
Soc Choice Welf (2016) 47:853–877
DOI 10.1007/s00355-016-0994-8

ORIGINAL PAPER

Essentiality and convexity in the ranking of opportunity
sets

Matthew Ryan1

Received: 17 November 2015 / Accepted: 6 September 2016 / Published online: 15 September 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract This paper studies a class of binary relations on opportunity sets which we
call opportunity relations (ORs). These are reflexive and transitive (pre-orders) and
further satisfy a monotonicity and desirability condition. Associated with each OR is
an essential element operator (Puppe, J Econ Theory 68:174–199, 1996). Our main
results axiomatically characterise three important classes of ORs: those for which any
opportunity set lies in the same indifference class as its set of essential elements—the
essentialORs; thosewhose essential element operator is the extreme point operator for
some closure space (Ando, Discrete Math 306:3181–3188, 2006)—the closed ORs;
and those whose essential element operator is the extreme point operator for some
abstract convex geometry (Edelman and Jamison, Geometriae Dedicata 19:247–270,
1985)—the convex ORs. Our characterisation of convex ORs generalises the analysis
of Klemisch-Ahlert (Soc Choice Welf 10:189–207, 1993). Our results also provide
complementary perspectives on the well-known characterisation of closure operators
by Kreps (Econometrica 47:565–577, 1979), as well as the recent work of Danilov
and Koshevoy (Order 26:69–94, 2009; Soc Choice Welf 45:51–69, 2015).

1 Introduction

In this paper we consider pre-orders (reflexive and transitive binary relations, denoted
�) on the subsets of a non-empty, finite set X . Subsets of X are opportunity sets,
from which one alternative may—though not must—be chosen. If A, B ∈ 2X , then
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854 M. Ryan

A � B means that the opportunity, or freedom of choice, represented by A is weakly
preferred to that represented by B. Given this interpretation, it is natural to restrict
attention to pre-orders that are monotone with respect to set inclusion (B ⊆ A implies
A � B). We further assume that any non-empty opportunity set is strictly preferred to
the empty set. A pre-order satisfying these two additional requirements will be called
an opportunity relation (OR). Opportunity relations are the objects of study in the
paper.

We will not be prescriptive about the basis on which opportunities are ranked. Var-
ious logics are discussed in the literature, and ably surveyed elsewhere.1 Rankings
may follow the instrumentalist logic of indirect utility, or they might take account of
factors other than the decision-maker’s preferences (if such exist) over X . If opportu-
nity sets are given rather than chosen, then the decision-maker may feel happier about
a social situation that allocates to him a wide freedom of choice even if he would
reject most of the offered alternatives. He might also prefer to be offered additional
alternatives—besides those he is inclined to choose—if he feels that respected others
might find them attractive.

Our primary concern is the role of essential elements—a notion introduced by
Puppe (1996)—in the ranking of opportunity sets. An element x ∈ A is essential to
opportunity set A if A � A� {x}, where� is the asymmetric part of�. In other words,
an element is essential if its removal strictly diminishes the value of opportunity. By
focussing on the role of essential elements, our analysis is in the spirit of Puppe (1996)
and Puppe and Xu (2010), and at somewhat further remove, that of van Hees (2010).

We define an essential opportunity relation (EOR) to be an OR for which every
opportunity set is contained in the same indifference class as the set of its essential
elements. For an EOR, the full value of an opportunity set is carried by its essential
elements, and removal of any essential element will materially diminish this value.
The notion of essentiality captures the idea of an OR for which opportunity sets are
ordered on the basis of their sets of essential elements. In Sect. 3 we provide an
axiomatic characterisation of the EORs.

An important sub-class of EORs is the class of convex opportunity relations. A con-
vex OR is an EOR for which essentiality can be “rationalised” by a subjective convex
structure on X . More precisely, an EOR is convex if there exists an abstract convex
geometry (ACG) on X (Edelman and Jamison 1985) that rationalises essentiality in the
following sense: the essential elements of any opportunity set are its “extreme points”
relative to the ACG. A brief introduction to ACGs is provided in Appendix B and
the interested reader may consult Edelman and Jamison (1985) for a more detailed
account. An axiomatic characterisation of the convex ORs is given in Sect. 5.

The idea of rationalising essentiality through convexity was first proposed by
Klemisch-Ahlert (1993). Our analysis generalises hers in two important respects.

First, Klemisch-Ahlert restricts attention to a sub-class of ACGs known as the
convex shelling geometries. A convex shelling geometry is induced on X by specifying
a one-to-one mapping h : X → Rn . A set A ⊆ X is convex in the induced geometry
if

1 For example, by Barberà et al. (2004) and Dowding and Hees (2009).
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Essentiality and convexity in the ranking of opportunity sets 855

h (X) ∩ co (h (A)) = h (A)

where co (·) denotes the usual (Euclidean) convex hull in Rn . By varying the mapping
h we can induce different convex geometries on X—different collections of convex
subsets. However, there aremanyACGswhich are not convex shellings.2 In Sect. 5, we
construct an example to show that restricting attention to convex shelling geometries
excludes some plausible and interesting convex ORs.

Second, Klemisch-Ahlert specifies the mapping h exogenously. (In fact, she
assumes that X ⊆ Rn and takes h to be the identity function.) The associated con-
vex geometry is therefore part of the objective description of X—it can be observed
without observing preferences. In our framework, by contrast, the convex geome-
try that rationalises essentiality is subjective. Since essential elements are subjective
entities—they are imputed from an individual’s preferences—it is natural to expect
that the convex structure which rationalises essentiality should also be subjective.
Different individuals may perceive different convex structure in X . We therefore ask
when the notion of essentiality embodied in an EOR can be rationalised by some
ACG.

En route to our main results, we also characterise another interesting class of ORs,
which we call the closed opportunity relations, and we show that the class of convex
ORs is the intersection of the EORs and the closed ORs.

The remainder of the Introduction elaborates on this summary of our objectives.
Let e� (A) denote the (possibly empty) set of essential elements of A. An OR

is essential (an EOR) if A ∼ e� (A) for any A ⊆ X (where ∼ is the symmetric
part of �). For an EOR, there is an obvious sense in which the elements of e� (A)

may be interpreted as “extreme points” of A: removing an essential element from A
strictly diminishes the value of the opportunity set, and the elements of A�e� (A) are
“opportunity-spanned” by e� (A) in the sense that adding elements from A�e� (A)

to e� (A) does not enhance value. This interpretation of essential elements recalls
the connection between choice functions and abstract convex geometries, which was
originally explored by Koshevoy (1999).

An ACG provides a natural environment for thinking about extreme points. It
imposes convex structure on X by identifying the collection K ⊆ 2X of its “con-
vex” subsets. This collection must respect certain conditions to qualify as an ACG; for
example, it must be closed under intersections. Unless |X | = 1, there will bemore than
one collection that satisfies these conditions, so there are different ACGs—different
convex structures—that may be imposed on X .

Associated with any abstract convex geometry,K, is a closure operator σK : 2X →
2X and an extreme point operator eK : 2X → 2X defined as follows:3

σK (A) =
⋂

{B ∈ K | A ⊆ B } (1)

eK (A) = {
x ∈ A

∣∣ x /∈ σK
(
A�x

)}
. (2)

2 See Kashiwabara et al. (2005).
3 We use the term “operator” in the sense of Danilov andKoshevoy (2009, Definition 1). That is, an operator

is a mapping from 2X into itself.
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Recalling that the collection K is closed under intersections, σK (A) is therefore the
smallest convex set containing A—analogous to the “convex hull” of A—and x ∈ A
is an extreme point of A if its removal alters this convex hull.4

A convex opportunity relation (COR) is an EOR for which e� is the extreme point
operator for someACG. An axiomatic characterisation of this class of ORs is provided
in Theorem 3 (Sect. 5).

Inevitably, the conditions which determine the class of convex opportunity relations
have mathematical links to other characterisations of ACGs, most notably with the
recent work of Bossert et al. (2009), Danilov and Koshevoy (2009), Puppe and Xu
(2010) and Danilov et al. (2015). These links are explored in Sect. 5.1. One contri-
bution of the present paper is to emphasise the common mathematical foundations
which underpin a range of disparate objects studied by economists, and to clarify the
relationships amongst these structures.5

The importance of convex structure for analysing the value of opportunity was
first suggested (to the best of our knowledge) by Klemisch-Ahlert (1993). As noted
above, Klemisch-Ahlert assumes an exogenous convex shelling geometry on X . She
considers binary relations on opportunity sets which satisfy (inter alia) a condition
that she calls convex hull monotonicity: for any A ⊆ X and any x ∈ X�A, A ∪
{x} ∼ A if x is contained in the convex hull of A and A ∪ {x} � A otherwise.
Elements of X which lie in the convex hull of A (according to the convex shelling
geometry) are “opportunity-spanned” by A, while additions to A that strictly expand
the convex hull represent strictly valuable increments in opportunity.6 Likewise, in our
framework a COR satisfies convex hull monotonicity with respect to the rationalising
ACG (Lemma 6).

Abstract convex geometries are a sub-class of closure spaces. Closure spaces pro-
vide an algebraic abstraction of the notion of a closure operation. (See Appendix A for
a brief introduction to closure spaces.) The elements of a closure space, K, represent
the sets which are “closed” with respect to some (unspecified) operation, and σK (A)

is the closure of A. An ACG is closure space in which this underlying operation has
the algebraic flavour of forming convex combinations.

Given on OR,�, it is natural to interpret the following as the “opportunity closure”
of A ⊆ X :

σ� (A) = {x ∈ X | A ∼ A ∪ x } .

We say that � is a closed opportunity relation (ClOR) if � is an OR and σ� = σK for
some closure space,K. We provide an axiomatic characterisation of the closed ORs in
Sect. 4 (Theorem 1). It turns out that a closed OR need not be essential. However, the
set of ClOR’swhich are essential coincides exactly with the set of COR’s (Theorem 3).

4 Koshevoy (1999) proved that the class of path independent choice functions on X (Plott 1973) coincides
with the class of extreme point operators for ACGs on X .
5 We thank an anonymous referee for emphasising the value of this aspect of the paper, and for encouraging
us to further clarify these links.
6 Klemisch-Ahlert (1993, p.196) provides three justifications for assuming that the value of a set is the
same as that of its convex hull.
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Just as our characterisation of the convex ORs has connections to other characteri-
sations of ACGs, our characterisation of the closed ORs likewise recalls related results
on closure spaces and closure operators. These connections are explored in Sect. 4.1,
where our Theorem 1 is compared with closely related results by Kreps (1979) and
Danilov et al. (2015).

The next section introduces the notion of an opportunity relation. The essential
opportunity relations are characterised in Sect. 3. It is convenient to analyse closed
opportunity relations before introducing convex opportunity relations (i.e., to progress
from less restrictive to more restrictive classes of ORs), so the former are studied
in Sect. 4 and the latter in Sect. 5. Section 6 concludes. The Appendices contain
background material on closure spaces (Appendix A) and abstract convex geometries
(Appendix B).

2 Opportunity relations

First, some notation. Throughout the paper, X will denote a non-empty, finite set and
�will denote a pre-order (reflexive and transitive binary relation) on 2X . We define�,
∼, � and ≺ from � in the usual way. We also omit brackets around singleton subsets
of X whenever convenient. Finally, we use ⊆ and ⊂ to denote subsets and proper
subsets respectively.

Given that � is not required to be complete, the restriction imposed by transitivity
is mild. If � reflects the rankings that would be elicited by direct interrogation of
the individual (rather than imputed from choice behaviour),7 then it is reasonable to
suppose that most individuals would abstain rather than knowingly express rankings
which violate transitivity. Such intransitivities are unlikely to be found, under close
scrutiny, to be compatible with fully determinate preferences.

We shall be exclusively concerned with pre-orders that satisfy two further proper-
ties:8

Definition 1 An opportunity relation (OR) is a pre-order �⊆ 2X × 2X satisfying the
following desirability (D) and monotonicity (M) conditions:

A � ∅ for all non-empty A ⊆ X (D)

If ∅ �= B ⊆ A then A � B (M)

Monotonicity is self-explanatory. If the terms “opportunity” and “freedom” have
any ordinal significance at all, monotonicity must certainly lie at the heart of it. Puppe
andXu (2010, p. 671) remark thatM “seems to be an uncontroversial condition andwe

7 In particular,�need not reflect actual or hypothetical choice behaviour. The individual need not anticipate
facing a choice of opportunity sets (as opposed to a choice from an opportunity set). The binary relation �
may instead reflect her preferences over the opportunities with which the world chooses to present her—
preferences over what she might be offered, rather than inclinations to choose. This distinction is potentially
important for analysing conceptions of freedom.
8 Since M implies reflexivity we could replace “pre-order” in Definition 1 with “transitive binary relation”.

123



858 M. Ryan

expect any sensible freedom-ranking should satisfy this condition”. The desirability
assumption D is standard when � is defined over all subsets of X , rather than just the
non-empty subsets.9

While M and D are relatively uncontroversial assumptions in this literature, they
are not without substance, and since they are the foundation for all that follows, we
briefly rehearse the usual objections and present our defences against them.

The obvious objection—to both M and D—is that X might contain noxious alter-
natives whose presence degrades an opportunity set. We are not persuaded by this
objection for the following reasons.10

We wish to understand “opportunity” or “freedom” as notions that delimit what the
individual can do. Any compulsion should be determined by what is excluded from an
opportunity set, not what is included. Objections to M or D rely on the confounding
effect of implicit compulsions that are assumed to accompany the presentation of an
opportunity set. These elements of compulsion muddy the waters, obscuring our view
of what “opportunity” or “freedom” entails in its purest sense.

Consider monotonicity. If we add a noxious alternative to a non-empty opportunity
set, this will degrade the set only if its inclusion somehow compels the decision-
maker to contemplate the noxious alternative more vividly than she otherwise might.
We assume otherwise. In other words, we assume that the elements of X have all been
fully contemplatedby thedecision-maker before anyopportunity set is presented to her.
She fully understands the world in which she lives, including its darker elements, and
making a conscious choice to avoid unpleasant alternatives imposes no higher psychic
cost than being compelled to avoid them.With this interpretation,M is innocuous even
if X contains noxious elements.

The desirability assumption is questionable if X contains noxious elements and
we assume that choice is “forced”—that an alternative must be chosen from the
opportunity set with which the decision-maker is presented. If so, then presenting
the decision-maker with a singleton opportunity set means imposing the sole alter-
native upon her. To avoid the implied compulsion, we maintain the assumption—or
rather, the interpretation—that abstention from choice is always an option. It is the
only option if the opportunity set is empty. Opportunity can only compel by restricting
choice, not by imposing it.

Our interpretation therefore requires that clearmeaning can be attached to the notion
of not choosing, but this does not seem unduly restrictive.

Given that abstention is allowed, there is minimal loss of generality in further
assuming that X contains only elements that are individually desirable: for any x ∈ X ,
the decision-maker would strictly prefer to choose than not if her opportunity set were
{x}. We shall make this assumption throughout. Together with M, it implies D.11

The rest of the paper characterises various classes of ORs.

9 See, for example, Puppe (1996, p. 178) and Puppe and Xu (2010, p. 671). A notable exception is van
Hees (2010).
10 None of the following reasons is original to the present author, of course.
11 In other words, nothing would be lost by replacing D with the No Dummy condition of Danilov et al.
(2015): {x} � ∅ for every x ∈ X .
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As a prelude, it will be useful to define a pair of operators associated with an
opportunity relation.

Let � be an OR and let e� : 2X → 2X be defined from � as follows: for any
A ⊆ X ,

e� (A) = {
x ∈ A | A � A�x

}

Themembers of e� (A) are called the essential elements of A (Puppe 1996).12 Remov-
ing an essential element reduces the value of the opportunity represented by the set.
The following lemma gives an equivalent definition of e�.

Lemma 1 If � is an OR then

e� (A) =
⋂

{B ∈ 2X | B ⊆ A and A ∼ B }

for any A ⊆ X.

Proof Given M, A ∼ A�x iff x /∈ e� (A), so

⋂
{B ∈ 2X | B ⊆ A and | A ∼ B } ⊆ e� (A) .

To show the reverse inclusion, suppose x ∈ e� (A) and B ⊆ A ∼ B. We must prove
that x ∈ B. If x /∈ B then

A ∼ B ⊆ A�x .

M and transitivity therefore give A ∼ A�x , which contradicts x ∈ e� (A).

The second operator is a natural “dual” to e�. Given �, we define σ� : 2X → 2X

as follows: for any A ⊆ X ,

σ� (A) = {x ∈ X | A ∼ A ∪ x }
= A ∪ {

x ∈ X�A | x /∈ e (A ∪ x)
}

(3)

The set σ� (A) augments A with all of the elements which, individually, add no value.
The following result, which mirrors Lemma 1, gives an equivalent definition of σ�.

Lemma 2 If � is an OR then

σ� (A) =
⋃ {

B ∈ 2X | A ⊆ B and A ∼ B
}

for any A ⊆ X.

12 Nehring and Puppe (1999) say that x is “essential at A�x” if x ∈ e� (A). We follow Puppe’s (1996)
terminology in the present paper. The related notion of an eligible element was introduced by van Hees
(2010). However, his eligible element mapping e : 2X → 2X is treated as exogenous data, logically
separate from the pre-order �, though the axioms in van Hees (2010) restrict the relationship between the
two objects.
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Proof Since A ∼ A ∪ x for every x ∈ σ� (A), it is obvious that

σ� (A) ⊆
⋃ {

B ∈ 2X | A ⊆ B and A ∼ B
}
.

Conversely, suppose A ⊆ B ∼ A and z ∈ B. Then

A ⊆ A ∪ z ⊆ B ∼ A.

Using M and transitivity we deduce A ∼ A ∪ z. That is, z ∈ σ� (A). 
�
Note that the proofs of Lemmas 1 and 2 onlymake use of transitivity andmonotonic-

ity (M); the desirability condition (D) is not needed.

3 Essential opportunity relations

The elements of e� (A) are individually essential to the opportunity represented by
A. However, they may not be collectively sufficient. It is possible that A � e� (A).

Example 1 Suppose X = {a, b, c} and � is the weak order (i.e., complete pre-order)
satisfying

∅ ≺ a ∼ b ∼ c ∼ {b, c} ≺ {a, b} ∼ {a, c} ∼ X .

This is an OR but e� (X) = {a} ≺ X .

If A ∼ e� (A) for all A ⊆ X , then � is said to satisfy the Independence of Non-

Essential alternatives (INE) property (Puppe 1996).13 We call an opportunity relation
that satisfies INE an essential opportunity relation (EOR). For an EOR, the essential
elements of A carry the full value of the opportunity represented by A.

The following lemma gives some useful properties of EORs.

Lemma 3 Let � be an EOR with essential element operator e�. Then the following

hold for any A, B ∈ 2X :

(i) If A �= ∅ then e� (A) �= ∅.
(ii) If B ⊆ A then A ∼ B iff e� (A) = e� (B).
(iii) If e� (A) ⊆ B ⊆ A then e� (B) = e� (A).

Proof To show (i), suppose A �= ∅. If e� (A) = ∅ then INE implies A ∼ ∅ which
contradicts desirability (D).

Next, consider (ii). If e� (A) = e� (B) then A ∼ B follows by INE and transitivity.

Conversely, suppose B ⊆ A ∼ B. Then transitivity and Lemma 1 imply e� (A) ⊆

13 The INE acronym comes from Puppe and Xu (2010). Puppe (1996) calls this property Axiom I, which
has less mnemonic value.
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e� (B). Hence e� (A) ⊆ B and e� (A) ∼ A ∼ B, so e� (B) ⊆ e� (A) by another
application of Lemma 1.

Finally, consider (iii). If e (A) ⊆ B ⊆ A then INE and M imply A ∼ B and the
result follows by (ii). 
�

Property (i) is Axiom F in Puppe (1996). As the proof of Lemma 3 makes clear,
AxiomF is a logical consequence of desirability (D) and the INEproperty. Property (iii)
says that removing non-essential elements does not alter the set of essential elements;14

while property (ii) says that adding new elements leads to a material improvement in
opportunity if and only if it changes the set of essential elements.15

INE is imposed as an axiom in Puppe (1996) and Puppe and Xu (2010), but is
easily deduced from more elementary properties. Consider the following property,
which appears (unnamed) in Bossert et al. (2009; henceforth BRS):16

Definition 2 AnOR� satisfiesCollective Contraction Non-essentiality (CCN) if, for
all A ⊆ X and all x, y ∈ A,

A ∼ A�x ∼ A�y ⇒ A ∼ A� {x, y} .

Lemma 4 Let � be an OR. Then � is an EOR iff � satisfies CCN.

Proof To show the “if” part, suppose CCNholds and A = e� (A)∪{x1, . . . , xn}. Thus
A ∼ A�xi for each i ∈ {1, . . . , n}.We show that A ∼ A�B for any B ⊆ {x1, . . . , xn}
by induction on |B|. If |B| = 1 this follows by assumption. Let k ∈ {1, . . . , n − 1} and
suppose it is true for |B| ∈ {1, . . . , k}. Let B ⊆ {x1, . . . , xn} with |B| = k + 1. It is
without loss of generality (WLOG) to assume that B = {x1, . . . , xk+1}. By transitivity
and the inductive hypothesis

A ∼ A� {x1, . . . , xk−1} ∼ A� {x1, . . . , xk} ∼ A� {x1, . . . , xk−1, xk+1}

Hence CCN implies

A ∼ A� {x1, . . . , xk−1} ∼ A� {x1, . . . , xk+1} = A�B.

14 Property (iii) is a strengthening of the well-known Aizerman (or Outcast) condition on choice functions.
In our context, this latter condition would require e� (B) ⊆ e� (A) whenever e� (A) ⊆ B ⊆ A (Moulin
1985).
15 Property (ii) sharpens the “main content” of Puppe (1996, Proposition 1), and also Fact 7.1 in Nehring
and Puppe (1999).
16 The same property also appears, in a slightlyweaker version, inNehring and Puppe (1999), and in heavily
disguised form in Nehring and Puppe (1998). Nehring and Puppe’s (1999) weaker version of CCN is called
the Irrelevance of Inessential Elements (IIE) property. It allows CCN to be violated if x ∼ y ∼ {x, y}
or if A�{x, y} = ∅. Our Example 1 satisfies IIE. Note also that if � is an OR satisfying CCN then
x ∼ y ∼ {x, y} implies x = y (otherwise CCN and D are in contradiction). Nehring and Puppe’s (1998)
Strict Properness is essentially equivalent to CCN, though applied to so-called weak extended partial
orders (WEPOs). Nehring and Puppe (1998) work with extended binary relations on X , which are subsets
of 2X × X , rather than 2X × 2X . The WEPOs are a particular class of extended binary relations. We may
transform a binary relation �⊆ 2X × 2X into an extended binary relation Q ⊆ 2X × X (and vice versa)
by specifying that (A, x) ∈ Q iff A � A ∪ x . Under this transformation, � satisfies CCN iff Q satisfies
Strict Properness.
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Conversely, suppose CCN does not hold. Then there exists A ⊆ X and x, y ∈ A
such that A ∼ A�x ∼ A�y but A � A� {x, y}. It follows that e�(A) ⊆ A�{x, y}
so M implies

A � A� {x, y} � e� (A)

Hence A � e� (A) by transitivity. 
�
If � is an EOR, then Lemmas 2 and 3 imply that

σ� (A) =
⋃ {

B ∈ 2X | A ⊆ B and e (A) = e (B)
}

(4)

for any A ⊆ X . It is therefore tempting to interpretσ� (A) as the “opportunity span” (or
“opportunity closure”) of A, and the elements of e� (A) as the critical (or “extreme”)
points that support this opportunity span. However, as we show in the next section, not
all EORs are able to bear this interpretation. The ones that are will be characterised in
Sect. 5.

4 Closed opportunity relations

The notion of a closure space (Appendix A) provides an abstract algebraic character-
isation of closure operations. Every closure space has an associated closure operator
and extreme point operator. The closure operator maps each subset of X to its closure.
The extreme points of a set are the elements whose individual removal would strictly
diminish the closure (or span) of the set. Formal definitions are given in Appendix A.

While it is natural to interpret σ� (A) as the “opportunity closure” of A, the operator
σ� need not possess the formal properties of a closure operator—properties (CC0)-
(CC3) in Appendix A—even if � is an EOR (Example 2). An OR for which σ� is a
closure operator will be called a closed opportunity relation (ClOR). The following
result implies that we could equally well define a closed OR to be an OR whose
essential element operator is the extreme point operator for some closure space.

Lemma 5 Let � be an OR. If σ� is the closure operator for some closure space on X
then e� is the associated extreme point operator for that closure space. Likewise, if e�
is the extreme point operator for some closure space on X, then σ� is the associated
closure operator.

Proof Suppose σ� is the closure operator for some closure space and x ∈ e� (A).
That is, A � A�x and hence x /∈ σ�(A�x). Since σ� is monotone with respect
to set inclusion (see property (CC2) in Appendix A) and x ∈ σ� (A), it follows that
σ�(A�x) ⊂ σ� (A). That is, x is an extreme point of A. Conversely, suppose x is an
extreme point of A, so σ�(A�x) ⊂ σ� (A). If x ∈ σ�(A�x) then A ⊆ σ�(A�x)
and hence

σ� (A) ⊆ σ�(σ�(A�x)) = σ�(A�x)

by themonotonicity and idempotency of σ� (properties (CC2) and (CC3) in Appendix
A). This contradicts σ�(A�x) ⊂ σ� (A), so we must have x /∈ σ�(A�x). It follows
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Essentiality and convexity in the ranking of opportunity sets 863

that A � A�x , and therefore x ∈ e�(A). This proves the first claim. The second
follows directly from (3) above and (19) in Appendix A. 
�

The following example shows that not every EOR is closed.

Example 2 Suppose X = {a, b, c} and let � be the following weak order:

∅ ≺ b ∼ c ≺ a ∼ {a, b} ≺ {a, c} ≺ {b, c} ≺ X .

This is an OR and satisfies CCN. In fact, it is easily verified that

A ∼ σ� (A) ∼ e� (A)

for all A ⊆ X . However, σ� (a) = {a, b} while σ� ({a, c}) = {a, c}, so σ� violates
themonotonicity property of a closure operator (Property (CC2) inAppendixA)which
requires that σ� (A) ⊆ σ� (B) whenever A ⊆ B.

The following condition is necessary and sufficient for anOR to be closed (Theorem
1).

Definition 3 An OR � satisfies Expansion Monotonicity (EM) if, for all A ⊆ X and
all x, y ∈ X�A,

A ∼ A ∪ x ⇒ A ∪ y ∼ A ∪ {x, y} .

Note that the OR in Example 2 violates EM: take A = {a}, x = b and y = c.
Lemma 6 illustrates some useful consequences of EM. To state this result we first

introduce the following generalisation of convex hull monotonicity (Klemisch-Ahlert
1993):

Definition 4 An OR � satisfies closure monotonicity (CM) if the following hold for
any A, B ∈ 2X :

σ� (B) ⊆ σ� (A) ⇒ A � B

and

σ� (B) ⊂ σ� (A) ⇒ A � B.

Lemma 6 If � is an OR satisfying EM then:

(i) A ∼ σ� (A) for any A ⊆ X.17

(ii) � satisfies CM.

17 Example 2 shows that EM is not necessary for (i). A necessary and sufficient condition is the following:
for all A ⊆ X and all x, y ∈ X ,

A ∼ A ∪ x ∼ A ∪ y ⇒ A ∼ A ∪ {x, y} (5)

To see the sufficiency of (5), note that the proof of Lemma 6(i) does not use the full strength of EM—only
(5) is required. To see the necessity, suppose there exist A ⊆ X and x, y ∈ X such that A ∼ A∪ x ∼ A∪ y
but A ∪ {x, y} � A. Then A ∪ {x, y} ⊆ σ� (A), so M and transitivity give σ� (A) � A.
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Proof Consider (i). Let σ� (A) = A ∪ {x1, . . . , xn}. Thus A ∼ A ∪ xi for each

i ∈ {1, . . . , n}. We show that A ∼ A ∪ B for any B ⊆ {x1, . . . , xn} by induction on
|B|. If |B| = 1 this follows by assumption. Let k ∈ {1, . . . , n − 1} and suppose it is
true for |B| ∈ {1, . . . , k}. Let B ⊆ {x1, . . . , xn} with |B| = k + 1. It is WLOG to
assume that B = {x1, . . . , xk+1}. By transitivity and the inductive hypothesis

A ∼ A ∪ {x1, . . . , xk−1} ∼ A ∪ {x1, . . . , xk} ∼ A ∪ {x1, . . . , xk−1, xk+1}

Hence EM implies

A ∼ A ∪ {x1, . . . , xk−1} ∼ A ∪ {x1, . . . , xk+1} = A ∪ B.

Next, we show (ii). If σ� (B) ⊆ σ� (A) then σ� (A) � σ� (B) by M. Applying
Lemma6(i) and transitivitywe deduce A � B. If σ� (B) ⊂ σ� (A) then A � B as just
shown. Suppose A ∼ B. Then Lemma 6(i) and transitivity imply σ� (A) ∼ B. Since
B ⊆ σ� (B) ⊂ σ� (A) we have B ⊆ σ� (A) ∼ B, and therefore σ� (A) ⊆ σ� (B)

by Lemma 2. This is a contradiction, so we must have A � B. 
�
The EM property appears (unnamed) in BRS. For binary relations which are tran-

sitive and satisfy M (such as ORs), EM is equivalent to a number of variant conditions
that have appeared elsewhere in the literature. For example, taking the contrapositive
of EM and applying M, we obtain the following property: for all B ⊆ X and all
x, y ∈ B with x �= y

B � B�x ⇒ B�y � B� {x, y}

Given transitivity, this is equivalent to the Contraction Consistency (CC) condition of
Nehring and Puppe (1999):18 for all A, B ∈ 2X with A ⊆ B and all x ∈ A

B � B�x ⇒ A � A�x (6)

Given M and transitivity, (6) is equivalent to the strict contraction monotonicity con-
dition (Ryan 2014):19 for all A, B,C ∈ 2X with C ⊆ A ⊆ B

B � B�C ⇒ A � A�C (7)

18 However, Nehring and Puppe (1999) apply CC to binary relations contained within a restricted subset
of 2X × 2X . The Monotonicity condition on WEPOs (Nehring and Puppe 1998) can also be translated (via
the rule of translation noted previously) into the following version of CC: A ⊆ B and A � A ∪ x imply
B � B ∪ x .
19 Suppose B � B�C and let C = {c1, . . . , cn}. By M and transitivity there exists some k∗ ∈
{1, . . . , n − 1} such that

B�
{
c1, . . . , ck∗

} � B�
{
c1, . . . , ck∗+1

}
.

Then, using M, transitivity and (6) we have:

A � A�
{
c1, . . . , ck∗

} � A�
{
c1, . . . , ck∗+1

} � A�C

and hence A � A�C .
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Taking the contrapositive of (7), we obtain property (1.5) from Kreps (1979):20 for all
A, B,C ∈ 2X with A ⊆ B

A ∼ B ⇒ A ∪ C ∼ B ∪ C (8)

Moreover, if we re-express (6) in terms of essential elements, we obtain theHeritage
Axiom (also known as the Chernoff Property or Property α), which is familiar from
the literature on choice functions (Moulin 1985): for all A, B ∈ 2X

A ⊆ B ⇒ e� (B) ∩ A ⊆ e� (A) (9)

Theorem 1 Let � be an OR. Then � satisfies EM iff � is closed.

Proof Suppose � is an OR that satisfies EM. It is obvious that σ� (∅) = ∅ and that
A ⊆ σ� (A) for any A ⊆ X . It remains to verify monotonicity and idempotency—
properties (CC2) and (CC3) in Appendix A. Let A ⊆ B and let x ∈ X be such that
A ∼ A ∪ x . If x ∈ B then B ∼ B ∪ x by reflexivity. If x ∈ X�B then B ∼ B ∪ x
by iterative application of EM for each y ∈ B�A. Hence σ� (A) ⊆ σ� (B). This
proves that σ� is monotone. It follows that σ� (A) ⊆ σ�(σ� (A)) for any A ⊆ X .
To verify idempotency it suffices to show that σ�(σ� (A)) ⊆ σ� (A). Suppose there
exists x ∈ σ�(σ� (A))�σ� (A). Then A ∪ x � A. Since σ� (A) ∪ x � A ∪ x by M,
we have

σ� (A) ∪ x � A (10)

by transitivity. By applying Lemma 6(i) and transitivity to (10), we have σ� (A)∪ x �
σ� (A), which contradicts x ∈ σ�(σ� (A)).

Conversely, let� be a ClOR. Suppose A ∼ A∪x . Then x ∈ σ� (A) ⊆ σ� (A ∪ y),
so A ∪ y ∼ A ∪ {x, y}. 
�

Theorem 1 shows that the defining characteristic of a closed opportunity relation
is the Heritage property: an essential element remains essential if other elements
(essential or otherwise) are removed. Furthermore, Lemma 6(ii) says that the Heritage
property implies closure monotonicity: if the closure of A (properly) contains the
closure of B, then A is (strictly) preferred to B.

It is important to observe that EM does not imply CCN: not every ClOR is an EOR.

Example 3 Let X = {x, y} and consider the weak order on 2X given by

∅ ≺ x ∼ y ∼ X .

It is trivial to confirm that this is an OR which satisfies EM but violates CCN.

The next section characterises the ClORs which are also EORs.
Before concluding this section, let us observe that a completeClOR has an expected

indirect utility representation. This follows fromKreps (1979, Theorem 1) and the fact

20 See also Nehring and Puppe (1999, footnote 3).
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that an OR satisfies EM if and only if it satisfies (8). In fact, we can say more: if � is
a ClOR then there exists a complete ClOR �′ that extends � (in the sense that �⊆�′
and ∼⊆∼′) and has an expected indirect utility representation. It is straightforward
to show that any pre-order on 2X can be extended to a weak order. If the original
pre-order is a ClOR then so is any extension, since D, M and EM only restrict its
non-extended part.

4.1 Related results

Closure spaces arise in many contexts and may be characterised in many ways. Ando
(2006, Theorem 2) gives an axiomatic characterisation of the extreme point opera-
tors associated with closure spaces,21 and hence, implicitly, a characterisation of the
essential element operators associated with ClORs.22

Theorem 1 characterises the ORs for which the mapping (3) determines a closure
operator. This result is a close relative of Proposition 5 in Danilov et al. (2015) (hence-
forth DKS), who also study closure operators constructed from binary relations. As
DKS observe, the same result has been independently re-discovered in variant forms
by several authors, with Kreps (1979, Lemmas 1 and 2) being its first appearance in
the economics literature.

DKS characterise various classes ofwhat they call hyper-relations, which are binary
relations on 2X . One of these is the class of transitive decent hyper-relations. In
our terminology, a transitive decent hyper-relation �∗ is an OR which satisfies the
following Union property: for any A, B,C ∈ 2X

[C �∗ A and C �∗ B] ⇒ C �∗ A ∪ B

Proposition 5 in DKS shows that if �∗ is a transitive decent hyper-relation, then the
operator μ : 2X → 2X defined by

μ (A) = {x ∈ X
∣∣ A �∗ x } (11)

is a closure operator.
To connect the DKS result with our Theorem 1, recall that the dominance (or

domination) relation�∗⊆ 2X×2X associatedwith a given binary relation�⊆ 2X×2X

is defined thus (Kreps 1979):

A �∗ B ⇔ A � A ∪ B

Observe that μ coincides with the operator σ� expressed in terms of the associated
dominance relation, since (given M) we have:

A �∗ x ⇔ A � A ∪ x ⇔ A ∼ A ∪ x

for any A ⊆ X and any x ∈ X .

21 See also Danilov and Koshevoy (2009, Proposition 5).
22 It can be shown that the extreme point operator for any closure space on X is the essential element
operator for some OR.
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The dominance relation associated with an OR will obviously satisfy M (hence
reflexivity) and also D, but need not be transitive.23 If it is transitive (hence, itself an
OR), then μ is equivalent to the mapping φ : 2X → 2X given by

φ (A) =
⋃

{B ∈ 2X
∣∣ A �∗ B }

Kreps (1979) proves that if � is a complete OR satisfying EM,24 then its dominance
relation �∗ is transitive (ibid., Lemma 1) and φ is a closure operator (ibid., Lemma
2).

The following result therefore ties together our Theorem 1 with Kreps (1979, Lem-
mas 1 and 2) and DKS (Proposition 5):

Theorem 2 Let � be an OR with associated dominance relation �∗. The following
are equivalent:

(a) � is a ClOR
(b) �∗ is transitive.
(c) �∗ is transitive and satisfies the Union property.

Proof Let � be a ClOR. Puppe (1996, Lemma 1) implies that �∗ is transitive.25 We
next show that �∗ also satisfies the Union property. If A �∗ B and A �∗ C then M
implies A ∼ A ∪ B and A ∼ A ∪ C . Using Lemma 2 and Lemma 6(i), we therefore
deduce that A ∪ B ∪ C ⊆ σ� (A) ∼ A. Applying M and transitivity (of �) gives
A �∗ B ∪ C .

We have thus established that (a) implies (c). Since the latter obviously implies (b),
it remains to show that (b) implies (a). Suppose that � is an OR and �∗ is transitive.
The EM condition may be expressed as follows:

A �∗ x ⇒ A ∪ y �∗ x (EM)

for any A ⊆ X and any x, y ∈ X�A. Since M implies A ∪ y �∗ A for any A ⊆ X
and any y ∈ X , EM follows by the transitivity of �∗. 
�

Kreps (1979) studies pre-orders on opportunity sets which are also complete (i.e.,
weak orders). However, this distinction is inconsequential in the present context, since,
as noted above, any ClORmay be extended to a complete ClOR and the extension will
have the same dominance relation as the original, since the latter satisfies M. Thus,
our Theorem 1 is essentially the result of Kreps (1979), albeit in disguised form and
without the redundant assumption of completeness.

The result of DKS is complementary. DKS work with objects which are most
naturally interpreted as dominance relations. Their Proposition 5 provides (implicitly)

23 It also satisfies conditions (Cont) and (Ext) of DKS.
24 More precisely, Kreps studies weak orders on 2X�{∅} that satisfy M and (8). The latter, as we have
observed, is equivalent to EM (given M and transitivity). If we use D to extend such a weak order to 2X ,
we obtain a complete ClOR.
25 Lemma 1 in Puppe (1996) assumes that� satisfies his Axiom F, but the proof that�∗ is transitive (ibid.,
p.195) does not make use of Axiom F.

123



868 M. Ryan

a characterisation of the dominance relations associated with ClORs:26 for a given
OR, its dominance relation is transitive and satisfies the Union property if and only
if the OR is closed. The connection between the EM property of � and transitivity
of the associated dominance relation �∗ was established by Kreps (1979) and Puppe
(1996). The connection between EM and the Union property of �∗ is even easier to
see. The EM condition and transitivity of � imply that the following holds for any
A ∈ 2X and any x, y ∈ X :

[A �∗ x and A �∗ y] ⇒ A �∗ {x, y} (12)

This is already limited form of the Union property. The proof of Theorem 2 shows
that it can be leveraged into the full strength of the Union property without additional
assumptions on �.

It is also worthy of note that condition (12) may be equivalently expressed as
follows: for any A ∈ 2X and any x, y ∈ X

x ∈ σ� (A) ⇒ σ� (A ∪ x) ⊆ σ� (A) (T)

In this form, it will be recognised as the transitivity property of the operator σ�
(Danilov and Koshevoy 2009). Danilov and Koshevoy (2009, Lemma 2) prove that
idempotency—condition (CC3) in Appendix A—may be replaced by (T) in the
axiomatic characterisation of closure operators.

Proposition 5 of DKS implies not only that the dominance relation of any ClOR
is a transitive decent hyper-relation, but also that any transitive decent hyper-relation
induces a closure operator via (11). This leaves open the question of whether every
transitive decent hyper-relation is the dominance relation for some ClOR. The follow-
ing result provides an affirmative answer.

Proposition 1 If �∗ is a transitive decent hyper-relation (i.e., an OR that satisfies the
Union property), then it is a ClOR and it coincides with its own dominance relation.

Proof We will show that

A �∗ B ⇔ A �∗ A ∪ B ⇔ A ∼∗ A ∪ B (13)

for all A, B ∈ 2X , from which the result follows. In particular, the equivalence of the
first and last expressions in (13) implies that μ = σ�∗ and hence that �∗ is a ClOR.
The first equivalence in (13) says that �∗ coincides with its dominance relation.

The second equivalence in (13) follows by monotonicity (M). If A �∗ B, then
reflexivity (in particular, A �∗ A) and the Union property give A �∗ A ∪ B. Con-
versely, if A �∗ A ∪ B we deduce A �∗ B from M (in particular, A ∪ B �∗ B) and
transitivity. This establishes the first equivalence. 
�

26 In a similar vein, Nehring and Puppe (1998, Theorem 4.1) apply Kreps (1979) to characterise the weak
extended partial orders (WEPO’s) associated with ClOR’s. Given an OR, �, its associated WEPO consists
of the pairs (A, x) such that A �∗ x , where�∗ is the dominance relation for�. A yet-more-distant relative
of the same basic result, but expressed in the idiom of modal logic, is presented in Gekker and Hees (2006).
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The transitive decent hyper-relations therefore constitute a subset of the closed
opportunity relations. As the following example shows, it is a proper subset: an OR
that satisfies the Union property necessarily satisfies EM, but the converse implication
is false.

Example 4 Let X = {x1, . . . , xn} with n ≥ 3 and define �⊆ 2X × 2X as follows:

A � B ⇔ |A| ≥ |B|

where |E | denotes the cardinality of the set E . This is clearly an OR. It is also obvious
that σ� is the identity operator, which is the closure operator for the closure space

K = 2X . Hence, � is a ClOR. However, � does not satisfy the Union property: if
A = {x1}, B = {x2} and C = {x3}, then A � B and A � C , but B ∪ C � A. Note
that the dominance relation for � is the set inclusion relation: A �∗ B iff A ⊇ B.
This, of course, does satisfy the Union property.

5 Convex opportunity relations

An abstract convex geometry (ACG) is a special type of closure space for which the
(implicit) closure operation is analogous to forming a convex hull—see Appendix B.
An OR, �, will be called a convex opportunity relation (COR) if σ� is the closure
operator for some ACG. The convex opportunity relations therefore comprise a subset
of the closed opportunity relations. More precisely, the convex opportunity relations
consist of the closed opportunity relations which are also essential (Theorem 3). In
other words, within the universe of ORs, the set of CORs is the intersection of the set
of ClORs with the set of EORs.

Theorem 3 Let � be a ClOR. Then � is a COR iff � satisfies CCN.

Proof Since � is a ClOR, σ� is a closure operator (Theorem 1) and e� its associated
extreme point operator (Lemma 5). We must therefore show that σ� satisfies the
anti-exchange property (condition (CC4) in Appendix B) iff � satisfies CCN.

Suppose σ� satisfies the anti-exchange property and A ∼ A�x ∼ A�y, where
{x, y} ⊆ A ⊆ X . Then

x ∈ σ�[(A� {x, y}) ∪ y] and y ∈ σ�[(A�{x, y}) ∪ x] (14)

Defining E = σ�(A� {x, y}), themonotonicity ofσ� and (14) imply x ∈ σ� (E ∪ y)
and y ∈ σ� (E ∪ x). Since σ� satisfies the anti-exchange property, we must have
x ∈ E or y ∈ E . Thus, either A� {x, y} ∼ A�x or A� {x, y} ∼ A�y, from which
we deduce A� {x, y} ∼ A.

Conversely, suppose � is a ClOR that satisfies CCN. Let E be a closed set in the
associated closure space (Appendix A) and let x, y ∈ X�E . Then E ∪ {x, y} � E
by CM (Lemma 6). Suppose x ∈ σ� (E ∪ y). We cannot have y ∈ σ� (E ∪ x) since
this would imply

E ∪ {x, y} ∼ E ∪ y ∼ E ∪ x
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from which E ∪ {x, y} ∼ E follows by CCN. 
�

Thus, when an OR satisfies both CCN and EM, the value of opportunity resides
entirely within its set of essential elements (INE) and there is a subjective ACG, K,
such that e� = eK. In particular, CORs satisfy closure monotonicity (Lemma 6).
This generalises Klemisch-Ahlert’s (1993) notion of convex hull monotonicity from
convex shelling geometries to general ACGs. Theorem 3 also endogenises the convex
structure that determines the decision-maker’s personal notion of essentiality.

There exist ACGs which cannot be realised as convex shelling geometries (Kashi-
wabara et al. 2005). The following example shows that ACGs outside the convex
shelling class are not without interest for our purposes.

Example 5 Let X = {a, b, c, d}, where the elements of X correspond to the pure
strategies of Player 2 (the column player) in the following two-player game:27

a b c d

α − , 1 − , 6 − , 3 − , 4
β − , 6 − , 1 − , 3 − , 0

We may therefore identify each x ∈ X with a vector in R2. Define κ : 2X → 2X

as follows: κ (A) consists of A together with any elements of X�A which are strictly
dominated by some mixture over the pure strategies in A. It can be shown that κ is the
closure operator for an ACG over X (Kukushkin 2004). Now, for each A ⊆ X , define
κ∗ (A) to be the convex shell of κ (A) ⊆ R2 in X ; that is,

κ∗ (A) = co (κ (A)) ∩ X

where co (E) denotes the Euclidean convex hull of E ⊆ R2. It is straightforward (and
not too tedious) to verify that κ∗ ≡ κ for this example.28 Finally, define a binary
relation � as follows: A � B iff |κ∗ (A)| ≥ |κ∗ (B)|.29

27 Only Player 2’s payoffs are shown as Player 1’s payoffs are redundant to the analysis.
28 In fact, consider any finite, two-player game. Let n be the number of pure strategies available to Player
1 and let X ⊆ Rn be the set of (Player 2) payoff vectors corresponding to each of Player 2’s pure strategies.
It is not hard to show that the following defines an anti-exchange closure operator:

κ∗ (A) = co(A + Rn−) ∩ X = (co(A) + Rn−) ∩ X .

29 The fact that this decision-maker ranks sets by the cardinality of their closure may strike the reader
as odd. Why should adding a strictly dominated strategy, for example, increase the value of the strategic
opportunity set? While this may seem odd, it is nevertheless consistent with the well-known decoy (or
attraction) effect (Clippel and Eliaz 2012). That said, any monotone pre-order satisfying A ∼ κ∗ (A) for
all A ⊆ X and A � B for all A, B ∈ 2X with κ∗ (B) ⊂ κ∗ (A) will suit our purpose just as well.
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It is easy to verify that � is an EOR.30 Furthermore,

e� (A) = {
x ∈ A

∣∣ κ∗ (
A�x

) ⊂ κ∗ (A)
}

for any A ⊆ X , so e� is the extreme point operator associated with κ∗. It follows that
� is a COR and σ� = κ∗ (Lemma 5). In other words, the decision-maker regards
a pure strategy x ∈ A to be essential to A iff it is neither payoff-equivalent to, nor
strictly dominated by, any mixture of the other elements of A.

To see that κ∗ cannot be the closure operator for any convex shelling geometry,
observe that

κ∗ ({a, b}) = X (15)

(since the equal mixture of a and b strictly dominates c) and

κ∗ ({b, d}) = {b, d} (16)

If κ∗ were the closure operator for some convex shelling geometry, then the elements of
X could be identified with points inRn (for some n) such that κ∗ (A) is the intersection
of X with the (Euclidean) convex hull of A. From (15) we would therefore deduce that
points c and d lie on the line segment in Rn joining a to b. Hence, (16) implies that c
is between a and d. However, the latter implication is contradicted by the fact that31

κ∗ ({a, d}) = {a, d} .

One of the three justifications provided by Klemisch-Ahlert (1993, p. 196) for
assuming that the value of a set is the same as that of its convex hull, is that the decision-
maker is able to choose by explicit randomisation andmay regard the associated lottery
as value-equivalent to its “expected realization”. Example 5 is entirely consistent with
this justification, sincemixtures are regarded as equivalent to pure strategies that deliver
the same expected payoff for each rival strategy. In particular, co (A) ∩ X ⊆ κ∗ (A)

for any A ⊆ X . But this does not exclude the possibility that the decision-maker might
perceive a “coarser” convex structure, such that co (A) ∩ X may be strictly contained
in the closure of A. As in Example 5, it will not always be possible to describe this
coarser structure with a convex shelling geometry.

5.1 Related results

Combining Lemma 5 and Theorems 1, 3 and 4 we obtain:

Corollary 1 Let� be anOR. Then� satisfies EM andCCN iff σ� is an anti-exchange
closure operator and A ∼ e� (A) for all A ⊆ X.

30 In particular, property (CC2) of a closure operator ensures that M is satisfied.
31 To ensure a payoff greater than 3 when Player 1 chooses β, Player 2 must place probability greater than
1
2 on a when mixing over a and d. But then the payoff to this mixture will be less than 5

2 when Player 1
chooses α.
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Corollary 2 Let � be an OR. Then e� is the extreme point operator for some ACG
iff � satisfies EM and INE.

Corollary 1 is a variation on the main result in BRS. In the BRS version, � is
assumed to be a weak order (i.e., a complete pre-order) that satisfies D but not neces-
sarily M.

Corollary 2 strengthens Corollary 4.4 in Puppe and Xu (2010) by demonstrating
the redundancy of Axiom F. (Recall that an OR satisfies EM iff it satisfies (9), which
is Sen’s (1971) Property α.) Likewise, Axiom Fmay be dropped from Puppe and Xu’s
Proposition 4.7; less obviously, also from Puppe (1996, Proposition 2).32

DKS provide a complementary perspective on Theorem 3. They characterise the
dominance relations associated with CORs.33 Section 6 of DKS considers the sub-
class of transitive, decent hyper-relations which also satisfy the following condition:34

for any A, B ∈ 2X

A ∼∗ B ⇒ A ∩ B �∗ A (17)

DKS refer to these as ample hyper-relations.
Proposition 1 and Theorem 3 in DKS show that �∗ is an ample hyper-relation if

and only if the operator ψ : 2X → 2X defined by

ψ (A) = {x ∈ A
∣∣ (A�x, x) /∈�∗ }

is the extreme point operator for someACG.Observe that if� is anORwith associated
dominance relation �∗, then ψ = e�: given x ∈ A ⊆ X

(A�x, x) /∈�∗ ⇔ A � A�x ⇔ x ∈ e� (A)

(where we have made use of M). Given our Theorem 2, the following is therefore a
corollary of the DKS result, but we provide a direct proof.

Proposition 2 Let � be a ClOR with dominance relation �∗. Then � is a COR iff �∗
satisfies (17).

Proof Let � be a COR. Then � is essential (Theorems 3, 4). Suppose A ∼∗ B. Then
A ∼ A ∪ B ∼ B so Lemma 3(ii) implies e� (A ∩ B) = e� (A). Applying INE and
transitivity we conclude that A ∩ B ∼ A, from which A ∩ B �∗ A follows.

Conversely, let � be a ClOR whose dominance relation �∗ satisfies (17). We must
show that� satisfiesCCN (Theorem3). Let {x, y} ⊆ A ⊆ X with A ∼ A�x ∼ A�y.
Then A�x ∼∗ A and A�y ∼∗ A. Since�∗ is transitive (Theorem2), A�x ∼∗ A�y.
Hence (17) implies A� {x, y} �∗ A, which is the desired conclusion. 
�

32 Properties M and α already imply both F and INE (cf, Puppe 1996, Lemma 2). Our Theorem 2 shows
that F is redundant to Puppe’s Lemma 1.
33 With some effort, one can also perceive Nehring and Puppe’s (1998) Theorem 5.2 as an essentially
equivalent result for WEPO’s.
34 Condition (17) is equivalent to the Lattice Equivalence (LE) condition in DKS, given the Union property
and the finiteness of X .
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There is also a close connection between our Theorem3 and some results ofDanilov
and Koshevoy (2009). Their Proposition 5 and Corollary 3 imply the following:

Proposition 3 (Danilov and Koshevoy 2009) Let e : 2X → 2X be an operator such
that e = eK for some closure space K. Then e is the extreme point operator for an
ACG iff it satisfies

[x ∈ e (B ∪ x) and y ∈ e (B ∪ y)] ⇒ e (B ∪ {x, y}) ∩ {x, y} �= ∅ (N)

for any B ∈ 2X and any x, y ∈ X�B with x �= y.

Defining A = B ∪ {x, y}, the contrapositive of Danilov and Koshevoy’s condition
N is:

e (A) ∩ {x, y} = ∅ ⇒ [x /∈ e(A�y) or y /∈ e(A�x)].

When e = e� for some OR, this condition is easily seen to be equivalent to CCN,
given the monotonicity and transitivity of �.

6 Concluding remarks

The class of opportunity relations provides a simple and natural environment for
exploring the ranking of opportunity sets. Our analysis reveals how two restrictions
onORs—theCCNandEMproperties—underpin a range of important principles in the
analysis of “freedom rankings”, including Puppe’s (1996) Axiom F and the Indepen-
dence of Non-Essential alternatives (INE) property, as well as a generalised version
of Klemisch-Ahlert’s (1993) convex hull monotonicity. Both of these conditions (EM
and CCN) are simple and transparent. They also delineate the opportunity relations
whose essential element mappings are the extreme point operators of closure spaces
(EM alone) or ACG’s (EM and CCN). Our results, in this latter respect, complement
the analysis of DKS, whose characterisations take the form of restrictions on domi-
nance relations. Our Theorem 1 is also a close relative of Lemmas 1 and 2 in Kreps
(1979).

According to Theorem 3, if the value of opportunity resides precisely in essen-
tial elements—the INE property—and coincides with the “opportunity span” of these
essential elements according to some coherent subjective spanning criterion (i.e., some
well-defined closure operator), then essential elements behave as extreme points rel-
ative to some underlying ACG. Convex structure therefore lies at the heart of such
opportunity relations. This is arguably surprising, but certainty convenient: convex
structure brings with it many useful and well-known properties.

While convex shellings provide a rich class of convex structures for discrete environ-
ments, they do not exhaust the ACGs. Example 5 shows that ACGs outside the convex
shelling class may be necessary to describe ORs that are far from exotic. Restrict-
ing attention to convex shellings, as in Klemisch-Ahlert (1993), imposes substantive
restrictions.
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Finally, as will be clear from our discussion of the Related Literature (Sects. 4.1,
5.1), many of our results are synthetic rather than organic. They could have been
derived in large part by suitable translations from existing results. Nevertheless, this
would have been a needlessly circuitous route. ORs are straightforward to interpret,
and axiomsCCNandEMare simple and clear. The connections betweenCCN,EMand
the important notions of essentiality, closedness and convexity of an OR are obscure in
the extant literature. We hope that our clarification of these connections will stimulate
further research.

Appendices

The following Appendices review some basic facts about closure spaces and abstract
convex geometries. Further details, including omitted proofs, can be found in Edelman
and Jamison (1985).

A Closure spaces

Given a finite set X , a closure space on X is a collectionK of subsets of X satisfying,
for all A, B ⊆ X :

(C0) ∅, X ∈ K,
(C1) If {A, B} ⊆ K, then A ∩ B ∈ K.

We take X as given from now on and omit the qualifier “on X” when discussing
closure spaces.

A closure space is an abstract generalisation of the notion of closing a set with
respect to some underlying operation, such as forming linear combinations. The ele-
ments of K are interpreted as the subsets of X which are closed with respect to the
underlying operation. They are therefore called the closed subsets of X .

Given a closure space K and a set A ⊆ X , we define σK (A) to be the smallest
element of K containing A. This is well-defined by (C1):

σK (A) =
⋂

{B ∈ K | A ⊆ B } .

We say that σK (A) is the closure of A. It is easy to see that K and σK contain the
same information: given σK we may recover K by the rule: A ∈ K iff σK (A) = A.

More generally, we call σ : 2X → 2X a closure operator if it satisfies, for all
A, B ⊆ X :

(CC0) σ (∅) = ∅,
(CC1) A ⊆ σ(A),
(CC2) A ⊆ B implies σ(A) ⊆ σ(B),
(CC3) σ(σ(A)) = σ(A).

If σ is a closure operator, then it is easily shown that the collection

Kσ = {A ∈ 2X | σ (A) = A }
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is a closure space;35 and given any closure spaceK, it is clear that σK satisfies (CC0)–
(CC3). Indeed:

Theorem A.1 Given a closure space K, the operator σK is a closure operator and
K = KσK .

Proof We already observed that σK is a closure operator. If A ∈ K, then σK (A) = A.
Conversely, if σK (A) = A then A is the intersection of sets inK and hence A ∈ K. 
�
Given a closure spaceK, we may also define an operator eK : 2X → 2X as follows:36

eK (A) = {x ∈ A | σK (A) �= σK(A�x)}
= {x ∈ A | x /∈ σK(A�x)} (18)

The elements of eK (A) are called the extreme points of A.
The closure operator σK can be recovered from eK as follows:37

σK (A) = A ∪ {x ∈ X�A | x /∈ eK (A ∪ x)} (19)

Thus, K, σK and eK all encode the same information.
We should also mention the recent work of Danilov and Koshevoy (2009), who

study pairs of operators (σ, e) satisfying e (A) ⊆ A ⊆ σ (A) for any A ∈ 2X and
related by the analogue of condition (18):

x ∈ e (A) ⇔ x /∈ σ(A�x) (20)

Danilov and Koshevoy do not assume that these operators are derived from an under-
lying closure space. By directly investigating the duality (20), they are able to map
properties of σ into the corresponding properties of e and vice versa, obtaining a novel
characterisation of closure operators (Danilov and Koshevoy 2009, Lemma 2) and a

35 To verify (C1), suppose σ (A) = A and σ (B) = B. Two applications of (CC2) gives

σ (A ∩ B) ⊆ σ (A) ∩ σ (B) = A ∩ B.

Since A ∩ B ⊆ σ (A ∩ B) by (CC1), we are done.
36 The second equality may be justified as follows. If x ∈ σK

(
A�x

)
then (CC1) implies A ⊆ σK

(
A�x

)

so (CC2) and (CC3) give

σK (A) ⊆ σK
(
σK

(
A�x

)) = σK
(
A�x

)
.

Hence σK (A) = σK
(
A�x

)
by (CC2). Conversely, if σK (A) = σK

(
A�x

)
then A ⊆ σK

(
A�x

)
by

(CC2) and hence x ∈ σK
(
A�x

)
.

37 If x ∈ X�A, then x /∈ eK (A ∪ x) clearly implies x ∈ σK (A). Conversely, suppose x ∈ σK (A). Then
A ∪ x ⊆ σK (A) by (CC1), and hence, using (CC2) and (CC3):

σK (A ∪ x) ⊆ σK(σK (A)) = σK (A) .
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new derivation of Ando’s (2006) axiomatisation of the extreme point operators asso-
ciated with closure spaces (Danilov and Koshevoy 2009, Proposition 5). We comment
on a connection between their Lemma 2 and our characterisation of closed opportunity
relations in Sect. 4.1.

B Abstract convex geometries

An abstract convex geometry (ACG) is a closure space for which the closure operation
has the (algebraic) flavour of forming a convex hull. IfK is an ACG, then the elements
of K are usually referred to as the convex subsets of X , rather than the closed sets.

Formally, an ACG is a closure space K that satisfies:

(C2) If A ∈ K� {X}, then A ∪ x ∈ K for some x ∈ X�A.

The sense in which (C2) captures the idea of convexity is clarified by the following
important result:

Theorem B.1 IfK is an ACG, then the associated closure operator σ = σK satisfies:

(CC4) For any A ⊆ X with σ (A) = A and any x, y ∈ X�A with x �= y, if
y ∈ σ(A ∪ x), then x /∈ σ(A ∪ y).

Conversely, if σ is a closure operator satisfying (CC4), then Kσ satisfies (C2).

Condition (CC4) is called the anti-exchange property.
Edelman and Jamison (1985) provide a range of other conditions on a closure space

that are equivalent to the anti-exchange property of its associated closure operator.
For our purposes, the most important of these is the following generalisation of the
Minkowski–Krein–Milman property:

Theorem B.2 (Edelman and Jamison, Theorem 2.1) A closure space K is an ACG iff
σK (A) = σK (eK (A)) for any A ⊆ X.

Thus, the extreme points of A “carry” the convex hull (closure) of A.
Recall that Ando (2006) and Danilov and Koshevoy (2009) give an axiomatic char-

acterisation of the class of extreme point operators associated with closure spaces.
Given an operator within this class, Danilov and Koshevoy (2009, Proposition 5,
Corollary 3) provide necessary and sufficient conditions for it to be the extreme point
operator for some ACG. We discuss a connection between their result and our char-
acterisation of convex opportunity relations in Sect. 5.1.
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