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Abstract We study social choice correspondences (SCC) assigning a set of choices
to each pair consisting of a nonempty subset of the set of alternatives and a weak
preference profile. The SCC satisfies unanimity if when there is a weakly Pareto
dominant alternative, the SCC selects this alternative. Stability requires that the SCC
is unaffected by withdrawal of losing alternatives. Independence implies that the SCC
selects the same outcome from a subset of the set of alternatives for two preference
profiles that are the same on this set. We characterize the SCC satisfying the three
axioms, when the set of alternatives is finite but includes more than three alternatives,
and the set of agents can have any cardinality. We show that the SCC is a serial
dictatorship à la Eraslan and McLennan (J Econ Theory 117:29–54, 2004) and that a
serial dictatorship can include “invisible serial dictators” à la Kirman and Sondermann
(J Econ Theory 5:267–277, 1972).

1 Introduction

In this paper, we consider social choice correspondences assigning a set of choices to
each pair consisting of a nonempty subset of the set of alternatives and a weak prefer-
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ence profile. We impose three axioms, namely unanimity, stability, and independence.
The SCC satisfies unanimity if when there is a weakly Pareto dominant alternative,
the SCC selects this alternative.1 Stability requires that the SCC selects an alternative
from a set if and only if it is chosen from any subset that contains it. Finally, inde-
pendence implies that the SCC selects the same outcome from a subset of the set of
alternatives for two preference profiles that are the same on this set. We characterize
the SCC satisfying the three axioms, when the set of alternatives is finite but includes
more than three alternatives, and the set of agents can have any cardinality. Our main
theorem establishes that the SCC satisfying the three axioms is a serial dictatorship à la
Eraslan and McLennan (2004).2 Our second theorem shows that a serial dictatorship
may include “invisible serial dictators” à la Kirman and Sondermann (1972).

In the literature of social choice theory, the possibility of a democratic mechanism
has been a central interest since Arrow’s impossibility theorem in Arrow (1951). Gib-
bard (1973) and Satterthwaite (1975) show that dictatorship is the unique unanimous
mechanism to prevent manipulative voting. In the literature of strategic candidacy,
Dutta et al. (2001) show that only a dictatorship satisfies unanimity, independence,
and stability when the agents have only strict preferences. Eraslan and McLennan
(2004) allow the agents’ indifference among alternatives to show that even when
agents may have weak preferences, a serial dictatorship arises.

Recently, there has been a renewed interest in applications of infinite-population
Arrovian social choice, particularly the infinite-horizon social choice problems (e.g.,
Bossert and Suzumura 2008). As described in Bossert and Suzumura (2008), political
decisions could have a long-lasting effect in the future. For example, in a pension
design, we have to consider the payment and return for the future generations; in a
highway construction, its cost and benefit concerns the tax payers in the long future;
in an environmental issue, fair allocations of resources between the current and future
generations are a key factor. For a democratic mechanism involving the future gener-
ations, analyses with infinitely many agents become important.

This paper explores whether a serial dictatorship similar to the one defined in
Eraslan and McLennan (2004) still holds when there are infinitely many agents. The
answer is yes and we characterize such SCCs by using a hierarchy of ultrafilters. Our
result indicates that we still cannot find a democratic mechanism that satisfies the three
axioms when the number of agents can be infinite.

Although we formally define an ultrafilter in Sect. 4, here we briefly explain what
an ultrafilter is.3 A filter on a set X is a collection of subsets of X that satisfies the
three conditions: (a) the empty set is not included in the collection; (b) a superset of a
set in the collection is also included; and (c) an intersection of finitely many sets in the
collection is also included. A filter U is an ultrafilter if for any subset A of X , either
A or X\A is an element of U . An ultrafilter is used to describe a family of decisive
coalitions. The notion of a decisive coalition lies at the heart of our analysis. A coalition

1 Cato (2013b) calls our unanimity condition strong Pareto.
2 Some serial dictatorship results are also found in Campbell and Kelly (2002) Example 3.12, 3.13 in pp.
51–52, Gevers (1979), Dutta et al. (2001) and Grether and Plott (1982).
3 The Appendix of Hurd and Loeb (1985) provides some important facts concerning ultrafilters. For dis-
cussions of ultrafilters in social choice, see Monjardet (1983).
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is a subset of the whole population. A coalition is decisive if the members of this set
can determine the social choice whenever they exhibit unanimous strict preference for
this choice, whatever the alignment of preferences of the complementary population
is.

An important innovation of this paper is the concept of coherence. Coherence is
a condition that two different ultrafilters satisfy. When one set contains another set
and the smaller set is a decisive coalition for the larger set, coherence requires that
the intersections between the smaller set and the decisive coalitions for the larger
set are decisive coalitions for the smaller set. That is, when the total population is
N , consider two subsets N ⊂ N ′ such that N is in the ultrafilter for N ′. Coherence
requires that M is in the ultrafilter for N ′ if and only if M ∩ N is in the ultrafilter for
N . A hierarchy of ulterfilters determines a sequence of decisive coalitions, while each
ultrafilter defines a set of decisive coalitions. Thinking of a veto process, when some
agents’ preferences are not yet consulted, a hierarchy of ultrafilters defines a priority
of decisive coalitions defined on the set of remaining agents in each stage of a veto
process, i.e., whose preference should be consulted next. When the number of agents
is infinite, there may be an arbitrarily small decisive coalition, and we may not be
able to identify an individual dictator. By applying the concept of coherent hierarchy
of ultrafilters, without identifying one individual dictator, we can identify a sequence
of decisive coalition and a coherent hierarchy of ultrafilters provide a hierarchical
structure of dictatorship when the number of agents is not finite. In other words, even
if we cannot identify each individual dictator, we can specify the order of decisive
coalitions by using a coherent hierarchy of ultrafilters.

After defining the notion of coherence, our main theorem characterizes the SCC
satisfying the three axioms. A hierarchy of ultrafilters determines a series of coalitions
and each coalition consists of agentswith the same preference. Recursively, a hierarchy
of ultrafilters selects a sequence of preferences and this preference vetoes alternatives
that are less preferred to other alternatives. Finally, the sequence of preferences and
a tie-breaking rule reach a set of not-vetoed alternatives. By defining the set of not-
vetoed alternatives as a social choice, a hierarchy of ultrafilters induces an SCC. We
further show that if a coherent hierarchy of ultrafilters and a tie-breaking rule induce an
SCC, then it satisfies unanimity, stability and independence. Conversely, we show that
if an SCC satisfies unanimity, stability and independence, it is induced by a coherent
hierarchy of ultrafilters and a tie-breaking rule.

An ultrafilter defined on a set is called principal if all the sets in the ultrafilter
contains a common element, otherwise, it is called non-principal. In the mathematical
literature of ultrafilters, Ulam (1929) proves the existence of non-principal ultrafilters
by using the axiom of choice when the set, onwhich the ultrafilter is defined, is infinite.
In the social choice literature, Kirman and Sondermann (1972) prove that the family
of decisive coalitions forms an ultrafilter. By the existence theorem for non-principal
ultrafilters of Ulam (1929), when there are infinitely many agents an ultrafilter can
be nonprincipal. When the family of decisive coalitions forms a principal ultrafilter,
a social choice is controlled by a single agent, which belongs to all the sets in the
ultrafilter. When the family of decisive coalitions forms a non-principal ultrafilter,
a social choice is controlled by an ultrafilter, but not a single agent. Kirman and
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Sondermann (1972) call such a group of agents, which dictates a social preference, an
invisible dictator.

Finally, after the characterization of a serial dictatorship, the question remains
if there actually exist invisible serial dictators. In other words, we ask whether non-
principal ultrafilters serially arise, and whether they satisfy the condition of coherence.
Hurd and Loeb (1985) provide a concise existence proof of non-principal ultrafilters
by using Zorn’s lemma, which is equivalent to the axiom of choice. By using Zorn’s
lemma, we show the second result that is the existence theorem of hierarchical non-
principal ultrafilters, which also satisfy the coherence condition.

The organization of the paper is as follows. The next section reviews the related
literature and discusses the relation of ourworkwith previousworks. Section 3 presents
the model. Section 4 defines a generalized serial dictatorship and provides the main
theorem. Section 5 proves the main theorem. Section 6 discusses the relationship
between our main result and other relevant results in the literature. Section 7 shows
the existence of a hierarchy of non-principal ultrafilters.

2 Related literature

Given a social welfare function satisfying Arrow’s axioms of independence and
unanimity, Fishburn (1970) shows that when the number of agents is infinite, it is
impossible to identify a dictator whose preference dictates the outcome. In replying
to Fishburn (1970), Kirman and Sondermann (1972) show that even in the case of
infinitely many agents, a set of decisive coalitions is an ultrafilter and, in a sense, a
dictatorship still persists. The difference between the finite and the infinite case lies
in the fact that in the latter the dictator may “act behind the scenes,” which is called
invisible dictatorship. In this paper, we show that invisible dictators may arise serially
(see Theorem 2).

Since Kirman and Sondermann (1972), Arrovian social choice for an infinite pop-
ulation structure has been analyzed (see Bossert and Suzumura 1975; Hansson 1976;
Monjardet 1983; Bossert and Suzumura 2009; Cato 2011), particularly applications of
infinite-population Arrovian social choice (e.g., Bossert and Suzumura 2008). Camp-
bell and Kelly (2000) study under what characteristics of the environment, e.g., a
domain restriction, the collection of decisive coalitions forms an ultrafilter.4 Recently,
Cato (2013b) introduces the notion of conditional decisiveness to clarify the under-
lying power structure behind aggregation rules that satisfy unanimity5 and binary
independence, which requires that preferences for two alternatives is unaffected by
the inclusion of a third alternative. Consider two sets of agents A and B. When all
the agents in A are indifferent between two alternatives in a set of alternatives, all
the agents in B have the same preference over the two alternatives, and the prefer-
ence of all the agents in B over the two alternatives determines the social preference

4 Because we use their result in our proof of Theorem 1, after introducing technical terms, we state it as
the Ultrafilter Lemma in Appendix I. In contrast with Campbell and Kelly (2000), we use a full domain of
weak preferences, and then their Ultrafilter Lemma holds in our setting as proved in Appendix I.
5 See Footnote 1. In this article, we define strong Pareto of Cato (2013b) as unanimity.
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over the two alternatives, then B is called A-conditionally decisive over the two alter-
natives. Further, B is A-conditionally decisive for the set of alternatives, when it is
A-conditionally decisive over all pairs of alternatives in the set. Cato (2013b) shows
that if an aggregation rule satisfies unanimity and binary independence, then the fam-
ily of conditionally decisive coalitions is an ultrafilter. Further, Cato (2013a) defines
a quasi-ultrafilter to study incomplete social judgements when the set of agents can
be infinite.

In the literature of strategic candidacy, Dutta et al. (2001) initiate the study of
manipulation of voting procedures by a candidate who withdraws from the election.
Rodríguez-Álvarez (2006) extends the analysis by Dutta et al. (2001) to multi-valued
voting rule. Also, Eraslan and McLennan (2004) extend the framework of Dutta et al.
(2001) by allowing: (a) the outcome of the procedure to be a set of candidates; (b)
some or all of the voters to have weak preference orderings of the candidates. A
multi-valued voting procedure is strong candidate stable (SCS) if it is immune to
manipulation through unilateral withdrawal of candidacy. Then they show that a voting
correspondence satisfies unanimity, independence of irrelevant alternatives and SCS,
if and only if it is serially dictatorial, when there are more than three candidates and
the number of agents is finite. As we discuss in Sect. 6, our main theorem provides
a related result, which shows the theorem under strategic candidacy in Eraslan and
McLennan (2004) when the number of agents can be infinite.

Further, there is a literature studying a common framework for Arrow’s impossi-
bility theorem and the Gibbard–Satterthwaite theorem.6 Man and Takayama (2013a)
characterize an SCC satisfying the three axioms in the case of finitely many agents
and derive many well-known impossibility theorems including the result in Eraslan
and McLennan (2004) as corollaries to their main theorem.7 We will also provide a
result that extends the characterization in Man and Takayama (2013a) to the case of
infinitely many agents in Sect. 6.

3 The axioms

Let X be the set of alternatives. We assume that 3 ≤ |X | < ∞. Let N be the set
of agents. Let R denote the space of weak preferences over X . A typical preference
profile on X is denoted by R ∈ RN , with component Ri ∈ R for every i ∈ N .

6 For the classical works, Gibbard (1973); Satterthwaite (1975). Schmeidler and Sonnenschein (1974) also
study the relationship between Arrow’s Impossibility Theorem and the Gibbard–Satterthwaite Theorem.
For more recent works, Reny (2001); Eliaz (2004); Ubeda (2004); Vohra (2011). Many preceding works
(Geanakoplos 2005; Yu 2012; Barberà 1980, 1983; Campbell and Kelly 2002, for a comprehensive survey)
provide another proof of Arrow’s Impossibility Theorem in the case of finitely many agents. Technically,
to prove our main theorem, we will use the result in Arrow (1959) that under our three axioms, the SCC
generates a social welfare function.
7 These impossibility theorems include Arrow’s Impossibility Theorem (Arrow 1951), the Gibbard–
Satterthwaite Theorem (Gibbard 1973; Satterthwaite 1975), the Impossibility theorem under strategic
candidacy (Grether and Plott 1982; Dutta et al. 2001; Eraslan and McLennan 2004), and the character-
ization of game-theoretic solutions implementing only dictatorial social choices by Jackson and Srivastava
(1996). It is also known that there is an interconnection between lexicographic preferences and both Arrow’s
Impossibility Theorem and the Gibbard–Satterthwaite Theorem (see Fishburn 1975; Mitra and Sen 2014).
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For each x, y ∈ X , we write x Pi y if x is strictly preferred to y, i.e., x Ri y but not
yRi x , and x Ii y if x is indifferent to y, i.e., x Ri y and yRi x . For an arbitrary set Z , let
P(Z) ≡ 2Z\{∅}. An SCC is a mapping φ : P(X ) × RN → P(X ) such that, for
each X ∈ P(X ) and R ∈ RN , φ(X, R) ⊂ X. Next, we define three properties that
we impose on φ. For R ∈ RN and X ∈ P(X ), alternative x ∈ X is called weakly
Pareto dominant in X if for every y ∈ X , x Ri y for every i ∈ N , and x Pj y for at least
one j ∈ N .

Definition 1 (Unanimity) An SCC φ satisfies unanimity if, for each X ∈ P(X ),
φ(X, R) = {x} holds for all R ∈ RN such that x ∈ X is weakly Pareto dominant in
X .

Let R|X be the restriction of R to X ∈ P(X ) that agrees with R: for all i ∈ N
and x, y ∈ X , x Ri |X y if and only if x Ri y. We say that profiles R and R′ agree on X
if R|X = R′|X .
Definition 2 (Independence) An SCC φ satisfies independence if, for each X ∈
P(X ) and each R, R′ ∈ RN , R|X = R′|X implies φ(X, R) = φ(X, R′).

Definition 3 (Stability) An SCC φ satisfies stability if, for each X, X ′ ∈ P(X ) and
each R ∈ RN , X ′ ⊂ X and φ(X, R) ∩ X ′ 
= ∅ imply φ(X ′, R) = φ(X, R) ∩ X ′.

4 The main theorem: serial dictatorship

Eraslan and McLennan (2004) define a serial dictatorship in the case of finitely many
agents. To extend their results to the case where the number of agents can be infinite,
this section defines a serial dictatorship on an environment where the number of agents
can be infinite. To do this, we start by introducing our tool, an ultrafilter.8

Definition 4 (Ultrafilter) A familyF ⊂ 2A is an ultrafilter of a set A if

(a) ∅ /∈ F .
(b) If S ∈ F , and S′ ⊃ S, then S′ ∈ F .
(c) If S, S′ ∈ F , then S ∩ S′ ∈ F .
(d) If S ⊂ A, then either S ∈ F or A\S ∈ F (but not both).

An ultrafilter is called principal or non-principal when the intersection of all its
members is nonempty or empty, respectively. If F is principal, then F = {S ⊂ A :
i ∈ S} for some i ∈ A, because by properties (c) and (d),

⋂
S∈F S ∈ F cannot have

more than one element. We call such an i a principal element of F . If A is finite, due
to properties (a) and (c), the intersection of all the sets in the ultrafilter belongs to the
ultrafilter and is not empty. Thus, if A is finite, all ultrafilters are principal.

Lemma 1 IfF is an ultrafilter on A and � is a finite partition of A, then there exists
exactly one set S ∈ � such that S ∈ F ∩ �.

8 Ultrafilters are well-established objects both in mathematics and in social choice theory. For references,
see Comfort and Negrepotis (1974) or Bell and Slomson (1969).
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Proof First, suppose that there are two sets S0, S1 ∈ �∩F . Then ∅ = S0 ∩ S1 ∈ F ,
which contradicts the property (a) of ultrafilters. Second, suppose that there is no set
S ∈ � with S ∈ F . Then ∅ = ⋂

S∈� (A\S) ∈ F , which is a contradiction. �
Definition 5 A hierarchy of ultrafiltersU assigns an ultrafilterU (N ) over N to each
N ∈ P(N ).

Fix such a U . Let R ∈ RN and N ∈ P(N ). As X is finite, there are finitely
many possibilities for a preference ordering R ∈ RN , and so the sets {i ∈ N | Ri =�
for some �∈ R} are a finite partition �(R) of N . By Lemma 1, exactly one set in
�(R) belongs toU (N ), that is, there exists S ∈ �(R) such thatU (N )∩�(R) = {S}.
Thus, there exists a unique �(R,U (N ))∈ R such that {i ∈ N | Ri =�(R,U (N ))} ∈
U (N ), which we regard as U (N )’s preference.

U determines a series of coalitions such that each coalition consists of agents with
the same preferences. With the series of coalitions that U defines, we can derive an
SCC iteratively. Let X ∈ P(X ) and consider a preference profile R|X restricted on
X . Let C0(R|X ) ≡ N . By Lemma 1, there exists a unique S1(R|X ) ∈ U (C0(R|X ))∩
�(R|X ) and we obtain the preference of U (C0), �(R|X ,U (C0)). Then let C1(R|X ) ≡
C0(R|X )\S1(R|X ) and S2(R|X ) ∈ U (C1(R|X ))∩�(R|X ). In the same way with the
preference ofU (C0), we obtain the second preference �(R|X ,U (C1)). Recursively,U
determines a sequence of preferences for R|X ∈ RN . Thus, we obtain the following
lemma.

Lemma 2 For each X ∈ P(X ) and R|X ∈ RN , U determines the sequence of
preference profiles {�R|X ,k}K (R|X )

k=1 and the sequences of subsets {Ck(R|X )}K (R|X )
k=0

and {Sk(R|X )}K (R|X )
k=1 such that K (R|X ) = |�(R|X )|, C0(R|X ) = N and for each

k = 1, · · · , K (R|X ), (i) Sk(R|X ) ∈ U (Ck−1(R|X )) ∩ �(R|X ); (ii) Ck(R|X ) =
Ck−1(R|X )\Sk(R|X ); (iii) CK (R|X ) = ∅; and (iv) �R|X ,k=�(R|X ,U (Ck−1)).

To obtain an SCC for each (X, R) ∈ P(X ) ×RN , we define a top set as follows:
for each �∈ R and nonempty X ⊂ X , let

Top(X,�) ≡ {x ∈ X | for each y ∈ X, x � y}.

Definition 6 U induces an SCC φU if for every (X, R) ∈ P(X ) × RN and every
k = 1, . . . , K (R),

(i) T0(X, R) = X ,
(ii) Tk(X, R) = Top(Tk−1(X, R),�R,k),
(iii) φU (X, R) = TK (R)(X, R).

Further, U and a tie-breaking rule9 ρ ∈ R induce an SCC φU ,ρ if for every
(X, R) ∈ P(X ) × RN ,

(iv) φU ,ρ(X, R) = Top(φU (X, R), ρ).

9 Here, we follow the terminology in Eraslan and McLennan (2004) and refer to ρ as a tie-breaking rule,
even though ρ is not necessarily strict, and there still may exist multiple alternatives in φU ,ρ (X, R) after
applying the “tie-breaking.” Man and Takayama (2013a) call ρ a tie-breaking preference.
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The process defined by Conditions (i)–(iv) is a veto process such that a group
of agents with the same preference vetoes alternatives that are not in their top set,
recursively, until everybody’s preference has been consulted.10 Notice that K (R) and
Ck(R) only depend on a preference profile R, while Tk(X, R) depends on X and R. The
veto process continues until it becomes impossible to further eliminate alternatives,
after which ρ is applied. Since �(R) is finite, this process ends at some finite stage.

Definition 7 U is coherent if for all N , N ′ ∈ P(N ) with N ∈ U (N ′), and all
M ∈ P(N ′), M ∈ U (N ′) if and only if M ∩ N ∈ U (N ).

Definition 8 An SCC φ is a serial dictatorship if φ = φU ,ρ for a coherent U and a
tie-breaking rule ρ.

Theorem 1 An SCC φ satisfies unanimity, independence, and stability if and only if
it is a serial dictatorship.

Eraslan andMcLennan (2004) show that there exists a sequence of dictatorswhenN
is finite and a voting procedure satisfies unanimity, independence and strong candidate
stability. Theorem 1 shows that when N is finite, we obtain a sequence of principal
ultrafilters, so at each round, there exists one agent who is contained in all the sets of
the ultrafilter. This sequence of agents corresponds to the serial dictators in Eraslan
and McLennan (2004). We will discuss the relationship between their main theorem
and Theorem 1 in more details in Sect. 6. Here, we state the following result, which
explains the relationship between a coherent hierarchy of ultrafilters and a permutation
aligning serial dictators in the case of finitely many agents.

WhenN = {1, . . . , n} for some finite n, define {π1, . . . , πn} to be the permutation
of N such that for each k = 1, . . . , n, πk is a principal element of U (Nk) where
N1 = N and Nk = N \{π1, . . . , πk−1} for each k ≥ 2. For every N ∈ P(N ), let
kN = min{k : πk ∈ N } and Ui (N ) to be the ultrafilter such that agent i ∈ N is a
principal element of U (N ).

Proposition 1 SupposeN = {1, . . . , n} for some finite n. Then U is coherent if and
only if U (N ) = UπkN

(N ) for every N ∈ P(N ).

Proof Suppose thatU is coherent. Fix N ∈ P(N ). BecauseU (N ) is principal, it has
a principal element πk for some k. On the contrary, suppose that there is some πi ∈ N
such that i < k. Then πi is a principal element ofU (Ni ). Because {πi , πk} ⊂ Ni ∩ N
and {πi , πk} ∈ U (Ni ) by the property (b) of ultrafilters, coherence requires that {πi } ∈
U ({πi , πk}). By the same argument, coherence requires that {πk} ∈ U ({πi , πk}).
Because U ({πi , πk}) is principal, this is a contradiction. Therefore, k = kN .

Conversely, supposeU (N ) = UπkN
(N ) for every N ∈ P(N ). Consider N , N ′ ⊂

N such that N ⊂ N ′ and N ∈ U (N ′). Since U (N ′) = UπkN ′ (N
′) is principal,

πkN ′ ∈ N and kN ′ = min{k : πk ∈ N ′} = min{k : πk ∈ N ⊂ N ′} = kN . For
M ∈ P(N ′), M ∈ U (N ′) if and only if πk′

N
= πkN ∈ M . Meanwhile, πkN ∈ M if

and only if M ∩ N ∈ U (N ). Thus, U satisfies coherence. �

10 We thank a referee for proposing the current (and more intuitive) definition to us.
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To see how coherence plays a role, letN = {1, 2, 3, 4}. Suppose that each number
i ∈ N corresponds to their ranking within the veto process. For example, agent 1 is the
highest in this ranking. Suppose that a hierarchy of ultrafiltersU assigns the principal
ultrafilter U (N ) of the highest ranking element of N to N ∈ P(N ). On the other
hand, suppose that another hierarchy of ultrafiltersU ′ assignsU ′({2, 3, 4}) = {U ′ ∈
P(N )|U ′ contains 3} and U ′(N ) = U (N ) for all other N 
= {2, 3, 4}. Notice that
coherence is not satisfied by U ′, because {3, 4} ∈ U ′({2, 3, 4}) but {3, 4} ∩ {2, 3} /∈
U ′({2, 3}). On the other hand, coherence is satisfied by U .

Let X = {a, b, c}. Suppose that under preference profile R ∈ RN , the following
holds:

aI1bI1c, aP2bP2c, bP3cP3a, aI4bI4c.

Aswewill see below, a hierarchy of ultrafilters and a tie-breaking rule can induce an
SCC that satisfies the two axioms of unanimity and stability. However, for the SCC to
satisfy independence, we need coherence. The following example shows this. Further,
suppose that under another profile R′ ∈ RN , Ri = R′

i for all i 
= 4 and for agent 4,
aI4bP4c holds. Notice that R and R′ are the same except for agent 4’s preference over
{b, c}. First, we consider what U ′ chooses in the case of (X , R′). We have �(R′) =
{{1}, {2}, {3}, {4}}. Thus S1(R′) = {1}, �R′,1= R′

1. Thus T1(X , R′) = {a, b, c}.
However, at the next stage, since C1(R′) = {2, 3, 4} underU ′,U ′ picks up S2(R′) =
{3} and �R′,2= R′

3, which implies that T2(X , R′) = {b}, that is, φU ′
(X , R) = {b}.

Stability implies φU ′
({a, b}, R′) = {b}.

Second consider what U ′ chooses in the case of (X , R). Then �(R) =
{{1, 4}, {2}, {3}}. Thus S1(R) = {1, 4} and �R,1= R1. It implies that T1(X , R) =
{a, b, c}. Now that C1(R) = {2, 3} under U ′, U ′ next picks up S2(R) = {2} and
�R,2= R2. We have T2(X , R) = {a}. Therefore φU (X , R) = {a}. Then stability
implies φU ′

({a, b}, R) = {a}. This contradicts independence because R|a,b = R′|a,b

but

φU ′
({a, b}, R′) = {b} 
= φU ′

({a, b}, R) = {a}.

This contradiction does not arise with U . The problem with U ′ is that even if
agent 2 has not yet been chosen by the preceding ultrafilter U ′(C0(R′)), the next
ultrafilterU ′({2, 3, 4}) exclusively chooses a set including agent 3. In this sense, agent
3 is chosen as a dictator before agent 2 in the second dictatorship that U ′({2, 3, 4})
induces, while with U ({2, 3}) and U ({2, 3, 4}), this does not happen, because agent
2 is always chosen before agent 3.

As the proof of Lemma 1 shows, the assumption of finite alternatives is crucial.
When the number of alternatives is infinite, there may not be a set in �(R) that
belongs to an ultrafilter. To see this, suppose that the set of alternatives is [0, 1] and
under a preference profile R, each agent has their most favorite alternative r ∈ [0, 1].
Then �(R) has infinitely many coalitions and none of them belongs to a nonprincipal
ultrafilter.

Another difficulty is that even if there is a sequence of coalitions that belongs to an
ultrafilter, because the sequence can be infinite, each agent vetoes one point in the set
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of alternatives, and the final top set can become empty, which leads to an empty SCC.
Man and Takayama (2013b) extend their analysis to the case where the number of
agents is finite and the set of alternatives is a compact metric space. In their case, the
veto process sequence stops at some point and the final top set is not empty, because
the cardinality of agents is smaller than the cardinality of alternatives.

5 The proof of the main theorem

5.1 The proof of the “If” part

We start with two lemmas, which will also be used in the proof of the “only if”
part. By Lemma 2, U determines the sequences of subsets {Sk,Ck−1}K (R)

k=1 and

{S′
m,C ′

m−1}K (R|X )
m=1 for R and its restricted preference profile on X , R|X . In Lemma

4, we show that both sequences yield the same final top set for the set X . The next
lemma implies Lemma 4.

Lemma 3 For every m = 1, . . . , K (R|X ), let km be the smallest k such that �R,k

and �R|X ,m agree on X. Then k1 < · · · < kK (R|X ).

Proof We will first show that for every m ≤ K (R|X ), there is k such that

C ′
m−1 ⊂ Ck−1 and C

′
m−1 ∈ U (Ck−1). (1)

Because C0 = C ′
0 = N and C ′

0 ∈ U (C0), by induction we may suppose that
for some m ≤ K (R|X ) − 1, there is k such that (1) holds. By coherence, we must
have Sk ∩ C ′

m−1 ∈ U (C ′
m−1). By Lemma 1, Sk ∩ C ′

m−1 ⊂ S′
m . Therefore Sk ⊂ S′

m
because Sk’s are finer than S′

m’s. Therefore, we conclude thatC
′
m ⊂ Ck . By coherence,

S′
m+1 ∈ U (C ′

m) implies S′
m+1 ∈ U (Ck). Therefore, C ′

m ∈ U (Ck) and by induction
for every m, there is k such that (1) holds and by coherence, Sk ∩ C ′

m−1 ⊂ S′
m also

holds. Then by Lemma 1, for every m = 1, . . . , K (R|X ), there is some k such that
�R,k and �R|X ,m agree on X .

To complete the proof, note that for every n because Skn ⊂ S′
n , C

′
n ⊂ Ckn . Now on

the contrary, suppose that there are some m and n such that m < n but km > kn . Then
C ′
n−1 ⊂ C ′

m−1 and Ckm−1 ⊂ Ckn−1 imply

C ′
n−1 ⊂ C ′

m−1 ⊂ Ckm−1 ⊂ Ckn−1. (2)

Because Skn ∈ U (Ckn−1) and Skn ⊂ S′
n , by (2), C ′

n−1 ∈ U (Ckn−1) and C ′
m−1 ∈

U (Ckn−1). Because S′
m ∈ U (C ′

m−1), coherence requires S
′
m ∈ U (Ckn−1). However,

S′
n ∈ U (Ckn−1) and S′

m ∩ S′
n = ∅. This is a contradiction. �

Lemma 4 For every X ∈ P(X ),

TK (R)(X, R) = TK (R|X )(X, R|X ). (3)
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Proof If x /∈ TK (R|X )(X, R|X ), then some S′
m vetoes x and byLemma3 its correspond-

ing Skm vetoes x . Thus x /∈ TK (R|X )(X, R|X ). Conversely, if x /∈ TK (R|X )(X, R|X ),
there is some Skm who vetoes x . Then x /∈ TK (R|X )(X, R|X ), because by the definition
of km , there is S′

m who vetoes x . �
Now we are ready to prove the “if” part of Theorem 1. Let U be a hierarchy of

ultrafilters, and ρ be a tie-breaking rule. Let φU ,ρ be the serial dictatorship induced
by U and ρ. We show that φU ,ρ satisfies the three properties.

Lemma 5 The SCC φU ,ρ satisfies unanimity.

Proof Let X ∈ P(X ), x ∈ X , and R ∈ RN . Suppose that x is weakly Pareto
dominant in X at R. Let �(R) ≡ {S1, . . . , SK }. For each k = 1, . . . , K , let Rk ∈
R be the preference of the agents in Sk . Since x is weakly Pareto dominant, for
each k = 1, . . . , K , x ∈ Top(X, Rk), and there exists k∗ = 1, . . . , K such that
Top(X, Rk∗) = {x}. Thus we have φU ,ρ(X, R) = {x}. �
Lemma 6 The SCC φU ,ρ satisfies independence.

Proof Consider X ∈ P(X ), and R, R′ ∈ RN such that R|X = R′|X . Let

{Sk,Ck}K (R|X )
k=0 and {S′

k,C
′
k}K (R′|X )

k=0 be the sequence that U determines for R|X and
R′|X , respectively. Then�(R|X ) = �(R′|X ), and K (R|X ) = K (R′|X ). By coherence
and Lemma 1, {Sk} = U (Ck−1) ∩ �(R|X ) if and only if {Sk ∩C ′

k−1} = U (C ′
k−1) ∩

�(R′|X ). Thus, for each k = 0, . . . , K (R|X ), Sk = S′
k and �R|X ,k=�R′|X ,k . Thus,

for each k = 1, . . . , K (R|X ),

Tk(X, R|X ) = Tk(X, R′|X ).

By Lemma 4,
TK (R)(X, R) = TK (R′)(X, R′).

Therefore, we obtain:
φU ,ρ(X, R) = φU ,ρ(X, R′).

�
For X ∈ P(X ) and R ∈ RN , we define RX ∈ RN to be the preference profile

such that R and RX agree on X andX \X , and yPX
i z for all i , y ∈ X and z /∈ X .We say

RX takes X to the top from R. Fix R ∈ RN and take a sequence of preference profiles
{Rk}K (R)

k=0 such that R0 = R and for each k > 0, Rk takes Tk−1(X, R) to the top from
R. Then by Lemma 4, x ∈ Tk+1(X, R) if and only if x ∈ Top(Tk(X, Rk),�R,k+1).
Thus, we obtain

Top(Tk−1(X, Rk−1),�R,k) = Tk(X, R). (4)

Lemma 7 The SCC φU ,ρ satisfies stability.

Proof Consider R ∈ RN and X ′, X ∈ P(X ) such that X ′ ⊂ X . Suppose that
φU ,ρ(X, R)∩ X ′ 
= ∅. Let {�R,k}K (R)

k=1 be the sequence of preferences derived byU .
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Because φU ,ρ(X, R) ∩ X ′ 
= ∅, TK (R)(X, R) ∩ X ′ 
= ∅. Let x ∈ TK (R)(X, R).
Then by (4), for every k = 1, . . . , K (R),

x ∈ Top(Tk−1(X, Rk−1),�R,k). (5)

Thus, there is no y ∈ X such that y �R,k x for any k. As X ′ ⊂ X , there is no
y ∈ X ′ such that y �R,k x for any k. Thus, for every k = 1, . . . , K (R),

x ∈ Top(Tk−1(X
′, Rk−1),�R,k). (6)

Thus, Top(Tk−1(X, Rk−1),�R,k) ⊂ Top(Tk−1(X ′, Rk−1),�R,k) and by (4),
TK (R)(X, R)∩X ′ ⊂ TK (R)(X ′, R). To show the other direction, let x ∈ TK (R)(X ′, R).
By way of contradiction, suppose x /∈ TK (R)(X, R). Then there must be y ∈ X
such that y �R,k x for some k. Then it must be the case that y ∈ X\X ′ because
x ∈ TK (R)(X ′, R) implies that there is no y ∈ X ′ such that y �R,k x for any k. On
the other hand, because TK (R)(X, R) ∩ X ′ 
= ∅, there must be some z ∈ X ′ such that
z ∈ TK (R)(X, R) ∩ X ′. Then z ∈ TK (R)(X, R) implies that for every k, y ∼R,k z and
further there is no w ∈ X such that w �R,k z. Thus, z ∈ TK (R)(X ′, R). This implies
that for every k, z ∼R,k x . However, this is a contradiction because y ∼R,k z and
y �R,k x for some k.

Finally, by applying the tie-breaking rule, ρ to both sides, we obtain

Top(TK (R)(X, R), ρ) ∩ X ′ = Top(TK (R)(X
′, R), ρ),

which results in φU ,ρ(X, R) ∩ X ′ = φU ,ρ(X ′, R). �

5.2 The proof of the “Only If” part

Suppose that an SCC φ satisfies unanimity, independence and stability. We show that
there exists a coherent hierarchy of ultrafilters and a tie-breaking rule which induce φ.
First, along with Arrow (1959), we show that the implementation of φ is essentially
equivalent to that of a social welfare function (hereafter SWF), where an SWF is
defined to be a function from RN to R. To do so, we start with a subset of agents
N ∈ P(N ).

Definition 9 An SWF R : RN → R satisfies

Unanimity if x is strictly preferred to y according to R(RN ) whenever x weakly
Pareto dominates y under RN ;
Independence if for all RN , R′

N ∈ RN and all x, y ∈ X , RN |{x,y} = R′
N |{x,y}

implies R(RN )|{x,y} = R(R′
N )|{x,y}.

Lemma 8 Let φN : P(X ) × RN → P(X ) be an SCC that satisfies unanimity,
independence, and stability. There exists an SWF R : RN → R such that for each
RN ∈ RN and each X ∈ P(X ), φN (X, RN ) = Top(X,R(RN )). Moreover, R
satisfies unanimity and independence.
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Proof For RN ∈ RN , letR(RN ) be the binary relationship onX generated by φN , i.e.,
for each x, y ∈ X , xR(RN )y if x ∈ φN ({x, y}, RN ). We show that R(RN ) is a weak
preference onX . First,R(RN ) is complete since, for each x, y ∈ X ,φN ({x, y}, RN ) 
=
∅. As for transitivity, suppose that x, y, z ∈ X are such that xR(RN )y and yR(RN )z.
By stability, x ∈ φN ({x, y, z}, RN ). By stability again, we have x ∈ φN ({x, z}, RN ),
that is, xR(RN )z. Now that R(RN ) is a weak preference, Theorem 3 in Arrow (1959)
implies that for each X ∈ P(X ), φN (X, RN ) = Top(X,R(RN )). Unanimity and
independence of R are directly implied by the corresponding properties of φN . �

We respectively denote by p the strict preference profile associated with RN , and
by p the strict preference relation associated with R. Define UN to be a family of
sets M ∈ 2N such that for all i ∈ M , all x, y ∈ X , and all RN ∈ RN , xpi y implies
x p(RN ) y. An element ofUN is a decisive coalition in the population N . EachM ∈ UN

dictates the social preference whenever they agree on their strict preferences.
To proceed, we use the following result, which shows that UN is an ultrafilter.

Campbell and Kelly (2002) show that a domain of an SWF satisfies the chain property
(which we define in Appendix I) and the SWF satisfies unanimity and independence,
UN is an ultrafilter. This result is called the Ultrafilter Lemma. The Ultrafilter Lemma
of Campbell and Kelly (2002) is applicable in our environment. The detailed argument
showing that the Ultrafilter Lemma is applicable in our case is found in Appendix I
after introducing necessary technical terms.

Lemma 9 The collection of decisive coalitions UN is an ultrafilter.

We extend this result to the population N . For every N ∈ P(N ), define
U (N ) ≡ UN to be the family of decisive coalitions. By Lemma 8, there exists
an SWF Rφ : RN → R such that for each R ∈ RN and each X ∈ P(X ),
φ(X, R) = Top(X,Rφ(R)). We denote by Pφ the strict preference relation associated
with Rφ .

Lemma 10 U is a coherent hierarchy of ultrafilters.

Proof By Lemma 9, the family of decisive coalitions UN is an ultrafilter. As N is
arbitrary inP(N ),U is a hierarchy of ultrafilters. Now we show thatU is coherent.
Let N , N ′ ∈ P(N ) be such that N ∈ U (N ′). Let M ∈ P(N ′).

(i) Suppose that M ∈ U (N ′). Let R ∈ RN and x, y ∈ X . Suppose that x Pi y for
every i ∈ M , yPi x for every N\M and x Ii y for every i ∈ N \(N ∪ M). Since
N ∩ M ∈ U (N ′), we have that x ∈ φ({x, y}, R) and y /∈ φ({x, y}, R). Thus
N ∩ M ∈ U (N ).

(ii) Next suppose that N ∩ M ∈ U (N ). Since N ∈ U (N ′), we have either N ∩ M ∈
U (N ′) or N\M ∈ U (N ′), but not both. Construct another preference profile
R′ ∈ RN such that x P ′

i y for every i ∈ N ∩ M , yP ′
i x for every i ∈ N\M and

x I ′
i y for every i ∈ N \N . Since N∩M ∈ U (N ) and x P ′

i y for each i ∈ N∩M , we
have y /∈ φ({x, y}, R′). Thus N ∩ M ∈ U (N ′), which implies that M ∈ U (N ′).

�
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Let R̃ denote the preference profile such that all agents are indifferent between all
alternatives. Define a binary relation ρ on X such that for all x, y ∈ X ,

xρy if and only if x ∈ φ({x, y}, R̃).

Lemma 11 The binary relation ρ is complete and transitive.

Proof Completeness: For any x, y ∈ X , φ({x, y}, R̃) 
= ∅. Thus either xρy or
yρx holds.
Transitivity: Take x, y, z ∈ X such that xρy and yρz. Construct R̃′ by taking
{x, y, z} to the top from R̃. Independence implies x ∈ φ({x, y}, R̃′) and y ∈
φ({y, z}, R̃′). We claim x ∈ φ(X , R̃′). Suppose not. Since x ∈ φ({x, y}, R̃′),
if y ∈ φ(X , R̃′), then φ(X , R̃′) ∩ {x, y} 
= ∅ and thus stability requires x ∈
φ(X , R̃′). This contradicts our assumption and thus we must have y /∈ φ(X , R̃′).
Applying the same logic,we have z /∈ φ(X , R̃′). Thenwemust havew ∈ φ(X , R̃′)
for some w /∈ {x, y, z}. Notice that w is strictly Pareto dominated by x , y and z
at R̃′. Thus, φ({x, w}, R̃′) = {x} by unanimity. By stability, φ({x, w}, R̃′) =
φ(X , R̃′) ∩ {x, w} = {x}. However, this contradicts w ∈ φ(X , R̃′). Now by
stability and independence, we have x ∈ φ({x, z}, R̃′) = φ({x, z}, R̃). Therefore
xρz. �
The remainder of this section shows thatU and ρ induce φ, that is φU ,ρ = φ. The

key step is the following result.

Proposition 2 For every R ∈ RN , X ∈ P(X ), φ(X, R) ⊂ TK (R)(X, R).

Because (4) implies

Top(TK (R)−1(X, RK (R)−1),�R,K (R)) = TK (R)(X, R),

Proposition 2 immediately follows from the next result.

Lemma 12 For every X ∈ P(X ), R ∈ RN , and k = 1, . . . , K (R),

φ(X, R) ⊂ Top(Tk−1(X, Rk−1),�R,k).

Lemma 12 is a consequence of Lemma 13. To state this result, let N ∈ P(N ).
For every R ∈ RN , create a preference profile R̄N such that all agents in N \N are
indifferent between all alternatives, and R̄N

i = Ri for all agents i ∈ N . Define ŪN

to be a family of sets M ∈ 2N such that for all i ∈ M , all x, y ∈ X , all R̄N ∈ RN ,
x P̄i y implies x Pφ(R̄N ) y. For every R ∈ RN , denote a finite partition of N such that
{i ∈ N | Ri =� for some �∈ R} by �N (R).

In the next lemma, we show that M ∈ UN , which dictates the social preference for
RN ∈ RN as shown in Lemma 9, also dictates the social welfare for R̄N whenever its
members agree on their strict preferences.

Lemma 13 U (N ) = ŪN . For R ∈ RN , let R̄N ∈ R̄N . Then

U (N ) ∩ �N (RN ) = U (N ) ∩ �(R̄N ).
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Proof First, we show thatU (N ) = ŪN . Suppose M ∈ ŪN . Notice that by unanimity
of φ, N ∈ U (N ). Then M ∈ U (N ). By coherence, M ∈ U (N ) if and only if
M ∈ U (N ). Conversely, we can show that if M ∈ U (N ), then M ∈ ŪN .

Second, by Lemma 1, there is a unique set S ∈ U (N )∩�(R). Permutate the sets in
�(R) so that�(R) = {π1, . . . , πK (R)} and for some n ≤ K (R),

⋃n
i=1πi = N \N and

⋃K (R)
i=n+1πi = N hold. Then notice that�N (RN ) = {πn+1, . . . , πK (R)} and�(R̄N ) =

{N \N , πn+1, . . . , πK (R)}. Because S ⊂ N , we must have {S} = U (N ) ∩ �N (r).
Further, because S ∈ �(R̄N ), we must have {S} = U (N ) ∩ �(R̄N ). �

Proof of Lemma 12 Let {Sk,Ck}K (R)
k=0 be the sequence that U induces for R. When

k = 0, T0(X, R) = X , and thus φ(X, R) ⊂ T0(X, R). By induction, for some k ≥ 1,
suppose

φ(X, R) ⊂ Top(Tk−1(X, Rk−1),�R,k). (7)

For notational convenience, let T = Top(Tk−1(X, Rk−1),�R,k). Suppose x, y ∈ T
are such that x Pi y for every i ∈ Sk+1. Take another sequence of preference profiles,
{R̄k}K (R)

k=0 such that at R̄k , all agents inN \Ck are indifferent between all alternatives,
and Rk

i = R̄k
i for all agents i ∈ Ck . Then notice that Rk , R̄k and R agree on Tk−1(X, R)

for every k, and that x P̄k
i y for every i ∈ Sk+1.

Since {Sk+1} = U (Ck) ∩ �(R), {Sk+1} = U (Ck) ∩ �Ck (R). Let r = (Ri )i∈Ck .
Then {Sk+1} = U (Ck) ∩ �Ck (r). By Lemma 13, {Sk+1} = U (Ck) ∩ �(R̄k+1) and
thus

y /∈ Top(T,Rφ(R̄k+1)).

By Lemma 8,Rφ satisfies independence. Thus, y /∈ Top(T,Rφ(Rk+1)), and hence
y /∈ φ(T, Rk+1). Because Rk+1 and R agree on Tk(X, R), they also agree on T by
(4). By independence,

φ(T, Rk+1) = φ(T, R).

Thus, y /∈ φ(T, R). By stability, y /∈ φ(X, R). Thus (7) also holds at k + 1. �

Proposition 3 The coherent hierarchy of ultrafilters U and the tie-breaking rule ρ

induce φ. That is, φ = φU ,ρ .

Proof Let X ∈ P(X ). If TK (R)(X, R) = {x}, then Lemma 2 implies that

φ(X, R) ⊂ Top(TK (R)(X, R), ρ) = {x}. (8)

Let x, y ∈ TK (R)(X, R) and x ∈ Top(TK (R)(X, R), ρ). Then x ∈ Top({x, y}, ρ),
which implies xρy. By the definition of ρ, x ∈ φ({x, y}, R̃). Because x, y ∈
TK (R)(X, R), all agents are indifferent between x and y at R. Thus, R|{x,y} = R̃|{x,y}.
By independence, x ∈ φ({x, y}, R). By stability,
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x ∈ φ(X, R) ∩ {x, y} = φ({x, y}, R). (9)

Thus, we obtain φ(X, R) ⊂ Top(TK (R)(X, R), ρ).
Next,we show thatTop(TK (R)(X, R), ρ) ⊂ φ(X, R). Let x ∈ Top(TK (R)(X, R), ρ)

and x ′ ∈ φ(X, R) ⊂ TK (R)(X, R). Because x ∈ Top(TK (R)(X, R), ρ), x ∈
φ({x, x ′}, R̃). Since both x and x ′ are in TK (R)(X, R), R̃ and R agree on {x, x ′}. Inde-
pendence requires x ∈ φ({x, x ′}, R) = φ({x, x ′}, R̃). Meanwhile, as x ′ ∈ φ(X, R) ∩
{x, x ′}, stability requires x ∈ φ(X, R). Hence Top(TK (R)(X, R), ρ) ⊂ φ(X, R).

Thus, we obtain φ(X, R) = Top(TK (R)(X, R), ρ), and thus φ = φU ,ρ . �

6 Discussion of serial dictatorship results in the literature

6.1 Connection with Man and Takayama (2013a)

Theorem 1 is closely related to the theorems in Eraslan and McLennan (2004) and
Man and Takayama (2013a). To see this connection, in this subsection we explain the
relationship between our result and theirs. We start with the main theorem in Man and
Takayama (2013a). First, we discuss the relationship between our stability axiom and
the corresponding axiom in their work, which is independence of losing alternatives.

Definition 10 AnSCCφ satisfies independence of losing alternatives (ILA) if for each
X ∈ P(X ) and each R ∈ RN ,φ(X, R) = φ(X , R)∩X wheneverφ(X , R)∩X 
= ∅.

Lemma 1 and Lemma 2 of Man and Takayama (2013a) imply Corollary 1 whenN
is finite.11 A similar argument works even if N can be infinite.

Lemma 14 An SCC φ satisfies stability if it satisfies unanimity, independence and
ILA.

Proof Suppose that X, X ′ ∈ P(X ), X ′ ⊂ X , and R ∈ RN . Suppose φ(X, R)∩X ′ 
=
∅. We obtain RX by taking X to the top of R. Then we claim that φ(X , RX ) ⊂ X .
To show this, let y ∈ X and suppose that yRi x for every i ∈ N and yPj x for at least
one j ∈ N . By way of contradiction, suppose that x ∈ φ(X, R). Unanimity and ILA
imply

φ({x, y}, R) = {y} = φ(X, R) ∩ {x, y}.

Hence, we obtain {y} = φ(X, R) ∩ {x, y}, which implies x /∈ φ(X, R). However
this contradicts our initial assumption that x ∈ φ(X, R). Thus, φ(X , RX ) ⊂ X and
together with ILA,

11 In their paper, our stability is called Arrow’s Choice Axiom.
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φ(X , RX ) = φ(X, RX ). (10)

Then because RX |X = R|X , independence implies

φ(X, RX ) = φ(X, R). (11)

Hence, by (10) and (11),
φ(X , RX ) = φ(X, R). (12)

By (12) and φ(X, R) ∩ X ′ 
= ∅, ILA requires

φ(X , RX ) ∩ X ′ = φ(X, R) ∩ X ′ = φ(X ′, R). (13)

�
Lemma 15 Let U be a coherent hierarchy of ultrafilters, and let ρ be a tie-breaking
rule. LetφU ,ρ be the serial dictatorship induced byU andρ. IfφU ,ρ satisfies stability,
then it satisfies ILA.

Proof This is immediate by noting X ⊂ X . �
By Theorem 1, Lemma 2 inMan and Takayama (2013a), and Lemma 15, we obtain

the following. This corresponds to the result in Man and Takayama (2013a) when the
number of agents is not confined to be finite.

Corollary 1 An SCC φ is a serial dictatorship if and only if it satisfies unanimity,
independence and ILA.

6.2 Connection with Eraslan and McLennan (2004)

In this subsection, we discuss the relationship between our result and the work of
Eraslan and McLennan (2004). They consider a voting procedure defined on subsets
of alternativeswith at least |X |−1 elements. To extend their argument to our framework
and state their main theorem, we first lay out the environment in their paper.

The agenda domain A is the set of all subsets of X containing all but at most one
alternative: A = {A ⊂ X : |A| ≥ |X | − 1}. A voting correspondence is a mapping
V : A × RN → P(X ) such that for all A ∈ A and R ∈ RN , V (A, R) ⊂ A, which
is referred to as feasibility. IIA, unanimity, and SCS are defined as follows.

Definition 11 A voting procedure V satisfies independence of irrelevant alternatives
(IIA) if for all A ∈ A and R, R′ ∈ RN with R|A = R′|A, V (A, R) = V (A, R′).

Definition 12 Avoting procedure V satisfies unanimity if for all A ∈ A and R ∈ RN ,
V (A, R) = {x} whenever x is weakly Pareto dominant in A.

Definition 13 A voting procedure V satisfies strong candidate stability (SCS) if for
all x ∈ X and R ∈ RN , either V (X , R) = {x}, or V (X \{x}, R) = V (X , R)\{x}.
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To state their result, we first present their definition of a serial dictatorship. For all
A ∈ A and all preference profiles R ∈ RN , define the k-th iteration of the top set
operator τ by the following:

τk(A, R) = Top(τk−1(A, R), Rπk ).

Then Eraslan and McLennan (2004) define a voting procedure V to be serially
dictatorial if there exists a permutation of individuals π and a tie-breaking rule ρ such
that for all A ∈ A and R ∈ RN ,

V (A, R) = Top(τ|N |(A, R), ρ).

SupposeN is finite. The difference between our definition and their definition is that
in our definition, all the agents who have the same preference with πk are grouped into
the same decisive coalition, while in the definition of Eraslan and McLennan (2004),
only πk’s preference is consulted at round k, and other succeeding serial dictators stay
in the remaining population even if their preference is the same with Rπk . When a
hierarchy of ultrafilters satisfies coherence, a coherent hierarchy is associated with the
unique permutation {π1, . . . , πn} shown in Proposition 1, and the two definitions lead
to the same set of outcomes, because even if some succeeding dictator is grouped with
a precedent dictator in our definition, the succeeding dictator’s preference is already
consultedwhen his individual turn comes up in the definition of Eraslan andMcLennan
(2004), and this dictator’s opinion does not make a difference to the veto process.

In addition to the assumption that N is finite, there are two additional differences
between our setting and the one in Eraslan and McLennan (2004). First, in Eraslan
and McLennan (2004), there are two kinds of voters: in one set, voters are allowed
to have weak preferences and in the other set, voters only have strict preferences.
To keep the argument simple, we keep our setting such that all the voters may have
weak preferences. Second, Eraslan and McLennan (2004) allow for candidate voters
(alternatives which are also agents), although Man and Takayama (2013a) do not
allow this possibility. In this paper, we follow Man and Takayama (2013a) and do not
consider the possibility of candidate voters.

The next proposition corresponds to the theorem in Eraslan and McLennan (2004)
(see page 38 in Eraslan and McLennan 2004) when all the voters may have weak
preferences, the number of agents is not confined to be finite and candidate voters are
not allowed. We first define a serial dictatorship for a voting procedure.

Definition 14 A hierarchy of ultrafilters U and a tie-breaking rule ρ ∈ R induce a
voting procedure VU ,ρ if for all A ∈ A and all R ∈ RN , U determines a sequence
of preferences {�R,k}K (R)

k=1 and for each k = {1, . . . , K (R)},
(i) T0(A, R) = A,
(ii) Tk(A, R) = Top(Tk−1(A, R),�R,k),
(iii) VU ,ρ(A, R) = Top(TK (R)(A, R), ρ).

Definition 15 A voting procedure V is a serial dictatorship if V = VU ,ρ for some
coherent hierarchy of ultrafilters U and a tie-breaking rule ρ.
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Proposition 4 Avoting procedure V satisfies feasibility, unanimity, independence and
SCS if and only if it is a serial dictatorship.

We keep the proof of Proposition 4 in Appendix II together with the required
lemmas.

7 A coherent hierarchy of non-principal ultrafilters

In the previous sections, we defined a serial dictatorship when the number of agents
can be infinite, and showed that the serial dictatorship is the unique mechanism that
satisfies unanimity, independence, and stability. However, one question arises: How
rich is the space of coherence hierarchies of ultrafilters? Fishburn (1970) and Kirman
and Sondermann (1972) showed that the family of decisive coalitions can be a non-
principal ultrafilter. The existence of non-principal ultrafilters was previously known
to be a consequence of the axiom of choice, but this does not settle whether the families
of decisive coalitions can be serially non-principal in our framework. To answer this
question, we show that there exists a coherent hierarchy of ultrafilters that assigns
non-principal ultrafilters to all infinite sets. The following theorem guarantees that
when N is infinite, the statement of Theorem 1 is not vacuous.

Theorem 2 There exists a coherent hierarchy of ultrafiltersU onP(N ), that assigns
non-principal ultrafilters to all infinite sets.

To prove Theorem 2, we define an ultrafilter mapping.

Definition 16 LetM ⊂ P(N ).A correspondenceF : M → P(N ) is anultrafilter
mappingwith domainM if for each N ∈ M,F (N ) is an ultrafilter on N . An ultrafilter
mapping F with domain M is non-principal if it assigns a non-principal ultrafilter
F (N ) to every infinite set N ∈ M. An ultrafilter mapping F with domain M is
coherent if for each N , N ′ ∈ M with N ∈ F (N ′),

F (N ′) = {Z ⊂ N ′ : Z ∩ N ∈ F (N )}.

Similarly to a hierarchy of ultrafilters, F assigns an ultrafilter F (N ) over N to
each N ∈ M. The only difference is that the domains of the mappings do not have
to be P(N ). In this sense, an ultrafilter mapping is a more general concept than a
hierarchy of ultrafilters.

Our strategy of proving Theorem 2 is as follows. Let MF ≡ {N ∈ P(N ) :
N is finite} and MI ≡ {N ∈ P(N ) : N is infinite}. Notice that we can separately
study each of the two cases whereF ’s domain isMF andMI . To see this, letF be
an ultrafilter mapping that assigns non-principal ultrafilters to all the infinite sets. Let
N0 ∈ MF , N1 ∈ MI , and N0 ⊂ N1. ThenF (N1) only includes infinite sets because
N1 is infinite. Then the finite set N0 /∈ F (N1). Therefore, we can see that coherence
is not required between F (N0) and F (N1). We will prove Theorem 2 by showing
that U (N ) = F (N ) for some coherent non-principal ultrafilter mapping F with
domain MF ∪ MI , individually in two cases; in the first case, for every N ∈ MF ,
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F (N ) is a principal ultrafilter, and in the second case, for every N ∈ MI , F (N ) is
a non-principal ultrafilter.

Proposition 5 There exists a coherent ultrafilter mapping F ∗ : MF → P(N ).

Proof A well-ordering is a complete strict ordering such that each N ⊂ N has a
minimal element. The well-ordering principle12 asserts that there is a complete strict
ordering for N and there is a minimal element in this ordering for any finite set
N ⊂ N . Let i N ∈ N be this minimal element. We can define F ∗ : MF → P(N )

such that F ∗(N ) ≡ {E ⊂ N | i N ∈ E}. Let Ñ ∈ F ∗(N ). Then i N ∈ Ñ . Since
i N is also the minimal element in Ñ , F ∗(Ñ ) = {E ⊂ Ñ | i N ∈ E}. Thus, for each
Z ⊂ N , Z ∈ F ∗(N ) is equivalent to i N ∈ Z . Meanwhile, i N ∈ Z ∩ Ñ is equivalent
to Z ∩ Ñ ∈ F ∗(Ñ ). Thus, Z ∈ F ∗(N ) if and only if Z ∩ Ñ ∈ F ∗(Ñ ), which implies
that F ∗ is coherent. �

Next, we would like to show that there is a coherent ultrafilter mapping with the
domainMI . The proof takes the three steps. First, we define the set of non-principal
coherent ultrafilter mappings and its domains such that coherence also holds in the
domain, and show that the set is not empty. Second, we show that there exists a
maximal element in this set with respect to the binary relation ≥, which we define
below. Finally, we show that the domain in a maximal element isMI .

Let F be the set of (M,F ) such that ∅ 
= M ⊂ MI and F : M → P(N )

is a non-principal coherent ultrafilter mapping with domain M. To define a maximal
element in the set F, we define a binary relation ≤ on F as follows:

(M,F ) ≤ (M′,F ′) if

{
(1) M ⊂ M′, and
(2) for each M ∈ M, F (M) = F ′(M).

Let (M,F ), (M′,F ′) ∈ F. Then the binary relation ≥ is

• reflexive, i.e., (M,F ) ≤ (M,F );
• antisymmetric, i.e., (M,F ) ≤ (M′,F ′) and (M′,F ′) ≤ (M,F ) imply

(M,F ) = (M′,F ′);
• transitive, i.e., if (M,F ) ≤ (M′,F ′) and (M′,F ′) ≤ (M′′,F ′′), then we
have (M,F ) ≤ (M′′,F ′′).

The relation> is defined by (M,F ) < (M′,F ′) if and only if (M,F ) ≤ (M′,F ′)
but not (M,F ) ≥ (M′,F ′).

Proposition 6 There exists a coherent non-principal ultrafiltermappingF ∗ : MI →
P(N ).

12 See Section 17 in Halmos (1974).
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Proof

Step 1. First we show that F is non-empty. Since N is an infinite set, the ultrafilter
theorem of Ulam (1929)13 implies that there exists a non-principal ultrafilter
UN onN . LetM ≡ {N } andF (N ) ≡ UN . By the definition of ultrafilters,
(M,F ) ∈ F.

Step 2. Next, we show the existence of a maximal element (M∗,F ∗) in F. Let
C ⊂ F be a chain, which is a totally ordered subset, so that for every
two elements (M,F ), (M′,F ′) in C , either (M,F ) ≤ (M′,F ′) or
(M,F ) ≥ (M′,F ′) holds. First we show that C has an upper bound in F.
Let C1 be the projection of C on the first argument, and M̄ ≡ ⋃

M∈C1
M.

Then for each M ∈ M̄, there exists (MM ,FM ) ∈ C such that M ∈ MM .
For each M ∈ M̄, let F̄ (M) ≡ FM (M). It gives us a well defined corre-
spondence F̄ : M̄ → P(N ) because, for each M ∈ M̄, F̄ (M) is uniquely
defined. Suppose that (M,F ), (M′,F ′) ∈ C and M ∈ M ∩ M′. Then
(M,F ) ≤ (M′,F ′) or (M,F ) ≥ (M′,F ′) because C is totally ordered.
In both cases, the definition of the order implies thatF (M) = F ′(M). Thus
F̄ is uniquely determined.
We show that (M̄, F̄ ) ∈ F below. By construction, it is clear that (M̄, F̄ ) ∈
F. By construction, (M̄, F̄ ) is an upper bound of C . By Zorn’s lemma, there
exists a maximal element (M∗,F ∗) in F.

Step 3. We conclude our proof by showing thatM∗ = MI . By way of contradiction,
suppose that there exists N ∈ MI \M∗. By the ultrafilter theorem (see Foot-
note 13), there exists a non-principal ultrafilter UN on N . Let M̂ = M∗ ∪ N .
We extend the ultrafilter mapping F ∗ to M̂ by defining F ∗(N ) as follows:

F ∗(N ) =
{ {Z ⊂ N | Z ∈ F ∗(M)} if there is M with N ∈ F ∗(M),

UN otherwise.

We show that (M̂,F ∗) ∈ F by showing that F ∗ is still coherent. For any two
sets M, M ′ ∈ M∗, F ∗(M) and F ∗(M ′) satisfy coherence by construction. So take
M ∈ M∗ and we show F ∗(M) and F ∗(N ) satisfy coherence.

If N /∈ F ∗(M), coherence is not required between F ∗(N ) and F ∗(M). Now,
suppose N ∈ F ∗(M). Then F ∗(N ) = {Z ⊂ N | Z ∩ M ∈ F ∗(M)}. Then Z ∈
F ∗(N ) if and only if Z ∩M ∈ F ∗(M). Thus,F ∗(M) andF ∗(N ) satisfy coherence.

Thus, (M̂, F̂ ) ∈ F, but (M̂,F ∗) > (M∗,F ∗). Since (M∗,F ∗) is a maximal
element, it is a contradiction. Thus M∗ = MI . �

Appendix I

The chain property is formally defined as follows. Denote the set of weak orderings
on Y by f (Y ), and the set of linear orderings on Y by l(Y ). A social welfare function

13 Hurd and Loeb (1985) provides a concise proof for this result, which is found as Theorem A.8 in page
221.
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for outcome set X and domain P is a function from P into the set of complete binary
relations on X . Let P(Y ) denote the set of profiles r ∈ f (Y )N such that there is some
R ∈ P for which r = R|Y . Given the domain P , we say that a triple {x, y, z} of
alternatives is free if either

P({x, y, z}) = f ({x, y, z})N or l({x, y, z})N .

We say that the domain P has the chain property if |X | ≥ 3 and for every two ordered
pairs (x, y) and (w, z) of alternatives in X , there exists an integer k and a sequence
v1, . . . , vk such that all of the triples {x, y, v1}, {y, v1, v2}, {v1, v2, v3}, . . . , {vk, w, z}
are free.

Proof of Lemma 9 The Ultrafilter Lemma of Campbell and Kelly (2002) shows that
a domain of an SWF satisfies the chain property and the SWF satisfies unanimity and
independence, UN is an ultrafilter. In our environment, because there are finitely many
alternatives in X and the domain is a full domain,RN has the chain property, and by
Lemma 8, R satisfies the two properties. Thus the Ultrafilter Lemma holds. �

Appendix II

The “if” Part Proof of Proposition 4 Suppose that a coherent hierarchy of ultrafilters
U and a tie-breaking rule ρ induce a voting procedure V . Let R ∈ RN . For all
A ∈ A, TK (R)(A, R) ⊂ A and thus V satisfies feasibility. Further, the unanimity and
independence of V follow from the proofs of Lemma 5 and Lemma 6 by replacing
X with A ∈ A, and φU ,ρ with V . To show that V is SCS, take x ∈ X and suppose
V (X , R) 
= {x}. Then there is some y 
= x such that y ∈ V (X , R)\{x}. Then
y ∈ TK (R)(X , R), which implies that there is no k = 1, . . . , K (R) and z ∈ X \{x, y}
such that z �R,k y. Thus, y ∈ TK (R)(X \{x}, R), and y ∈ V (X \{x}, R).

Conversely, suppose y ∈ V (X \{x}, R). Then y ∈ TK (R)(X \{x}, R), which implies
that there is no k = 1, . . . , K (R) and z ∈ X \{x} such that z �R,k y. Then y ∈
TK (R)(X , R)\{x} or {x} = TK (R)(X , R). Thus y ∈ V (X , R)\{x} or otherwise, {x} =
V (X , R). By the initial assumption, V (X , R) 
= {x} and thus we conclude that y ∈
V (X , R)\{x}. Thus, we obtain V (X \{x}, R) = V (X , R)\{x}. �

Now suppose that a voting procedure V satisfies feasibility, unanimity, IIA and
SCS. Our strategy for proving the “only-if” part of Proposition 4 is as follows. For all
X ∈ P(X ) and all R ∈ RN , we define φ to be:

φ(X, R) = V (X , RX ), (14)

where RX is the preference profile that takes X to the top from R. We will show
that φ satisfies unanimity, independence and stability. Then by Theorem 1, a coherent
hierarchy of ultrafilters and a tie-breaking rule induce φ, and φ is a serial dictatorship.
Then we show that the coherent hierarchy of ultrafilters and tie-breaking rule which
induce φ also induce V defined in (14).
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Fix R ∈ RN . The proof of the following lemma, which guarantees that
V (X , RX ) ⊂ X occupies the rest of the subsection. Eraslan and McLennan (2004)
prove a similar result for the case of finite N as their Lemma 1 (in pages 41 – 42).
A similar logic works in our case, even when the case of infinitely many agents is
included.

Lemma 16 If x ∈ V (X , R), then x is not strongly Pareto dominated at R.

Lemma 16 implies that V (X , RX ) ⊂ X for every X ∈ P(X ). Let x ∈ P(X ).
We say that R′ is an x-modification of R if R|X \{x} = R′|X \{x} holds. Several results
prepare the proof of Lemma 16.

Lemma 17 Suppose that R′ is an x-modification of R, and V (X , R′) 
= {x} 
=
V (X , R). Then V (X , R)\{x} = V (X , R′)\{x}.
Proof We have

V (X , R)\{x} = V (X \{x}, R) (SCS and V (X , R) 
= {x})
= V (X \{x}, R′) (IIA)
= V (X , R′)\{x}. (SCS and V (X , R′) 
= {x})

�
Let X = {x1, . . . , xK } denote a set of K alternatives. Take a sequence of preference

profiles {Rk}Kk=0 such that each Rk is an xk-modification of Rk−1.

Lemma 18 For all k ≥ 1, V (X , Rk) ⊂ V (X , R0) ∪ {x1, . . . , xk}.
Proof By induction suppose that V (X , Rk−1) ⊂ V (X , R0)∪{x1, . . . , xk−1} for some
k ≥ 1.ThenbyLemma17,V (X , Rk) = {xk}orV (X , Rk)\{xk} = V (X , Rk−1)\{xk}.

�
Lemma 19 Suppose that V (X , R0) 
⊂ X. Then for every k, V (X , Rk)\X =
V (X , R0)\X.
Proof This follows from repeated applications of Lemma 17 unless V (X , Rk) = {xk}
for some k. In this case applying Lemma 18 to the sequence from Rk to R0 implies
that V (X , R0) ⊂ {xk, . . . , x1} ⊂ X . �
Proof of Lemma 16 Let x ∈ V (X , R). On the contrary suppose that there exists a
y ∈ X such that yPi x for all i ∈ N . Consider R′ such that at R′, yP ′

i z for all z ∈ X
and all i ∈ N , and R′|X \{y} = R|X \{y}. Then y is strongly Pareto dominant at R′
and so unanimity implies that V (X , R′) = {y}. Since R is a y-modification of R′, by
Lemma 18, {x, y} ⊂ V (X , R) ⊂ V (X , R′) = {y}, which is a contradiction. �
Lemma 20 The SCC φ defined in (14) satisfies unanimity, independence and stability.

Proof Unanimity: If y is weakly Pareto dominant in Y ∈ P(X ) at some R ∈ RN ,
then y is weakly Pareto dominant in X at RY . By the unanimity of V and (14),
φ(Y, R) = V (X , RY ) = {y}.
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Independence: Let Y ∈ P(X ), R, R′ ∈ RN and R|Y = R′|Y . By the definition
of φ in (14), φ(Y, R) = V (X , RY ) and φ(Y, R′) = V (X , R′Y ). We can construct
R′Y from RY through finitely many interim preference profiles {Rk} by repeatedly
moving each element xk so that for each xk /∈ Y and y ∈ Y with RY |{xk ,y} 
=
R′Y |{xk ,y}, Rk |{xk ,y} = R′Y |{xk ,y} holds. By Lemma 16 and Lemma 19, we obtain

V (X , RY ) = V (X , R′Y ). Thus, φ(Y, R) = φ(Y, R′).
Stability: Fix X,Y ∈ P(X ) where Y ⊂ X , and R ∈ RN such that V (X , RX ) ∩
Y 
= ∅. Let Z = X\Y = {z1, . . . , zK }. Define Z0 = ∅ and Zk = {z1, . . . , zk}.
Construct R0 = RX and for all k > 0, a preference profile Rk such that Rk is the
zk-modification of Rk−1 such that zk is strongly Pareto dominated by alternatives
in X\{zk} at Rk .
Because V (X , RX ) ∩ Y 
= ∅, V (X , RX ) 
⊂ Z . By Lemma 19, V (X , R0)\Z =

V (X , RK )\Z . At the same time, at RK , alternatives in Z are strongly Pareto dominated
by alternatives in Y . Thus, by Lemma 16, V (X , RK )\Z = V (X , RK ). Because
RK |Y = RY |Y , by the same argument as in the proof of independence, we obtain
V (X , RK ) = V (X , RY ) and hence

V (X , RY ) = V (X , RX )\Z . (15)

Then by the definition of φ in (14), V (X , RX )∩Y 
= ∅ implies φ(X, R)∩Y 
= ∅

and at the same time,
φ(Y, R) = φ(X, R)\Z , (16)

which implies φ(Y, R) = φ(X, R) ∩ Y . Thus, stability follows. �
The “only-if” part proof of Proposition 4 By Lemma 20, the SCC φ defined in (14)
satisfies unanimity, independence and stability. Then by Theorem 1, φ is a serial
dictatorship. Thus, a coherent hierarchy of ultrafilters U and a tie-breaking rule ρ

induce φ. Then by Definition 6, for all R ∈ RN ,

φ(X , R) = Top(TK (R)(X , R), ρ). (17)

By replacing X with X in (14), for all R ∈ RN ,

V (X , R) = Top(TK (R)(X , R), ρ).

Therefore, a coherent hierarchy of ultrafilters U and a tie-breaking rule ρ also
induce V forX . To show the result for any agenda domain, fix x ∈ X . Let A = X \{x}.
Then similarly to (17), for all R ∈ RN ,

φ(A, R) = Top(TK (R)(A, R), ρ).

By replacing X with A in (14), for all R ∈ RN ,

V (A, RA) = Top(TK (R)(A, R), ρ).
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By SCS, for all R ∈ RN , V (A, R) = V (X , R)\{x} and V (A, RA) =
V (X , RA)\{x}. By IIA, V (A, R) = V (A, RA) for all R ∈ RN . Finally, for all
R ∈ RN , V (A, RA) = V (A, R), and thus

V (A, R) = Top(TK (R)(A, R), ρ).

Therefore, a coherent hierarchy of ultrafilters U and a tie-breaking rule ρ also
induce V . �
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