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Abstract We show that one-dimensional Euclidean preference profiles can not be
characterized in terms of finitely many forbidden substructures. This result is in strong
contrast to the case of single-peaked and single-crossing preference profiles, for which
such finite characterizations have been derived in the literature.

1 Introduction

Single-peakedness, single-crossingness, and one-dimensional Euclideanness are pop-
ular domain restrictions that show up in a variety of models in the social sciences
and economics. In many situations, these domain restrictions guarantee the existence
of a desirable entity that would not exist without the restriction, as for instance a
strategy-proof collective choice rule, or a Condorcet winner, or an equilibrium point.

• Preferences are single-peaked, if there exists a linear ordering of the alternatives
such that anyvoter’s preference relation along this ordering is either always increas-
ing, always decreasing, or first increasing and then decreasing.

B Gerhard J. Woeginger
gwoegi@win.tue.nl

Jiehua Chen
jiehua.chen@tu-berlin.de

Kirk R. Pruhs
kirk@cs.pitt.edu

1 Department of Software Engineering and Theoretical Computer Science, TU Berlin, Berlin,
Germany

2 Computer Science Department, University of Pittsburgh, Pittsburgh, USA

3 Department of Mathematics and Computer Science, TU Eindhoven, Eindhoven, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00355-016-1011-y&domain=pdf


410 J. Chen et al.

• Preferences are single-crossing, if there exists a linear ordering of the voters such
that for any pair of alternatives along this ordering, there is a single spot where the
voters switch from preferring one alternative above the other one.

• Preferences are one-dimensional Euclidean, if there exists a common embedding
of voters and alternatives into the real numbers, such that every voter prefers
alternatives that are embedded close to him to alternatives that are embedded
farther away from him.

Single-peakedness goes back to the seminal work of Black (1948); among many
other nice consequences, single-peakedness implies transitivity (Inada 1969) and non-
manipulability of the majority rule (Moulin 1980).

Single-crossingness goes back to the work of Karlin (1968) in applied mathemat-
ics; Mirrlees (1971) and Roberts (1977) apply it in the theory of optimal income
taxation, and Diamond and Stiglitz (1974) use it in the economics of uncertainty.
Single-crossingness also plays a role in coalition formation (Demange 1994; Kung
2006), income redistribution (Meltzer and Richard 1981), local public goods and strat-
ification (Westhoff 1977; Epple and Platt 1998), in the choice of constitutional voting
rules (Barberà and Jackson 2004), and in the analysis of the majority rule (Grandmont
1978; Gans and Smart 1996).

One-dimensional Euclidean preference structures go back toHotelling (1929). They
have been discussed by Coombs (1964) under the name ‘unidimensional unfolding’
representations, and they unite all the good properties of single-peaked and single-
crossing preference structures. Doignon and Falmagne (1994) discuss Euclidean
preference structures in the context of behavioral sciences, and Brams et al. (2002)
discuss them in the context of coalition formation.

Obstructions The scientific literature contains many characterizations of combi-
natorial objects in terms of forbidden substructures or obstructions. For instance,
Kuratowski’s theorem Kuratowski (1930) characterizes planar graphs in terms of two
obstructions: a graph is planar if and only if it does not contain a subdivided K5 or
K3,3. In a similar spirit, Lekkerkerker and Boland (1962) characterize interval graphs
through five (infinite) families of forbidden induced subgraphs, and Földes and Ham-
mer (1977) characterize split graphs in terms of three forbidden induced subgraphs.
Hoffman et al. (1985) characterize totally-balanced 0–1-matrices in terms of certain
forbidden submatrices. The characterizations of split graphs and totally-balanced 0–
1-matrices use a finite number of obstructions, while the characterizations of planar
graphs and interval graphs both involve infinitely many obstructions.

In the area of social choice, Ballester and Haeringer (2011) characterize single-
peaked preference profiles and group-separable preference profiles in terms of a small
finite number of obstructions. Also single-crossing preference profiles allow a charac-
terization by finitely many obstructions; see Bredereck et al. (2013). Let us stress that
every monotone property of profiles (that is, every property that is preserved under
the removal of voters and/or alternatives) can be characterized by a set of obstruc-
tions. For many monotone properties, however, the obstruction set will contain an
infinite number of obstructions. Condorcet winners in tournaments form a typical
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(non-monotone) example of a property in social choice that can not be characterized
at all through obstructions.

A characterization by finitely many obstructions has many positive consequences.
Whenever a family F of combinatorial objects allows such a finite characterization,
this directly implies the existence of a polynomial time algorithm for recognizing the
members of F : one may simply work through the obstructions one by one, and check
whether the considered object contains the obstruction. By looking deeper into the
combinatorial structure of such families F , one usually manages to find recognition
algorithms that are much faster than this simple approach. As an example, there exist
sophisticated algorithms for recognizing single-peaked preference profiles that are
due to Bartholdi and Trick (1986), Doignon and Falmagne (1994), and Escoffier et al.
(2008). Also single-crossingness can be recognized very efficiently; see Doignon and
Falmagne (1994), Elkind et al. (2012), and Bredereck et al. (2013).

As another positive consequence, a characterization by finitely many obstructions
often helps us in understanding the algorithmic and combinatorial behavior of family
F . For example, Bredereck et al. (2016) investigate the problem of deciding whether a
givenpreference profile is close to a nicely structured preference profile. Thedistance is
measured by the number of voters or alternatives that have to be deleted from the given
profile so as to reach a nicely structured profile. For the cases where ‘nicely structured’
means single-peaked or single-crossing, the proofs in Bredereck et al. (2016) are
heavily based on characterizations (Ballester and Haeringer 2011; Bredereck et al.
2013) byfinitelymanyobstructions. Elkind andLackner (2014) study similar questions
and derive approximation algorithms for the number of deleted voters or alternatives.
All results in Elkind and Lackner (2014) are centered around preference profiles that
can be characterized by a finite number of obstructions, and some of the theorems are
parametrized by the obstruction set.

Scope and contribution of this paper As the one-dimensional Euclidean profiles form
a special case of single-peaked and single-crossing profiles (see Sect. 2.3 for more
information on this), every obstruction to single-peakedness and every obstruction to
single-crossingness will automatically also form an obstruction to one-dimensional
Euclideanness. Now the question arises: “Are there any further obstructions to one-
dimensional Euclideanness?” Towhich Coombs (1964) answered back in 1964: “Yes,
there are!” (again, see Sect. 2.3 for more information). This immediately takes us to
another question: “Is there a characterization of one-dimensional Euclideanness in
terms of finitely many obstructions?” The answer to this second question is negative,
as we are going to show in this paper.

To this end, we construct an infinite sequence of preference profiles that satisfy two
crucial properties. First, none of these profiles is one-dimensional Euclidean. Secondly,
every profile just barely violates one-dimensional Euclideanness, as the deletion of an
arbitrary voter immediately makes the profile one-dimensional Euclidean. The second
property implies that each profile in the sequence is on the edge of beingEuclidean, and
that the reason for its non-Euclideannessmust lie in its overall structure. In other words
each of these infinitelymany profiles yields a separate obstruction for one-dimensional
Euclideanness, and this is exactly what we want to establish.
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The definition of the infinite profile sequence and the resulting analysis are quite
involved. Ironically, the complexity of our proof is a consequence of the very state-
ment we are going to prove. As part of our proof, we have to argue that the deletion of
an arbitrary voter from an arbitrary profile in the sequence yields a one-dimensional
Euclidean profile. Now if there were a characterization of one-dimensional Euclidean-
ness by finitely many obstructions, then this argument would be relatively easy to get
through: we could simply analyze the preference structure and show that the dele-
tion of any voter removes all obstructions. But unfortunately, such a characterization
does not exist. The only viable (and fairly tedious) approach is to explicitly specify
the corresponding Euclidean representations (one representation per deleted voter!)
and to prove by case distinctions that each such representation correctly encodes the
preferences of all the remaining voters.

Organization of the paper In Sect. 2 we summarize the central definitions, state useful
observations, and provide some examples. In Sect. 3 we formulate our main results in
Theorems 3.1 and 3.2, and we show how Theorem 3.2 follows from Theorem 3.1. The
five Sects. 4 through 8 present the long and technical proof of Theorem 3.1. Section9
completes the paper with a short discussion.

2 Definitions, notations, and examples

Let 1, . . . , m be m alternatives and let v1, . . . , vn be n voters. A preference profile
specifies the preference orderings of the voters, where voter vi ranks the alternatives
according to a strict linear order�i . For alternatives a and b, the relation a �i b means
that voter vi strictly prefers a to b. If the meaning is clear from the context, we will
sometimes simply write � instead of �i and suppress the dependence on i . A profile
with n voters and m alternatives will be called an n × m profile.

2.1 Single-peaked profiles

A linear ordering of the alternatives is single-peaked with respect to a fixed voter vi ,
if the preferences of vi taken along this ordering have a single local maximum. A
preference profile is single-peaked, if it allows an ordering of the alternatives that is
single-peaked with respect to every voter.

Note that for every single-peaked permutation π(1), π(2), . . . , π(m) of the alter-
natives, also the reverse permutation π(m), . . . , π(2), π(1) is single-peaked. The
following proposition states a characterization of single-peakedness in terms of finitely
many obstructions.

Proposition 2.1 (Ballester andHaeringer 2011)A preference profile is single-peaked,
if and only if it avoids the following two obstructions. The first obstruction is a 3 × 3
profile with alternatives a, b, c:

Voter v1: {b, c} �1 a
Voter v2: {a, c} �2 b
Voter v3: {a, b} �3 c
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The one-dimensional Euclidean domain: finitely… 413

The second obstruction is a 2 × 4 profile with alternatives a, b, c, d:

Voter v1: a �1 b �1 c and d �1 b
Voter v2: c �2 b �2 a and d �2 b

2.2 Single-crossing profiles

A linear ordering of the voters is single-crossing with respect to two alternatives a
and b, if the ordered list of voters can be partitioned into an initial piece and a final
piece such that all voters in the initial piece have the same relative ranking of a and b,
while all voters in the final piece rank them in the opposite way. A preference profile
is single-crossing, if it allows an ordering of the voters that is single-crossing with
respect to every possible pair of alternatives.

The following proposition states a characterization of single-crossingness in terms
of finitely many obstructions.

Proposition 2.2 (Bredereck et al. 2013) A preference profile is single-crossing, if and
only if it avoids the following two obstructions. The first obstruction is a 3× 6 profile
with (not necessarily distinct) alternatives a, b, c, d, e, f :

Voter v1: b �1 a and c �1 d and e �1 f
Voter v2: a �2 b and d �2 c and e �2 f
Voter v3: a �3 b and c �3 d and f �3 e

The second obstruction is a 4 × 4 profile with (not necessarily distinct) alternatives
a, b, c, d:

Voter v1: a �1 b and c �1 d
Voter v2: a �2 b and d �2 c
Voter v3: b �3 a and c �3 d
Voter v4: b �4 a and d �4 c

2.3 One-dimensional Euclidean profiles

Consider a common embedding of the voters and alternatives into the real number line,
that assigns to every alternative j a real number E[ j] and that assigns to every voter vi

a real number F[i]. A preference profile is one-dimensional Euclidean, if there exists
such a common Euclidean representation of the voters and alternatives, such that for
every voter vi and for every pair a and b of alternatives, a �i b holds if and only if
the distance from F[i] to E[a] is strictly smaller than the distance from F[i] to E[b].
In other words, small spatial distances from the point F[i] indicate strong preferences
of voter vi .

It is well-known (and easy to see) that every one-dimensional Euclidean profile
is simultaneously single-peaked and single-crossing: the left-to-right ordering of the
alternatives along the Euclidean representation is single-peaked, and the left-to-right
ordering of the voters along the Euclidean representation is single-crossing. Coombs
(1964, page 91) discusses a 16 × 6 preference profile that is both single-peaked and
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single-crossing, but fails to be one-dimensional Euclidean. The following example
contains the smallest profile known to us that has these intriguing properties.

Example 2.3 Consider the following 3 × 6 profile P (for the sake of readability, the
preference orders are simply listed left to right from most preferred to least preferred
alternative):

Voter v1: 3 2 1 4 5 6
Voter v2: 3 4 2 5 6 1
Voter v3: 5 4 3 6 2 1

This profile P is single-peaked with respect to the ordering 1, 2, 3, 4, 5, 6 of alter-
natives, and it is single-crossing with respect to the ordering v1, v2, v3 of voters.
Furthermore it can be shown by case distinctions that P is not one-dimensional
Euclidean.

As the profile in Example 2.3 is single-peaked and single-crossing, it does not con-
tain any of the obstructions listed in Propositions 2.1 and 2.2.Hence theremust be some
other obstruction contained in it, that is responsible for its non-Euclideanness. Exam-
ple 2.3 and the 16×6 profile of Coombs provide first indications that the obstructions
for one-dimensional Euclideanness might be complex and intricate to analyze.

The following two propositions state simple observations that will be used repeat-
edly in our arguments.

Proposition 2.4 Let a and b be two alternatives in a Euclidean embedding (E, F)

of some profile with E[a] < E[b]. Then voter vi prefers a to b if and only if F[i] <
1
2 (E[a] + E[b]), and he prefers b to a if and only if F[i] > 1

2 (E[a] + E[b]).
Proposition 2.5 Let a, b, c be three alternatives in a Euclidean embedding (E, F) of
some preference profile with E[a] < E[b] < E[c].
• If voter vi prefers a �i b, then he also prefers b �i c.
• If voter vi prefers c �i b, then he also prefers b �i a.

Finally,wemention that the (mathematical) literature onone-dimensionalEuclidean
preference profiles is scarce. Doignon and Falmagne (1994) and Knoblauch (2010)
design polynomial time algorithms for deciding whether a given preference profile
has a one-dimensional Euclidean representation. The approaches in Doignon and Fal-
magne (1994), Knoblauch (2010) are not purely combinatorial, as they are partially
based on linear programming formulations.

3 Statement of the main results

In this sectionwe formulate the two (closely related)main results of this paper. The first
result is technical and states the existence of infinitely many non-Euclidean profiles
that are minimal with respect to voter deletion.

Theorem 3.1 For any integer k ≥ 2, there exists a preference profile P∗
k with n = 2k

voters and m = 4k alternatives, such that the following holds.
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(a) Profile P∗
k is not one-dimensional Euclidean.

(b) Profile P∗
k is minimal in the following sense: the deletion of an arbitrary voter

from P∗
k yields a one-dimensional Euclidean profile.

The proof of Theorem 3.1 is long and will fill most of the rest of this paper. Here is
a quick overview of this proof: Sect. 4 describes the profiles P∗

k . Section5 shows that
every profileP∗

k satisfies property (a) in Theorem3.1, while the three Sects. 6 through 8
establish property (b). Section6 defines the underlying Euclidean representations,
Sect. 7 lists a number of technical auxiliary statements, and Sect. 8 establishes the
correctness of the Euclidean representations.

As an immediate consequence of Theorem 3.1, we derive our second main result
(which essentially repeats the title of the paper) in the following theorem.

Theorem 3.2 One-dimensional Euclidean preference profiles can not be character-
ized in terms of finitely many obstructions.

Proof Suppose for the sake of contradiction that such a characterization with finitely
many obstructions would exist. Let t denote the largest number of voters in any
obstruction, and consider a profile P∗

k from Theorem 3.1 with k ≥ t . As P∗
k is not

one-dimensional Euclidean by property (a), it must contain one of these finitely many
obstructions with at most t voters. Pick such an obstruction. As profile P∗

k contains
2k > t + 1 voters, one of its voters is not involved in the obstruction. If we delete
this voter, the resulting profile will still contain the obstruction; hence it is not one-
dimensional Euclidean, which contradicts property (b). ��

4 Definition of the profiles

In this sectionwe start the proof of Theorem3.1 by defining the underlying profilesP∗
k .

The properties (a) and (b) stated in Theorem 3.1 will be established in the following
sections.

We consider n = 2k voters called v1, v2, . . . , v2k together withm = 4k alternatives
called 1, 2, 3, . . . , 4k. The preference orderings of the voters will be pasted together
from the following preference pieces Xi , Yi , Zi with 1 ≤ i ≤ k.

Xi := 2k + 2i − 2 � 2k + 2i − 3 � 2k + 2i − 4 � · · · � 2i + 2

Yi := 2i − 2 � 2i − 3 � 2i − 4 � · · · � 1

Zi := 2k + 2i + 1 � 2k + 2i + 2 � 2k + 2i + 3 � · · · � 4k

Note that for every i = 1, . . . , k, the corresponding three pieces Xi , Yi , Zi cover
contiguous intervals of respectively 2k − 3, 2i − 2, 2k − 2i alternatives. Hence these
three pieces jointly cover 4k − 5 of the alternatives, and only the five alternatives in
the set

Ui = {2i − 1, 2i, 2i + 1} ∪ {2k + 2i − 1, 2k + 2i}

remain uncovered. Note furthermore that the pieces Y1 and Zk are empty. Now let
us define the preference orderings of the voters. The two voters v2i−1 and v2i always
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form a couple with fairly similar preferences. For 1 ≤ i ≤ k − 1, these voters v2i−1
and v2i have the following preferences:

v2i−1 : Xi � 2i + 1 � 2k + 2i − 1 � 2i � 2i − 1 � 2k + 2i � Yi � Zi (1a)

v2i : Xi � 2k + 2i − 1 � 2k + 2i � 2i + 1 � 2i � 2i − 1 � Yi � Zi . (1b)

Note that the voters v2i−1 and v2i both rank the three alternatives 2i + 1, 2i , 2i − 1 in
Ui in the same decreasing order, with the two other alternatives 2k +2i −1 and 2k +2i
shuffled into that order. The last two voters v2k−1 and v2k are defined separately:

v2k−1 : Xk � 2k + 1 � 4k − 1 � 2k � 2k − 1 � 4k � Yk (2a)

v2k : Xk � 2k + 1 � 2k � · · · · · · � 3 � 2 � 4k − 1 � 4k � 1 (2b)

Since piece Zk is empty, the preferences of voter v2k−1 in (2a) actually run in parallel
with the preferences of the other odd-index voters v2i−1 with 1 ≤ i ≤ k − 1 in
(1a). The last voter v2k , however, behaves very differently from the other even-index
voters: on top of his preference list are the alternatives in piece Xk , followed by an
intermingling of the alternatives in piece Yk and set Uk (first the alternatives 2k +
1, . . . , 2 in decreasing order, and then the three alternatives 4k − 1, 4k, and 1).

Example 4.1 For k = 4, the preference profile P∗
4 has n = 8 voters and m = 16

alternatives and looks as follows (all preference orders are listed left to right from
most preferred to least preferred alternative):

v1 : 8 7 6 5 4 3 9 2 1 10 11 12 13 14 15 16

v2 : 8 7 6 5 4 9 10 3 2 1 11 12 13 14 15 16

v3 : 10 9 8 7 6 5 11 4 3 12 2 1 13 14 15 16

v4 : 10 9 8 7 6 11 12 5 4 3 2 1 13 14 15 16

v5 : 12 11 10 9 8 7 13 6 5 14 4 3 2 1 15 16

v6 : 12 11 10 9 8 13 14 7 6 5 4 3 2 1 15 16

v7 : 14 13 12 11 10 9 15 8 7 16 6 5 4 3 2 1
v8 : 14 13 12 11 10 9 8 7 6 5 4 3 2 15 16 1

The alternatives in the five leftmost columns form the pieces Xi . In the first seven
rows, the five middle columns correspond to the sets Ui , while the remaining six
columns belong to pieces Yi and Zi . The last row illustrates the extraordinary behavior
of the last voter v8. ��

5 The profiles are not Euclidean

In this section, we will discuss single-crossing, single-peaked and one-dimensional
Euclidean properties of the profilesP∗

k . First, it can readily be seen that every profileP∗
k

with k ≥ 2 is single-crossingwith respect to the ordering v1, v2, . . . , v2k−2, v2k, v2k−1
of the voters (that is, the natural ordering of voters by increasing index, but with the
last two voters v2k−1 and v2k swapped). As this single-crossing property is of no
relevance for our further considerations, the simple proof is omitted. Next, let us turn
to single-peakedness.
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Lemma 5.1 For k ≥ 2, the profile P∗
k is single-peaked. Furthermore, the only two

single-peaked orderings of the alternatives are the increasing ordering 1, 2, 3, . . . , 4k
and the decreasing ordering 4k, . . . , 3, 2, 1.

Proof Every voter v2i−1 and v2i with 1 ≤ i ≤ k has alternative 2k + 2i − 2 as his
top preference. Furthermore, he ranks the small alternatives 1, 2, . . . , 2k + 2i − 2
decreasingly and he ranks the large alternatives 2k + 2i − 2, 2k + 2i − 1, . . . , 4k
increasingly. Hence P∗

k indeed is single-peaked with respect to 1, 2, 3, . . . , 4k and
4k, . . . , 3, 2, 1.

Next consider an arbitrary single-peaked permutation π(1), π(2), . . . , π(4k) of the
alternatives. Since 4k and 1 are the least preferred choices of voters v1 and v2k , these
two alternatives must be extremal in the single-peaked ordering; by symmetry we will
assume π(1) = 1 and π(4k) = 4k.

• Voter v1 ranks 1 � 2k +2 � 2k +3 � · · · � 4k, without other alternatives ranked
in between. This implies π(x) = x for 2k + 2 ≤ x ≤ 4k.

• Voter v2k−1 ranks 2k + 2 � 2k + 1 � 2k � · · · � 3 � 2 � 1. This now implies
π(x) = x also for the alternatives x with 1 ≤ x ≤ 2k + 1.

Summarizing, we have π(x) = x for all x , and this completes the proof. ��
The following lemma shows that every profile P∗

k satisfies property (a) of Theo-
rem 3.1.

Lemma 5.2 For k ≥ 2, the profile P∗
k is not one-dimensional Euclidean.

Proof We suppose for the sake of contradiction that profile P∗
k is one-dimensional

Euclidean. Let F[ j] for j = 1, . . . , 2k and E[i] for i = 1, . . . , 4k denote a corre-
sponding Euclidean representation of the voters and alternatives. As the Euclidean
representation induces a single-peaked ordering of the alternatives, we will assume by
Lemma 5.1 that the alternatives are embedded in increasing order with

E[1] < E[2] < E[3] < · · · < E[4k − 1] < E[4k]. (3)

Next, we claim that in any Euclidean representation under (3), the embedded alterna-
tives satisfy the following system of inequalities:

E[2k + 2i − 1] + E[2i] < E[2k + 2i] + E[2i − 1] for 1 ≤ i ≤ k (4a)

E[2k + 2i] + E[2i + 1] < E[2k + 2i − 1] + E[2i + 2] for 1 ≤ i ≤ k − 1
(4b)

E[4k] + E[1] < E[4k − 1] + E[2] (4c)

The correctness of this system can be seen as follows. For each i = 1, . . . , k, voter
v2i−1 ranks 2k + 2i − 1 � 2i and 2i − 1 � 2k + 2i , which by Proposition 2.4 yields

1

2
(E[2k + 2i − 1] + E[2i]) < F[2i − 1] <

1

2
(E[2k + 2i] + E[2i − 1]) ,
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which in turn implies (4a). Similarly, for i = 1, . . . , k − 1 voter v2i ranks 2i + 2 �
2k + 2i − 1 and 2k + 2i � 2i + 1 which leads to (4b). Finally, voter v2k ranks 2 �
4k − 1 and 4k � 1, which implies (4c). This establishes correctness of the system
(4a)–(4c). By adding up all the inequalities in (4a)–(4c), we derive the contradiction∑4k

x=1 E[x] <
∑4k

x=1 E[x]. ��

6 Definition of the Euclidean representations

In this section, we fix an integer s with 1 ≤ s ≤ 2k and construct corresponding
Euclidean embeddings Fs and Es of the voters and alternatives in profile P∗

k . We start
by defining the Euclidean embedding Es of the alternatives.We anchor the embedding
by placing the first alternative at the position

Es[1] = 0. (5)

The remaining values Es[2], . . . , Es[4k] are described recursively in equations (6)–
(11) below. For 1 ≤ i ≤ k − 1 we set

Es[2i + 1] − Es[2i] = 2 (6)

and for 1 ≤ i ≤ k we set

Es[2i] − Es[2i − 1] = (4i − 2s − 3 mod 4k). (7)

Note that the relations (5)–(7) determine Es[x] for all x ≤ 2k. For 1 ≤ i ≤ k − 1 we
set

Es[2k + 2i − 1] − Es[2k + 2i − 2]
=

{
Es[2k + 2i − 3] − Es[2i + 1] + 2 if s 	= 2i − 1

Es[2k + 2i − 3] − Es[2i + 2] + 2 if s = 2i − 1.
(8)

For 1 ≤ i ≤ k − 1 we define

Es[2k + 2i] − Es[2k + 2i − 1] = (4i − 2s − 1 mod 4k). (9)

Note that the relations (8) and (9) determine Es[x] for all x with 2k +1 ≤ x ≤ 4k −2.
Finally, we determine the Euclidean embedding of the last two alternatives by defining

Es[4k − 1] − Es[4k − 2] =
{

Es[4k − 3] − Es[2] + 2 if s 	= 2k

Es[4k − 3] − Es[2k + 1] + 2 if s = 2k
(10)

and

Es[4k] − Es[4k − 1] =
{

Es[2] − Es[1] − 2 if s 	= 2k

Es[2k + 1] − Es[2k − 1] if s = 2k.
(11)
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Table 1 This table is discussed in Example 6.2 and illustrates the Euclidean embedding of the alternatives
in profile P∗

4

d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15 d16

E1 15 2 3 2 7 2 11 13 1 35 5 62 9 145 13

E2 13 2 1 2 5 2 9 12 15 30 3 68 7 151 11

E3 11 2 15 2 3 2 7 24 13 35 1 81 5 187 9

E4 9 2 13 2 1 2 5 20 11 30 15 68 3 171 7

E5 7 2 11 2 15 2 3 32 9 54 13 97 1 242 5

E6 5 2 9 2 13 2 1 28 7 46 11 84 15 207 3

E7 3 2 7 2 11 2 15 24 5 54 9 100 13 233 1

E8 1 2 5 2 9 2 13 20 3 46 7 84 11 142 33

Every row is labeled by a corresponding embedding Es . If a column is labeled by di , then its entries indicate
the Euclidean distances Es [i] − Es [i − 1] between the two consecutively embedded alternatives i − 1 and
i

This completes the description of the Euclidean embedding Es of the alternatives.
Note that Es[x] is integer for all alternatives x .

Lemma 6.1 The embedding Es satisfies Es[x] < Es[y] for all alternatives x and y
with 1 ≤ x < y ≤ 4k. In other words, Es satisfies the chain of inequalities in (3).

Proof The statement follows from (5)–(11) by an easy inductive argument. The right
hand sides in (6), (7) and (9) are all positive. The right hand sides in (8) and (10) can
be seen to be positive by induction. Finally for i = 1 and s 	= 2k, the right hand side
of (7) is a positive odd integer strictly greater than 1; this yields Es[2] ≥ 3 so that also
the right hand side Es[2] − Es[1] − 2 in (11) is positive. ��
Example 6.2 We continue our discussion of the profile P∗

4 from Example 4.1. For
every embedding Es with 1 ≤ s ≤ 8, the corresponding row in Table1 lists the
distances di = Es[i] − Es[i − 1] between pairs of consecutive alternatives according
to formulas (6)–(11). For instance the crossing of the row E5 and the column labeled
d4 contains an entry with value 11; this means that in the Euclidean representation E5,
the distance E5[4] − E5[3] between the embedded alternatives 3 and 4 equals 11. As
Es[1] = 0, we see that for 2 ≤ i ≤ 4k the value Es[i] then equals d2+d3+· · ·+di . For
instance in E5, alternative 4 will be embedded in the point E5[4] = 7+ 2+ 11 = 20.

The reader will notice that part of the data in Table1 carries a periodic structure.
For instance every even-indexed column (except the last one) contains a circular shift
of the eight numbers 1, 3, 5, 7, 9, 11, 13, 15 presented in boldface, which results
from formulas (7) and (9). Furthermore, all the entries in the three columns d3, d5,
d7 have the same value 2 according to (6). The numbers in other parts of the table
look somewhat irregular and chaotic, which is caused by formula (8). For us, the most
convenient way of working with this data is via the recursive definitions (5)–(11). ��

Now let us turn to the Euclidean embedding of the voters. The Euclidean position
Fs[ j] of every voter v j will be the average of exactly four embedded alternatives. For
1 ≤ i ≤ k − 1 we define
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Fs[2i − 1] = 1

4
(Es[2i − 1] + Es[2i] + Es[2k + 2i − 1] + Es[2k + 2i]) . (12)

Similarly, for 1 ≤ i ≤ k − 1 we define

Fs[2i] = 1

4
(Es[2i + 1] + Es[2i + 2] + Es[2k + 2i − 1] + Es[2k + 2i]) . (13)

If s 	= 2k then voter v2k−1 is embedded according to (12), while for s = 2k it is
embedded in a slightly different way. More precisely, we set

Fs[2k − 1] =
{ 1

4 (Es[2k − 1] + Es[2k] + Es[4k − 1] + Es[4k]) if s 	= 2k

1
4 (Es[2k − 2] + Es[2k + 1] + Es[4k − 1] + Es[4k]) if s = 2k.

(14)
Finally, the very last voter v2k is embedded in

Fs[2k] = 1

4
(Es[1] + Es[2] + Es[4k − 1] + Es[4k]) . (15)

Equations (12)–(15) define Fs[ j] for all voters v j with 1 ≤ j ≤ 2k. This completes
the description of the Euclidean representation Fs of the voters.

We note that the location Fs[s] of voter vs has been specified, but will be irrelevant
for our further arguments. We will show that Fs and Es constitute a correct Euclidean
representation for the 2k − 1 voters in {v1, . . . , v2k}\{vs} together with all 4k alter-
natives 1, 2, . . . , 4k. In other words, the deletion of voter vs from profile P∗

k yields
a one-dimensional Euclidean profile, which completes the proof of property (b) in
Theorem 3.1. To this end, the following lemma will be established in Sect. 8.

Lemma 6.3 For all r and s with 1 ≤ r 	= s ≤ 2k, the Euclidean representation Es

and Fs correctly represents the preferences of voter vr .

The correctness of Lemma 6.3 for the small profiles P∗
k with k ∈ {2, 3, 4} can

easily be verified by a computer program (or by a human prover through tedious case
distinctions). Hence we will from now on assume that

k ≥ 5. (16)

This assumption will considerably shorten and simplify our arguments. Note further-
more that the proof of ourmain result in Theorem3.2 is not touched by this assumption,
as it builds on the profiles P∗

k for which k is large and tends to infinity.

7 A collection of technical results

In this section we state five technical lemmas. Lemmas 7.1 and 7.2 summarize a
number of useful identities, and will serve as reference tables in our later analysis.
Lemmas 7.3 through 7.5 state important inequalities that will be central to our proofs.
Throughout we assume that k ≥ 5 according to (16).
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Lemma 7.1 For 1 ≤ s ≤ 2k, the Euclidean embedding Es satisfies the following.

Es[2] = 4k − 2s + 1 (17a)

Es[3] = 4k − 2s + 3 (17b)

Es[4] =
{
4k − 4s + 8 if s ∈ {1, 2}
8k − 4s + 8 if s ≥ 3.

(17c)

Furthermore for s ∈ {1, 2}, the embedding Es satisfies the following.

Es[2k − 2] − Es[2k − 3] = 4k − 2s − 7 (18a)

Es[2k − 4] − Es[2k − 5] = 4k − 2s − 11 (18b)

Proof These statements follow by straightforward calculations from (5)–(9).

Lemma 7.2 If (a) 1 ≤ i ≤ k − 1 and s 	= 2i − 1, or if (b) i = k and s /∈ {2k − 1, 2k},
the following holds:

Es[2k + 2i] − Es[2k + 2i − 1] = Es[2i] − Es[2i − 1] + 2 (19a)

If (c) 1 ≤ i ≤ k − 1 and s 	= 2i , the following holds:

Es[2k + 2i] − Es[2k + 2i − 1] = Es[2i + 2] − Es[2i + 1] − 2 (19b)

Proof We distinguish five cases. The first case assumes s = 2i − 1. In the setting of
the lemma, this case can only occur under (c) with 1 ≤ i ≤ k − 1. Then (9) yields
Es[2k + 2i] − Es[2k + 2i − 1] = 1, while (7) yields Es[2i + 2] − Es[2i + 1] = 3.
This implies the desired equality (19b) for this first case.

The second case assumes s = 2i . In the settingof the lemma, this case canonly occur
under (a) with 1 ≤ i ≤ k −1. Then (9) yields Es[2k +2i]− Es[2k +2i −1] = 4k −1,
while (7) yields Es[2i]− Es[2i −1] = 4k −3. This implies the desired equality (19a).

The third case assumes i = k. In the setting of the lemma, this case can only occur
under (b) with 1 ≤ s ≤ 2k − 2. Then (11) and (17a) yield Es[4k] − Es[4k − 1] =
4k − 2s − 1, while (7) yields Es[2k] − Es[2k − 1] = 4k − 2s − 3. This implies the
desired equality (19a).

In the remaining cases we always have s /∈ {2i − 1, 2i}. The fourth case assumes
that 1 ≤ i ≤ k − 1 and that s = 2� − 1 is odd, where 1 ≤ � ≤ k and � 	= i . In the
setting of the lemma, this case can only occur under (a) and (c). Then (9) yields

Es[2k + 2i] − Es[2k + 2i − 1] = 4(i − �) + 1 mod 4k, (20)

while (7) yields Es[2i] − Es[2i − 1] = 4(i − �) − 1 mod 4k. Since i − � 	= 0, these
two equations together yield (19a). Furthermore, (7) yields Es[2i +2]− Es[2i +1] =
4(i − �) + 3 mod 4k, which together with (20) gives (19b).
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The fifth case assumes that 1 ≤ i ≤ k −1 and that s = 2� is even, where 1 ≤ � ≤ k
and � 	= i . In the setting of the lemma, this case can only occur under (a) and (c). Then
(9) yields

Es[2k + 2i] − Es[2k + 2i − 1] = 4(i − �) − 1 mod 4k, (21)

while (7) yields Es[2i] − Es[2i − 1] = 4(i − �) − 3 mod 4k. Since i − � 	= 0, these
two statements together imply (19a). Finally, (7) yields Es[2i + 2] − Es[2i + 1] =
4(i − �)+1 mod 4k. As i − � 	= 0, this equation together with (21) yields (19b). This
completes the proof. ��
Lemma 7.3 For all alternatives x and y with 1 ≤ y ≤ x ≤ 4k, the embedding Es

satisfies the inequality Es[x] − Es[y] ≥ x − y.

Proof This follows from Lemma 6.1 and the integrality of Es . ��
Lemma 7.4 All i and s with 1 ≤ i ≤ 2k − 1 and 1 ≤ s ≤ 2k satisfy the following
inequality.

Es[2i + 1] − Es[2i] ≥ 2. (22)

Proof For 1 ≤ i ≤ k − 1, this follows directly from (6). For k ≤ i ≤ 2k − 1, this
follows from (8) and (10) in combination with Lemma 7.3. ��
Lemma 7.5 All i and s with 1 ≤ i ≤ k − 1 and 1 ≤ s ≤ 2k satisfy the following
inequality.

Es[2k + 2i − 1] ≥ Es[2k] + Es[2i] + 2. (23)

Proof The proof is done by induction on i = 1, . . . , k − 1. For the inductive base
case i = 1 we distinguish two subcases on the value of s. The first subcase assumes
s ∈ {1, 2}. Then (8) and k ≥ 5, together with (6), (17a), (18a), and (18b) yield

Es[2k + 2i − 1] − Es[2k] ≥ Es[2k − 1] − Es[4] + 2

≥ (Es[2k − 1] − Es[2k − 2]) + (Es[2k − 2] − Es[2k − 3])
+ (Es[2k − 3] − Es[2k − 4]) + (Es[2k − 4] − Es[2k − 5]) + 2

= 2 + (4k − 2s − 7) + 2 + (4k − 2s − 11) + 2

= 8k − 4s − 12 > (4k − 2s + 1) + 2 = Es[2] + 2.

The second subcase assumes s ≥ 3. Then the first line of (8) together with k ≥ 5
(17a), (17b) and (17c) yields

Es[2k + 2i − 1] − Es[2k] = Es[2k − 1] − Es[3] + 2

≥ Es[4]−Es[3]+2 = (8k−4s+8) − (4k−2s + 3) + 2

= 4k − 2s + 7 > Es[2] + 2.

123



The one-dimensional Euclidean domain: finitely… 423

Summarizing, in both subcases we have established the desired (23). This completes
the analysis of the inductive base case i = 1. Next, let us state the inductive assumption
as

Es[2k + 2i − 3] ≥ Es[2k] + Es[2i − 2] + 2. (24)

In the inductive step, we will use the following consequence of (8):

Es[2k + 2i − 1] − Es[2k + 2i − 2] ≥ Es[2k + 2i − 3] − Es[2i + 2] + 2. (25)

Furthermore, by (9) the left hand side of the following inequality equals (4i − 2s −
5 mod 4k), while by (7) its right hand side equals (4i − 2s − 3 mod 4k) − 2. This
implies

Es[2k + 2i − 2] − Es[2k + 2i − 3] ≥ Es[2i] − Es[2i − 1] − 2. (26)

Adding up (24), (25) and (26), and rearranging and simplifying the resulting inequality
yields

Es[2k + 2i − 1] − Es[2k] − Es[2i] − 2

≥ Es[2k + 2i − 3] − Es[2i + 2] + Es[2i − 2] − Es[2i − 1]
≥ (2k + 2i − 3) − (2i + 2) − 2 = 2k − 7 > 0.

Here we used Lemma 7.3 to bound Es[2k + 2i − 3] − Es[2i + 2], and we used (6)
to get rid of Es[2i − 2] − Es[2i − 1]. As this implies (23), the inductive argument is
complete. ��

8 Correctness of the Euclidean representations

In this section we prove Lemma 6.3. Hence, let us fix two arbitrary voters vr and vs

with r 	= s. We recall that by Lemma 6.1 the Euclidean representation Es embeds the
alternatives 1, . . . , 4k in increasing order from left to right. Our goal is to show that
any two alternatives x and y with x �r y that are consecutive in the preference order
of voter vr satisfy

2Fs[r ] < Es[x] + Es[y] whenever x < y (27a)

2Fs[r ] > Es[x] + Es[y] whenever x > y. (27b)

By our construction, all preference orders in profile P∗
k contain long monotone

(increasing or decreasing) runs of alternatives. By Proposition 2.5 it will therefore
be sufficient to establish (27a) and (27b) at the few turning points where the prefer-
ence order of voter vr changes its monotonicity behavior. We stress that the first pair
of alternatives in every preference order forms a turning point by default.
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The remaining argument is split into four cases that will be handled in the following
four sections. Sections8.1 and 8.2 treat the cases with odd r , while Sects. 8.3 and 8.4
treat the cases with even r .

8.1 The cases with odd r (with a single exception)

In this section we consider the cases with odd r = 2i − 1 for 1 ≤ i ≤ k, and with
s 	= 2i − 1. If i = k (and hence r = 2k − 1) then we additionally assume s 	= 2k;
the remaining case with i = k and s = 2k will be settled in the next section. Note
that in the cases under current consideration, the value Fs[2i − 1] is given by (12).
Furthermore (19a) in Lemma 7.2 yields

Es[2k + 2i] + Es[2i − 1] = Es[2i] + Es[2k + 2i − 1] + 2. (28)

In order to prove (27a) and (27b) for the preference orders in (1a) and (2a), it is
sufficient to establish the following six inequalities for the turning points.

2Fs[2i − 1] > Es[2k + 2i − 2] + Es[2k + 2i − 3] (29a)

2Fs[2i − 1] < Es[2i + 1] + Es[2k + 2i − 1] (29b)

2Fs[2i − 1] > Es[2k + 2i − 1] + Es[2i] (29c)

2Fs[2i − 1] < Es[2i − 1] + Es[2k + 2i] (29d)

2Fs[2i − 1] > Es[2k + 2i] + Es[2i − 2] (29e)

2Fs[2i − 1] < Es[1] + Es[2k + 2i + 1] (29f)

Note that for i = 1 the inequality in (29e) vanishes as piece Y1 is empty, and that
for i = k inequality (29f) vanishes as piece Zk is empty. We use (12) or the first line
of (14) together with (28), and rewrite the common left hand side of all inequalities
(29a)–(29f) as

2Fs[2i − 1] = 1

2
(Es[2i − 1] + Es[2i] + Es[2k + 2i − 1] + Es[2k + 2i])

= Es[2i] + Es[2k + 2i − 1] + 1 = Es[2i − 1] + Es[2k + 2i] − 1.
(30)

For (29a), we distinguish two subcases. The first subcase assumes i ≤ k − 1. We
compute by using (8), (30) with s 	= 2i − 1, and (6) that

2Fs[2i − 1] − Es[2k + 2i − 2] − Es[2k + 2i − 3]
= (Es[2i] + Es[2k + 2i − 1] + 1) − Es[2k + 2i − 2] − Es[2k + 2i − 3]
= Es[2i] + 1 − Es[2i + 1] + 2 = 1 > 0.
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The second subcase deals with the remaining case i = k. We use (30), the first line in
(10), and Lemma 6.1 to compute

2Fs[2i − 1] − Es[2k + 2i − 2] − Es[2k + 2i − 3]
= (Es[2k] + Es[4k − 1] + 1) − Es[4k − 2] − Es[4k − 3]
= (Es[2k] + 1) + (−Es[2] + 2) = (Es[2k] − Es[2]) + 3 > 0.

For (29b), we compute by using (22) and (30) that

2Fs[2i − 1] − Es[2i + 1] − Es[2k + 2i − 1]
= (Es[2i] + Es[2k + 2i − 1] + 1) − Es[2i + 1] − Es[2k + 2i − 1] < 0.

For (29c), we compute by using (30) that

2Fs[2i − 1] − Es[2k + 2i − 1] − Es[2i]
= (Es[2i] + Es[2k + 2i − 1] + 1) − Es[2k + 2i − 1] − Es[2i] = 1 > 0.

For (29d), we compute by using (30) that

2Fs[2i − 1] − Es[2i − 1] − Es[2k + 2i]
= (Es[2i − 1] + Es[2k + 2i] − 1) − Es[2i − 1] − Es[2k + 2i] = − 1 < 0.

For (29e) with i ≥ 2, we compute by using (6) and (30) that

2Fs[2i − 1] − Es[2k + 2i] − Es[2i − 2]
= (Es[2i − 1] + Es[2k + 2i] − 1) − Es[2k + 2i] − Es[2i − 2] = 1 > 0.

It remains to prove inequality (29f) which takes more effort. Since (29f) vanishes
for i = k, we may assume i ≤ k − 1. We first use (5) and (30) to derive

2Fs[2i − 1] − Es[1] − Es[2k + 2i + 1]
= Es[2i − 1] − 1 − (Es[2k + 2i + 1] − Es[2k + 2i]). (31)

Our goal is to show that the value in (31) is strictly negative, and for this we branch into
three subcases. The first subcase assumes i ≤ k − 2. We use (8), (23), and Lemma 6.1
to compute

Es[2i − 1] − 1 − (Es[2k + 2i + 1] − Es[2k + 2i])
≤ Es[2i − 1] − 1 − (Es[2k + 2i − 1] − Es[2i + 4] + 2)

≤ Es[2i − 1] − 3 + Es[2i + 4] − (Es[2k] + Es[2i] + 2)

= (Es[2i + 4] − Es[2k]) + (Es[2i − 1] − Es[2i]) − 5 < 0.
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The second subcase assumes i = k −1 and s 	= 2k. We use (10), (23), and Lemma 6.1
to compute

Es[2i − 1] − 1 − (Es[2k + 2i + 1] − Es[2k + 2i])
= Es[2k − 3] − 1 − (Es[4k − 1] − Es[4k − 2])
= Es[2k − 3] − 1 − (Es[4k − 3] − Es[2] + 2)

≤ Es[2k − 3] − 3 + Es[2] − (Es[2k] + Es[2k − 2] + 2)

= (Es[2k − 3] − Es[2k]) + (Es[2] − Es[2k − 2]) − 5 < 0.

The third and last subcase assumes i = k − 1 and s = 2k. We use the second line of
(10), the first line of (8), inequality (23), Eq. (6), and Lemma 6.1 to compute

Es[2i − 1] − 1 − (Es[2k + 2i + 1] − Es[2k + 2i])
= Es[2k − 3] − 1 − (Es[4k − 1] − Es[4k − 2])
= Es[2k − 3] − 1 − (Es[4k − 3] − Es[2k + 1] + 2)

= Es[2k − 3] − 3 + Es[2k + 1] − (Es[4k − 4] + Es[4k − 5] − Es[2k − 1] + 2)

≤ Es[2k − 3] − 5 + Es[2k + 1] − Es[4k − 4]
+ Es[2k − 1] − (Es[2k] + Es[2k − 4] + 2)

= (Es[2k + 1] − Es[4k − 4]) + (Es[2k − 1] − Es[2k]) − 5 < 0.

As (31) is strictly negative in each of the three subcases, the proof of (29f) is complete.
The Euclidean representation Es and Fs correctly represents the preferences of voter
vr .

8.2 The exceptional case with odd r

In this section we consider the exceptional case i = k (and hence r = 2k − 1) under
s = 2k, which has been left open in the preceding section. In this exceptional case,
the embedding Fs[2k −1] is given by the second option in formula (14). Furthermore,
(6) and (11) yield

Es[4k] − Es[4k − 1] = Es[2k + 1] − Es[2k − 2] − 2.

Altogether this leads to

2Fs[2k − 1] = 1

2
(Es[2k − 2] + Es[2k + 1] + Es[4k − 1] + Es[4k])

= Es[2k − 2] + Es[4k] + 1 = Es[2k + 1] + Es[4k − 1] − 1. (32)

As inequality (29f) vanishes for i = k, our goal in this section is to establish the five
inequalities (29a)–(29e) for i = k and s = 2k. For (29a), we compute by using (10)
and (32) that
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2Fs[2k − 1] − Es[4k − 2] − Es[4k − 3]
= (Es[2k + 1] + Es[4k − 1] − 1) − Es[4k − 2] − Es[4k − 3]
= Es[2k + 1] − Es[4k − 3] − 1 + (Es[4k − 3] − Es[2k + 1] + 2) = 1 > 0.

For (29b), we compute by using (32) that

2Fs[2k − 1] − Es[2k + 1] − Es[4k − 1]
= (Es[2k + 1] + Es[4k − 1] − 1) − Es[2k + 1] − Es[4k − 1] = − 1 < 0.

For (29c), we compute by using (22) and (32) that

2Fs[2k − 1] − Es[4k − 1] − Es[2k]
= (Es[2k + 1] + Es[4k − 1] − 1) − Es[4k − 1] − Es[2k] > 0.

For (29d), we compute by using (6) and (32) that

2Fs[2k − 1] − Es[2k − 1] − Es[4k]
= (Es[2k − 2] + Es[4k] + 1) − Es[2k − 1] − Es[4k] = − 1 < 0.

For (29e), we compute by using (32) that

2Fs[2k − 1] − Es[4k] − Es[2k − 2]
= (Es[2k − 2] + Es[4k] + 1) − Es[4k] − Es[2k − 2] = 1 > 0.

This completes the analysis of the exceptional case with odd r . Also in this case, the
representation Es and Fs correctly represents the preferences of the considered voter.

8.3 The cases with even r (with a single exception)

In this section we consider the cases with even r = 2i for 1 ≤ i ≤ k − 1, and with
s 	= 2i . The remaining case r = 2k will be settled in the next section. Note that in
the cases under consideration, the value Fs[2i] is given by (13). Furthermore (19b) in
Lemma 7.2 yields

Es[2i + 1] + Es[2k + 2i] = Es[2i + 2] + Es[2k + 2i − 1] − 2. (33)

In order to prove (27a) and (27b) for the preference orders in (1b), it is sufficient to
establish the following four inequalities for the turning points.

2Fs[2i] > Es[2k + 2i − 2] + Es[2k + 2i − 3] (34a)

2Fs[2i] < Es[2i + 2] + Es[2k + 2i − 1] (34b)

2Fs[2i] > Es[2k + 2i] + Es[2i + 1] (34c)

2Fs[2i] < Es[1] + Es[2k + 2i + 1] (34d)
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We use the definition of Fs[2i] in (13) together with (33) to rewrite the common left
hand side of all inequalities (34a)–(34d) as

2Fs[2i] = 1

2
(Es[2i + 1] + Es[2i + 2] + Es[2k + 2i − 1] + Es[2k + 2i])

= Es[2i + 1] + Es[2k + 2i] + 1 = Es[2i + 2] + Es[2k + 2i − 1] − 1.
(35)

For (34a), we compute by using (8) and (35) that

2Fs[2i] − Es[2k + 2i − 2] − Es[2k + 2i − 3]
= (Es[2i + 2] + Es[2k + 2i − 1] − 1) − Es[2k + 2i − 2] − Es[2k + 2i − 3]
≥ Es[2i + 2]−Es[2k + 2i − 3]−1+(Es[2k+2i −3]−Es[2i +2]+2) = 1 > 0.

For (34b), we compute by using (35) that

2Fs[2i] − Es[2i + 2] − Es[2k + 2i − 1]
= (Es[2i +2]+Es[2k+2i −1]−1)−Es[2i + 2] − Es[2k + 2i − 1] = −1 < 0.

For (34c), we compute by using (35) that

2Fs[2i] − Es[2k + 2i] − Es[2i + 1]
= (Es[2i + 1] + Es[2k + 2i] + 1) − Es[2k + 2i] − Es[2i + 1] = 1 > 0.

It remains to prove inequality (34d) which takes a considerable amount of work.We
branch into three subcases. The first subcase assumes 1 ≤ i ≤ k −2. Then Lemma 6.1
implies Es[2i + 4] ≤ Es[2k]. We use (5), (6), (8), (23) and (35) to derive

2Fs[2i] − Es[1] − Es[2k + 2i + 1]
= (Es[2i + 1] + Es[2k + 2i] + 1) − Es[2k + 2i + 1]
≤ Es[2i + 1] + 1 − (Es[2k + 2i − 1] − Es[2i + 4] + 2)

≤ Es[2i + 1] + Es[2i + 4] − 1 − (Es[2k] + Es[2i] + 2)

= Es[2i + 4] − Es[2k] − 1 < 0.

The second subcase assumes i = k −1 and s 	= 2k. For proving (34d), we compute
by using (5), (6), (10), (23) and (35) that

2Fs[2k − 2] − Es[1] − Es[4k − 1]
= (Es[2k − 1] + Es[4k − 2] + 1) − Es[4k − 1]
= Es[2k − 1] + 1 − (Es[4k − 3] − Es[2] + 2)

≤ Es[2k − 1] + Es[2] − 1 − (Es[2k] + Es[2k − 2] + 2)

= Es[2] − Es[2k] − 1 < 0.
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The third and last subcase finally assumes i = k − 1 and s = 2k. We start the anal-
ysis by deriving a number of auxiliary equations and inequalities. First we determine
Es[3] = 3 from (17b), and compute by using (8) and (6) that

Es[2k + 1]−Es[2k − 2]
= (Es[2k + 1]−Es[2k])+(Es[2k] − Es[2k − 1]) + (Es[2k − 1] − Es[2k − 2])
= (Es[2k − 1] − Es[3] + 2) + (Es[2k] − Es[2k − 1]) + 2 = Es[2k] + 1.

(36)

Next, we use (19b) to derive

Es[2k − 2] − Es[2k − 3] − 2 = Es[4k − 4] − Es[4k − 5]. (37)

We express Es[4k − 3] once by the first line of (8) and once by the second line of
(10), which by equating yields

Es[4k − 4] + Es[4k − 5] − Es[2k − 1] + 2

= Es[2k + 1] − 2 + Es[4k − 1] − Es[4k − 2]. (38)

Next, we add up (36)–(38) and rearrange the result to derive

Es[2k − 1] + Es[4k − 2] − Es[4k − 1] + 1

= 2Es[2k − 1] + Es[2k] + Es[2k − 3] − 2Es[4k − 5]. (39)

We compute Es[2k] − Es[2k − 1] = 4k − 3 and Es[2k − 2] − Es[2k − 3] = 4k − 7
from (7), and use these together with (6) to get

Es[2k − 1] − Es[2k − 4] + Es[2k − 1] − Es[2k]
= (Es[2k − 2] + 2) − (Es[2k − 3] − 2) − (Es[2k] − Es[2k − 1])
= 2 + (4k − 7) + 2 − (4k − 3) = 0. (40)

Now for finally proving (34d) in this third and last subcase, we compute by using (6),
(5), (23), (35), (39) and (40) that

2Fs[2k − 2] − Es[1] − Es[4k − 1]
= (Es[2k − 1] + Es[4k − 2] + 1) − Es[4k − 1]
= 2Es[2k − 1] + Es[2k] + Es[2k − 3] − 2Es[4k − 5]
≤ 2Es[2k − 1] + Es[2k] + Es[2k − 3] − 2(Es[2k] + Es[2k − 4] + 2)

= Es[2k − 3] − Es[2k − 4] − 4 = − 2 < 0.

This completes the proof of inequality (34d). Summarizing, the representation Es and
Fs correctly represents the preferences of the considered voter vr .
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8.4 The exceptional case with even r

In this section we consider the last remaining case with even r , where r = 2k
and s 	= 2k holds. In order to prove (27a) and (27b) for the preference orders
in (2b), it is sufficient to establish the following three inequalities for the turning
points.

2Fs[2k] > Es[4k − 2] + Es[4k − 3] (41a)

2Fs[2k] < Es[2] + Es[4k − 1] (41b)

2Fs[2k] > Es[4k] + Es[1] (41c)

The definition of Fs[2k] in (11) and (15) with s 	= 2k yield for the common left hand
side of (41a)–(41c) that

2Fs[2k] = 1

2
(Es[1] + Es[2] + Es[4k − 1] + Es[4k])

= Es[4k] + Es[1] + 1 = Es[4k − 1] + Es[2] − 1. (42)

For (41a), we compute by using (10) and (42) with s 	= 2k that

2Fs[2k] − Es[4k − 2] − Es[4k − 3]
= (Es[4k − 1] + Es[2] − 1) − Es[4k − 2] − Es[4k − 3]
= Es[2] − Es[4k − 3] − 1 + (Es[4k − 3] − Es[2] + 2) = 1 > 0.

For (41b), we compute by using (42) that

2Fs[2k] − Es[2] − Es[4k − 1]
= (Es[4k − 1] + Es[2] − 1) − Es[2] − Es[4k − 1] = −1 < 0.

For (41c), we compute by using (42) that

2Fs[2k] − Es[4k] + Es[1]
= (Es[4k] + Es[1] + 1) − Es[4k] − Es[1] = 1 > 0.

This settles the last case. The proof of Lemma 6.3 and with it the proof of Theorem 3.1
are finally complete.

9 Conclusions

We have shown that one-dimensional Euclidean preference profiles can not be char-
acterized in terms of finitely many obstructions. This is similar to the situation of
interval graphs, which also can not be characterized by finitely many obstructions.
For interval graphs, however, we have a full understanding of all the obstructions that
are minimal with respect to vertex deletion; see Lekkerkerker and Boland (1962). In a
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similar vein, it would be interesting to determine all the (infinitely many) obstructions
for one-dimensional Euclidean preferences that areminimal with respect to deletion of
voters or alternatives. At the current moment, we have no idea of what these minimal
obstructions would look like.

With respect to general d-dimensional Euclidean preference profiles, we feel that
the situation should be analogous to the one-dimensional situation: we conjecture
that for any fixed value of d ≥ 2, there will be no characterization of d-dimensional
Euclidean profiles through finitely many obstructions. However, we see no realistic
way of generalizing our current approach to the higher-dimensional situations, and
we leave this as an open problem. (We remind the reader that in a d-dimensional
Euclidean preference profile the voters and alternatives are embedded ind-dimensional
Euclidean space, so that small distance corresponds to strong preference; see for
instance Bogomolnaia and Laslier 2007.)
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