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Abstract Comparisons ofwell-being across heterogenous households necessitate that
households’ incomes are adjusted for differences in size and composition: equivalence
scales are commonly used to achieve this objective. Equivalence scales with constant
elasticity with respect to family size have been argued to provide a good approx-
imation to a large variety of scales (see, e.g., Buhmann et al., Equivalence scales,
well-being, inequality and poverty: sensitivity estimates across ten countries using the
Luxembourg Income Study (LIS) database. Rev Income Wealth 34:115–142, 1988)
and they therefore play a prominent role in empirical work. Focusing on inequality
of well-being, we first show that, if one requires that the index of inequality is—in
addition to standard properties—invariant to modifications of the relative (marginal)
distributions of needs and income across households, then the equivalence scales must
be isoelastic. In addition, if all households’ members have the same preferences and
if households maximise the sum of their members’ utilities, then the only preferences
consistent with isoelastic scales are of the Cobb–Douglas type.

1 Introduction and motivation

The measurement of economic well-being requires among other things that the house-
holds’ incomes are adjusted in order to accommodate differences in needs. Equivalence
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scales are designed to accomplish this adjustment by taking into account those house-
hold characteristics deemed to affect its members’ well-being.1 Given a reference
household type—typically a single adult—the procedure consists in deflating the
household’s original income by a scale factor that reflects the household’s members’
needs. The resulting equivalent income is a cardinal measure of the household’s well-
being indicating the income that, if given to a single adult, will allow it to enjoy the
same well-being as a typical member of the original household. Traditional character-
istics include region, location, age of adults and children but by far the most common
factor that affects the household’s members’ well-being is family size. The equiva-
lence scales currently used in empirical work are extremely varied both in the way
in which they are derived and in their values. Different procedures, such as expert
opinions, interviews with consumers or econometric studies, are used for determining
the values of the equivalence scales (see, e.g., Coulter et al. 1992a). This results in
contrasted figures which in turn significantly affect the normative conclusions to be
drawn (see, e.g., Whiteford 1985; Coulter et al. 1992b; Figini 1998).

Among the different formulae proposed in the literature, equivalence scales with
a constant elasticity with respect to family size play a prominent role (see, for
instance,Atkinson et al. 1995; Fleurbaey andGaulier 2009). RecentOecd publications
acknowledge differences in needs by dividing household incomes by the square root
of the total number of individuals in the household.2 According to such equivalence
scales, a proportional increase in family size results in a proportional—not necessarily
of the same magnitude—increase in the scale.3 Different reasons may explain why
isoelastic equivalence scales have been meeting such success both in empirical and
theoretical work. A first reason—advanced for instance by Buhmann et al. (1988)—is
that equivalence scales with constant elasticity approximate reasonably well most of
the scales currently used in the literature. A second, and more important, reason is that
these scales permit one to control for the impact of family size on adjusted income
through a single parameter that measures the elasticity of the scale. This, in turn,
has nice implications for applied work where one is interested in the changes in the
extent of poverty, inequality or welfare implied by modifications of the distribution
of household size. For instance, Coulter et al. (1992b) showed that the cardinal value

1 Adjustments for differences in needs by means of equivalence scales may be considered too specific an
approach and an alternative procedure has been proposed by Atkinson and Bourguignon (1987) (see also
Bourguignon 1989; Jenkins and Lambert 1993; Bazen and Moyes 2003; Ebert 2010; Moyes 2012; Gravel
and Moyes 2012). While this approach has mainly focused on the derivation of quasi-orderings like the
sequential Lorenz dominance criterion for making comparisons of living standards across heterogenous
populations, it is equally possible to use multidimensional (cardinal) indices (see, e.g., Maasoumi 1999;
Ebert 1995; Gravel et al. 2009 among others).
2 The so-called square root scale replaces the former Oecd-modified scale proposed by Hagenaars et al.
(1994) that assigned a value of 1 to the household head, of 0.5 to each additional adult and of 0.3 to each
child. While the levels of poverty, inequality or welfare are sensitive the use of one scale rather than another,
trends over time and rankings of countries are much less affected (see, e.g., Burniaux et al. 1998).
3 This makes only sense if the equivalence scales are independent of household income which implicitly
amounts to imposing strong restrictions on the preferences of the household’s members (see, Blackorby
and Donaldson 1993; Blundell and Lewbel 1991). Admittedly, this assumption is debatable and there
indeed is ample empirical evidence that it is violated in practice (see, e.g., Donaldson and Pendakur 2004;
Koulovatianos et al. 2005a, b).
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of a poverty measure can be sensitive to the choice of the size elasticity parameter.
Lanjouw and Ravallion (1995) addressed the question of whether large households are
poorer than smaller ones and argued that the answer depends critically on the extent
of dispersion in family sizes and the size elasticity of the equivalence scale.4

In this paper we are interested in the measurement of inequality of well-being
using the distributions of the households’ equivalent incomes. Typically, the equiva-
lent income incorporates twomain elements of the household’s well-being: neediness,
which is determined by the household’s socio-demographic characteristics, and house-
hold income. Therefore, the equivalent income can be considered a bidimensional
(cardinal) measure of the household’s well-being and inequalities of well-being can
be traced back to differences in the joint distributions of neediness and household
income. Having this in mind, it is likely that one would insist that the inequality
measure of household well-being reacts appropriately to particular changes in the
(unidimensional) distributions of needs and income as well as to the way the (joint)
distribution of these two elements varies. It is a standard requirement for a (unidimen-
sional) inequality index that equiproportionate changes in incomes leave inequality
unchanged. By the same token, one might want that those modifications of the dis-
tributions of neediness and income among households that do not affect their relative
marginal distributions have no impact on the inequality of well-being. In particular,
this requirement implies that changes in the distribution of demographic variables that
do not modify the (relative) distribution of needs across households are inequality-
neutral. On the other hand, a modification of the joint distribution of neediness and
income that reduce the correlation between these two attributes is generally considered
an improvement that contributes to the reduction of the inequality of well-being (see,
e.g., Atkinson and Bourguignon 1982; Gravel and Moyes 2012, among others).

The implications for the structure of the inequalitymeasure of householdwell-being
of such changes in the distributions of the households’ needs and incomes is some-
thing that—to the best of our knowledge—has been largely unexplored in the context of
equivalence scales. Building on Ebert and Moyes (2003), we first show that the condi-
tion according to which inequality of well-being is reduced by a correlation decreasing
transformation of the joint distribution of income and needs places severe constraints
on the way households’ incomes are adjusted for differing needs. Indeed, the equiv-
alence scale is independent of the household’s income and the weight associated to
the equivalent income is proportional to the equivalence scale. A direct implication
of this way of adjusting households’ incomes is that inequality of well-being does
not change when the incomes of all households—whatever their sizes—increase or
decrease in the same proportion. Still, the fact that equivalence scales do not depend
on income leaves open a number of possibilities for taking the households’ needs into
account. But, if in addition we impose that inequality of well-being is unaffected by
proportional changes in the household degree of neediness, then the only possibility
left for acknowledging differences in households’ needs is to use isoelastic equivalence
scales. Here again, it must be noted that this particular adjustment method has strong

4 Under certain conditions, it is indeed possible to establish the existence of a single critical value of the
size elasticity for which the poverty ranking of household-size groups switches (see Lanjouw and Ravallion
1995 for details).
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implications for normative assessment: a replication of the population that preserves
the relative distribution by size of the households does not modify the inequality of
well-being.5 This condition means that, if—other things being equal—all household
sizes double, then inequality of well-being must remain the same. While it is certainly
not our intention to suggest that the above conditions (in particular the last one) are
normatively appealing, we insist on the fact that— in our model—to have recourse
to isoelastic equivalence scales for adjusting incomes for needs or to subscribe to the
above conditions are but two sides of the same coin.

For sure, equivalence scales with a constant elasticity are very special and they
are expected to imply particularly strong restrictions on the households’ patterns of
preference. It is therefore doubtful whether such scales can be retrieved from the
observation of the households’ circumstances and behaviour, or, at the very least, they
are expected to imply strong restrictions on the latter. It is important at this stage to
distinguish between the preferences of the individuals who constitute the household
and the principles that the household’s members rely on when deciding how to distrib-
ute resources among themselves. Other things equal, the way the household decides
about the distribution of its resources is expected to have an impact the distribution of
well-being among its members. Various models, ranging from the unitary model (see,
e.g., Samuelson 1956) to the collective one (see, e.g., Chiappori 1997) and compris-
ing models rooted in bargaining theory (see, e.g., McElroy and Horney 1981) have
been proposed in the literature to explain the household’s behaviour.6 If one is able to
observe directly the well-being of each household member or to derive it from some
behavioural model, then there is no need to search for equivalence scales: in this case,
the distribution of well-being within the household is readily obtained.7 Therefore,
the question addressed in this paper makes little sense when one adopts the collective
model of household behaviour or a bargaining model.

In this paper,we adopt an approachmuch in linewith the unitarymodel of household
behaviour where the household’s members pool their incomes. Following Ebert and
Moyes (2009), we consider an economy where the individuals derive utility from the
consumption of two commodities: a private good and a public (to the household’s
members) good. We assume that all the individuals within the household have the
same preferences and that the representation of the common preference ordering is
the same for all the household’s members. As far as the behaviour of the household is
concerned, we posit that the household is utilitarian: it maximises the sumof utilities of
its members. In our particular framework, the latter assumption amounts to assuming
that the household maximises a symmetric and quasi-concave social welfare function
of its members’ utilities (see, e.g., Ebert and Moyes 2009). In this particular economy
and under these restrictive assumptions, we are able to show that the only preferences

5 Admittedly, for this requirement to make sense, one has to assimilate neediness with household size: for
more on this, see Sect. 2.
6 We refer the reader to Apps and Rees (2009, Chapter 3) that provides an expositional survey of the
different models of household behaviour available in the literature.
7 The difficulty facing researchers in practice is precisely that most microdata bases provide limited
information—usually households’ incomes and compositions—that does not allow one to uncover the
actual distribution of well-being among the households’ members.
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that are consistent with isoelastic equivalence scales are of the Cobb–Douglas type.
Needless to say, considering a different economy (e.g., introducing labour supply
by the household members) or relaxing any of our assumptions (e.g., admitting the
possibility that preferences differ or that the household is no longer maximising a
social welfare function) would challenge this result.

We introduce in Sect. 2 the framework for our analysis and briefly recall how equiv-
alence scales are derived in this setting. Section 3 is concerned with the measurement
of inequality of well-being in the society where a person’s well-being depends on the
income and size of the household she belongs to. We show there that the conditions
that inequality of well-being is reduced by a correlation decreasing transformation
of the joint distribution of income and needs and unaffected by proportional changes
in both variables—coupled with standard properties of (unidimensional) inequality
measures—imply that the equivalence scales must be isoelastic. We investigate in
Sect. 4 the implications for the household’s members’ preferences of this particular
way of adjusting household incomes for needs under the assumptions that the indi-
viduals have the same utility function and that the household maximises the sum of
utilities of its members. Finally, Sect. 5 concludes the paper, while the proofs of our
results are collected in Sect. 6.

2 General framework and notation

A household consists of a finite group of individuals and we identify it with its size
n. Typically, household size refers to the number of persons in the household and
it therefore takes its values in the set of positive integers. For technical reasons, we
assume throughout that household size is a continuous variable ranging from unity
to infinity so that n ∈ [1,+∞). While it is made for convenience, this assumption
suggests that n could be interpreted as an index of neediness that depends on both the
household’s composition and size. This way of proceeding would make it possible to
take into account the heterogeneity nature of the households due to the fact that they
comprise different types of individuals: think of adults and children both of different
ages. It is reasonable to assume that a child contributes less to the household’s expenses
than an adult and she should therefore count less than an adult. A practical way of
acknowledging this is to let n(mA,mC ) = mA +λmC measure household size, where
mA and mC are respectively the number of adults and children in the household
and λ ∈ [0, 1] is a parameter reflecting the importance of a child with respect to
an adult (see, e.g., Cutler and Katz 1992). Given an arbitrary real n ∈ [1,+∞), it
is always possible to find two non-negative integers m◦, m∗ and a real λ ∈ [0, 1]
such that n = m◦ + λm∗. This procedure can be generalised to an arbitrary list of
individual types acknowledging for differences in age, health and the like. According
to this convention, n is assimilated with the household’s size—measured in terms of
equivalent adults in the household—or equivalently as the household’s type. While
which interpretation one has in mind is immaterial for our results, we find convenient
in what follows to refer to n as the household’s size or type.

There are two commodities: a private good and a public—to the household’s
members—good. The quantity of the private good consumed by member i in the
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household is denoted by xi , while Z represents the quantity of the public good pur-
chased by the household. The prices of the private and public goods are indicated by
p > 0 and q > 0, respectively. In order to allow for the possibility of congestion, we
denote by

G = φ(Z , θ, n) := Z

ψ(θ, n)
(2.1)

the effective consumption of the public good by any member of a household of type n.
The parameter θ ∈ [0, 1] is ameasure of the degree of publicnesswithin the household,
where θ = 0 indicates the pure public good casewhile θ = 1 corresponds to the private
good case. The congestion function ψ(θ, n) has the following properties:

ψ(θ, n) is differentiable in θ and n, ∀ θ ∈ [0, 1], ∀ n ∈ [1,+∞); (2.2a)

ψ(θ, n) is increasing in θ, ∀ n ∈ (1,+∞); (2.2b)

ψ(θ, n) is increasing in n, ∀ θ ∈ [0, 1); (2.2c)

ψ(0, n) = ψ(θ, 1) = 1, ∀ θ ∈ [0, 1], ∀ n ∈ [1,+∞); (2.2d)

ψ(1, n) = n, ∀ n ∈ [1,+∞). (2.2e)

This allows for awide range of specificationswhere the congestion function can follow
different patterns with respect to n (see, e.g., Edwards 1990; Reiter andWeichenrieder
1999 for details).We denote byΨ the set of congestion functions satisfying conditions
(2.2a)–(2.2e). A particular instance of such congestion functions, that will be shown
to be of particular interest later on, is given by ψ(θ, n) = nθ (see Borcherding and
Deacon 1972). The possibility of crowding is best exemplified in the case where the
household consists of students sharing an apartment.While such goods as lightning and
heating are—at least in principle—public, other goods like access to the television,
the newspaper(s), the telephone or the washing machine are partially excludable.
Admittedly, congestion also happens in the family even though its extent is more
limited.

We assume that all individuals have the same preferences and we indicate by
U (x,G) the utility derived by an individual consuming x units of the private good
and G units of the public good, where the individual utility function U is assumed to
be differentiable, monotone and strictly concave.8 Different principles can be used by
the household for allocating resources among its members and the way the household
decides about this distribution has been shown to have important consequences (see,
e.g., Ebert and Moyes 2009). We assume here that the individuals who constitute the
household agree to allocate their resources between private and public consumption so
that the household’s welfare is maximised. This guarantees that the household mem-
bers do not pursue their own self-interest but rather act in such a way as to provide all
of them with the greatest well-being.

8 In general, the fact that all individuals in the society have the same preferences does not imply that they
have the same utility function. Since, in our model, individuals are all alike, it is natural to assume that they
have also the same (cardinal) utility function.
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The cooperativemodel and the assumption that individuals are identicalmaybe con-
sidered reasonable approximations of the households’ behaviour in modern societies
where the household consists of a single family. For cultural and historical reasons,
members of the same family are expected to share some common values, and coop-
eration among its members is the founding element of the family. One may therefore
abstract from differences between the individuals who constitute the household—like
adults and children—because they subscribe to the same common objectives and val-
ues. Things are quite different when the household is constituted by different families
who join forces to achieve particular economic objectives. It follows from our assump-
tions that at the optimum all the household’s members will get the same amount of
the private good.

Formally, the householdmaximises the sum of the utilities derived by the equivalent
adults who compose it.9 The problem of a household of type n can be written as

max n U (x,G) s.t. pnx + (ψ(θ, n) q)G � y, P(H)

where x is the consumption of the private good equal for all equivalent adults in the
household, y > 0 is the household’s total income, and ψ(θ, n) q can be interpreted
as the price of one unit of effective consumption of the public good. Denoting as
X (p, q, y;ψ, θ, n) and G(p, q, y;ψ, θ, n) the unique solution to problem P(H) and
upon substitution into the utility function, we get the representative indirect utility
function

V (p, q, y;ψ, θ, n) := U (X (p, q, y;ψ, θ, n),G(p, q, y;ψ, θ, n)). (2.3)

Letting u = V (p, q, y;ψ, θ, n) and upon inverting, we obtain the household expendi-
ture function y = C(p, q, u;ψ, θ, n), that indicates the minimum household income
that guarantees that each of its members will reach the utility level u.

We follow the standard practice which involves choosing the household comprising
a single individual as the reference household type (n = 1). Then, the equivalent
income function E(p, q, y;ψ, θ, n) is implicitly defined by

V (p, q, y;ψ, θ, n) = V (p, q, E(p, q, y;ψ, θ, n);ψ, θ, 1), (2.4)

which upon inverting gives

E(p, q, y;ψ, θ, n) = C(p, q, V (p, q, y;ψ, θ, n);ψ, θ, 1). (2.5)

The equivalent income E(p, q, y;ψ, θ, n) represents the income that has to be given
to a household of type n = 1 in order that its member enjoys the same utility as
any member of household n with income y, given the prices p and q, the congestion
function ψ , and the degree of publicness θ . It is quite standard in the literature to

9 This is consistent with the maximisation of a symmetric, monotone non-decreasing and quasi-concave
social welfare function F(U (x1,G), . . . ,U (xn ,G)), where n is the number of persons in the household
(see Bourguignon 1989; Blackorby and Donaldson 1993).
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consider equivalence scales rather than the more general concept of the equivalent
income function. The introduction of equivalence scales requires extra assumptions
to be made about the relationship between the scales and the equivalent income or
the household expenditure function. Starting with the household expenditure function
C(p, q, u;ψ, θ, n), standard (relative) equivalence scales are defined by

M(p, q, u;ψ, θ, n) = C(p, q, u;ψ, θ, n)

C(p, q, u;ψ, θ, 1)
. (2.6)

The scale M(p, q, u;ψ, θ, n)measures the extra cost for a household of size n of pro-
viding each of its members with the utility level u relative to that of the single person
household. Equivalence scales can also be definedbyusing the equivalent income func-
tion rather than the expenditure function. Upon substituting u = V (p, q, y;ψ, θ, n)

into (2.6), we obtain

m(p, q, y;ψ, θ, n) := M(p, q, V (p, q, y;ψ, θ, n);ψ, θ, n)

= y

C(p, q, V (p, q, y;ψ, θ, n);ψ, θ, 1)

= y

E(p, q, y;ψ, θ, n)
,

(2.7)

or equivalently

E(p, q, y;ψ, θ, n) = y

m(p, q, y;ψ, θ, n)
. (2.8)

In this case, the equivalent income is obtained by deflating household income by a scale
factor, that depends on household size and, in principle, also on household income. So
far, it is difficult to infer anything concerning the way the equivalent income and the
equivalence scale react to modifications of the household’s income and size because
not much is known about the properties of the representative indirect utility function.

Consider now an individual with utility function U who has to allocate an income
y/n between the consumption of the private good and the public good whose prices
are p and ψ(θ, n) q/n, respectively. The individual’s optimisation problem is given
by

max U (x,G) s.t. px + ψ(θ, n) q

n
G � y

n
, P(I)

the solution to which is indicated byX(p, ψ(θ, n) q/n, y/n) andG(p, ψ(θ, n) q/n,

y/n). Upon substitution and insertion into the individual utility function, we get the
standard individual indirect utility function

V

(
p,

ψ(θ, n) q

n
,
y

n

)
:= U

(
X

(
p,

ψ(θ, n) q

n
,
y

n

)
,G

(
p,

ψ(θ, n) q

n
,
y

n

))
,

(2.9)

123



Inequality and isoelastic equivalence scales. . . 303

which, upon inversion, gives the individual expenditure function C (p, ψ(θ, n) q/n, u).
We deduce from the definitions of the household expenditure and the individual expen-
diture functions that

y ≡ C (p, q, u;ψ, θ, n) = nC

(
p,

ψ(θ, n) q

n
, u

)
≡ n

y

n
. (2.10)

Upon substituting into (2.6) and, since q � (ψ(θ, n)/n) q, we finally get

M(p, q, u;ψ, θ, n) =
nC

(
p, ψ(θ,n) q

n , u
)

C (p, q, u)
� n. (2.11)

It follows from Ebert and Moyes (2009) that an arbitrary small amount of publicness
is a necessary and sufficient condition for M(p, q, u;ψ, θ, n) < n, whenever n > 1.
This also implies that E(p, q, y;ψ, θ, n) < y, for n > 1, in which case we say that
we have (positive) economies of size, and, from now, we assume on that θ ∈ [0, 1).
On the other hand, it must be noted that the assumptions we have made concerning
the utility function do not permit us to tell how the equivalent income varies with
household size.

3 Inequality of well-being and isoelastic scales

We consider populations comprising H households (H � 2), where each household is
described by two attributes: its income and its size. A heterogenous distribution—or for
short a situation—is a partitioned vector (x;n) := (x1, . . . , xH ; n1, . . . , nH ), where
xh > 0 and nh ∈ [1,+∞) are respectively the income and the size—equivalently, the
degree of neediness or type—of household h. The set of situations for a population
comprising H households is indicated by SH . While the household population size
H is fixed throughout, we insist on the fact that the distribution of households’ types
n := (n1, n2, . . . , nH ) may vary. The assumption of a fixed population size is not
restrictive as long as the normative criteria one appeals to for comparing situations
obey the principle of population.10 Assuming that prices p and q, as well as the
degree of publicness θ , and the congestion function ψ are fixed, we drop these from
the formulae in this section in order to simplify the notation.

For comparisons of well-being across households to be meaningful, it is necessary
to correct household incomes for differences in needs and this adjustment involves two
a priori distinct components. On the one hand, the household’s income is converted
into an equivalent income which is the income needed by a household of type n = 1
(the reference household type) in order to achieve the same level of well-being as
that attained by the original household. On the other hand, this equivalent income is
attached a weight that is assumed to depend exclusively on household size. Formally,
we associate to the situation (x;n) := (x1, . . . , xH ; n1, . . . , nH ) ∈ SH the adjusted

10 According to this principle, a replication of a situation leaves welfare, poverty, inequality, and the like
unaffected.
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income distribution

(E(x;n) | w(n)) := (E(x1; n1), . . . , E(xH ; nH ) | w(n1), . . . , w(nH )), (3.1)

where E(xh, nh) andw(nh) > 0 are respectively the equivalent income and theweight
assigned to household h (see, e.g., Ebert and Moyes 2003). We assume throughout
that the equivalent income function E has the following properties:

E(y; n) is differentiable in y and n, ∀ y > 0, ∀ n ∈ [1,+∞); (3.2a)

E(y; n) is increasing in y, ∀ y > 0, ∀ n ∈ [1,+∞); (3.2b)

E(y; n) is decreasing in n, ∀ y > 0, ∀ n ∈ [1,+∞); and (3.2c)

lim
y→0

E(y; n) = 0, ∀ y > 0, ∀ n ∈ [1,+∞). (3.2d)

The first two properties are inherited from the definition of the equivalent income and
from the properties of the common utility function. The last property follows from
taking the limit of (2.8) and from the fact that m(y, n) � 1, for all n ∈ [1,+∞)

and all y > 0. To the extent that the equivalent income is considered an appropriate
measure of the well-being of the household’s members, it makes sense to assume that
it is decreasing with the household’s size: other things equal, the smaller is the size
of the household, the greater is the well-being of any of its members.11 On the other
hand, the choice of the weighting function w is arbitrary and we only impose it to
satisfy the two following conditions:

w(n) is differentiable in n, ∀ n ∈ [1,+∞) and (3.3a)

w(n) is non-decreasing in n, ∀ n ∈ [1,+∞). (3.3b)

An adjustment method is a couple (E | w) and, for later use, we denote by A the set
of admissible adjustment methods, i.e., those (E | w) satisfying conditions (3.2) and
(3.3). The weighting function allows for different possibilities among which are the
standard one consisting in weighting the equivalent income by the number of persons
in the household, and the one that gives each household the same weight irrespective
of its size and composition. The way in which the households’ equivalent incomes
are weighted is not innocuous and it has been shown to have important consequences
for normative evaluation.12 Let us indicate by (s |w) := (s1, . . . , sH | w1, . . . , wH )

a typical (unidimensional) income distribution, where sh and wh are respectively the
income and the weight attached to household h, and by

11 The standards properties of the utility function do not guarantee that this property be satisfied unless
one imposes additional restrictions on the utility function that still need to be identified. For instance, the
quasi-linear utility function U (x,G) := x + 2 ln(1 + G) does not generate an equivalent income that
decreases with household size.
12 This was first recognised by Glewwe (1991), who showed that a regressive transfer of income between
two households might decrease the inequality of well-being when the equivalent incomes are weighted by
the household sizes.
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DH := {(s |w) := (s1, . . . , sH | w1, . . . , wH ) | sh > 0 and wh > 0, ∀ h } (3.4)

the set of such distributions. We note that, by definition, (E(x;n) | w(n)) ∈ DH , for
all (x;n) ∈ SH , and we further use μ(s |w) to represent the (arithmetic) mean of the
income distribution (s |w) ∈ DH .

We are interested in comparing situations from the point of view of inequality
of well-being for populations of households whose members face different circum-
stances. To this end, we introduce an index of inequality of well-being I : SH → R

such that I (x;n)measures the extent of inequality in situation (x;n)with the property
that

I (x;n) = J (E(x;n) | w(n)), ∀ (x;n) ∈ SH , (3.5)

where J : DH → R is a (unidimensional) inequality index. According to defin-
ition (3.5), the assessment of the inequality of well-being is a two-stage process,
where the two dimensions of the households’ heterogeneity are first aggregated into
a single measure (the equivalent income) and where the distributions of these equiv-
alent incomes—appropriately weighted—are then compared by means of a standard
inequality index. This two-stage process in the measurement of inequality for het-
erogenous populations is rather natural when one uses equivalence scales to adjust
households’ incomes for differences in needs and it has been widely used in empirical
work.

The preceding discussion makes clear that the extent of inequality of well-being
depends both on the index J and on the adjustment method (E | w) one chooses.
For instance, J can be the Gini index, a member of the Atkinson–Kolm–Sen (AKS)
family of indices or a member of the generalised entropy family. There is no need for
our purpose to choose a particular unidimensional inequality index: it suffices that J
verifies four natural (in the inequality literature sense) conditions. The first condition
is satisfied by most unidimensional inequality indices and it simply requires that the
index takes the value zero only when all incomes are equal.

Normalisation (UN) For all (s |w) ∈ DH , we have J (s |w) = 0, if and only if
s1 = s2 = · · · = sH .

The second condition is also standard and it states that inequality is not changed when
incomes increase or decrease proportionally.

Scale invariance (USI) For all (s∗ |w), (s◦ |w) ∈ DH and all ν > 0, we have
J (s∗ |w) = J (s◦ |w) whenever s∗ = ν s◦.

The next condition is but an adaptation in our framework of the principle of popula-
tion due to Dalton (1920), according to which a replication of the population leaves
inequality unchanged.

Distributional invariance (UDI) For all (s |w∗), (s |w◦) ∈ DH and all λ > 0, we have
J (s |w∗) = J (s |w◦) whenever w∗ = λw◦.

According to condition UDI, inequality does not change when all the weights are
increased or decreased in the same proportion. If the weights attached to the equivalent
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incomes are equal to the numbers of households having these incomes, then condition
UDI reduces to the principle of population applied to households.13 Before we turn to
the fourth condition, we need to introduce a piece of additional notation. Let us indicate
by F( · ; (s |w)) the cumulative distribution function of (s |w) and by F−1( · ; (s |w))

its inverse obtained by letting F−1(0; (s |w)) := min{s1, s2, . . . , sH } and

F−1(p; (s |w)) := I n f {z ∈ (−∞,+∞) | F(z; (s |w)) ≥ p } , (3.6)

for ∀ p ∈ (0, 1] (see Gastwirth 1971). The Lorenz curve of the income distribution
(s |w) ∈ DH—denoted as L(p; (s |w))—is then defined by

L(p; (s |w)) :=
∫ p

0
F−1(q; (s |w)) dq, ∀ p ∈ [0, 1]. (3.7)

Then, we will say that distribution (s∗ |w∗) Lorenz dominates distribution (s◦ |w◦),
which we write (s∗ |w∗) ≥L (s◦ |w◦), if

L(p; (s∗ |w∗)) � L(p; (s◦ |w◦)), ∀ p ∈ (0, 1), and μ(s∗ |w∗) = μ(s◦|w◦).
(3.8)

The fourth condition captures the very idea of inequality reduction and it requires that
inequality does not increase when incomes are more equally distributed in the sense
that the Lorenz curve moves upwards.

Lorenz consistency (ULC) For all (s∗ |w∗), (s◦ |w◦) ∈ DH , we have J (s∗ |w∗) �
J (s◦ |w◦) whenever (s∗ |w∗) ≥L (s◦ |w◦).

The above condition is a different way of stating the principle of transfers according
to which inequality decreases as the result of a progressive transfer.14

The class of indices defined by (3.5) and such that the inequality index J possesses
the four properties above is presumably large and there is no reason a priori to believe
that all such indices may be considered appropriate measures of the inequality of well-
being. We propose below three conditions that will allow us to put more structure on
the index I and, as a consequence, to narrow down the set of admissible indices for
measuring inequality of well-being. As we already insisted in the Introduction, this
does not mean that all the conditions we review below are ethically acceptable, nor
that they exhaust all the possibilities. But, as we will see in a while, they appear to be
necessary and sufficient to generate isoelastic equivalence scales. The first condition is
merely a restatement of the standard scale invariance property in the unidimensional

13 Actually, condition UDI is stronger than the principle of population to the extent that the weights are
not necessarily equal to the numbers of households who have that particular income: for instance, weights
may be used to improve the representativeness of the sample data.
14 We refer the interested reader to Ebert and Moyes (2002) for a proof of this assertion in the particular
framework considered here.
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setting and it demands that proportional changes in the households’ incomes have no
impact on the inequality of well-being in the population.

Income scale invariance (BISI) For all (x∗;n), (x◦;n) ∈ SH and all ν > 0, we have
I (x∗;n) = I (x◦;n) whenever x∗ = νx◦.

Similarly, our second condition insists on the fact that demographic changes that
result in proportional shifts in the distribution of household types have no impact on
the inequality of well-being.

Neediness scale invariance (BNSI) For all (x;n∗), (x;n◦) ∈ SH and all λ > 0, we
have I (x;n∗) = I (x;n◦) whenever n∗ = λn◦.

While the standard scale invariance property (USI) for unidimensional inequality
indices is mirrored by condition BISI in our bidimensional setting, things are totally
different as far as conditions BNSI and UDI are concerned. Indeed, according to UDI,
a replication of the population of individuals leaves inequality of income unchanged
whereas, in the case ofBNSI, it is a proportional change in the distribution of household
types that—other things equal—is deemed to have no impact of the inequality of well-
being. Thus, there is no guarantee that a replication of the population of individuals
translates into a proportional shift of the distribution of household types. On the other
hand, the latter transformation can be seen as a particular replication of the population
of individuals.

Formally, conditions BISI and BNSI impose that changes that do not modify the
(relative) inequality of the marginal distributions of household income and household
size have no impact on the inequality of well-being.15 At this stage, and in the absence
of additional restrictions placed on the adjustment method, there is no guarantee that
these two conditions be satisfied. Nor it is clear what is the interest of requiring that the
unidimensional inequality index J is Lorenz consistent. Indeed, the latter property has
no particular meaning in the present context, unless one is able to relate the shifts of the
Lorenz curves of the adjusted income distributions to particular modifications of the
joint distributions of household income and neediness that represent uncontroversial
reductions of inequality of well-being. In this respect, the next transformation (see,
e.g., Ebert 2000; Gravel and Moyes 2012), which fully exploits the bidimensionality
of a situation, constitutes in our model a natural generalisation of the notion of a (uni-
dimensional) progressive transfer. Given two situations (x∗;n∗), (x◦;n◦) ∈ SH , we
will say that (x∗;n∗) is obtained from (x◦;n◦) by means of a between-type progressive
transfer, if there exists Δ > 0 and two households i, j such that

x◦
i < x∗

i � x∗
j < x◦

j ; n◦
j = n∗

j < n∗
i = n◦

i ; (3.9a)

x∗
i − x◦

i = x◦
j − x∗

j = Δ; and (3.9b)

(x∗
h , n

∗
h) = (x◦

h , n
◦
h), ∀ h 
= i, j. (3.9c)

15 Combining these two conditions, we obtain the kind of invariance property considered in the standard
multidimensional inequality literature, where different scalings are used for different attributes (see, e.g.,
Tsui 1995).
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Like a progressive transfer, a between-type progressive transfer consists in taking
some income from a richer household for giving it to a poorer household in such
a way that the donor is not made poorer than the receiver. The difference is that
the household who is poor in income is also the one who has greater needs while
the rich in income household has less needs. A between-type progressive transfer
fully acknowledges the multidimensional nature of inequality—household i is more
deprived than household j in both income and needs—but only the first attribute
is used for reducing inequality.16 Indeed, given the nature of the need variable, it
does not make sense to redistribute needs from needy to less needy households and
we therefore prevent ourselves from so doing. Hence, by definition, a between-type
progressive transfer does not modify the distribution of household types: if (x◦;n◦) is
converted into (x∗;n∗) bymeans of a between-type progressive transfer, thenn∗ = n◦.
If we subscribe to the judgement that a between-type progressive transfer constitutes
an unambiguous inequality-reducing operation in our particular setting, thenwe surely
want to impose the following condition:

Weak equity (BWE) For all (x∗;n∗), (x◦;n◦) ∈ SH , we have I (x∗;n∗) � I (x◦;n◦)
whenever (x∗;n∗) is obtained from (x◦;n◦) by means of a between-type progressive
transfer.

Although the condition that inequality of well-being is reduced by a between-type
progressive transfer appears at first sight to be a mild requirement, it has important
consequences for the structure of the inequality index I as the next result demonstrates.

Proposition 3.1 Let I be as defined by (3.5) and assume that J satisfies condition
ULC. Then:

E(y; n) = y

K (n)
, ∀ y > 0, ∀ n ∈ [1,+∞), and (3.10a)

w(n) = ηK (n), ∀ n ∈ [1,+∞) and for some η > 0, (3.10b)

are necessary and sufficient for condition BWE to be fulfilled.

According to Proposition 3.1, the imposition of condition BWE restricts the way the
adjusted income distributions are derived in two respects. Firstly, the equivalence
scale must be independent of household income: in other terms, the equivalence scale
satisfies the relative equivalence scale exactness condition of Blackorby and Donald-
son (1993), or equivalently the independence of base level condition due to Lewbel
(1989) (see also Blundell and Lewbel 1991). Secondly, the weights associated to the
households’ equivalent incomes must be proportional to the corresponding equiva-
lence scales. It follows that the equivalent income function and the weighting function
cannot be chosen independently from each other if wewant inequality of well-being—

16 To this extent, a between-type progressive transfer is a particular case of the more general transformation
introduced byKolm (1977)who requires that transfers take place in all attributes. It must also be stressed that
Kolm (1977) imposes no restrictions on the respective positions—with respect to the different attributes—of
the households involved in this generalised transfer. In particular, it is not necessary that one household be
richer than another in all attributes for the transfer to make sense.
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as measured by an index defined by (3.5)—to decrease as the result of a between-type
progressive transfer.17

On the other hand, Proposition 3.1 does not give any indication about the form of
the size dependency of the equivalence scale and there are a number of possibilities
consistent with the restrictions expressed by (3.10). Upon substituting (3.10a) and
(3.10b) into (3.5), we obtain:

I (x;n) = J

(
x1

K (n1)
, . . . ,

xH
K (nH )

∣∣∣∣ ηK (n1), . . . , ηK (nH )

)
. (3.11)

Clearly, all indices I as defined by (3.11) satisfy BISI provided that the unidimensional
inequality index J is scale invariant. On the other hand, scale invariance (USI)—even
combined with distributional invariance (UDI)—does not guarantee that an index of
inequality ofwell-being I of the form (3.11)will obey conditionBNSI.However, BWE
in conjunction with the four standard properties UN, USI, UDI and ULC ensures that
the index I satisfies BNSI. The following result summarises the above discussion:

Proposition 3.2 Let I be as defined by (3.5) and assume that J satisfies conditions
UN, USI, UDI and ULC and I satisfies condition BWE. Then:

K (n) = ξ nε (ξ, ε > 0), for all n ∈ [1,+∞), (3.12)

is necessary and sufficient for conditions BNSI and BISI to be fulfilled.

While the imposition of BNSI in a heterogenous setting is admittedly open to debate,
we insist on the fact that it is this condition that—in conjunction with condition BWE
and standard properties of unidimensional inequality indices— precipitates isoelastic
equivalence scales.We admit that, among the three properties of the index of inequality
of well-being that we have considered, condition BNSI is with no doubt the most
controversial one. However, if we subscribe to isoelastic equivalence scales and to the
two-stage procedure we have followed for measuring inequality of well-being, then
we have to accept condition BNSI. Or, if we feel unable to accept condition BNSI,
then we have to abandon isoelastic equivalence scales: within the model considered
here, there is no way to escape this dilemma.

4 Recovering the household’s members’ common preferences

We have shown that under certain conditions relative to the way one conceives of
inequality of well-being, equivalence scales with a constant elasticity constitute the
only possibility for adjusting household income for needs. Isoelastic scales are very
specific and they are likely to imply strong restrictions both on the behaviour of
the household and on its members’ preferences. Taking for granted that the house-
hold maximises the sum of utilities of its members who, in addition, are assumed

17 This result is reminiscent of Ebert andMoyes (2003) who obtained similar restrictions on the adjustment
method but using a slightly different approach.
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to be all alike, we are interested here in the implications of such scales for the
common—to all the household’s members—preference ordering. Upon substituting
ξ =: g̃(p, q, y;ψ, θ, 1) and ε =: f̃ (p, q, y;ψ, θ, 1) into (3.12), we get

m(p, q, y;ψ, θ, n) = g̃(p, q, y;ψ, θ, 1) n f̃ (p,q,y;ψ,θ,1), (4.1)

which holds for all ψ ∈ Ψ , n � 1, θ ∈ [0, 1), y > 0 and all (p, q) � (0, 0).
Appealing next to (2.7), we obtain a similar condition when the equivalence scale
refers to the household representative member’s utility. More precisely, letting

g(p, q, u;ψ, θ, 1) := g̃(p, q,C(p, q, u;ψ, θ, 1);ψ, θ, 1) and (4.2a)

f (p, q, u;ψ, θ, 1) := f̃ (p, q,C(p, q, u;ψ, θ, 1);ψ, θ, 1), (4.2b)

we obtain the utility-based equivalence scale

M(p, q, u;ψ, θ, n) = g(p, q, u;ψ, θ, 1) n f (p,q,u;ψ,θ,1), (4.3)

for all ψ ∈ Ψ , n � 1, θ ∈ [0, 1), u ∈ R and all (p, q) � (0, 0).
By definition, the equivalence scale m(p, q, y;ψ, θ, n) is isoelastic if (4.1) holds,

for all ψ ∈ Ψ , all n ∈ [1,+∞), all θ ∈ [0, 1), all y > 0, and all (p, q) � (0, 0). To
see what this actually means, consider the condition according to which the relative
change in the equivalence scale due to a proportional increase of household size is
independent of the latter. Formally, this condition amounts to requiring that:

m(p, q, ỹ;ψ, θ, λñ)

m(p, q, ỹ;ψ, θ, ñ)
= m(p, q, ŷ;ψ, θ, λn̂)

m(p, q, ŷ;ψ, θ, n̂)
, (4.4)

for all ñ, n̂ � 1, all ỹ, ŷ > 0, all λ > 1 and all (p, q;ψ, θ), or equivalently that

m(p, q, y;ψ, θ, λn) = ϕ(p, q, y;ψ, θ, λ)m(p, q, y;ψ, θ, n), (4.5)

for all n � 1, all y > 0, all λ > 1 and all (p, q;ψ, θ). This is a functional equation the
solution of which (see Aczel (1966, Chapter 3)) is precisely (4.1). Hence, isoelastic
scales have the property that a proportional increase in household size translates into
a proportional—but not necessarily of the same magnitude— increase in the scale.
Upon substitution of (4.1) into (2.8), we obtain the equivalent income:

E(p, q, y;ψ, θ, n) = y

g̃(p, q, y;ψ, θ, 1)
n− f̃ (p,q,y;ψ,θ,1), (4.6)

for all n � 1, all λ > 1 and all (p, q, y;ψ, θ). The equivalent income function inherits
the properties of the equivalence scale: it is isoelastic with respect household size.
Whatever the household income, the relative increase of the equivalent income needed
for compensating a proportional increase of the household size is independent of its
size. To make things clearer, suppose that there are four types of households: singles,
couples with no children, couples with one child, and couples with two children.
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Assume further, as we have been doing implicitly throughout the paper, that children
and adults are counted as identical persons in the household. Consider a population
consisting of two households i and j , and let (x◦;n◦) = (x◦

i , x
◦
j ; n◦

i , n
◦
j ) = (s, t; 1, 2)

and (x∗;n∗) = (x∗
i , x∗

j ; n∗
i , n

∗
j ) = (s, t; 2, 4), be two alternative situations for this

society. The fact that the equivalent income function is isoelastic with respect to
household size ensures that:

E(p, q, t;ψ, θ, 4)

E(p, q, s;ψ, θ, 2)
= E(p, q, t;ψ, θ, 2)

E(p, q, s;ψ, θ, 1)
. (4.7)

According to (4.7), a doubling of households i and j’s sizes preserves the initial
ratio of households i and j’s equivalent incomes. This is true whatever the values
of the households i and j’s incomes and it generalises to arbitrary household sizes
and proportional changes of these sizes. Equation (4.7) can be considered a partial
homotheticity condition of the equivalent income function with respect to household
size.18

Taking for granted that isoelastic equivalence scales are deemed to be ethically
relevant, the question is to knowwhether there exist preferences that, in our particular
model, would generate such scales. Consider an individual who has Cobb-Douglas
preferences represented by the utility functionU (x,G) = xc G1−c, where 0 < c < 1.
Letting n = 1, the solutions to problem P(I) are x = X(p, q, y) = cy/p and G =
G(p, q, y) = (1 − c)y/q. Upon substitution into U (x,G), we obtain the individual
indirect utility function

V(p, q, y) =
(
c

p

)c (
1 − c

q

)1−c

y, (4.8)

which upon inverting gives the individual expenditure function

C(p, q, u) =
( p

c

)c (
q

1 − c

)1−c

u. (4.9)

Substitutingψ(θ, n)q/n for q into (4.9) and using (2.10), we get the household expen-
diture function

C (p, q, u;ψ, θ, n) = nC

(
p,

ψ(θ, n) q

n
, u

)
= n

( p

c

)c (
ψ(θ, n) q

(1 − c) n

)1−c

u,

(4.10)

18 In the case of two variables, standard homotheticity requires that f (λu)/ f (u) = f (λv)/ f (v), for all
u := (u1, u2), v := (v1, v2) ∈ R

2++ and all λ > 1. On the other hand, (partial) homotheticity in the first

variable would impose that f (λu1, u2)/ f (u1, u2) = f (λv1, v2)/ f (v1, v2), for all u, v ∈ R
2++ and all

λ > 1.
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which can be rewritten as

C (p, q, u;ψ, θ, n) = n

(
ψ(θ, n)

n

)1−c ( p

c

)c (
q

1 − c

)1−c

u. (4.11)

We derive the household (relative) equivalence scale

M (p, q, u;ψ, θ, n) = n

(
ψ(θ, n)

n

)1−c

, (4.12)

which is independent of the household representative utility. If, in addition,

ψ(θ, n) = nρ(θ), (4.13)

then we get

M (p, q, u;ψ, θ, n) = nc+(1−c) ρ(θ), (4.14)

and the equivalence scale is isoelastic with respect to household size. To sum up: (1) if
preferences are Cobb–Douglas and (2) if the congestion function is isoelastic, then the
(relative) equivalence scale is isoelastic. It is fair to acknowledge that a related result has
been obtained by Fleurbaey and Gaulier (2009) in the case of a pure household public
good which amounts to setting θ = 0 in (4.13) above. However, we insist on the fact
that, in the general case where one allows for the possibility of congestion and where
ψ(θ, n) 
= nρ(θ), Cobb-Douglas preferences do not guarantee that the equivalence
scale will be isoelastic. This can be seen by letting c = 0.50 and choosing

ψ(θ, n) = nθ2 + nθ

2
, (4.15)

that satisfies conditions (2.2a)–(2.2e). Consider again a population consisting of
two households i and j , and choose (x◦;n◦) = (x◦

i , x
◦
j ; n◦

i , n
◦
j ) = (3, 6; 1, 2) and

(x∗;n∗) = (x∗
i , x∗

j ; n∗
i , n

∗
j ) = (3, 6; 3, 6) be two alternative situations for this soci-

ety. Letting p = q = 1 and θ = 0.50, we get

m(p, q, 6;ψ, θ, 6)

m(p, q, 3;ψ, θ, 3)
= 2.1508 > 2.1382 = m(p, q, 6;ψ, θ, 2)

m(p, q, 3;ψ, θ, 1)
, (4.16)

which violates condition (4.4). Hence, the presumption that, in the presence of con-
gestion, Cobb–Douglas preferences alone do not guarantee that the equivalence scales
will be isoelastic.

The discussion abovemakes clear that, provided that the congestion function has the
particular shape given by (4.12), Cobb–Douglas preferences give rise to equivalence
scales with constant elasticity with respect to household size. The interesting thing is
that, in our model, Cobb–Douglas preferences and an isoelastic congestion function
are also necessary for the equivalence scales to be isoelastic, as the following result
indicates.
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Proposition 4.1 Assume that ψ ∈ Ψ and θ ∈ [0, 1). Then, m (p, q, y;ψ, θ, n) sat-
isfies condition (4.1)—equivalently, M (p, q, u;ψ, θ, n) satisfies condition (4.3)—if
and only if:

(a) There exists ρ : [0, 1) → [0, 1) such that ψ(θ, n) = nρ(θ), and

(b) U (x,G) = xcG1−c, for some c ∈ (0, 1).

It follows from Cobb–Douglas preferences that the consumption of the private good
by any member of the household is linear and increasing in household income and
similarly for the consumption public good. On the other hand, the consumption of
both goods by any member of the household is a decreasing and convex function of
household size, and public consumption decreases at a slower pace than does private
consumption whenever c > 1 − c.

To the extent that Cobb–Douglas preferences are a particular case of homothetic
preferences, one might wonder whether the homotheticity of preferences would have
not been sufficient to generate isoelastic scales in the presence of a congestion function
of the form (4.13). Actually, this is not true as it can be seen by considering the CES
family of utility functions:

U (x,G) = (
a xc + b Gc) 1

c , where a, b > 0 and c > 0. (4.17)

Indeed, assuming a pure household public good (θ = 0) and letting a = b = 1.00,
c = 0.50 and p = q = 1, we obtain

m (p, q, y;ψ, θ, n) = 2n

n + 1
, for all n � 1 and all y > 0, (4.18)

which is clearly not isoelastic. Therefore, CES preferences—and more generally
homothetic preferences—do not guarantee that the equivalence scales will always
be isoelastic. On the other hand, we note that the equivalence scale does not depend
on the household income as it is the case for the Cobb-Douglas utility function. This
ceases to be the case when the utility function is not homothetic as it can be seen by
choosing the utility function U (x,G) := x + 2 ln(1 + G) for instance. Then, when
p = q = 1 and θ = 0.80, one can check that m(p, q, y;ψ, θ, n) increases with y,
whatever n > 1.

5 Concluding remarks

In this paper, we have taken for granted that, for comparisons of well-being across
populations of heterogenous households to be meaningful, one has to make proper
adjustments of household incomes to acknowledge differences in needs. We have, to
a large extent, followed the current practice in most empirical studies that consists in
comparing the distributions of the households’ equivalent incomes by means of stan-
dard (unidimensional) measures of welfare, poverty or inequality. On the normative
side, we have shown that, if we want (1) that inequality decreases as the result of a
natural extension of the notion of a progressive transfer, and (2) that it is unaffected
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by proportional changes in both household incomes and sizes, then the scales have to
be isoelastic (Propositions 3.1 and 3.2). On the positive side, we have shown that, if
(1) all individuals have identical preferences and (2) households maximise the sum
of their members’ utilities, then Cobb–Douglas preferences are necessary and suffi-
cient for such equivalence scales to arise, provided that the congestion function has a
specific form (Proposition 4.1).While it is generally claimed that isoelastic scales pro-
vide reasonable approximations of the scales currently used in practice, Proposition
4.1 uncovers the restrictions one has to place implicitly on the household’s members
preferences as well as on the way the intra-allocation of resources is determined by
the household in order to generate such scales. It is interesting to note that isoelastic
scales can also be recovered from personal judgements within the subjective approach
model of Kapteyn and Praag (1976).

By definition, the equivalence scale depends both on the household welfare—
measured by the utility of a representative member—and on the prices of the private
and public goods. Experimental evidence suggests that equivalence scales are not
independent of household income—or equivalently of household welfare—as shown,
for instance, by Koulovatianos et al. (2005a), Koulovatianos et al. (2005a, b). This is
supported by econometric studies that indicate that the scales values vary significantly
with the income of the household (see, e.g., Donaldson and Pendakur 2004). This
is in total contradiction with our results which insist on the fact that—among other
things—a necessary condition for the inequality of well-being to be reduced by a trans-
fer of income from a richer and smaller household to a poorer and larger household
is that the equivalence scalem(p, q, y;ψ, θ, λn) is independent of household income
y (Proposition 3.1) or, equivalently, that M (p, q, u;ψ, θ, n) is independent of the
household representative utility u. It follows that isoelastic equivalence scales satisfy
the condition of relative equivalence scale exactness (Blackorby andDonaldson 1993)
or the condition of independence of base level (Lewbel 1989; Blundell and Lewbel
1991). Proposition 4.1 indicates in addition that, if households behave cooperatively
and individuals have the same Cobb–Douglas preferences, then the equivalence scales
are also independent of prices.

Crucial for our result are the assumptions that the household members behave in
a cooperative way and that they are identical in all respects. Suppose the household
members do not cooperate—every household member decides in isolation the amount
she is willing to contribute to the household public good—and that preferences are
identical and Cobb-Douglas. Then, the (relative) equivalence scale is

M (p, q, u;ψ, θ, n) = (1 + c(n − 1))ψ(θ, n)1−c (5.1)

(seeEbert andMoyes 2009),which, assuming that the congestion function is isoelastic,
reduces to

M (p, q, u;ψ, θ, n) = (1 − c)n(1−c)θ + cn(1−c)θ+1. (5.2)

Thus, as far as our first assumption is concerned, we note that in the non-cooperative
case Cobb-Douglas preferences no longer lead to isoelastic scales. However, for suf-
ficiently small values of c, isoelastic scales provide a reasonable approximation of
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the resulting scales. But, the main limitation of our approach is certainly the strong
assumption that individuals are identical in all respect. This is at variance with the
real world where households typically consist of individuals of different types— for
instance adults and children—who are likely to have distinct preferences. Allowing for
such a heterogeneity into our model and investigating its implications for the structure
of the equivalence scales is certainly the next step to be taken.

Finally, although our results are concerned with the measurement of inequality
in a context where the income-receiving units are heterogenous, we would like to
emphasise that they apply equally to themeasurement of welfare and poverty provided
(1) that the correspondingmeasures can be factorised in the sameway as is ourmeasure
of inequality of well-being and (2) that conditions BWE, BISI and BNSI be suitably
adapted. One the one hand, most empirical studies appeal to the two-stage procedure
we have used in this paper for assessing social welfare and poverty. On the other hand,
it seems reasonable to require that poverty decreases and social welfare increases as the
result of a between-type progressive transfer. Therefore, if one subscribes to the two
above views, then one would end up with the adjustment method defined by (3.10a)
and (3.10b): the equivalence scale is independent of household income and the weight
associated to the equivalent income is proportional to the scale. This still leaves some
room for those who do not accept condition BNSI even though the range of remaining
admissible equivalence scales is limited.

6 Proofs

Proof of Proposition 3.1 To the extent that the proof builds to a large extent on argu-
ments used by the authors inEbert andMoyes (2003),we only sketch the general line of
reasoning. Consider the following condition that refers to the impact of a between-type
progressive transfer (BTPT) on the distributions of equivalent incomes. �
Weak living standard equity (WLSE) Assume that (E | w) ∈ A . Then, for all
(x∗;n∗), (x◦;n◦) ∈ SH , we have

(E(x∗;n∗) | w(n∗)) ≥L (E(x◦;n◦) | w(n◦)), (6.1)

whenever (x∗;n∗) is obtained from (x◦;n◦) by means of a between-type progressive
transfer.

Note that both conditions BWE and WLSE emphasise the impact of a between-type
progressive transfer. Whereas the first condition is concerned with the inequality of
household well-being, the second condition focuses on the distribution of the adjusted
incomes. Given the structure of our index of inequality of well-being, we expect that
these two conditions are related as Fig. 1 suggests, and in fact, they are as we shall
see.

We first show that, whenever J fulfills condition ULC, a necessary and sufficient
condition for I to satisfy BWE is that the adjustment method (E | w) obeys condition
WLSE. It is obvious that, if J and (E | w) satisfy respectively ULC and WLSE, then
condition BWE is fulfilled by I . To prove the converse, let (x∗;n∗), (x◦;n◦) ∈ SH be
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Fig. 1 Logic of proof of Proposition 3.1

two situations such that (x∗;n∗) is obtained from (x◦;n◦) bymeans of a between-type
progressive transfer. Assuming that I satisfies condition BWE, we have:

I (x∗;n∗) = J (E(x∗;n∗) | w(n∗)) � J (E(x◦;n◦) | w(n◦)) = I (x◦;n◦), (6.2)

that holds for all J that are Lorenz-consistent and it follows from Proposition 3.1 in
Ebert and Moyes (2002) that

(E(x∗;n∗) | w(n∗)) ≥L (E(x◦;n◦) | w(n◦)). (6.3)

This reasoning applies whatever between-type progressive transfer is considered and
we therefore conclude that J satisfies condition WLSE.

It remains for us to establish that conditionWLSE holds if and only if the adjustment
method is the one defined by (3.10a) and (3.10b). More precisely, we have to prove
the following result:

Proposition 6.1 The adjustment method (E | w) satisfies conditionWLSE if and only
if

E(y; n) = y

K (n)
, ∀ y > 0, ∀ n ∈ [1,+∞), and (6.4a)

w(n) = ηK (n), ∀ n ∈ [1,+∞) and for some η > 0. (6.4b)

The proof of this result is pretty close to that of Proposition 4.2 in Ebert and Moyes
(2003) and we refer the interested reader to Ebert and Moyes (2016) that provides the
full details. �
Proof of Proposition 3.2 As we already noted, it follows from Proposition 3.1 that
condition BISI is automatically satisfied. Hence, we only have to show that isoelastic
scales are necessary and sufficient for BISI to hold. �
Necessity Assume that the unidimensional inequality index J satisfies UN, USI, UDI
and ULC, and that the index of inequality of well-being I satisfies condition BWE.
We have to show that, if the index I fulfills condition BNSI, then the equivalence scale
is isoelastic. Choosing first (x◦;n◦) = (K (n1), . . . , K (nH ); n1, . . . , nH ) and making
use of (3.5), we obtain

I (x◦;n◦) = J
(
E(x◦

1 ; n◦
1), . . . , E(x◦

H ; n◦
H )

∣∣ w(n◦
1), . . . , w(n◦

H )
)

(6.5)
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= J

(
K (n1)

K (n1)
, . . . ,

K (nH )

K (nH )

∣∣∣∣ η K (n1), . . . , η K (nH )

)
by Prop. 3.1

= J (1, . . . , 1 | η K (n1), . . . , η K (nH ))

= J (1, . . . , 1 | K (n1), . . . , K (nH )) by UDI

= 0. by UN

Choosing next (x∗;n∗) = (K (n1), . . . , K (nH ); λn1, . . . , λnH ) with λ > 0, we
obtain by a similar reasoning

I (x∗;n∗) = J
(
E(x∗

1 ; n∗
1), . . . , E(x∗

H ; n∗
H )

∣∣ w(n∗
1), . . . , w(n∗

H )
)

(6.6)

= J

(
K (n1)

K (λn1)
, . . . ,

K (nH )

K (λnH )

∣∣∣∣ η K (λn1), . . . , η K (λnH )

)
by Prop. 3.1

= J

(
K (n1)

K (λn1)
, . . . ,

K (nH )

K (λnH )

∣∣∣∣ K (λn1), . . . , K (λnH )

)
. by UDI

Invoking BNSI, we have I (x∗;n∗) = I (x◦;n◦), which, upon using (6.5) and (6.6),
implies that

J

(
K (n1)

K (λn1)
, . . . ,

K (nH )

K (λnH )

∣∣∣∣ K (λn1), . . . , K (λnH )

)
= 0, (6.7)

which holds true whatever the equivalence scale function K , the distribution of house-
hold size n := (n1, . . . , nH ) and λ > 0. This implies in turn that

K (λn1)

K (n1)
= K (λn2)

K (n2)
= · · · = K (λnH )

K (nH )
. (6.8)

Because (6.8) holds true for all n = (n1, . . . , nH ) ∈ [1,+∞)H and all λ > 0, we
deduce that

K (λn) = φ(λ) K (n), ∀ λ > 0, ∀ n ∈ [1,+∞). (6.9)

This is a functional equation the solution of which (see Aczel 1966, Chapter 2) is
precisely (3.12).
Sufficiency Assume that condition (3.12) holds and consider an arbitrary situation
(x;n) := (x1, . . . , xH ; n1, . . . , nH ). Choosing any λ > 0 and making use of (3.5)
again, we obtain

I (x; λn) = J ( E(x1; λn1), . . . , E(xH ; λnH ) | w(λn1), . . . , w(λnH )) (6.10)

= J

(
x1

K (λn1)
, . . . ,

xH
K (λnH )

∣∣∣∣ η K (λn1), . . . , η K (λnH )

)
by Prop. 3.1
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= J

(
x1

ξ(λn1)ε
, . . . ,

xH
ξ(λn1)ε

∣∣∣∣ η ξ(λn1)
ε, . . . , η ξ(λnH )ε

)
by assumption

= J

(
1

λε

x1
ξnε

1
, . . . ,

1

λε

xH
ξnε

H

∣∣∣∣ η λε(ξnε
1), . . . , η λε(ξnε

H )

)

= J

(
1

λε

x1
ξnε

1
, . . . ,

1

λε

xH
ξnε

H

∣∣∣∣ η ξnε
1, . . . , η ξnε

H

)
by UDI

= J

(
x1
ξnε

1
, . . . ,

xH
ξnε

H

∣∣∣∣ η ξnε
1, . . . , η ξnε

H

)
by USI

= J

(
x1

K (n1)
, . . . ,

xH
K (nH )

∣∣∣∣ η K (n1), . . . , η K (nH )

)
by assumption

= J ( E(x1; n1), . . . , E(xH ; nH ) | w(n1), . . . , w(nH )) by Prop. 3.1

= I (x; n), by (3.5)

hence condition BNSI is verified. �
Before we proceed to the proof of Proposition 4.1, we find it convenient to introduce
the following intermediate result that will be used repeatedly.

Lemma 6.1 Let D := [1, c), whenever c > 1, and D := (d, 1], whenever 0 � d < 1.
Then, there exist a non-constant function h and a function k such that

h(ab) = h(a) + k(a) h(b), ∀ a, b, ab ∈ D, (6.11)

if and only if

either h(a) = α ln a and k(a) = 1, ∀ a ∈ D, (6.12a)

or h(a) = α
[
aη − 1

]
and k(a) = aη (λ 
= 0), ∀ a ∈ D. (6.12b)

Furthermore, the functions h and k defined in (6.12) satisfy (6.11), for all a, b, ab > 0.

Proof of Lemma 6.1 The proof is analogous to that of Aczel (1984, Lemma 3), but
we provide it for the sake of completeness. �

Step 1. It is obvious that the functions h and k defined in (6.12a) and (6.12b) satisfy
(6.11). We therefore confine ourselves to the proof of necessity and we distinguish
two cases.
Case 1: k(a) = 1, for all a ∈ D. Then (6.11) reduces to

h(ab) = h(a) + h(b), ∀ a, b, ab ∈ D, (6.13)

the solution of which (see Aczel (1966, Chapter 2)) is

h(a) = α ln a, ∀ a ∈ D. (6.14)
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Case 2: k(a◦) 
= 1, for some a◦ ∈ D. Making use of the commutativity of h on D, we
have

h(ab) = h(a) + k(a) h(b) and (6.15a)

h(ba) = h(b) + k(b) h(a), (6.15b)

for all a, b ∈ D, from which we deduce that

h(a) [ k(b) − 1 ] = h(b) [ k(a) − 1 ], (6.16)

for all a, b ∈ D. In particular, choosing b := a◦, we obtain

h(a) = α [ k(a) − 1 ], (6.17)

where

α := h(a◦)
k(a◦) − 1

. (6.18)

The fact that h is non-constant by assumption guarantees that there exists α 
= 0 and
we can therefore insert (6.17) into (6.11) to get

α [ k(ab) − 1 ] = α [ k(a) − 1 ] + k(a) α [ k(b) − 1 ], (6.19)

which reduces to

k(ab) = k(a) k(b), ∀ a, b ∈ D, (6.20)

which is a functional equation whose solution (see again Aczel (1966, Chapter 2)) is

k(a) = aη, ∀ a ∈ D. (6.21)

Upon substitution into (6.17), we obtain

h(a) = α
[
aη − 1

]
, ∀ a ∈ D. (6.22)

Step 2. So far the solutions we have obtained are restricted to the domain D ⊂ R++
and we have to show that they are still valid for the entire domain R++. For Case 1,
this follows from Aczel (1984, Theorem A) and by setting k(a) = 1, for all a ∈ R++.
For Case 2, observe that, for all a ∈ R++, there exists an integer n such that n

√
a ∈ D.

Therefore, we define

k(a) := k( n
√
a)n, ∀ a ∈ R++ and (6.23a)

h(a) := α [ k(a) − 1 ], ∀ a ∈ R++. (6.23b)
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Direct computation shows that the functions h and k defined above satisfy (6.11), for
all a ∈ R++. �
Proof of Proposition 4.1 We have already established that conditions (a) and (b) are
sufficient for the (relative) equivalence scale to be isoelastic and we therefore confine
ourselves to showing that they are also necessary. While the function ψ ∈ Ψ and the
parameter θ ∈ [0, 1) are kept fixed throughout the proof, we maintain them for clarity
even though this makes notation more complicated. Suppose that M(p, q, u;ψ, θ, n)

is isoelastic with respect to household size n, in which case there exist continuous
functions g(p, q, u;ψ, θ, 1) and f (p, q, u;ψ, θ, 1) such that

M(p, q, u;ψ, θ, n) = g(p, q, u;ψ, θ, 1) n f (p,q,u;ψ,θ,1), (6.24)

for all n � 1 and all (p, q, u). The proof is relatively long and it involves four
successive steps. In Step 1, we derive the implications of our assumptions for the
expenditure function C(p, ψ(θ, n) q/n, u). We obtain a complex functional equation
which is simplified in Step 2, and whose solutions are derived in Step 3. Finally, the
consequences for the expenditure function are examined in Step 4, and it turns out that
preferences must be Cobb–Douglas and the congestion function isoelastic. �
Step 1. Making use of (2.10) and (6.24), we obtain the functional equation

C(p, q, u;ψ, θ, n) = C(p, q, u;ψ, θ, 1) g(p, q, u;ψ, θ, 1) n f (p,q,u;ψ,θ,1),

(6.25)

for all n � 1 and all (p, q, u). Setting n = 1 in (6.25) implies that

g(p, q, u;ψ, θ, 1) = 1, ∀ (p, q, u), (6.26)

which upon substituting into (6.25) and making use of (2.10) and (2.2d) gives

nC

(
p,

ψ(θ, n) q

n
, u

)
= C(p, q, u) n f (p,q,u;ψ,θ,1), ∀ n � 1, ∀ (p, q, u).

(6.27)

Substituting (1, q/p) for (p, q) in (6.27) and dividing both sides by n, we obtain

C

(
1,

ψ(θ, n)

n

q

p
, u

)
= C

(
1,

q

p
, u

)
n f

(
1, qp ,u;ψ,θ,1

)
−1

, ∀ n � 1, ∀ (p, q, u).

(6.28)

Letting ξ(θ, n) := n/ψ(θ, n), equation (6.28) becomes

C

(
1,

1

ξ(θ, n)

q

p
, u

)
= C

(
1,

q

p
, u

)
n f

(
1, qp ,u;ψ,θ,1

)
−1

, ∀ n � 1, ∀ (p, q, u).

(6.29)
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Since ξ(θ, n) is strictly monotone in n, it has an inverse ϕ(θ, r) defined by

ξ(θ, ϕ(θ, r)) = r, ∀ r ∈ S(θ) := {s | ∃ n ∈ [1,+∞) : ξ(θ, n) = s}, (6.30)

where

S(θ) ⊆ (0, 1] if ξ(θ, n) is decreasing in n, and (6.31a)

S(θ) ⊆ [1,+∞) if ξ(θ, n) is increasing in n. (6.31b)

For later use, we find it convenient to introduce the set

T (θ) :=
{
s

∣∣∣∣ ∃ r ∈ S(θ) : s = 1

r

}
, (6.32)

where

T (θ) ⊆ (0, 1] if ξ(θ, n) is decreasing in n, and (6.33a)

T (θ) ⊆ [1,+∞) if ξ(θ, n) is increasing in n. (6.33b)

Replacing n by ϕ(θ, r) in (6.29), we obtain

C

(
1,

q

p

1

r
, u

)
= C

(
1,

q

p
, u

)
ϕ(θ, r) f

(
1, qp ,u;ψ,θ,1

)
−1

, ∀ r ∈ S(θ), ∀ (p, q, u).

(6.34)

Step 2. Now define

h(a, u) := lnC(1, a, u), (a = q/p) (6.35a)

k(θ; a, u) := f (1, a, u;ψ, θ, 1) − 1, (6.35b)

�(θ; b) := ln ϕ(θ, 1/b). (b = 1/r) (6.35c)

For later use, we note that the function h(a, u) inherits the properties of the (individual)
expenditure function: in particular, it is increasing in a. Similarly, �(θ; b) is strictly
monotonic in b since the inverse ϕ(θ, r) of ξ(θ, n) is strictly monotonic in r . Then
(6.34) can be rewritten as

h

(
q

p

1

r
, u

)
= h

(
q

p
, u

)
+ k

(
θ; q

p
, u

)
�

(
θ; 1

r

)
, ∀ r ∈ S(θ), ∀ (p, q, u),

(6.36)

which is equivalent to the following functional equation:

h(ab, u) = h(a, u) + k(θ; a, u) �(θ; b), ∀ b ∈ T (θ), ∀ a > 0, ∀ u. (6.37)
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Setting a = 1 in the preceding equation, we get

h(b, u) = h(1, u) + k(θ; 1, u) �(θ; b), ∀ b ∈ T (θ), ∀ u. (6.38)

Because h( · , u) is increasing, it must be the case that k(θ; 1, u) 
= 0, and we deduce
from (6.38) that

�(θ; b) = h(b, u) − h(1, u)

k(θ; 1, u)
, ∀ b ∈ T (θ), ∀ u. (6.39)

Substituting into (6.37) and subtracting h(1, u) from both sides, we obtain

h(ab, u) − h(1, u) = h(a, u) − h(1, u) + k(θ; a, u)

k(θ; 1, u)
[ h(b, u) − h(1, u)],

(6.40)

for all b ∈ T (θ), all a > 0, and all u. Now define

ĥ(a, u) := h(a, u) − h(1, u), (6.41a)

k̂(θ; a, u) := k(θ; a, u)/k(θ; 1, u), (6.41b)

and substitute into (6.40) to get

ĥ(ab, u) = ĥ(a, u) + k̂(θ; a, u) ĥ(b, u), ∀ a > 0, ∀ b ∈ T (θ), ∀ u, (6.42)

which implies that k̂(θ; a, u) is independent of θ , hence k̂(θ; a, u) = k̃(a, u).
Step 3. Given θ ∈ [0, 1) and u ∈ R, we want to solve the functional equation

ĥ(ab, u) = ĥ(a, u) + k̃(a, u) ĥ(b, u), where a, b, ab ∈ T (θ). (6.43)

Invoking Lemma 6.1 and letting

β(u) := h(1, u) and γ (θ; u) := k(θ; 1, u), (6.44)

there are two cases to be considered.
Case 1: ĥ(a, u) = α(u) ln a and k̃(a, u) = 1, for all a ∈ R++. Making use of (6.41a),
(6.41b), (6.44), and upon substituting into (6.35a), (6.35b) and (6.35c), we obtain

h(a, u) = ĥ(a, u) + h(1, u) = α(u) ln a + β(u), ∀ a ∈ R++; (6.45a)

k(θ; a, u) = k̃(a, u) k(θ; 1, u) = γ (θ; u), ∀ a ∈ R++; (6.45b)

�(θ; a) = h(a, u) − h(1, u)

k(θ; 1, u)
= α(u) ln a

γ (θ; u)
, ∀ a ∈ R++. (6.45c)
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Case 2: ĥ(a, u) = α[aη − 1] and k̃(a, u) = aη (η 
= 0), for all a ∈ R++. Making
use again of (6.41a), (6.41b), (6.44), and upon substituting into (6.35a), (6.35b) and
(6.35c), we obtain

h(a, u) = ĥ(a, u) + h(1, u) = α(u) [ aη(u) − 1 ] + β(u), ∀ a ∈ R++; (6.46a)

k(θ; a, u) = k̃(a, u) k(θ; 1, u) = γ (θ; u), ∀ a ∈ R++; (6.46b)

�(θ; a) = h(a, u) − h(1, u)

k(θ; 1, u)
= α(u) [ aη(u) − 1 ], ∀ a ∈ R++. (6.46c)

Step 4. Now, we examine the implications for the expenditure function and the con-
gestion function of the two solutions we have obtained above.
Case 1: h(t, u) = α(u) ln t + β(u). Then, we have

eh(t,u) = eα(u) ln t+β(u) = eβ(u) eln t
α(u) = δ(u) tα(u), (6.47)

where δ(u) := eβ(u), for all t > 0 and all u. Substituting into (6.35a) and acknowl-
edging the linear homogeneity in prices of the expenditure function, we get

C(p, q, u) = pC

(
1,

q

p
, u

)
= p eh

(
q
p ,u

)
= δ(u) p1−α(u) qα(u), (6.48)

for all (p, q) � (0, 0) and all u. The monotonicity of the expenditure function in
prices implies that 1 − α(u) > 0 and α(u) > 0, hence 0 < α(u) < 1, for all u. By
definition, the individual expenditure function is strictly increasing in u, which implies
that19

∂C(p, q, u)

∂ u
= p1−α(u) qα(u)

[
δ′(u) + δ(u) α′(u) ln

(
q

p

)]
> 0, (6.49)

where α′(u) is the derivative of α(u) with respect to u. Since ln(q/p) ∈ (−∞,+∞),
it is necessary for (6.49) to hold that α′(u) = 0, hence α(u) is independent of u and
α(u) = ε ∈ (0, 1), for all u. Furthermore, we have

�(θ; s) = ln sα(u)/γ (θ;u) = ln sε/γ (θ;u), ∀ s > 0, ∀ u, (6.50)

andwe conclude that γ (θ; u) is independent of u, hence γ (θ; u) = ζ(θ). By definition

�(θ; s) := ln ϕ(θ, 1/s) = ln sε/ζ(θ), ∀ s > 0, (6.51)

which implies that

ϕ(θ, 1/s) = sε/ζ(θ), ∀ s > 0, (6.52)

19 Since by assumption the utility function is differentiable, so are the indirect utility function and its
inverse.
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or equivalently

ϕ(θ, r) = (1/r)ε/ζ(θ) = r−ε/ζ(θ), ∀ r > 0. (6.53)

Using the fact that by definition ϕ(θ, r) = n, we obtain

ξ(θ, n) = ξ(θ, ϕ(θ, r)) = r = n−ζ(θ)/ε, (6.54)

and finally

ψ(θ, n) = n

ξ(θ, n)
= n

n−ζ(θ)/ε
= nρ(θ), (6.55)

where ρ(θ) := 1 + ζ(θ)/ε, and it is an admissible congestion function.
Case 2: h(t, u) = α(u) [ tη(u) − 1 ] + β(u). Then, we have

eh(t,u) = eα(u) [ tη(u)−1 ]+β(u) = eβ(u) eα(u) [ tη(u)−1 ] =: δ(u) eα(u) [ tη(u)−1 ], (6.56)

for all t > 0 and all u. Substituting into (6.35a) and using the linear homogeneity in
prices of the expenditure function, we obtain

C(p, q, u) = pC

(
1,

q

p
, u

)
= p eh

(
q
p ,u

)
= δ(u) p eα(u)

[(
q
p

)η(u)−1
]
, (6.57)

for all (p, q) � 0 and all u. By definition, the expenditure function C(p, q, u) must
be increasing in prices. On the one hand, we must have

∂C(p, q, u)

∂ q
= δ(u) p eα(u)

[(
q
p

)η(u)−1
]
α(u)

η(u)

p

(
q

p

)η(u)−1

> 0, (6.58)

which simplifies to

∂C(p, q, u)

∂ q
= δ(u) eα(u)

[(
q
p

)η(u)−1
]
α(u) η(u)

(
q

p

)η(u)−1

> 0. (6.59)

Since δ(u) > 0, it is necessary for (6.59) to hold that α(u) η(u) > 0. On the other
hand, it must be the case that

∂C(p, q, u)

∂ p
= δ(u) eα(u)

[(
q
p

)η(u)−1
] [

1 − α(u) η(u)

(
q

p

)η(u)]
> 0. (6.60)

Since δ(u) > 0, it is necessary for (6.60) to hold that the term within squared brackets
is positive. However, depending on the values of q/p and η(u) − 1, this term can be
positive, negative, or zero, and we therefore conclude that Case 2 is impossible.
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To sum up, we have shown that

C(p, q, u) = δ(u) p1−ε qε (0 < ε < 1), ∀ (p, q) � (0, 0), ∀ u, and (6.61a)

ψ(θ, n) = nρ(θ), ∀ n ∈ [1,+∞), (6.61b)

where θ ∈ [0, 1), and the proof is complete. �
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