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Abstract We study round-robin tournaments with either three or four symmetric
players whose values of winning are common knowledge. With three players there
are three rounds, each of which includes one pair-wise game such that each player
competes in two rounds only. The player who wins two games wins the tournament.
We characterize the subgame perfect equilibrium and show that each player’s expected
payoff and probability of winning is maximized when he competes in the first and the
last rounds. With four players there are three rounds, each of which includes two
sequential pair-wise games where each player plays against a different opponent in
every round. We again characterize the subgame perfect equilibrium and show that a
player who plays in the first game of each of the first two rounds has a first-mover
advantage as reflected by a significantly higher winning probability as well as by a
significantly higher expected payoff than his opponents.

1 Introduction

Sequential all-pay auctions have been intensively studied as they have many real-life
applications. These include political lobbying (Becker 1983), patent races (Wright
1983), R&D races (Dasgupta 1986) and job promotion (Rosen 1986), among many
others. Most studies dealing with these contests considered a two-stage contest under
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complete information. For example, Konrad and Leininger (2007) characterized the
equilibrium of the all-pay auction in which a group of players choose their effort early
and the other group of players choose it late. Kovenock and Roberson (2009) studied
a two-stage all-pay auction in which the difference in the players’ expenditures in
the first stage serves as a head start advantage to one of the contestants in the second
stage. In this paper we study a more complicated form of a multi-stage contest in
which every player plays against each other player once. This form of a multi-stage
contest is known as the round-robin tournament.1 In this tournament there are n

2 (n−1)
pair-wise games when n > 2 is the number of players. If n is even, there are (n − 1)
rounds, each of which includes n

2 pair-wise games. The n
2 games in each round could

be either simultaneous or sequential. All the players compete in every round such that
in each of the n − 1 rounds a player competes once against a different opponent. If
n is odd, there will be n rounds, each of which includes n−1

2 pair-wise games. The
n−1
2 games in each round could also be either simultaneous or sequential. In each

round only n − 1 players compete such that every player does not have a game in one
round only, and in all the other n − 1 rounds he competes once against a different
opponent.

Sportive events are commonly organized as round-robin tournaments, two well
knownexamples beingprofessional football andbasketball. Sometimes sportive events
can be organized as a combination of a round-robin tournament in the first part of
the season and then as an elimination tournament in the second part where in the
elimination tournament, players play pair-wise games and the winner advances to
the next round while the loser is eliminated from the competition (see Gradstein and
Konrad 1999; Groh et al. 2012). Examples include US-Basketball, NCAA College
Basketball, the FIFA (soccer)World Cup Playoffs and the UEFAChampions’ League.
However, the round-robin structure has also been used in non-sport related settings.
In the 2015 elections for Israel’s Knesset, for example, a representative of each party
was invited for a TV debate which was organized as a round-robin tournament where
in each stage the parties’ representatives were divided into different pairs, with each
pair confronting each other for several minutes.

The literature on round-robin tournaments seems to be quite sparse, the reason
being the complexity of its analysis. This paper attempts to fill this gap by studying
three-player and four-player round-robin tournaments in which each player competes
against each of the other players in the all-pay auction. Three-player round-robin
tournaments are often found in real-life situations like the Olympic badminton games
of 2008 and 2012 as well as the Olympic wrestling events of 2000 and 2004, soccer,
rugby and even debate competitions. Four-player round-robin tournaments are very
common in soccer and basketball, among other sports.

It would seem that the round-robin tournament is the fairest way to determine the
winner among a set of players since each player plays against all the others in pair-wise
games and hence has an equal chance to win. However, this is not exactly the case
since their outcomes could be affected by the timing of the play, namely, the order of
the players in the contest. In other words, the allocation of players may affect their

1 The case when each player plays against all the other players twice is known as a double round-robin
tournament.
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First-mover advantage in round-robin tournaments 635

probabilities of winning as well as their expected payoffs. Indeed, in the round-robin
tournaments we study here, we will show that the first mover indeed has a meaningful
advantage.

In the round-robin tournament with three players every player competes against
all the other players and in each round two players compete against each other in
an all-pay auction. Thus, there are three rounds where in each round only one game
takes place and one player does not have a game in that round. The allocation of
players in the different rounds is decided before the beginning of the tournament
and not decided contingently on the outcomes. Because of the symmetry of players,
namely, each player has the same value of winning the tournament, all the possible
allocations of players are equivalent in the round-robin tournament with three players.
We characterize the subgame perfect equilibrium when the players are symmetric and
prove that the expected payoff of each player is maximized when he competes in the
first and last rounds. We then examine the robustness of our results by considering
three asymmetric players: two players with a high value of winning and one player
with a low value of winning. We find that even when the asymmetry between the
players’ values is relatively strong, the players prefer to compete in the first and last
rounds.

We also consider round-robin tournaments with four players in which every player
competes against all the others, and in every round a player plays a pair-wise game
against a different opponent in an all-pay auction. There are three rounds where in
each round two games take place. We assume that the two games in each round
are scheduled one after the other.2 Accordingly, we have six different games that take
place one after another in three rounds such that in every round there are two sequential
games in which all the players participate. Again, the allocation of the players in all the
rounds is decided before the beginning of the tournament. Because of the symmetry
of players, all the possible allocations of players are divided into two different sets of
equivalent allocations in each of which one of the players plays in the first game of the
first two rounds. We characterize the subgame perfect equilibrium for the two possible
allocations of players and prove that the player who plays in the first game in each
of the first two rounds, namely, games 1 and 3, has a significantly higher probability
of winning the tournament as well as a significantly higher expected payoff than his
opponents. Although all four players are ex-ante symmetric, the player who plays in
the first game of each of the first two rounds has a winning probability that is more
than twice higher than the player with the second highest probability of winning and
he also has an expected payoff that is more than seven (!) times higher than the player
with the second highest expected payoff.

The intuition behind the above results is as follows: the player who wins the first
game has an advantage in the next games since such a win has an effect on all the
opponents, whether or not they compete against the winner in the next game. The
reason is that the win in the first game changes the other players’ continuation values
of winning such that the winner of the first game has on average a higher continuation
value of winning than his opponents. Moreover, in the round-robin tournament with

2 Themain reason that the games are played sequentially is that the profit of the organizers frombroadcasting
the games will be much higher than when the games are played simultaneously.
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four players when each player plays in every round the other players who do not play in
the first game of the second round could find that the tournament has practically been
decided before playing their second game, i.e., the players already have no chance to
have a positive expected payoff. In the round-robin tournament with three players, a
player prefers to play in the first round similarly to the round-robin with four players
because of the first-mover advantage, but he also prefers to play his second game in
the third round and not in the second one. The reason is that the continuation value of
his opponent in the last round on average will be lower than that of his opponent in
the second round, since if he wins in the first round and plays in the third round, his
opponent in the third round will have a low incentive to compete in the third round
since similarly to the four players’ case he has no chance to have a positive expected
payoff. On the other hand, if he wins in the first round and plays in the second round,
his opponent in the second round knows that if he wins in that round he will have a
high chance to be the winner of the tournament and therefore he will have a relatively
high incentive to compete in the second round. As such, a player prefers a competition
in the third round over the second one.

One surprising result of this study is that the order of games in the last round of
the round-robin tournament with four players has no effect on the players’ winning
probabilities and their expected payoffs. The intuition for this result derives from the
first-mover advantage. Since the first-mover advantage is so strong the tournament is
over before the last round for at least one of the players who does not have a positive
expected payoff at that point of time. Therefore, in the last round there will actually be
only one game between the players who have a chance towin the tournament andmake
a positive expected payoff. Since the two possible orders of the games are different
only in the last round, the only game in which there is a real competition in this round
is the same independent of the order of the games.

Our paper is related to the statistical literature on the design of various forms of
tournaments. The pioneering paper of which is David (1959) who considered the
winning probability of the top player in a four player tournament with a random
seeding.3 This literature assumes that, for each game among players i and j , there
is a fixed, exogenously given probability that i beats j . In particular, this probability
does not depend on the stage of the tournament where the particular game takes place
nor on the identity of the expected opponent at the next stage. In contrast, in our
round-robin model each game among two players is an all-pay auction. As a result,
the winning probabilities in each game become endogenous in that they result from
mixed equilibrium strategies and are dependent on continuation values of winning.
Moreover, the win probabilities depend on the stage of the tournament in which the
game takes place as well as on the identity of the future expected opponents.

The paper is organized as follows: Section 2 presents the equilibrium analysis
of the round-robin tournament with three symmetric and asymmetric players. Sec-
tion 3 presents the equilibrium analysis of the round-robin tournament with four
symmetric players. Section 4 concludes. All the possible paths in the tournaments

3 See also Glenn (1960) and Searles (1963) for early contributions.
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are presented by game trees in Appendix A and some of the calculations appear in
Appendix B.

2 The round-robin tournament with three symmetric players

In this section we consider a round-robin all-pay tournament with three symmetric
players (or teams) i ∈ {1, 2, 3}. In each round t, t ∈ {1, 2, 3} there is a different
pair-wise game such that each player competes in two different rounds. The player
who wins two games wins the tournament, but if each player wins only once, each
of them wins the tournament with the same probability. If one of the players wins in
the first two rounds, the winner of the tournament is then decided and the players in
the last round do not exert any efforts (zero effort). We model each game among two
players as an all-pay auction in which both players exert efforts and the one exerting
the higher effort wins. Without loss of generality, we assume that player i’s value of
winning the tournament is v = 1 and his cost function is c(xi ) = xi , where xi is his
effort. It is important to note that when a player has no incentive to exert a positive
effort we actually do not have an equilibrium. However, to overcome this problem we
can assume, similarly to Groh et al. (2012), that in every game each player obtains a
payment m > 0, independent from his performance, and then we consider the limit
behavior asm → 0. This assumption does not affect the players’ behavior but ensures
the existence of an equilibrium.

We begin the analysis by explaining how the players’ strategies are calculated in
each game of the tournament. Suppose that players i and j compete in game g, g ∈
{1, 2, 3}. We denote by pi j the probability that player i wins the game against player
j and by Ei , E j the expected payoffs of players i and j , respectively. The mixed
strategies of the players in game g will be denoted by Fkg(x), k ∈ {i, j}. Assume
now that if player i wins this game, his conditional expected payoff is wig given the
previous outcomes and the possible future outcomes. Similarly, if player i loses this
game, his conditional expected payoff is lig . Without loss of generality, we assume
that wig − lig ≥ w jg − l jg . Then, according to Baye et al. (1996), there is always a
unique mixed-strategy equilibrium in which players i and j randomize on the interval
[0, w jg − l jg] according to their effort cumulative distribution functions, which are
given by

Ei = wig Fjg(x) + lig(1 − Fjg(x)) − x = l jg + wig − w jg

E j = w jg Fig(x) + l jg(1 − Fig(x)) − x = l jg

Thus, player i’s equilibrium effort in game g is uniformly distributed; that is

Fig(x) = x

w jg − l jg

while player j’s equilibrium effort is distributed according to the cumulative distribu-
tion function
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Fig. 1 The game tree of the round-robin tournament with three symmetric players

Fjg(x) = l jg − lig + wig − w jg + x

wig − lig

Player j’s probability of winning against player i is then

p ji = w jg − l jg
2(wig − lig)

In order to analyze the subgame perfect equilibrium of this tournament we begin
with the last round and go backwards to the previous rounds. Figure 1 presents the
symmetric round-robin tournament as a game tree. We denote by p∗

i j the probability

that player i wins against player j in vertex ∗ of the game tree, and by F (∗)
i player i’s

mixed strategy in vertex ∗ of the game tree. In the decision node F , players 1 and 2
compete in the first round. In the decision nodes E and D, players 1 and 3 compete
in the second round, and in the decisions nodes A, B and C , players 2 and 3 compete
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in the third round. For each decision node (A − E) there is a different path from the
initial node F , namely, a different history of the games in the previous rounds. The
players’ payoffs are indicated in the terminal nodes. The formulas on the sides of the
branches in Fig. 1 denote the winning probabilities of the players who compete in the
appropriate decision nodes.

2.1 Round 3—player 2 vs. player 3

Players 2 and 3 compete in the last round only if at least one of them won in the
previous rounds. Thus, we have the following three scenarios:

1. Assume first that player 2 won the game in the first round and player 3 won in the
second round (vertex A in Fig. 1). Then if each of the players wins in round 3,
he also wins the tournament. Thus, following Hillman and Riley (1989) and Baye
et al. (1996), there is always a unique mixed strategy equilibrium in which both
players randomize on the interval [0, 1] according to their cumulative distribution
functions F (A)

i , i = 2, 3 which are given by

1 · F (A)
i (x) − x = 0 i = 2, 3 (1)

Then, player 2’s probability of winning in the third round is

pA
23 = 0.5

2. Assume now that player 2 won the game in the first round and player 3 lost in
the second round (vertex B in Fig. 1). Then, if player 2 wins in the third round,
he wins the tournament and his payoff is 1, whereas player 3’s payoff is zero.
But, if player 3 wins in this round, then each of the players has exactly one win
and an expected payoff of 1/3. Thus, we obtain that players 2 and 3 randomize
on the interval [0, 1/3] according to their effort cumulative distribution functions
F (B)
i , i = 2, 3 which are given by

1 · F (B)
3 (x) + 1

3 · (1 − F (B)
3 (x)) − x = 2

3
1
3 · F (B)

2 (x) − x = 0 (2)

Then, player 2’s probability of winning in the third round is

pB23 = 1 − 1

4
= 0.75

3. Finally, assume that player 2 lost the game in the first round and player 3 won
in the second round (vertex C in Fig. 1). Then, similarly to the previous case, we
obtain that players 2 and 3 randomize on the interval [0, 1/3] according to their
effort cumulative distribution functions F (C)

i , i = 2, 3 which are now given by
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1 · F (C)
2 (x) + 1

3 · (1 − F (C)
2 (x)) − x = 2

3
1
3 · F (C)

3 (x) − x = 0 (3)

Then, player 2’s probability of winning in the third round is

pC23 = 0.25

2.2 Round 2—player 1 vs. player 3

Based on the results of the game in the first round, we have two possible scenarios:

1. Assume first that player 1 lost the game in the first round (vertex D in Fig. 1).
Then, if player 3 wins in this round, by (1), his expected payoff in the next round
is zero. If player 3 loses in this round, by (2) his expected payoff is zero as well.
Thus, in such a case, player 3 has no incentive to exert a positive effort and player
1 wins with a probability of one.

2. Assume now that player 1 won the game in the first round (vertex E in Fig. 1).
Then, if he wins again in this round he also wins the tournament and therefore
his payoff is 1 while the other players’ payoffs are then zero. However, if player
1 loses in this round, then by (3) player 3’s expected payoff is 2/3 and player 1’s
expected payoff depends on the result of the game between players 2 and 3 in the
last round. If player 3 wins which happens with a probability of 0.75, player 1’s
expected payoff is zero. On the other hand, if player 2 wins, which happens with
a probability of 0.25, each of the players has one win and therefore an expected
payoff of 1/3. In sum, if player 1 loses, his expected payoff is 1/12. Thus, we
obtain that players 1 and 3 randomize on the interval [0, 2/3] according to their
effort cumulative distribution functions F (E)

i , i = 1, 3 which are given by

1 · F (E)
3 (x) + 1

12 · (1 − F (E)
3 (x)) − x = 1

3
2
3 · F (E)

1 (x) − x = 0 (4)

Then, player 1’s probability of winning in the second round is

pE13 = 1 − 8

22
= 7

11

2.3 Round 1—player 1 vs. player 2

If player 1 wins the game in the first round (vertex F in Fig. 1), by (4) his expected
payoff in the next round is 1/3. But if player 1 loses the game, he has an expected
payoff of 1/3 only if he wins in the second round which happens with a probability
of one, and player 2 loses against player 3 in the last round which happens with a
probability of 0.25. Thus, if player 1 loses in the first round his expected payoff in the
next round is 1/12.
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First-mover advantage in round-robin tournaments 641

Now, if player 2 wins the game in the first round (vertex F in Fig. 1), player 1
wins for sure in the second round and then by (2 ) player 2’s expected payoff is 2/3.
However, if player 2 loses the game in the first round, and player 1 wins also in the
second round, player 2 has an expected payoff of zero. Furthermore, even if player 1
loses in the second round, by (3) player 2 has an expected payoff of zero. Thus, we
obtain that players 1 and 2 randomize on the interval [0, 1/4] according to their effort
cumulative distribution functions F (F)

i , i = 1, 2 which are given by

1
3 · F (F)

2 (x) + 1
12 · (1 − F (F)

2 (x)) − x = 1
12

2
3 · F (F)

1 (x) − x = 5
12 (5)

Then, player 1’s probability of winning in the first round is

pF12 = 3

16

The above analysis yields the following result.

Theorem 1 In the unique subgame perfect equilibrium of the round-robin tournament
with three symmetric players, the player who competes in the first and last rounds has
the highest probability of winning as well as the highest expected payoff, whereas a
player who competes in the two last games has the lowest probability of winning as
well as the lowest expected payoff.4

Proof By the above analysis we obtain that the players’ expected payoffs are as fol-
lows: player 1’s expected payoff is 1/12, player 2’s is 5/12, and player 3’s is zero. In
addition, the players’ probabilities to win the tournament are:

Player 1’s probability of winning is

P1 = pF12 · pE13 + pF12 · pE31 · pC23
3

+ pF21 · pD13 · pB32
3

= 0.193;

Player 2’s probability of winning is

P2 = pF21 · pD13 · pB23 + pF21 · pD31 · pA
23 + pF12 · pE31 · pC23

3
+ pF21 · pD13 · pB32

3
= 0.682;

and player 3’s probability of winning is

P3 = pF12 · pE31 · pC32 + pF21 · pD31 · pA
32 + pF12 · pE31 · pC23

3
+ pF21 · pD13 · pB32

3
= 0.125

Thus, player 2, who competes in the first and the last rounds, has the highest probability
of winning as well as the highest expected payoff. ��

4 The uniqueness of the equilibrium in our model is derived from the uniqueness of the equilibrium in a
two-player one-stage all-pay auction (Baye et al. 1996).
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The intuitive explanation to Theorem 1 is as follows: If a player loses in any round
he no longer has any chance to be the single winner and then his expected payoff is
relatively low. On the other hand, if a player wins in the first round, by (1), (2) and
(4) he will have a continuation value of winning higher than or equal to his opponent
in each of the next rounds and then his chance to win is much higher. In addition, a
player prefers to compete in the third round over the second round, since in the second
round the opponent (player 3) has on average a higher continuation value of winning
than in the third round. To illustrate, if player 2 wins in the first round, by (2) player
3’s continuation value is equal to 1

3 in the third round. On the other hand, if player 1
wins in the first round, by (4) player 3’s continuation value is equal to 2

3 in the second
round. Hence, each of the players who competes in the first round (players 1 and 2)
and wins in that stage prefers to compete against player 3 in the third round since then
he has a lower incentive to compete than in the second round.

Theorem 1 demonstrates the first-mover advantage in the round-robin tournament
with three symmetric players where the player who does not play in the first round
(player 3) has the lowest probability of winning as well as the lowest expected payoff.
This result is obtained under our tie-breaking rule according to which if each player
wins only once, each of them wins the tournament with the same probability. In order
to ensure that the assumption of the tie-breaking rule does not have a significant effect
on the result in Theorem 1, we also considered a completely different tie-breaking
rule according to which if each player wins only once, none of the players wins the
tournament, namely the prize worth 1 is not allocated to each of the players. In this
case, the players’ expected payoffs are as follows: player 1’s expected payoff is 0,
player 2’s is 0.5, and player 3’s is zero. Likewise, the players’ probabilities to win
the tournament are then as follows: player 1’s probability of winning is 0, player 2’s
is 0.75, and player 3’s is 0.25 (the mathematical analysis is available upon request).
Hence, also when we drastically change the tie breaking rule such that no one wins in
the case of a tie, the player who competes in the first and last rounds has the highest
probability of winning as well as the highest expected payoff.

We also examined if the above results hold in the asymmetric round-robin tour-
nament with three players. For this purpose, we assumed that the players’ values of
winning are v1 = v2 = v > v3 = 1, namely we have one weak player (player 3)
and two strong players (players 1 and 2). We say that the symmetry is weak if v is
sufficiently close to 1 and that the asymmetry is strong if v is sufficiently larger than
1. We find that, independent of whether the asymmetry is weak or strong, the strong
player who plays in the first and last rounds has a higher (or equal) expected payoff
than the other players. Moreover, if the weak player plays in the first and last rounds he
might have a higher expected payoff than one of the strong players (the mathematical
analysis is available upon request). In sum, independent of whether the asymmetry
is weak or strong, the players prefer to be allocated in the first and last rounds of
the round-robin all-pay tournament. In the next section we show that the first-mover
advantage is even stronger in the round-robin tournament with four symmetric players.
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3 The round-robin tournament with four symmetric players

Without loss of generality,we assume that the players’ value ofwinning the tournament
is v = 1 and that this value is commonly known. The players play pair-wise games
and each game between two players is modelled as an all-pay auction where both
players simultaneously exert efforts, and the player with the higher effort wins the
game. The players compete one time against each of their opponents in sequential
games, such that every player plays three games. There are three rounds which are
denoted by r ∈ {1, 2, 3} and each player plays one game in each of them. In each
round there are two sequential games such that we have six different games which are
denoted by g ∈ {1, 2, 3, 4, 5, 6}. Player i’s cost in game g is c(xig) = xig , where xig
is his effort. A player that wins the highest number of games wins the tournament.
If two or more players have the same highest number of wins, a draw takes place
to determine the winner. If one of the players has three wins before the last game,
the winner of the tournament is decided and the players do not exert any effort (zero
effort) in the subsequent game. Now, suppose that players i and j compete in game
g, g ∈ {1, 2, 3, 4, 5, 6}. As in Sect. 2, we denote by p∗

i j the probability that player i

wins against player j in vertex ∗ of the game trees in Figs. 2, 3, 4 and 5 and by F (∗)
i

player i’s mixed strategy in vertex ∗ of these game trees. We also denote by Ei , E j

the expected payoffs of players i and j , respectively.
While in a round-robin tournament with four asymmetric players, there are many

possible allocations of the players in the six games, in our model with four symmetric
players there are only two different allocations. The first allocation is for one of the
players to always play in the first game of each round, namely, to play in games 1,
3 and 5. In the second, one of the players always plays in the second game of each
round, namely, he plays in games 2, 4 and 6. Any other allocation is equivalent to one
of these two possible allocations because of the symmetry among the players. In the
following we analyze the subgame equilibrium for each possible allocation of players
and calculate for every possible game the players’ strategies, their expected payoffs
and their probabilities of winning.

3.1 Case A

Here we assume that one player (player 1) always plays in the first game of each round.
Then, without loss of generality, the order of the games is

Round 1 Game 1: player 1–player 2
Game 2: player 3–player 4

Round 2 Game 3: player 1–player 3
Game 4: player 2–player 4

Round 3 Game 5: player 1–player 4
Game 6: player 2–player 3

123



644 A. Krumer et al.

Figs. 2 and 3 in Appendix A present all the possible paths of this tournament and
Table 1 in Appendix B provides the calculations of the players’ expected payoffs
and their winning probabilities. In each decision node j, j = 1, . . . , 55 two players
compete against each other in one of the rounds. The players’ payoffs are indicated
in the terminal nodes. In order to analyze the subgame perfect equilibrium for this
tournament we begin with the last game and go backwards to the previous games.
Because of the complexity of the analysis, we provide only the final results (see Table
1, Appendix B). These results include the players’ mixed strategies, their expected
payoffs as well as their winning probabilities in each vertex (game) of the game tree
given by Figs. 2 and 3 (AppendixA). Similarly to the previous sections, we can assume
that each player obtains a payment of m > 0 when he wins a single game, in which
case we can consider the limit behavior as m → 0. The following result provides the
ranking of the players’ winning probabilities and their expected payoffs and highlights
the first-mover advantage.

Proposition 1 In the subgame perfect equilibrium of the round-robin tournament with
four symmetric players, if player 1 plays in the first game of each of the rounds he has
the highest expected payoff as well as the highest probability of winning.

Proof By the analysis given in Table 1 (Appendix B), the players’ expected payoffs
and their winning probabilities are

Player Expected payoff Winning probability

1 0.3 0.621
2 0.039 0.051
3 0.009 0.252
4 0.001 0.076

��
The intuition behind Proposition 1 can be explained by the first-mover advantage. A
player who does not play in the first games of the first two rounds could find that the
tournament is almost decided before he completed his games such that his chance to
be the winner of the tournament as well as his expected payoff will be relatively low.
To see that, we compare between player 1 and 2 who compete against each other in
the first round but in the second round player 1 plays (game 3) before player 2 (game
4). Player 1 competes against player 3 in the next round and his continuation value as
well his chance to win in that round depend only on his and player 3’s result in the
first round. If both players won or lost in the first round (vertexes 49 and 52 in Table
1) then they have the same chance to win in the second round, and if one of them won
and the other lost in the first round then the one who won has a higher continuation
value of winning as well as a higher chance to win in that round (vertexes 50 and 51
in Table 1). However, the continuation value of player 2 who competes against player
4 in the second round depends not only on his and player 4’s result in the first round,
but also on the results of players 1 and 3 in the first two rounds. For example, even if
player 2 wins in the first round, if player 3 wins in the first two rounds, then player 2’s
continuation value of winning in the second round will be quite low (vertex 46 in Table
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1). The reason is that since player 3 already has two wins, player 2 has a low chance
to win the tournament. Thus, the continuation value of player 2 at the beginning of
the second round is low and is different than the continuation value of player 1 at the
beginning of the second round. Similar arguments can explain why player 1 has an
advantage over players 3 and 4.

As we did for the round-robin tournament with three players, we examine the effect
of our tie-breaking rule on the above results. In order to ensure that the assumption
of this tie-breaking rule does not have a significant effect on the results in this section
we assume another tie-breaking rule according to which if none of the players wins
the tournament, namely, the prize worth 1 is not allocated to any of the players. The
players’ expected payoffs and winning probabilities are (the analysis is available upon
request)

Player Expected payoff Winning probability

1 0.25 0.625
2 0 0
3 0 0.25
4 0 0.125

As canbe seen, the differences between the players’ expected payoffs and theirwinning
probabilities under our tie-breaking rule and the alternative one are significantly small.
In particular, under the alternative tie-breaking rule, player 1 has the highest expected
payoff as well as the highest probability of winning.

3.2 Case B

We assume now that one player (player 4) always plays in the second game of each
round. Then, without loss of generality, the order of the games is

Round 1 Game 1: player 1–player 2
Game 2: player 3–player 4

Round 2 Game 3: player 1–player 3
Game 4: player 2–player 4

Round 3 Game 5: player 2–player 3
Game 6: player 1–player 4

Figs. 4 and 5 in Appendix A present all the possible paths of this tournament, and
Table 2 in Appendix B provides the calculations of the players’ expected payoffs and
their winning probabilities. A comparison of the results given in Tables 1 and 2 reveals
that the players’ expected payoffs and their probabilities of winning in Case B are the
same as in Case A. Therefore we obtain the following main result.
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Theorem 2 In the subgame perfect equilibriumof the round-robin all-pay tournament
with four symmetric players, the player who plays in the first games of each of the
first two rounds has the highest expected payoff as well as the highest probability of
winning.

It is important to emphasize that according to Theorem 2 the player who plays in the
first games of the first two rounds has a winning probability that is 2.5 (!) times higher
than the player with the second highest probability of winning and an expected payoff
that is 7.7 (!) times higher than the player with the second highest expected payoff.
Hence, the first-mover advantage in the round-robin tournament with four symmetric
players is quite dramatic and affects the players’ ex-ante probabilities to win.

If we compare the order of the games in cases A and Bwe can see that the difference
between them is only in the last round. Thus, given that the players’ expected payoffs
and their probabilities of winning in Case B are the same as in Case A we obtain the
following result.

Proposition 2 In the subgame perfect equilibrium of the round-robin tournament with
four symmetric players, the order of the games in the last round of the tournament
(games 5 and 6) has no effect on the players’ expected payoffs as well as on their
winning probabilities.

The intuition behind Proposition 2 is that for cases A and B the games and their
order in the first two rounds are identical but the order in the third round is different.
However, the latter has no effect on the players’ strategies since, independent of the
outcomes in the previous rounds, at least one of the players (the same one in both
cases) exerts zero effort in the third round. Thus, there is only one real competition
that occurs in both cases in the last round. As such, the order of the games in that
round has no effect on the players’ strategies as well as on their expected payoffs.

4 Concluding remarks

We began this paper by analyzing the subgame perfect equilibrium of the round-robin
tournaments with three symmetric players who compete for a single prize and showed
that a player’s expected payoff is maximized when he plays in the first and the last
rounds. We then analyzed the subgame perfect equilibrium of the round-robin tourna-
ment with four symmetric players and one prize. We found that a player who plays in
the first game of each of the first two rounds has a significantly higher probability of
winning as well as a significantly higher expected payoff than his opponents. These
results emphasize the first-mover advantage in the round-robin tournaments and thus
raises the issue of fairness in real-life tournaments. A possible solution to this problem
could be to make the order of the games endogenous. In other words, the pair-wise
game in each round should be decided contingently on the outcomes in the previous
rounds. For this reason, we also analyzed the round-robin tournament with three play-
ers where the winner in the first round has to play in the second round which is in
contrast to the players’ preference to play in the first and last rounds. Indeed, we found
that in such a case, all the players’ expected payoffs are the same and equal to zero,
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and the players’ probabilities of winning are close to each other. 5 In order for the
round-robin tournament with four players to be more balanced we also recommend
that all the games be scheduled in the same round at the same time. Then, when the
players play simultaneously in each round, because of the symmetry, all the players
will have the same ex-ante expected payoff as well as the same ex-ante probability to
win.

We also found that the order of the games in the last round of the tournament with
four players has no effect on the players’ winning probabilities and their expected
payoffs. The reason is that there is a high probability that the tournament will be
decided before the last round and then at least one of the players will have no incentive
to compete in that round. In that case, there is only one real competition in the last
round and it is not important whether it occurs at the beginning or at the end of the
last round.

Our results are obtained under the assumption that when more than one player
has the highest number of wins, each of them wins the tournament with the same
probability. We demonstrated the robustness of our results by showing that under a
tie-breaking rule that is completely different than the one we use according to which
no one wins in the case of a tie, the players’ expected utilities and their probabilities of
winning are quite similar. Since the probabilities of a tie in our round-robin tournament
are relatively small (about 0.2) and are even smaller when the number of players is
larger, it is likely that a tie-breaking rule when more than one player has the highest
number of wins will not have a significant effect on our results.

We focused on a round-robin tournament in which the players compete in the all-
pay auction. The question of whether our results hold when players compete in other
contest forms such as the Tullock contest is not at all clear and is worth investigating.
The study of a round-robin tournament with more than four players is not tractable.
However, from our results on the round-robin tournament with three and four players
we can conjecture that, independent of the number of players, each player will prefer
to play in the first game of the first round(s). Further research could be extended to
include several prizes in order to investigate whether the first-mover advantage exists
also in multi-prize round-robin tournaments. In addition it might be interesting to
examine our results in a laboratory setting or using real-world data.

Appendix A

We present in Figs. 2, 3, 4 and 5 the game tree of the round-robin tournaments for the
two possible allocations of players in the round-robin tournament with four symmetric
players (Case A and Case B). Each game tree describes all the possible paths in the
round-robin tournament. Since there are 55 possible games (vertexes) in the tourna-
ment with four players, each game tree is exceedingly large and we have to divide it
into two parts.

5 The probability of winning of each of the players who plays in the first round is equal to 0.35 while the
probability of the player who start playing in the second round is 0.3. The mathematical analysis is available
upon request.
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Fig. 2 Part I of the game tree in Case A of the round-robin tournament with four symmetric players
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Fig. 3 Part II of the game tree in Case A of the round-robin tournament with four symmetric players
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Fig. 4 Part I of the game tree in Case B of the round-robin tournament with four symmetric players
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Fig. 5 Part II of the game tree in Case B of the round-robin tournament with four symmetric players

Appendix B

In the following, we provide in every possible vertex (game) the players’ mixed-
strategies, their expected payoffs and their probabilities of winning. These results are
summarized in Table 1 (Case A) and Table 2 (Case B) each of which includes 55
vertexes. We provide first the expected payoffs and winning probabilities of Case A
by Table 1 and then of Case B in Table 2.
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Table 1 Players’ expected payoffs and winning probabilities in vertexes 1–55 of Figs. 2 and 3

Game 6-Vertex 1

E2 = 1
2 · F(1)

3 (x) − x = 0

E3 = 1
2 · F(1)

2 (x) − x = 0
p23 = 1

2

Game 6-Vertex 2:

E2 = 0 · F(2)
3 (x) − x = 0

E3 = 1
3 · F(2)

2 (x) − x = 1
3

p23 = 0

Game 6-Vertex 3:

E2 = 1
3 · F(3)

3 (x) − x = 0

E3 = 1 · F(3)
2 (x) + 1

3 · (1 − F(3)
2 (x)) − x = 2

3
p23 = 1

4

Game 6-Vertex 4:

E2 = 1
2 · F(4)

3 (x) − x = 0

E3 = 1 · F(4)
2 (x) + 1

2 · (1 − F(4)
2 (x)) − x = 1

2
p23 = 1

2

Game 6-Vertex 5:

E2 = 0 · F(5)
3 (x) − x = 0

E3 = 1 · F(5)
2 (x) + 1

2 · (1 − F(5)
2 (x)) − x = 1

p23 = 0

Game 6-Vertex 6:

E2 = 0 · F(6)
3 (x) − x = 0

E3 = 1 · F(6)
2 (x) + 1

2 · (1 − F(6)
2 (x)) − x = 1

p23 = 0

Game 6-Vertex 7:

E2 = 1
3 · F(7)

3 (x) − x = 1
3

E3 = 0 · F(7)
2 (x) − x = 0

p23 = 1

Game 6-Vertex 8:

E2 = 1
2 · F(8)

3 (x) − x = 0

E3 = 1
2 · F(8)

2 (x) − x = 0
p23 = 1

2

Game 6-Vertex 9:

E2 = 1
2 · F(9)

3 (x) − x = 0

E3 = 1
2 · F(9)

2 (x) − x = 0
p23 = 1

2

Game 6-Vertex 10:

E2 = 0 · F(10)
3 (x) − x = 0

E3 = 1
3 · F(10)

2 (x) − x = 1
3

p23 = 0

Game 6-Vertex 11:

E2 = 1 · F(11)
3 (x) + 1

3 · (1 − F(11)
3 (x)) − x = 2

3
E3 = 1

3 · F(11)
2 (x) − x = 0

p23 = 3
4

Game 6-Vertex 12:

E2 = 1 · F(12)
3 (x) + 1

2 · (1 − F(12)
3 (x)) − x = 1

2
E3 = 1

2 · F(12)
2 (x) − x = 0

p23 = 1
2

Game 6-Vertex 13:

E2 = 1
2 · F(13)

3 (x) − x = 0

E3 = 1
2 · F(13)

2 (x) − x = 0
p23 = 1

2

Game 6-Vertex 14:

E2 = 1
2 · F(14)

3 (x) − x = 0

E3 = 1
2 · F(14)

2 (x) − x = 0
p23 = 1

2

Game 6-Vertex 15:

E2 = 1 · F(15)
3 (x) − x = 0

E3 = 1 · F(15)
2 (x) − x = 0

p23 = 1
2

Game 6-Vertex 16:

E2 = 1 · F(16)
3 (x) − x = 0

E3 = 1 · F(16)
2 (x) − x = 0

p23 = 1
2

Game 6-Vertex 17:

E2 = 1
2 · F(17)

3 (x) − x = 0

E3 = 1 · F(17)
2 (x) + 1

2 · (1 − F(17)
2 (x)) − x = 1

2
p23 = 1

2

Game 6-Vertex 18:

E2 = 1
3 · F(18)

3 (x) − x = 0

E3 = 1 · F(18)
2 (x) + 1

3 · (1 − F(18)
2 (x)) − x = 2

3
p23 = 1

4

Game 6-Vertex 19:

E2 = 1 · F(19)
3 (x) + 1

2 · (1 − F(19)
3 (x)) − x = 1

E3 = 0 · F(19)
2 (x) − x = 0

p23 = 1

Game 6-Vertex 20:

E2 = 1 · F(20)
3 (x) + 1

2 · (1 − F(20)
3 (x)) − x = 1

E3 = 0 · F(20)
2 (x) − x = 0

p23 = 1
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Table 1 continued

Game 6-Vertex 21:

E2 = 1
3 · F(21)

3 (x) − x = 1
3

E3 = 0 · F(21)
2 (x) − x = 0

p23 = 1

Game 6-Vertex 22:

E2 = 1 · F(22)
3 (x) + 1

2 · (1 − F(22)
3 (x)) − x = 1

2
E3 = 1

2 · F(22)
2 (x) − x = 0

p23 = 1
2

Game 6-Vertex 23:

E2 = 1 · F(23)
3 (x) + 1

3 · (1 − F(23)
3 (x)) − x = 2

3
E3 = 1

3 · F(23)
2 (x) − x = 0

p23 = 3
4

Game 6-Vertex 24:

E2 = 1
2 · F(24)

3 (x) − x = 0

E3 = 1
2 · F(24)

2 (x) − x = 0
p23 = 1

2

Game 5-Vertex 25:

E1 = 1 · F(25)
4 (x) + 1

2 · (1 − F(25)
4 (x)) − x = 1

E4 = 0 · F(25)
1 (x) − x = 0

p14 = 1

Game 5-Vertex 26:

E1 = 1 · F(26)
4 (x) + 1

3 · (1 − F(26)
4 (x)) − x = 2

3
E4 = 1

3 · F(26)
1 (x) − x = 0

p14 = 3
4

Game 5-Vertex 27:

E1 = 1
12 · F(27)

4 (x) − x = 1
12

E4 = 0 · F(27)
1 (x) − x = 0

p14 = 1

Game 5-Vertex 28:

E1 = 0 · F(28)
4 (x) − x = 0

E4 = 0 · F(28)
1 (x) − x = 0

p14 = 1
2

Game 5-Vertex 29:

E1 = 1 · F(29)
4 (x) + 1

3 · (1 − F(29)
4 (x)) − x = 2

3
E4 = 1

3 · F(29)
1 (x) − x = 0

p14 = 3
4

Game 5-Vertex 30:

E1 = 1 · F(30)
4 (x) − x = 0

E4 = 1 · F(30)
1 (x) − x = 0

p14 = 1
2

Game 5-Vertex 31:

E1 = 1
2 · F(31)

4 (x) − x = 0

E4 = 1
2 · F(31)

1 (x) − x = 0
p14 = 1

2

Game 5-Vertex 32:

E1 = 1
3 · F(32)

4 (x) − x = 0

E4 = 1 · F(32)
1 (x) + 1

3 · (1 − F(32)
1 (x)) − x = 2

3
p14 = 1

4

Game 5-Vertex 33:

E1 = 1
12 · F(33)

4 (x) − x = 1
12

E4 = 0 · F(33)
1 (x) − x = 0

p14 = 1

Game 5-Vertex 34:

E1 = 1
2 · F(34)

4 (x) − x = 0

E4 = 1
2 · F(34)

1 (x) − x = 0
p14 = 1

2

Game 5-Vertex 35:

E1 = 0 · F(35)
4 (x) − x = 0

E4 = 0 · F(35)
1 (x) − x = 0

p14 = 1
2

Game 5-Vertex 36:

E1 = 0 · F(36)
4 (x) − x = 0

E4 = 1
12 · F(36)

1 (x) − x = 1
12

p14 = 0

Game 5-Vertex 37:

E1 = 0 · F(37)
4 (x) − x = 0

E4 = 0 · F(37)
1 (x) − x = 0

p14 = 1
2

Game 5-Vertex 38:

E1 = 1
3 · F(38)

4 (x) − x = 0

E4 = 1 · F(38)
1 (x) + 1

3 · (1 − F(38)
1 (x)) − x = 2

3
p14 = 1

4

Game 5-Vertex 39:

E1 = 0 · F(39)
4 (x) − x = 0

E4 = 1
12 · F(39)

1 (x) − x = 1
12

p14 = 0

Game 5-Vertex 40:

E1 = 0 · F(40)
4 (x) − x = 0

E4 = 1 · F(40)
1 (x) + 1

2

·(1 − F(40)
1 (x)) − x = 1

p14 = 0
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Table 1 continued

Game 4-Vertex 41:

E2 = 0 · F(41)
4 (x) − x = 0

E4 = 0 · F(41)
2 (x) − x = 0

p24 = 1
2

Game 4-Vertex 42:

E2 = 0 · F(42)
4 (x) − x = 0

E4 = 0 · F(42)
2 (x) − x = 0

p24 = 1
2

Game 4-Vertex 43:

E2 = 1
12 · F(43)

4 (x) − x = 1
12

E4 = 0 · F(43)
2 (x) − x = 0

p24 = 1

Game 4-Vertex 44:

E2 = 0 · F(43)
4 (x) − x = 0

E4 = 2
3 · F(43)

2 (x) − x = 2
3

p24 = 0

Game 4-Vertex 45:

E2 = 2
3 · F(45)

4 (x) − x = 2
3

E4 = 0 · F(45)
2 (x) − x = 0

p24 = 1

Game 4-Vertex 46:

E2 = 0 · F(46)
4 (x) − x = 0

E4 = 1
12 · F(46)

2 (x) − x = 1
12

p24 = 0

Game 4-Vertex 47:

E2 = 1 · F(47)
4 (x) + 1

12

·(1 − F(47)
4 (x)) − x = 1

3

E4 = 2
3 · F(47)

2 (x) − x = 0

p24 = 7
11

Game 4-Vertex 48:

E2 = 2
3 · F(48)

4 (x) − x = 0

E4 = 1 · F(48)
2 (x) + 1

12

·(1 − F(48)
2 (x)) − x = 1

3

p24 = 4
11

Game 3-Vertex 49:

E1 = 5
6 · F(49)

3 (x) + 1
24

·(1 − F(49)
3 (x)) − x = 1

24

E3 = 5
6 · F(49)

1 (x) + 1
24

·(1 − F(49)
1 (x)) − x = 1

24

p13 = 1
2

Game 3-Vertex 50:

E1 = 2
3 · F(50)

3 (x) − x = 7
12

E3 = 1
12 · F(50)

1 (x) − x = 0

p13 = 15
16

Game 3-Vertex 51:

E1 = 1
12 · F(51)

3 (x) − x = 0

E3 = 2
3 · F(51)

1 (x) − x = 7
12

p13 = 1
16

Game 3-Vertex 52:

E1 = 0 · F(52)
3 (x) − x = 0

E3 = 0 · F(52)
1 (x) − x = 0

p13 = 1
2

Game 2-Vertex 53:

E3 = 1
24 · F(53)

4 (x) − x = 0

E4 = 1
24 · F(53)

3 (x) − x = 0

p34 = 1
2

Game 2-Vertex 54:

E3 = 7
12 · F(54)

4 (x) − x = 95
192

E4 = 1
6 · F(54)

3 (x) + 5
64 · (1 − F(54)

3 (x))

−x = 5
64

p34 = 207
224

Game 1-Vertex 55:

E1 = 5
16 · F(55)

2 (x) − x = 1615
5376

E2 = 275
5376 · F(55)

1 (x) + 5
128 (1 − F(55)

1 (x))

−x = 5
128

p12 = 659
672
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Table 2 Players’ expected payoffs and winning probabilities in vertexes 1–55 of Figs. 4 and 5

Game 6-Vertex 1:

E1 = 1 · F(1)
4 (x) + 1

2 · (1 − F(1)
4 (x)) − x = 1

E4 = 0 · F(1)
1 (x) − x = 0

p14 = 1

Game 6-Vertex 2:

E1 = 1 · F(2)
4 (x) + 1

2 · (1 − F(2)
4 (x)) − x = 1

E4 = 0 · F(2)
1 (x) − x = 0

p14 = 1

Game 6-Vertex 3:

E1 = 1 · F(3)
4 (x) + 1

2 · (1 − F(3)
4 (x)) − x = 1

2
E4 = 1

2 · F(3)
1 (x) − x = 0

p14 = 1
2

Game 6-Vertex 4:

E1 = 1 · F(4)
4 (x) + 1

3 · (1 − F(4)
4 (x)) − x = 2

3
E4 = 1

3 · F(4)
1 (x) − x = 0

p14 = 3
4

Game 6-Vertex 5:

E1 = 1
3 · F(5)

4 (x) − x = 1
3

E4 = 0 · F(5)
1 (x) − x = 0

p14 = 1

Game 6-Vertex 6:

E1 = 1
2 · F(6)

4 (x) − x = 0

E4 = 1
2 · F(6)

1 (x) − x = 0
p14 = 1

2

Game 6-Vertex 7:

E1 = 1 · F(7)
4 (x) + 1

3 · (1 − F(7)
4 (x)) − x = 2

3
E4 = 1

3 · F(7)
1 (x) − x = 0

p14 = 3
4

Game 6-Vertex 8:

E1 = 1 · F(8)
4 (x) + 1

2 · (1 − F(8)
4 (x)) − x = 1

2
E4 = 1

2 · F(8)
1 (x) − x = 0

p14 = 1
2

Game 6-Vertex 9:

E1 = 1 · F(9)
4 (x) − x = 0

E4 = 1 · F(9)
1 (x) − x = 0

p14 = 1
2

Game 6-Vertex 10:

E1 = 1 · F(10)
4 (x) − x = 0

E4 = 1 · F(10)
1 (x) − x = 0

p14 = 1
2

Game 6-Vertex 11:

E1 = 1
2 · F(11)

4 (x) − x = 0

E4 = 1
2 · F(11)

1 (x) − x = 0
p14 = 1

2

Game 6-Vertex 12:

E1 = 1
2 · F(12)

4 (x) − x = 0

E4 = 1
2 · F(12)

1 (x) − x = 0
p14 = 1

2

Game 6-Vertex 13:

E1 = 1
2 · F(13)

4 (x) − x = 0

E4 = 1 · F(13)
1 (x) + 1

2 · (1 − F(13)
1 (x)) − x = 1

2
p14 = 1

2

Game 6-Vertex 14:

E1 = 1
3 · F(14)

4 (x) − x = 0

E4 = 1 · F(14)
1 (x) + 1

3 · (1 − F(14)
1 (x)) − x = 2

3
p14 = 1

4

Game 6-Vertex 15:

E1 = 1
3 · F(15)

4 (x) − x = 1
3

E4 = 0 · F(15)
1 (x) − x = 0

p14 = 1

Game 6-Vertex 16:

E1 = 1
2 · F(16)

4 (x) − x = 0

E4 = 1
2 · F(16)

1 (x) − x = 0
p14 = 1

2

Game 6-Vertex 17:

E1 = 1
2 · F(17)

4 (x) − x = 0

E4 = 1
2 · F(17)

1 (x) − x = 0
p14 = 1

2

Game 6-Vertex 18:

E1 = 0 · F(18)
4 (x) − x = 0

E4 = 1
3 · F(18)

1 (x) − x = 1
3

p14 = 0

Game 6-Vertex 19:

E1 = 1
2 · F(19)

4 (x) − x = 0

E4 = 1
2 · F(19)

1 (x) − x = 0
p14 = 1

2

Game 6-Vertex 20:

E1 = 1
3 · F(20)

4 (x) − x = 0

E4 = 1 · F(20)
1 (x) + 1

3 · (1 − F(20)
1 (x)) − x = 2

3

p14 = 1
4
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Table 2 continued

Game 6-Vertex 21:

E1 = 1
2 · F(21)

4 (x) − x = 0

E4 = 1 · F(21)
1 (x) + 1

2 · (1 − F(21)
1 (x)) − x = 1

2
p14 = 1

2

Game 6-Vertex 22:

E1 = 0 · F(22)
4 (x) − x = 0

E4 = 1
3 · F(22)

1 (x) − x = 1
3

p14 = 0

Game 6-Vertex 23:

E1 = 0 · F(23)
4 (x) − x = 0

E4 = 1 · F(23)
1 (x) + 1

2 · (1 − F(23)
1 (x)) − x = 1

p14 = 0

Game 6-Vertex 24:

E1 = 0 · F(24)
4 (x) − x = 0

E4 = 1 · F(24)
1 (x) + 1

2 · (1 − F(24)
1 (x)) − x = 1

p14 = 0

Game 5-Vertex 25:

E2 = 0 · F(25)
3 (x) − x = 0

E3 = 0 · F(25)
2 (x) − x = 0

p23 = 1
2

Game 5-Vertex 26:

E2 = 0 · F(26)
3 (x) − x = 0

E3 = 1
12 · F(26)

2 (x) − x = 1
12

p23 = 0

Game 5-Vertex 27:

E2 = 1
3 · F(27)

3 (x) − x = 0

E3 = 1 · F(27)
2 (x) + 1

3 · (1 − F(27)
2 (x)) − x = 2

3

p23 = 1
4

Game 5-Vertex 28:

E2 = 0 · F(28)
3 (x) − x = 0

E3 = 1 · F(28)
2 (x) + 1

2 · (1 − F(28)
2 (x)) − x = 1

p23 = 0

Game 5-Vertex 29:

E2 = 1
12 · F(29)

3 (x) − x = 1
12

E3 = 0 · F(29)
2 (x) − x = 0

p23 = 1

Game 5-Vertex 30:

E2 = 0 · F(30)
3 (x) − x = 0

E3 = 0 · F(30)
2 (x) − x = 0

p23 = 1
2

Game 5-Vertex 31:

E2 = 1
2 · F(31)

3 (x) − x = 0

E3 = 1
2 · F(31)

2 (x) − x = 0
p23 = 1

2

Game 5-Vertex 32:

E2 = 0 · F(32)
3 (x) − x = 0

E3 = 1
12 · F(32)

2 (x) − x = 1
12

p23 = 0

Game 5-Vertex 33:

E2 = 1 · F(33)
3 (x) + 1

3 · (1 − F(33)
3 (x)) − x = 2

3
E3 = 1

3 · F(33)
2 (x) − x = 0

p23 = 3
4

Game 5-Vertex 34:

E2 = 1
2 · F(34)

3 (x) − x = 0

E3 = 1
2 · F(34)

2 (x) − x = 0
p23 = 1

2

Game 5-Vertex 35:

E2 = 1 · F(35)
3 (x) − x = 0

E3 = 1 · F(35)
2 (x) − x = 0

p23 = 1
2

Game 5-Vertex 36:

E2 = 1
3 · F(36)

3 (x) − x = 0

E3 = 1 · F(36)
2 (x) + 1

3 · (1 − F(36)
2 (x)) − x = 2

3
p23 = 1

4

Game 5-Vertex 37:

E2 = 1 · F(37)
3 (x) + 1

2 · (1 − F(37)
3 (x)) − x = 1

E3 = 0 · F(37)
2 (x) − x = 0

p23 = 1

Game 5-Vertex 38:

E2 = 1
12 · F(38)

3 (x) − x = 1
12

E3 = 0 · F(38)
2 (x) − x = 0

p23 = 1

Game 5-Vertex 39:

E2 = 1 · F(39)
3 (x) + 1

3 · (1 − F(39)
3 (x)) − x = 2

3
E3 = 1

3 · F(39)
2 (x) − x = 0

p23 = 3
4

Game 5-Vertex 40:

E2 = 0 · F(40)
3 (x) − x = 0

E3 = 0 · F(40)
2 (x) − x = 0

p23 = 1
2
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Table 2 continued

Game 4-Vertex 41:

E2 = 0 · F(41)
4 (x) − x = 0

E4 = 0 · F(41)
2 (x) − x = 0

p24 = 1
2

Game 4-Vertex 42:

E2 = 0 · F(42)
4 (x) − x = 0

E4 = 0 · F(42)
2 (x) − x = 0

p24 = 1
2

Game 4-Vertex 43:

E2 = 1
12 · F(43)

4 (x) − x = 1
12

E4 = 0 · F(43)
2 (x) − x = 0

p24 = 1

Game 4-Vertex 44:

E2 = 0 · F(44)
4 (x) − x = 0

E4 = 2
3 · F(44)

2 (x) − x = 2
3

p24 = 0

Game 4-Vertex 45:

E2 = 2
3 · F(45)

4 (x) − x = 2
3

E4 = 0 · F(45)
2 (x) − x = 0

p24 = 1

Game 4-Vertex 46:

E2 = 0 · F(46)
4 (x) − x = 0

E4 = 1
12 · F(46)

2 (x) − x = 1
12

p24 = 0

Game 4-Vertex 47:

E2 = 1 · F(47)
4 (x) + 1

12 · (1 − F(47)
4 (x)) − x = 1

3
E4 = 2

3 · F(47)
2 (x) − x = 0

p24 = 7
11

Game 4-Vertex 48:

E2 = 2
3 · F(48)

4 (x) − x = 0

E4 = 1 · F(48)
2 (x) + 1

12
·(1 − F(48)

2 (x)) − x = 1
3

p24 = 4
11

Game 3-Vertex 49:

E1 = 5
6 · F(49)

3 (x) + 1
24 · (1 − F(49)

3 (x)) − x = 1
24

E3 = 5
6 · F(49)

1 (x) + 1
24 · (1 − F(49)

1 (x)) − x = 1
24

p13 = 1
2

Game 3-Vertex 50:

E1 = 2
3 · F(50)

3 (x) − x = 7
12

E3 = 1
12 · F(50)

1 (x) − x = 0
p13 = 15

16

Game 3-Vertex 51:

E1 = 1
12 · F(51)

3 (x) − x = 0

E3 = 2
3 · F(51)

1 (x) − x = 7
12

p13 = 1
16

Game 3-Vertex 52:

E1 = 0 · F(52)
3 (x) − x = 0

E3 = 0 · F(52)
1 (x) − x = 0

p13 = 1
2

Game 2-Vertex 53:

E3 = 1
24 · F(53)

4 (x) − x = 0

E4 = 1
24 · F(53)

3 (x) − x = 0

p34 = 1
2

Game 2-Vertex 54:

E3 = 7
12 · F(54)

4 (x) − x = 95
192

E4 = 1
6 · F(54)

3 (x) + 5
64

·(1 − F(54)
3 (x)) − x = 5

64

p34 = 207
224

Game 1-Vertex 55:

E1 = 5
16 · F(55)

2 (x) − x = 1615
5376

E2 = 275
5376 · F(55)

1 (x) + 5
128 (1 − F(55)

1 (x))

−x = 5
128

p12 = 659
672
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