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Abstract We study characterizations of implementable allocation rules when types
are multi-dimensional, monetary transfers are allowed, and agents have quasi-linear
preferences over outcomes and transfers. Every outcome is associated with a valuation
function that maps an agent’s type to his value for this outcome. The set of types are
assumed to be convex. Our main characterization theorem shows that allocation rules
are implementable if and only if they are implementable on any two-dimensional
convex subset of the type set. For finite sets of outcomes and continuous valuation
functions, they are implementable if and only if they are implementable on every
one-dimensional subset of the type set. This extends a characterization result by Saks
and Yu (Weak monotonicity suffices for truthfulness on convex domains, pp 286–293,
2005) from models with linear valuation functions to arbitrary continuous valuation
functions, and provides a simple proof of their result. Modeling multi-dimensional
mechanism design the way we propose it here is of relevance whenever types are
given by few parameters, while the set of possible outcomes is large, and when values
for outcomes are non-linear functions in types.

1 Introduction

We investigate the following basic setting of asymmetric information,which appears in
various forms in the theory of incentives. There are a single agent and a principal. The
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agent holds private information t from some set T .We call t the type of the agent, and T
the type set. Depending on the agent’s type the principalwants to select an allocation, or
take an action, a from some set A. We call the function f : T → A which determines
this selection the allocation rule. We allow for monetary transfers given by a payment
function p : T → R which the principal uses in order to orchestrate incentives.
The agent has cardinal preferences for allocations parameterized by his type, given
by a valuation function v : A × T → R, and quasi-linear utility for allocations and
payments. We will call the triple (T, A, v) an environment. Such environments occur
as building blocks in numerous applications in the theory of incentives. In particular
they have been studied in the context of mechanism design.

We assume that the agent and the principal interact by a revelation mechanism in
which the agent announces a type t , which may be different from his true type s, and
the principal allocates f (t) and makes transfer p(t), yielding utility v( f (t), s)+ p(t)
for the agent. We call f implementable if there exists a p that makes truthful reports
of the agent a weakly dominant strategy, that is, for all s, t in T :

v( f (s), s) + p(s) ≥ v( f (t), s) + p(t). (1)

Central questions in the theory of incentives are (1) a characterization of all imple-
mentable allocation rules f , (2) ways to construct payments p, and (3) conditions on
when p is unique up to a constant. The latter property is called revenue equivalence
due to its applications in auctions.

In this paper we provide answers to these questions for the case when T is a convex
subset of R

d . Our first result shows that an allocation rule is implementable if and
only if it is implementable on every 2-dimensional subset of T . Let us call a rule f
line-implementable if it is implementable when restricted to any line-segment on T ,
and locally implementable if for every type t there exists some open neighborhood
of t on which it is implementable. Our second result states for the same setting as
above that a rule is implementable if and only if it is locally implementable and line
implementable. Both results do not require any assumptions on the valuation functions
v or the cardinality of A. We only need convexity of T and that the allocation rule in
question, if line-implementable, satisfies revenue equivalence on lines.We then restrict
to valuation functions that are continuous in types. For such settings, we strengthen the
second result by showing that an allocation rule with a finite range is implementable if
and only if it is line implementable. The last result generalizes a well-known theorem
by Saks and Yu (2005), and yields as well a new, very easy proof of the original result.

All results are achieved by using directed graphs whose node sets consist of the
set of types, and which have arcs between any two types s and t with length equal to
value differences (more precisely, the length of arc (s, t) equals the value difference
for the outcome at t if an agent is of type t versus of type s). Non-existence of cycles
with negative lengths, called cycle monotonicity determines whether a rule is imple-
mentable, in which case shortest paths lengths yield incentive compatible payments.
Also, it is a property on path lengths that determines whether a rule satisfies revenue
equivalence. This approach goes back to Rochet (1987). It has been put into graph
theoretic terms by Gui et al. (2004) and Heydenreich et al. (2009), and fully refined in
the monograph of Vohra (2011). Non-existence of negative cycles of two nodes, called
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2-cycle monotonicity is a direct generalization of monotonicity of allocation rules in
single-item auctions. This triggered a serious of results showing that for particular
multi-dimensional environments 2-cycle monotonicity implies cycle-monotonicity.
All these results require v to be linear in T , in which case 2-cycle monotonicity coin-
cideswith line-implementability. Our results show that replacing 2-cyclemonotonicity
by line-implementability provides the right means to extend these results beyond the
case of linear valuations. By way of an example we show that line-implementability
is a strictly stronger condition than 2-cycle monotonicity.

The definition of an environment used here assumes a single agent, while mech-
anism design deals typically with more than one agent. This is not limiting the
applicability of our results as our definition can be used to grasp the perspective of each
individual agent in a mechanism design context. For example, if we are interested in
dominant strategy implementable allocation rules f , we get an environment for each
select agent and for each possible type report of all other agents. The allocation rule
describes the influence of the selected agent’s type reports, given the reports of other
agents. Similar does the payment rule determine his payment for outcomes, given the
report of the other agents. If we are interested in Bayesian Nash Implementation, the
allocation rule maps types of a selected agent to a distribution of outcomes, induced
by the distribution of truthful type reports of other agents.
RelatedworkCharacterizing settingswhere 2-cyclemonotonicity is sufficient for cycle
monotonicity has been a prominent topic in mechanism design (Archer and Kleinberg
2014; Ashlagi et al. 2010; Bikhchandani et al. 2006; Carbajal andMüller 2015;Mishra
et al. 2013; Saks andYu 2005). Common to this literature is a representation of an envi-
ronment that differs from ours. We shall call it a domain representation, as opposed
to our parameter representation. A domain representation associates every type with
a function τ , mapping outcomes to values. A domain is a set of such functions. Both
representations are closely linked since domains can be considered as type sets in
parameter representations with v(τ, a) = τ(a), implying that v is in fact a linear func-
tion in types. Vice versa, parameter representations induce a domain {v(., t) | t ∈ T }.
However, convex sets of types in parameter representations do not necessarily induce
convex domains. In fact, our results strictly extend work on domain representations
whenever the induced domain representation is not convex. We provide an example in
Sect. 4. Also, the type set T in a parameter representation might be finite-dimensional
while A is infinite, in which case the previous literature is silent as well. For finite A, a
parametrization by types may allow for a low-dimensional compact representation of
private information, contrary to a high-dimensional corresponding domain. Think for
example of additive valuations in multi-item auctions, where a type represents a value
for each of the m items, allowing for types of dimension m, while the corresponding
domain has dimension 2m − 1.

Within the framework of parameter representations, a different strand ofmechanism
design literature deals with explicit representations of payments in terms of path inte-
grals of a particular vector field, yielding generalizations of theMirrlees representation
of indirect utility (Mirrlees 1971). For valuation functions that are differentiable in
types Milgrom and Segal (2002) show that such representations follow from the enve-
lope theorem. Krishna and Maenner (2001) prove a similar representation to hold for
convex valuation functions. Mirrlees’ representation can as well be used for character-
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izing implementable allocation rules. For example, Jehiel et al. (1999) and Jehiel and
Moldovanu (2001) derive characterizations for auction environments with linear val-
uation functions. They show that existence and path-independence of certain integrals
provides necessary and sufficient conditions for implementation. This approach has
been simplified by Archer and Kleinberg (2014). They show that for convex type set T
and linear valuation functions monotonicity on line-segments and path-independence
of path-integrals along the border of triangles are sufficient for implementability. Fur-
thermore, they show that any rule that is locally implementable, is implementable on all
of T . Berger et al. (2009) extend the results of Archer and Kleinberg (2014) to convex
valuation functions.We show that neither linearity nor convexity of valuation functions
is needed to yield such characterizations, if one replaces theMirrless representation of
indirect utility by distances along line-segments in directed graphs. All what is needed
is revenue equivalence on lines and convexity of the type set. Thereby, we significantly
extend the approach by Archer and Kleinberg (2014) and Berger et al. (2009).

A different generalization of the characterization literature based onMirrlees repre-
sentations has been proposed by Carbajal and Ely (2013). They show how for settings
without revenue equivalence a weaker form ofMirrlees representation can be achieved
by integration of correspondences.We elaborate on this work in Sect. 3. Carroll (2012)
has investigated the role of local implementability as well. He shows that every locally
incentive compatible mechanism is incentive compatible if the type space is convex.
In related work, Mishra et al. (2015) give a different characterization for ordinal type
spaces that includes payment-only incentive compatibility as an additional necessary
and sufficient condition. While Caroll as well as Mishra et al. derive characterizations
in terms of local properties of an allocation rule and a payment rule, our results, as
those of Archer and Kleinberg (2014) and Berger et al. (2009), yield characterizations
in terms of local properties of just the allocation rule. At the same time, the results by
Carroll and Mishra et al. are more general as they cover ordinal as well as polyhedral
type spaces.
Organization In Sect. 2, we define our setting and introduce necessary notation and
previous results. We present our main characterization of implementability (Theo-
rem 3) in Sect. 3.1. Then we provide extensions of the results of Archer and Kleinberg
(2014) about local implementability (Theorem 4, Sect. 3.2) and of Saks and Yu (2005)
for allocation rules with finite range (Theorem 5, Sect. 3.3). In Sect. 4 we apply our
results to an example given in Vohra (2011).

2 Incentive compatibility, cycle monotonicity and 2-cycle monotonicity

In this section we provide precise definitions and recall the network approach for our
basic model. We consider environments (T, A, v), where T is a set of types, A is a set
of allocations, and v : A × T → R is a valuation function. We assume quasi linear
utilities, so the utility of an agent of type t ∈ T for some outcome a ∈ A and payment
π is equal to v(a, t) + π .

Definition 1 A direct mechanism ( f, p), consisting of an allocation rule f : T → A
and a payment function p : T → R is called incentive compatible (IC) if for all
s, t ∈ T :
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v( f (s), s) + p(s) ≥ v( f (t), s) + p(t). (2)

An allocation rule f is called implementable if there exists a payment function p
that makes the mechanism ( f, p) IC.

It is straightforward to see that adding a constant to a payment rule p of an IC
mechanism yields again an IC mechanism. If payment rules are unique up to such
modifications, we say that revenue equivalence holds:

Definition 2 An implementable allocation rule f satisfies revenue equivalence if for
any two incentive compatible mechanisms ( f, p) and ( f, p′) there exists c ∈ R such
that p(t) = p′(t) + c for all t ∈ T . An environment (T, A, v) satisfies revenue
equivalence, if all implementable allocation rules satisfy revenue equivalence.

Rochet (1987) identified a property called cycle monotonicity that characterizes
implementable allocation rules. It has later been related to node potentials in type
graphs by Gui et al. (2004). Here, and further on, a graph consists of a set of nodes
and a set of (directed) arcs between pairs of nodes.

Given an allocation rule f , the set of nodes of the type graph T f is equal to T .
Every pair of types s, t ∈ T is connected by arcs from s to t and from t to s. We define
arc lengths lu(s, t) for arcs of T f as follows (and call them u-length between types
s, t ∈ T ):

lu(s, t) = v( f (t), t) − v( f (t), s).

A path from node s to node t in T f , or (s, t)-path for short, is defined as P = (s =
s0, s1, . . . , sk = t) such that si ∈ T for i = 0, . . . , k. The u-length of P is defined as

lengthu(P) =
k−1∑

i=0

lu(si , si+1).

A cycle is a path with s = t . For any t , we regard the path from t to t without any arcs
as a (t, t)-path and define its length to be 0. Let P(s, t) be the set of all (s, t)-paths.
The u-distance from s to t is defined as

distu(s, t) = inf
P∈P(s,t)

lengthu(P).

A node potential π with respect to u-length is a function π : T → R such that for
all s, t ∈ T we have

π(t) ≤ π(s) + lu(s, t). (3)

By the definition of u-length, implementability of an allocation rule f is equiva-
lent with the existence of node potentials with respect to u-length. Thereby, for all
t , potential π(t) equals the net utility v( f (t), t) + p(t) with respect to some incen-
tive compatible payment rule p. Furthermore, revenue equivalence coincides with
uniqueness of node potentials with respect to u-lengths up to a constant.
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It is straightforward that if T f has a node potential it cannot have a negative cycle.
The opposite holds as well, as in the absence of negative cycles we can fix a type s and
take distances from s to any type t to yield the node potential π(t) := distu(s, t). This
motivates Rochet’s definition of cycle monotonicity and yields his characterization of
implementability.

Definition 3 An allocation rule f : T → A is called cycle monotone, if for all cycles
C , lengthu(C) ≥ 0. f is called 2-cycle monotone,1 if for all s, t ∈ T it holds that:

lu(s, t) + lu(t, s) ≥ 0.

Theorem 1 (Rochet (1987)) An allocation rule f : T → A is implementable if and
only if it is cycle monotone.

For later reference we state Rochet’s theorem in terms of distances and combine it
with a relation between distances and payment differences that is straightforward to
prove.

Corollary 1 An allocation rule f : T → A is implementable if and only if for any
s, t ∈ T :

distu(s, t) + distu(t, s) ≥ 0. (4)

In this case, every payment p satisfies:

− distu(t, s) ≤ v( f (t), t) + p(t) − v( f (s), s) − p(s) ≤ distu(s, t). (5)

Finally, a characterization of revenue equivalence due to Heydenreich et al. (2009)
is a direct consequence of what has been said so far:

Theorem 2 (Heydenreich et al. (2009)) Let f be an allocation rule that is imple-
mentable. Then f satisfies revenue equivalence if and only if for any s, t ∈ T f :

distu(s, t) + distu(t, s) = 0. (6)

Combining Theorem 2 and Corollary 1 yields the following.

Corollary 2 An allocation rule f : T → A is implementable and satisfies revenue
equivalence if and only if for any s, t ∈ T :

distu(s, t) + distu(t, s) = 0 (7)

In this case, every payment p satisfies:

distu(s, t) = v( f (t), t) + p(t) − v( f (s), s) − p(s). (8)

1 In the literature, the terms weakly monotone, or just monotone is often used instead of 2-cycle monotone.
For readability purposes we prefer to use the longer name 2-cycle monotone.
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3 Characterizing implementability on convex type sets

In this section we consider environments (T, A, v), where T is a convex subset of
R
d (d ≥ 1), A is an arbitrary set, and v : A × T → R is a valuation function. We

start by introducing the notion of line-implementability: when restricting the input of
the allocation rule to any line segment in T , it is implementable. We show how line-
implementability can be used to characterize implementability. Next we show that
every allocation rule that is locally implementable is globally implementable. Both
results need the additional assumption that line-implementable allocation rules satisfy
revenue equivalence on these line segments. We explain at the end of this section, how
this revenue equivalence assumption can be omitted and thereby relate our results to
Carbajal and Ely (2013).

Finally, we turn to valuation functions that are continuous in types and prove that
any allocation rule that is line-implementable and has finite range is globally imple-
mentable. In such settings, the revenue equivalence assumption can be made without
loss of generality (Chung and Olszewski 2007; Heydenreich et al. 2009).

3.1 Line-implementability

We denote by Ls,t the line segment between s and t in T :

Ls,t = {s + λ(t − s) : λ ∈ [0, 1]} .

Definition 4 Let T be convex. An allocation rule f : T → A is called line
implementable if for any s, t ∈ T , the restriction of f to the line segment Ls,t is
implementable.

Obviously, every implementable allocation rule is line-implementable. Furthermore
every line-implementable allocation rule is 2-cyclemonotone. It is well-known that for
linear valuation functions 2-cycle monotonicity and line-implementability are equiva-
lent. The following example shows that for convex, but non-linear valuation functions,
2-cycle monotonicity is not sufficient for line-implementability, even if they are piece-
wise linear.

Example 1 Suppose T = [0, 1] and A = {a, b, c}, and the valuation function is given
by

v(a, t) =
⎧
⎨

⎩
0 t ≤ 2

3

3t − 2 t > 2
3 ,

v(b, t) = 3t and

v(c, t) =
⎧
⎨

⎩
2 − 3t t ≤ 1

3

3t t > 1
3 .
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Consider the following allocation rule:

f (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a 0 ≤ t < 1
3

b 1
3 ≤ t ≤ 2

3

c 2
3 < t ≤ 1.

We verify 2-cycle monotonicity by calculating u-length for the following three
cases.

(i) 0 ≤ s ≤ 1
3 and 1

3 < t ≤ 2
3

lu(s, t) + lu(t, s) = 3(t − s) ≥ 0,

(ii) 0 ≤ s ≤ 1
3 and 2

3 < t ≤ 1

lu(s, t) + lu(t, s) = 3s ≥ 0,

(iii) 1
3 < s ≤ 2

3 and 2
3 < t ≤ 1

lu(s, t) + lu(t, s) = 0.

However, there is a cycle with negative length:

lu(0, 1) + lu

(
1,

1

3

)
+ lu

(
1

3
, 0

)
= 1 − 2 + 0 = −1,

which means f is not implementable.

Archer and Kleinberg (2014) prove that for convex type spaces and linear valuation
functions, 2-cycle monotonicity of an allocation rule together with path-independence
on triangles of particular integrals defined by f is equivalent with implementability.
Example 1 shows that this equivalence cannot hold for arbitrary valuations. Still, we
can show that the same principle, as well as its consequences, applies if we replace 2-
cycle monotonicity by line-implementability. Thereby, we do not even need integrals,
but can fully rely on distances in the type graph. To do so, we need to define distances
on lines.

Definition 5 Let T be convex. For any s, t ∈ T , the Lu−distance from s to t is defined
as

distLu (s, t) = inf
P∈PL (s,t)

lengthu(P),

where PL(s, t) is the set of all (s, t)-paths contained in Ls,t . For any s ∈ T , we define
distLu (s, s) = 0.
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Definition 6 Let T be convex and f : T → A be implementable. We say f satisfies
revenue equivalence on lines, if f|L satisfies revenue equivalence for all line segments
L = Ls,t , s, t ∈ T .

Using these definitions we get the following theorem.

Theorem 3 Let T ⊆ R
d be convex and f : T → A an allocation rule. The following

are equivalent:

1. f is implementable and satisfies revenue equivalence on lines.
2. f is line implementable and for any s1, s2, s3 ∈ T :

3∑

i=1

distLu (si , si+1) = 0, (9)

where s4 = s1 and distances in (9) are taken with respect to Lsi ,si+1 .

Proof (�⇒) Since f is implementable by some payment function p, it is also imple-
mentable on each line segment using the same p. By Corollary 2 and (8), applied to
any L = Ls,t , s, t ∈ T , revenue equivalence on lines implies

distLu (s, t) = v( f (t), t) + p(t) − v( f (s), s) − p(s).

By summing up along a triangle given by types s1, s2 and s3 we get

3∑

i=1

distLu (si , si+1) = 0.

(⇐�) Fix x ∈ T . For every w ∈ T define the payment as:

p(w) = distLu (x, w) − v( f (w),w),

where L = Lx,w. Now for every s, t ∈ T we have:

p(t) − p(s) = distLu (x, t) − v( f (t), t) − distLu (x, s) + v( f (s), s)

≤ distLu (x, t) + distLu (s, x) − v( f (t), t) + v( f (s), s)

= −distLu (t, s) − v( f (t), t) + v( f (s), s)

≤ distLu (s, t) − v( f (t), t) + v( f (s), s)

≤ lu(s, t) − v( f (t), t) + v( f (s), s)

= v( f (s), s) − v( f (t), s),

where the first and the second inequality follows fromCorollary 1, the second equality
from (9), and the third inequality from the definition of distu .

123



376 A. Berger et al.

If we take s3 = s2 we have:

distLu (s1, s2) + distLu (s2, s1) = 0.

Since s1 and s2 are arbitrary we can conclude according to Theorem 2 that f satisfies
revenue equivalence on lines. ��

A few remarks about the conditions in the above theorem are at place.

Remark 1 Revenue equivalence on lines is a fairly mild assumption. For example,
it holds when A is countable and valuation functions are equi-continuous (Chung
and Olszewski 2007; Heydenreich et al. 2009), and for arbitrary A when valuation
functions are differentiable functions of types (Milgrom and Segal 2002), or convex
functions of types (Krishna and Maenner 2001). Berger et al. (2009) contains a direct
proof of the last fact using type graphs.

Remark 2 Line-implementability of an allocation rule has to be verified on a case by
case basis. However, in some situations more structure on the environment can make
this task easier. One property for an environment that ensures line-implementability
for any 2-cycle monotone allocation rule is the increasing differences property (Müller
et al. 2007). An environment satisfies this property if and only if for all s, t ∈ T and
x ∈ Ls,t , and a, b ∈ A, we have that v(a, t) − v(b, t) ≥ v(a, x) − v(b, x) implies
that v(a, x) − v(b, x) ≥ v(a, s) − v(b, s). Note that this definition is independent of
the allocation rule f and therefore gives an easy way of identifying environments in
which line-implementability can be replaced by 2-cycle monotonicity in Theorem 3.

Remark 3 For certain settings, the distances on lines in the above theorem can be
explicitly computed using line integrals over corresponding vector fields, in particular
when the valuation functions are linear (Archer and Kleinberg 2014), convex (Berger
et al. 2009; Krishna and Maenner 2001) or differentiable functions of types (Berger
et al. 2009; Milgrom and Segal 2002).

Remark 4 Carbajal and Ely (2013) show that for particular environments one can also
get a characterization in the flavor of Theorem3without requiring revenue equivalence
on lines. The trick is to have sufficient structure in order to be able to replace distances
on lines Ls,t by some function δ(s, t) which satisfies δ(s, t) ≤ lu(s, t) and δ(s, t) =
−δ(t, s) for all s, t in T . Carbajal and Ely show that integrals on the line segment
between s and t with respect to an integrable correspondence defined by the allocation
rule f provide us with such δ, if one imposes sufficient structure on the environment
to guarantee the existence of the integrals. They also show for their environments that
the existence of these integrals is implied by implementability. The functions δ given
by these integrals satisfy in particular

−distu(t, s) ≤ δ(s, t) ≤ distu(s, t),

which implies that δ(s, t) = distu(s, t) if and only if the allocation rule satisfies
revenue equivalence.
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We close this section by a corollary of Theorem 3, which extends a result by Vohra
(2011, Theorem4.2.11),who has proven it for randomized allocation rules over finitely
many outcomes.

Corollary 3 Let T ⊆ R
d be convex and (T, A, v) be an environment such that every

line implementable allocation rule satisfies revenue equivalence on lines. Then an
allocation rule f : T → A is implementable if and only if it is implementable on
every two-dimensional convex subset of T .

3.2 Local implementability

Archer and Kleinberg (2014) were the first ones who characterized implementabil-
ity based on local implementabilty. Their proof requires valuation functions to be
linear. Motivated by their results we introduce in this section the notion of local
implementability and extend their results to general valuation functions. The charac-
terization holds for any outcome space and any valuation function, except that we will
need revenue equivalence on lines.

Definition 7 An allocation rule f : T → A is called locally implementable if for
every t ∈ T there exists an open neighborhood U (t) around t such that f |T∩U (t) is
implementable.

Obviously, implementability guarantees local implementability. To prove the other
direction we need the following lemma.

Lemma 1 Let T ⊆ R
d be convex. If the allocation rule f is line implementable and

satisfies revenue equivalence on lines, then for any s, t ∈ T and x ∈ Ls,t between s
and t:

dist Lu (s, t) = dist Lu (s, x) + dist Lu (x, t). (10)

Proof Fix s, t ∈ T and x between s and t . Since f is implementable and satisfies
revenue equivalence on Ls,t , Ls,x and Lx,t , according to Theorem 2

distLu (s, t) = −distLu (t, s)

distLu (s, x) = −distLu (x, s)

distLu (x, t) = −distLu (t, x)

and according to Theorem 1

distLu (s, t) + distLu (t, x) + distLu (x, s) ≥ 0

distLu (t, s) + distLu (s, x) + distLu (x, t) ≥ 0.

Altogether this yields 10. ��
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Fig. 1 Subdividing �s1,s2,s3
into sufficiently small triangles

s1

s2

s3

x

U(x)

In the following we denote for s1, s2, s3 ∈ T , all three distinct, by �s1,s2,s3 the
convex hull of s1, s2, s3 and by �s1,s2,s3 the path describing the boundary of �s1,s2,s3 ,
i.e Ls1,s2 ∪ Ls2,s3 ∪ Ls3,s1 , with direction s1 → s2 → s3 → s1.

Now we are prepared to prove the main theorem of this section.

Theorem 4 Let T ⊆ R
d be convex and assume that every line implementable allo-

cation rule satisfies revenue equivalence on lines. Then an allocation rule f is
implementable if and only if it is locally implementable and line implementable.

Proof (⇒) Implementability of f on T implies implementability on subsets of T .
Therefore f is locally implementable and line implementable.

(⇐) The proof is similar to the proof for linear valuations given in Archer and
Kleinberg (2014), however as we need to apply our more general results Theorem 3
and Lemma 1 we include it. Let f be locally implementable and line implementable.
Let s1, s2, s3 ∈ T , all three distinct. Since �s1,s2,s3 is closed and bounded it is com-
pact. Since f is locally implementable, for any point x in �s1,s2,s3 there is an open
neighborhood U (x) such that for any x1, x2, x3 ∈ U (x) ∩ T , all three distinct:

3∑

i=1

distLu (xi , xi+1) = 0,

where x4 = x1.
Recall that by the Lebesgue Number Lemma for any open covering� of a compact

metric space X there is a δ > 0 such that for each subset of X having diameter less
than δ, there exists an element � containing it.2 This implies that there is a δ > 0 such
that every subset of �s1,s2,s3 of diameter less than δ is contained in at least one of the
neighborhoods in which f is implementable. In particular, if we subdivide �s1,s2,s3
into M triangles�s11 ,s12 ,s13

,�s21 ,s22 ,s23
, . . . ,�sM1 ,sM2 ,sM3

(see Fig. 1), each of which having
diameter less than δ, and orient the borders �

s j1 ,s j2 ,s j3
consistently with �s1,s2,s3 , we

get

0 =
M∑

j=1

3∑

i=1

distLu (s ji , s ji+1).

2 For more information refer to Munkres (2000) or other classic books on topology.
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In this formula, the distances along�s1,s2,s3 appear exactly once. All distances of sides
of �

s j1 ,s j2 ,s j3
which are not contained in �s1,s2,s3 appear exactly once in each direc-

tion and cancel each other out because revenue equivalence holds on lines. Applying
Lemma 1, we have

3∑

i=1

distLu (si , si+1) =
M∑

j=1

3∑

i=1

distLu (s ji , s ji+1) = 0,

where s4 = s1 and s j4 = s j1 . Now according to Theorem 3, f is implementable. ��

3.3 Finite outcome space and continuous valuations

We prove in this section a generalization of the Theorem of Saks and Yu. We make
use of a lemma that is of interest by its own as it describes a fairly general setting for
which 2-cycle monotonicity is sufficient for implementability. Ashlagi et al. (2010)
have proven a similar lemma for linear valuations and finite set of outcomes. We show
that the result holds in a much more general case. To make it work, we have to make
the assumption that valuation functions v(a, .) are continuous in t for all a ∈ A.

Lemma 2 Let T ⊆ R
d and v : A × T → R be continuous in t for all a ∈ A. For

a ∈ A let

Da := cl( f −1(a)) ∩ T .

If f : T → A is 2-cycle monotone and
⋂

a∈ f (T ) Da �= ∅, then f is implementable.3

Proof Let {s1, . . . , sk} ⊆ T for some k ≥ 3 and t ∈ ⋂
a∈ f (T ) Da . Fix 1 ≤ i ≤ k.

Since t ∈ D f (si+1), there is a sequence (t j ) j∈N, such that f (t j ) = f (si+1) for every
j ∈ N and lim j→∞ t j = t where indices are taken modulo k. Note that for every
j ∈ N

lu(si , si+1) = v( f (si+1), si+1) − v( f (si+1), si )

= v( f (si ), si ) − v( f (si+1), si ) + v( f (si+1), si+1) − v( f (si ), si )

= v( f (si ), si ) − v( f (t j ), si ) + v( f (si+1), si+1) − v( f (si ), si )

≥ v( f (si ), t j ) − v( f (t j ), t j ) + v( f (si+1), si+1) − v( f (si ), si )

= v( f (si ), t j ) − v( f (si+1), t j ) + v( f (si+1), si+1) − v( f (si ), si ),

where the inequality follows from 2-cycle monotonicity. By continuity of v in t we
get:

lu(si , si+1) ≥ v( f (si ), t) − v( f (si+1), t) + v( f (si+1), si+1) − v( f (si ), si ).

3 cl(X) denotes the topological closure of a set X ⊆ R
d .
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If we sum up all inequalities, we have:

k∑

i=1

lu(si , si+1) ≥
k∑

i=1

v( f (si ), t) − v( f (si+1), t) + v( f (si+1), si+1)

−v( f (si ), si ) = 0.

Invoking Theorem 1 completes the proof. ��
Nowwe simplify Theorem 3 in case of allocation rules f with a finite range, which

yields a generalization of the result by Saks andYu (2005) and byArcher andKleinberg
for environments with linear valuation functions. The theorem simplifies identifying
the implementability of an allocation rule f to verifying whether f is implementable
on any one dimensional subset of T .

Theorem 5 Let (T, A, v) be an environment such that T ⊆ R
d is convex and v(a, ) :

T → R is continuous in t for all a ∈ A. An allocation rule f : T → A with finite
range is implementable if and only if it is line implementable.

Proof (⇐) As the range of f is finite and v continuous, it follows from Heydenreich
et al. (2009) that f satisfies revenue equivalence on lines. According to Theorem 4 it
is sufficient to show that f is locally implementable.

Fix t ∈ T . For all a ∈ f (T ) let εa(t) := inf
x∈Da

‖x − t‖2.4 Then,

t ∈ Da ⇔ εa(t) = 0.

We show the existence of a neighborhood U (t) around t such that t ∈ Da for all
a ∈ f (U (t)). Set A(t) := {a ∈ f (T ) : εa(t) = 0}. As t ∈ D f (t), we have that
A(t) �= ∅ and t ∈ ⋂

a∈A(t)Da . If A(t) = f (T ) we let U (t) = R
d . Otherwise let

ε = min{εa(t) : a ∈ f (T )\A(t)}.
Note that ε > 0. Define U (t) = {x ∈ R

d : ‖x − t‖2 < ε}.
Since line implementability implies 2-cycle monotonicity, we can invoke Lemma 2

to prove that f is implementable onU (t). In other words, f is locally implementable.
(⇒) is obvious. ��
Note that in the above theorem we cannot replace line-implementability by the

weaker condition 2-cycle monotonicity, despite the fact that 2-cycle monotonicity is
all we need to apply Lemma 2. This follows from Example 1.

4 Example

In this section we illustrate by example how our results can be used to identify a large
class of allocation rules on an environment with a convex type set but non-convex
domain for which 2-cycle monotonicity is sufficient for implementability.

4 See Lemma 2 for the definition of Da .
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The example is based on Vohra (2011, Example 4, p. 48). Vohra provides in this
example a non-convex domain, in which each deterministic and 2-cycle monotone
allocation rule is implementable.We extend this result by providing a class of random-
ized allocation rules with the same property. We model his setting as an environment
with convex type set and convex valuation functions. Applying Theorem 5 yields that
line-implementability is sufficient for implementability. Proving the increasing differ-
ence property of the valuation functions gives us line-implementability from 2-cycle
monotonicity (see Remark 2).

We consider a set of outcomes A = {a, b, ab} and the set of all lotteries over
outcomes in A, that is Z(A) = {(pa, pb, pab) : pa + pb + pab = 1, pa, pb, pab ≥ 0}.
The type set is T = [0, 1]2 and the valuations for a type (t1, t2) ∈ T are given by

v(a, (t1, t2)) = t1
v(b, (t1, t2)) = t2

v(ab, (t1, t2)) = max{t1, t2}.

These are linearly extended to outcomes in Z(A). The domain arising from this envi-
ronment (as a subset ofR

3) is not convex.Moreover, its projection onto the hyperplane
{x ∈ R

3 | ta + tb + tab = 1} is also not convex. Therefore, by a result of (Ashlagi
et al. 2010), there are randomized allocation rules on this domain which are 2-cycle
monotone but not implementable.

However, as Proposition 1 below shows, there is a large class of randomized allo-
cation rules for which 2-cycle monotonicity implies implementability.

Proposition 1 Let T , A and v : T × Z(A) → R be as above. Let f : T →
Z(A) be a 2-cycle monotone allocation rule with finite range such that for any
(pa, pb, pab), (ra, rb, rab) ∈ f (T ) we have that

(pa − ra) · (pb − rb) < 0.

Then f is implementable.

Proof According to Theorem 5 it is sufficient to show that any 2-cycle monotone f :
T → Z(A) with finite range that satisfies the above condition is line-implementable.
In order to show line-implementability, it is sufficient to show that the environment
(T, A, v) satisfies the increasing differences property (see Remark 2). In our setting,
this property holds, if for all s, t ∈ T , x ∈ Ls,t and z p = (pa, pb, pab), zr =
(ra, rb, rab) ∈ Z(A), we have that

v(zr , t) − v(z p, t) ≥ v(zr , x) − v(z p, x)

implies that

v(zr , x) − v(z p, x) ≥ v(zr , s) − v(z p, s).
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For explanatory purpose we show that the increasing difference property holds for the
case when s = (α, 1) and t = (1, β), where α, β ∈ [0, 1]. The proof for the other
cases is similar.

We consider the function v(zr , .) − v(z p, .) on the line segment Ls,t , given by the
parametrization g : [0, 1] → T , g(λ) = s+λ(t− s). This function is piecewise linear
with one breakpoint.

Moreover,

v(zr , g(0)) − v(z p, g(0)) = (1 − α)(pa − ra),

and

v(zr , g(1)) − v(z p, g(1)) = (1 − β)(pb − rb).

Therefore the condition on the outcomes in the theorem ensures that v(zr , g(λ)) −
v(z p, g(λ)) as a function of λ is strictly monotone, and from this the increasing dif-
ference property follows immediately. ��

5 Conclusions

In this paper we provide characterization of implementable allocation rules for general
environments with convex type spaces. Our main theorem implies that, for any envi-
ronment where revenue equivalence on lines holds, allocation rules are implementable
if and only if they are implementable on any two-dimensional convex subset of the
type set. For finite sets of outcomes and continuous valuations, they are implementable
if and only if they are implementable on every one-dimensional subset of the type set.
The latter provides a natural generalization of a theorem by Saks and Yu (2005).
Our proofs extend the linear programming approach to mechanism design (Gui et al.
2004; Vohra 2011) from models with linear valuation functions to arbitrary continu-
ous valuation functions. This provides a deeper understanding of the role of 2-cycle
monotonicity and local implementation. It remains a challenging task to develop fur-
ther techniques that enable us to verify line-implementability of allocation rules. If the
increasing differences property holds, it is sufficient to verify 2-cycle monotonicity
(see Sect. 4). This property does not hold in general for convex valuation function,
even if 2-cycle monotonicity is satisfied (see Example 1).
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tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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