,d}
ϕ2k(R1, R

′
2) = 2.

Now (given that agent 1 announces R1), if R′
2 is agent 2’s true preference, she is

sd-better off by announcing R2, i.e., ϕ2(R1, R2) P ′sd
2 ϕ2(R1, R′

2), a contradiction to
ϕ being weakly sd-strategy-proof.

Therefore, (1) is true.
Next we claim that

∑

k∈{b,c,a}
ϕ2k(R1, R

′
2) >

3

2
. (2)

By an argument similar to that used to prove (1), if
∑

k∈{b,c,a} ϕ2k(R1, R′
2) < 3

2 ,
then by Step 1, if R′

2 is agent 2’s true preference, she is sd-better off by announcing R2,
i.e., ϕ2(R1, R2) P ′sd

2 ϕ2(R1, R′
2), a contradiction to ϕ being weakly sd-strategy-proof.
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If
∑

k∈{b,c,a} ϕ2k(R1, R′
2) = 3

2 , then ϕ2b(R1, R′
2) = 1, ϕ2c(R1, R′

2) = 1
2 , and

ϕ2a(R1, R′
2) = 0, otherwise ϕ2(R1, R2) P ′sd

2 ϕ2(R1, R′
2), a contradiction to ϕ

being weakly sd-strategy-proof. Thus, ϕ1a(R1, R′
2) = 1, ϕ1b(R1, R′

2) = 0, and
ϕ1c(R1, R′

2) = 1
2 . But then, by Step 2, ϕ1(R′

1, R
′
2) Psd

1 ϕ1(R1, R′
2), a contradic-

tion to ϕ being weakly sd-strategy-proof.
Therefore, (2) is true. By (1) and (2),

∑

k∈{a,b,c}
ϕ1k(R1, R

′
2) +

∑

k∈{b,c,a}
ϕ2k(R1, R

′
2) > 3.

But this is impossible since
∑

k∈{a,b,c} ϕ1k(R1, R′
2) + ∑

k∈{b,c,a} ϕ2k(R1, R′
2) =

∑
i∈{1,2} ϕia(R1, R′

2) + ∑
i∈{1,2} ϕib(R1, R′

2) + ∑
i∈{1,2} ϕic(R1, R′

2) = 3. Hence if a
rule is anonymous, neutral, and sd-efficient, then it cannot beweakly sd-strategy-proof.

The above argument can be extended to an arbitrary number of agents when
each agent requires two objects from among a, b, c, d, o5, o6, . . . , o2n . For each
new agent i ∈ {3, . . . , n}, her top two objects are o2i−1, o2i and for each existing
agent i ∈ {1, 2}, her top four objects are a, b, c, d. By sd-efficiency, each agent
i ∈ {3, . . . , n} is assigned the probability 1 for both objects o2i−1 and o2i . Similarly,
the argument for q = 2 can also be extended to the case q > 2. One can add more
objects to the bottom of the preference lists of both agents and each agent receives a
equal fraction of these objects at the bottom of the preference lists. 
�

The serial rule satisfies all the properties of Theorem 2 but weak sd-strategy-
proofness.23 The random priority rule satisfies all the properties but sd-efficiency.
For each ≺∈ ON , the priority rule associated with ≺ satisfies all the properties but
anonymity. We do not know whether a rule can be anonymous, sd-efficient, weakly
sd-strategy-proof but not neutral.24 Our current proof relies on the combination of
anonymity and neutrality.

Theorem 2 differs from Kojima (2009)’s result [Theorem 1, p.139] in that sd-envy-
freeness is replaced by anonymity and neutrality. Obviously, anonymity and neutrality
together do not imply sd-envy-freeness. Thus, Kojima (2009)’s result and our result
(Theorem 2) are not directly related. In fact, we show that anonymity and neutrality
together do not even imply weak sd-envy-freeness. Consider the “Reverse random
priority rule (RPr ),” described as follows: (1) for each order on the set of agents,
let each agent choose her q worst objects among the remaining ones when her turn

23 Kojima (2009) [Example 2, p.138] shows that the serial rule is not weakly sd-strategy-proof.
24 The difficulty of constructing such a rule comes from the fact that we do not have complete understanding
of the characteristics of rules that satisfy sd-efficiency and weak sd-strategy-proofness. The priority rule
associated with ≺ is one of such rules, but it is not anonymous. If we give “priority” to some objects, i.e.,
assigning probabilities to those objects first, then we may not end up with an allocation that is sd-efficient.
To make a rule that is not neutral but anonymous and sd-efficient, one can think of changing “consuming”
speeds for some particular objects, based on the idea of the serial rule, but such a rule violates weak sd-
strategy-proofness. To construct a rule that is not neutral but anonymous and weakly sd-strategy-proof, one
may think of letting each agent consume her most preferred q objects, based on the idea of the serial rule
(Che and Kojima 2010) (such a rule is weakly sd-strategy-proof, see Aziz, 2015), and change the consuming
speeds for some objects, but such a rule violates sd-efficiency.
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comes; and (2) place equal probabilities on the allocations obtained for all possible
orders. Obviously, this rule satisfies anonymity and neutrality. However, the following
example shows that it violates weak sd-envy-freeness.

Let N ≡ {1, 2} and O ≡ {a, b, c, d}. Let (R1, R2) ∈ RN be the following:

R1 : a, b, c, d

R2 : b, d, c, a.

Then,

RPr (R1, R2) = 1

2

(
0 0 1 1
1 1 0 0

)

+ 1

2

(
0 1 0 1
1 0 1 0

)

=
(

0 1/2 1/2 1
1 1/2 1/2 0

)

.

But then, RPr
2 (R1, R2) Psd

1 RPr
1 (R1, R2), in violation of weak sd-envy-freeness.

Finally, we further consider the list of axioms in Theorem 2 and ask what happens if
we strengthen weak sd-strategy-proofness to weak group sd-strategy-proofness. Note
that as for Theorem 2, these four axioms do not require comparability of assignments.
Our finding is that even when agents have single-unit demands, if there are at least
four agents, anonymity, neutrality, sd-efficiency, andweak group sd-strategy-proofness
are incompatible. The proof of Theorem 2 can be extended by cloning agents 1 and 2
to prove the following statement.

Theorem 3 For n ≥ 4 and q ≥ 1, no rule satisfies anonymity, neutrality, sd-
efficiency, and weak group sd-strategy-proofness.

Proof Let N ≡ {1, 2, 3, 4}, O ≡ {a, b, c, d} and q = 1. Suppose by way of contra-
diction that there exists a rule ϕ that satisfies the four axioms.

Step 1: Let R ≡ (R1, R2, R3, R4) ∈ RN be the following:

R1, R2 : a, b, c, d

R3, R4 : b, a, c, d.

We claim that

ϕ(R1, R2, R3, R4) =

⎛

⎜
⎜
⎝

1/2 0 1/4 1/4
1/2 0 1/4 1/4

0 1/2 1/4 1/4

0 1/2 1/4 1/4

⎞

⎟
⎟
⎠ .

By anonimity,

ϕ(R1, R2, R3, R4) =

⎛

⎜
⎜
⎝

ϕ1a(R) ϕ1b(R) ϕ1c(R) ϕ1d(R)

ϕ1a(R) ϕ1b(R) ϕ1c(R) ϕ1d(R)

ϕ3a(R) ϕ3b(R) ϕ3c(R) ϕ3d(R)

ϕ3a(R) ϕ3b(R) ϕ3c(R) ϕ3d(R)

⎞

⎟
⎟
⎠ .
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Let (R̃1, R̃2, R̃3, R̃4) ∈ RN be the following:

R̃1, R̃2 : b, a, c, d

R̃3, R̃4 : a, b, c, d.

By neutrality (a → b, b → a, c → c, d → d),

ϕ(R̃1, R̃2, R̃3, R̃4) =

⎛

⎜
⎜
⎝

ϕ1b(R) ϕ1a(R) ϕ1c(R) ϕ1d(R)

ϕ1b(R) ϕ1a(R) ϕ1c(R) ϕ1d(R)

ϕ3b(R) ϕ3a(R) ϕ3c(R) ϕ3d(R)

ϕ3b(R) ϕ3a(R) ϕ3c(R) ϕ3d(R)

⎞

⎟
⎟
⎠ .

By anonymity (1 → 3, 2 → 4, 3 → 1, 4 → 2),

ϕ(R1, R2, R3, R4) =

⎛

⎜
⎜
⎝

ϕ3b(R) ϕ3a(R) ϕ3c(R) ϕ3d(R)

ϕ3b(R) ϕ3a(R) ϕ3c(R) ϕ3d(R)

ϕ1b(R) ϕ1a(R) ϕ1c(R) ϕ1d(R)

ϕ1b(R) ϕ1a(R) ϕ1c(R) ϕ1d(R)

⎞

⎟
⎟
⎠ .

Thus, for each k ∈ {c, d}, ϕ1k(R) = ϕ2k(R) = ϕ3k(R) = ϕ4k(R). Since for each
k ∈ {c, d}, ϕ1k(R) + ϕ2k(R) + ϕ3k(R) + ϕ4k(R) = 1, we have for each k ∈ {c, d},
ϕ1k(R) = ϕ2k(R) = ϕ3k(R) = ϕ4k(R) = 1

4 .
Therefore,

ϕ(R1, R2, R3, R4) =

⎛

⎜
⎜
⎝

ϕ1a(R) ϕ1b(R) 1/4 1/4

ϕ1a(R) ϕ1b(R) 1/4 1/4

ϕ3a(R) ϕ3b(R) 1/4 1/4

ϕ3a(R) ϕ3b(R) 1/4 1/4

⎞

⎟
⎟
⎠ .

Then by sd-efficiency, ϕ1a(R) = 1
2 and ϕ3b(R) = 1

2 . Thus, the claim is true.

Step 2: Let (R′
1, R

′
2, R

′
3, R

′
4) ∈ RN be the following:

R′
1, R

′
2 : b, a, c, d

R′
3, R

′
4 : b, c, a, d.

By an argument similar to that used to prove Step 1, anonymity, neutrality, and
sd-efficiency imply that

ϕ(R′
1, R

′
2, R

′
3, R

′
4) =

⎛

⎜
⎜
⎝

1/2 1/4 0 1/4
1/2 1/4 0 1/4

0 1/4 1/2 1/4

0 1/4 1/2 1/4

⎞

⎟
⎟
⎠ .
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Step 3: Consider the profile (R1, R2, R′
3, R

′
4) ∈ RN .

By anonymity, for each k ∈ {a, b, c, d},

ϕ1k(R1, R2, R
′
3, R

′
4) = ϕ2k(R1, R2, R

′
3, R

′
4) ≤ 1

2
(3)

and

ϕ3k(R1, R2, R
′
3, R

′
4) = ϕ4k(R1, R2, R

′
3, R

′
4) ≤ 1

2
. (4)

Next, we claim that

∑

k∈{a,b,c}
ϕ1k(R1, R2, R

′
3, R

′
4) =

∑

k∈{a,b,c}
ϕ2k(R1, R2, R

′
3, R

′
4) >

3

4
. (5)

The first equality is true by (3).
If

∑
k∈{a,b,c} ϕ1k(R1, R2, R′

3, R
′
4) < 3

4 , then by Step 2 and (3), for each i ∈ {1, 2},

ϕia
(
R′

1, R
′
2, R

′
3, R

′
4

) = 1

2
≥ ϕia

(
R1, R2, R

′
3, R

′
4

)
,

∑

k∈{a,b}
ϕik

(
R′

1, R
′
2, R

′
3, R

′
4

) = 3

4
>

∑

k∈{a,b}
ϕik

(
R1, R2, R

′
3, R

′
4

)
,

∑

k∈{a,b,c}
ϕik

(
R′

1, R
′
2, R

′
3, R

′
4

) = 3

4
>

∑

k∈{a,b,c}
ϕik

(
R1, R2, R

′
3, R

′
4

)
, and

∑

k∈{a,b,c,d}
ϕik

(
R′

1, R
′
2, R

′
3, R

′
4

) = 1 ≥
∑

k∈{a,b,c,d}
ϕik

(
R1, R2, R

′
3, R

′
4

)
.

Then (given that agents 3 and 4 announce R′
3 and R′

4 respectively), if R1 and R2 are
respectively agents 1’s and 2’s true preferences, they are sd-better off by announcing
R′

1 and R′
2, i.e., for each i ∈ {1, 2}, ϕi (R′

1, R
′
2, R

′
3, R

′
4) Psd

i ϕi (R1, R2, R′
3, R

′
4), a

contradiction to ϕ being weakly group sd-strategy-proof.
If

∑
k∈{a,b,c} ϕ1k(R1, R2, R′

3, R
′
4) = 3

4 , then for each i ∈ {1, 2}, ϕia(R1, R2, R′
3,

R′
4) = 1

2 , ϕib(R1, R2, R′
3, R

′
4) = 1

4 , and ϕic(R1, R2, R′
3, R

′
4) = 0,25 otherwise

for each i ∈ {1, 2}, ϕi (R′
1, R

′
2, R

′
3, R

′
4) Psd

i ϕi (R1, R2, R′
3, R

′
4), a contradic-

tion to ϕ being weakly group sd-strategy-proof. Thus, for each i ∈ {3, 4},
ϕia(R1, R2, R′

3, R
′
4) = 0, ϕib(R1, R2, R′

3, R
′
4) = 1

4 , and ϕic(R1, R2, R′
3, R

′
4) = 1

2 .
But then, by Step 1, (given that agents 1 and 2 announce R1 and R2 respectively),
if R′

3 and R′
4 are respectively agents 3’s and 4’s true preferences, they are sd-better

off by announcing R3 and R4, i.e., for each i ∈ {3, 4}, ϕi (R1, R2, R3, R4) P ′sd
i

ϕi (R1, R2, R′
3, R

′
4), a contradiction to ϕ being weakly group sd-strategy-proof.

Therefore, (5) is true.

25 Note that by (3), ϕ1a(R1, R2, R′
3, R′

4) = ϕ2a(R1, R2, R′
3, R′

4) ≤ 1
2 .
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Next we claim that

∑

k∈{b,c,a}
ϕ3k(R1, R2, R

′
3, R

′
4) =

∑

k∈{b,c,a}
ϕ4k(R1, R2, R

′
3, R

′
4) >

3

4
. (6)

The first equality is true by (4). By an argument similar to that used to prove (5),
if

∑
k∈{b,c,a} ϕ3k(R1, R2, R′

3, R
′
4) < 3

4 , then by Step 1 and (4), if R′
3 and R′

4 are
respectively agents 3’s and 4’s true preferences, they are sd-better off by announcing
R3 and R4, i.e., for each i ∈ {3, 4}, ϕi (R1, R2, R3, R4) P ′sd

i ϕi (R1, R2, R′
3, R

′
4), a

contradiction to ϕ being weakly group sd-strategy-proof.
If

∑
k∈{a,b,c} ϕ3k(R1, R2, R′

3, R
′
4) = 3

4 , then for each i ∈ {3, 4}, ϕib(R1, R2, R′
3,

R′
4) = 1

2 , ϕic(R1, R2, R′
3, R

′
4) = 1

4 , and ϕia(R1, R2, R′
3, R

′
4) = 0, otherwise for each

i ∈ {3, 4}, ϕi (R1, R2, R3, R4) P ′sd
i ϕi (R1, R2, R′

3, R
′
4), a contradiction to ϕ being

weakly group sd-strategy-proof. Thus, for each i ∈ {1, 2}, ϕia(R1, R2, R′
3, R

′
4) = 1

2 ,
ϕib(R1, R2, R′

3, R
′
4) = 0, and ϕic(R1, R2, R′

3, R
′
4) = 1

4 . But then, by Step 2, for each
i ∈ {1, 2}, ϕi (R′

1, R
′
2, R

′
3, R

′
4) Psd

i ϕi (R1, R2, R′
3, R

′
4), a contradiction to ϕ being

weakly group sd-strategy-proof.
Therefore, (6) is true. By (5) and (6),

∑

k∈{a,b,c}

∑

i∈{1,2}
ϕik(R1, R2, R

′
3, R

′
4) +

∑

k∈{b,c,a}

∑

i∈{3,4}
ϕik(R1, R2, R

′
3, R

′
4) > 3.

But this is impossible since the left hand side is equal to
∑

i∈{1,2,3,4} ϕia(R1, R2, R′
3,

R′
4)+

∑
i∈{1,2,3,4} ϕib(R1, R2, R′

3, R
′
4)+

∑
i∈{1,2,3,4} ϕic(R1, R2, R′

3, R
′
4) = 3. Hence

if a rule is anonymous, neutral, and sd-efficient, then it cannot be weakly group sd-
strategy-proof.

By an argument similar to that used to prove Theorem 2, we can extend the proof
to arbitrary number of agents and objects. 
�
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