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Abstract The yolk, an important concept of spatial majority voting theory, is assumed
to be unique when the number of individuals is odd. We prove that this claim is true
in R

2 but false in R
3, and discuss the differing implications of non-uniqueness from

the normative and predictive perspectives.

In spatial (Euclidean) voting theory, individual voters are represented by their ideal
points in a space of dimension k. The number of voters, n, is ordinarily assumed
to be odd. A hyperplane in R

k is non-strict median if both of the two closed half-
spaces it defines contain at least � n

2 � ideal points. The yolk1, an important concept in
spatial voting theory introduced by McKelvey (1986), is a smallest ball that intersects
every non-strict median hyperplane. Tovey (1992, footnote 1, p 270) claims that the
yolk is unique if n is odd, which is not the case if n is even. Others have implicitly
assumed uniqueness by defining the yolk as the smallest ball intersecting everymedian
hyperplane (see, e.g., Grofman et al. 1988). Here we prove that for odd n the yolk is
always unique in 2 dimensions, but not in 3 dimensions.

In what follows, Co(S) denotes the convex hull of the ideal points for the members
of S (any subset of individuals) and |E | is the cardinality of any finite set E . We

1 For a simple and very clear presentation, see Miller (2015).
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do not restrict n to be odd. Hence we define the set of minimal blocking2 coalitions
as W = {

S : n
2 ≤ |S| < n

2 + 1
}
. Define the ball B(c, r) to be the set of points at

(Euclidean) distance at most r from its center c. The infinitude of non-strict median
hyperplanes makes it impossible to check explicitly whether a ball intersects all of
them. We begin with a finite characterization of the property of intersecting all non-
strict median hyperplanes.

Proposition 1 A ball B intersects every non-strict median hyperplane if and only if it
intersects every Co(S), S ∈ W . Hence B is a yolk iff it is a smallest ball that intersects
every Co(S), S ∈ W .

Proof ⇒) Assume that there exists S such that S ∈ W and B ∩ Co(S) = ∅. The
ball B and the polytope Co(S) are convex, compact and disjoint. Applying the strict
separation theorem, there is a hyperplane H which strictly separates B and Co(S).
Since Co(S) contains the ideal points of at least � n

2 � voters, there exists a non-strict
median hyperplane parallel toH in the half-space containing Co(S), which thus does
not intersect B, a contradiction.

⇐) Conversely, assume that the ball B intersects every Co(S), S ∈ W. LetH be a
non-strict median hyperplane, and letHt , t ∈ {1, 2} denote the two closed half-spaces
it defines. Let St = S ∩ Ht , the set of individuals whose ideal points are in the half-
space Ht , t ∈ {1, 2}. Since H is non-strict median, |St | ≥ � n

2 �. Hence St contains
at least one member of W and so by assumption B ∩ Co(St ) 
= ∅, t ∈ {1, 2}. By
convexity of B this implies B ∩ H 
= ∅. ��

As Nicholas Miller has pointed out, Proposition 1 is of intrinsic interest because
it provides the first finite characterization of the yolk in the literature, to the best of
our knowledge. There is a fine distinction to be made here. Tovey’s polynomial time
yolk-finding algorithm for any fixed dimension k Tovey (1992) finds a polynomially-
bounded size set of non-strict median hyperplanes that must contain the farthest non-
strict median hyperplane from a given point. Therefore, any ball can be tested against
a polynomially small finite set to determine whether or not it intersects all non-strict
median hyperplanes. However, each point in R

k has its own set. The union of all
these sets can be uncountably infinite. In contrast, Proposition 1 gives a single finite
(though exponentially large ) test to determine if a ball intersects all non-strict median
hyperplanes.

Proposition 2 In R
2, the yolk is unique if the number of voters is odd.

Proof Let the ball ζ = B(c, r) be a yolk. By Proposition 1 ζ intersects every Co(S),

S ∈ W . By compactness of polytopes let d(c,Co(S)) = minx∈Co(S) ||x − c|| denote
the distance from c to the polytope Co(S) and let T denote the set of T ∈ W such
that d(c,Co(T )) = r . By convexity of Co(T ), |Co(T ) ∩ ζ | = 1 ∀T ∈ T . For ease of
notation let ζ(T ) = Co(T ) ∩ ζ for T ∈ T .

We claim that c ∈ Co({ζ(T ) : T ∈ T }). For proof, suppose not. Then there exists
a strictly separating hyperplane H between c and the convex hull of {ζ(T ) : T ∈ T }.

2 If n is odd then, S ⊆ N is a minimal blocking coalition if and only if S is a minimal winning coalition.
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Fig. 1 Uniqueness of the yolk in 2-dimension with an odd number of voters

Let c∗ be the projection of c onto H, see Fig. 1a. Then for all 0 < λ ≤ 1 the convex
combination λc∗ + (1− λ)c is strictly closer to all ζ(T ) : T ∈ T than is c. Therefore
d(λc∗ + (1 − λ)c,Co(T )) ≤ d(λc∗ + (1 − λ)c, ζ(T )) < r for all 0 < λ ≤ 1.

Since W is finite,

max
T∈W\T

d(c,Co(T )) < r.

Therefore, for sufficiently small λ > 0,

max
T∈W

d(λc∗ + (1 − λ)c,Co(T )) < r.

This contradicts the minimality of r and proves the claim.
The proof so far has not relied on the dimension k = 2. We have written it for

general k ≥ 2 in case it is of use in future research. From here on the proof depends
on ζ being a circle. Since n is odd, no two median lines are parallel. Therefore no two
points in {ζ(T ) : T ∈ T } are diametrically opposite on the circle ζ . Hence there must
exist three distinct points t1, t2, t3 ∈ {ζ(T ) : T ∈ T } such that c is in the strict interior
of the triangle with vertices t j : j = 1, 2, 3, see Fig. 1b.

Let H j be the median line tangent to ζ at t j : j = 1, 2, 3. (The median line must
be tangent to ζ because |Co(T ) ∩ ζ | = 1 ∀T ∈ T .) Then ζ is the inscribed circle of
the triangle formed by the lines H j : j = 1, 2, 3. By elementary geometry, c is the
unique point whose maximum distance from the three lines is less than or equal to r .
Therefore ζ is the unique yolk. ��

As mentioned by Tovey (1992), if the number of individuals is even, then the yolk
is not always unique, as illustrated in Fig. 2.

Indeed, we can determine the yolk based on the limiting median lines3. For this
purpose, it is clear that the dashed and the solid circles are two possible yolks. This

3 For a discussion on the limiting median lines, see Stone and Tovey (1992). In this example, there is no
Tovey “anomaly”.
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Fig. 2 Non-uniqueness of the yolk in 2-dimension with an even number of voters

phenomenon can be avoided by using a different definition of yolk. For odd or even
numbers of individuals, we define a strict median hyperplane as a hyperplane that
partitions the n ideals points so that at least a strict majority (winning coalition) of
ideal points lies each closed half-hyperplane. In the same spirit, a strict yolk is a
smallest ball which intersects every strict median hyperplane. Thus, with n even, there
are two distinct yolks possibly with different centers and radii: an “inner yolk” defined
with respect to strict median lines and an “outer yolk” definedwith respect to non-strict
median lines. In Fig. 2, the inner yolk is reduced to the single point c (with a zero
radius) unlike the outer yolk, which is not unique (with a non-zero radius).

Two strict median lines have a common point in R
2, hence they cannot be parallel.

It follows from the proof of Proposition 2 that the strict yolk is also unique in R
2.

Proposition 3 In R
3, the yolk is not always unique even if the number of individuals

is odd.

Proof Consider Fig. 3a with seven ideal points, six placed at the vertices of two
congruent opposing equilateral triangles, and the seventh placed at their center of
mass.

Assume that Q0 = (5, 5
√
3/3, 1), Q1 = (0, 0, 0), Q2 = (5, 5

√
3, 0), Q3 =

(10, 0, 0), Q4 = (0, 0, 2), Q5 = (5, 5
√
3, 2) and Q6 = (10, 0, 2).

According to Proposition 1, the yolk intersects all Co(S), S ∈ W , thus it intersects
the three vertical sides represented by the rectangles (Q1Q2Q4Q5), (Q1Q3Q4Q6)

and (Q2Q3Q5Q6). Therefore, the radius of the yolk is at least 5/
√
3, that is to say the

radius of the inscribed circle of the equilateral triangle of side length 10. It is obvious
that the sphere centered at Q0 with radius 5/

√
3 strictly intersects Co(S), S ∈ W ,

except for S included in a vertical side tangent to the sphere. Thus, the sphere can
be moved in the vertical sense while continuing to intersect every Co(S), S ∈ W .
Specifically, we can move the sphere vertically from 1 around the point Q0, conse-
quently, the set of the centers of the yolk is a segment [A, B] , (A = (5, 5

√
3/3, 0) and

B = (5, 5
√
3/3, 2)) with length 2. More generally, suppose that for this example, the

coordinates of the points are chosen such that the radius of the yolk is r and the height
of the solid is h. If h ≥ 2r, then the set of the centers of the yolk is a vertical segment
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Fig. 3 Non-uniqueness of the yolk in 3-dimension or more with an odd number of voters

(centered at Q0) with length 2r , otherwise, it is a vertical segment with length h. The
yolk is not unique. ��

Remark 1 In this example, the important criterion relates to the configuration of the
three side faces ((Q1Q2Q4Q5), (Q1Q3Q4Q6) and (Q2Q3Q5Q6)). By keeping the
vertical position, we can consider several modifications to the figurewhich always lead
tomultiple yolks. For example, independently we canmove the ideal points on an edge
(in Fig. 3b, the point Q2 has been moved upwards and the point Q6 down). We can
move (regardless of the direction), a vertical edge leaving it vertical (see edge

(
Q1Q4

)

in Fig. 3b). These twomodifications show that there are no particular constraints on the
triangles which form the base, the vertical edges (

[
Q1, Q4

]
,
[
Q2, Q5

]
and

[
Q3, Q6

]
)

can have different lengths and therefore, the side faces may be different trapezoids.
Finally, the point Q0 can be moved regardless of the direction (within reasonable
limits).

The non-uniqueness of the yolk has quite different implications for normative than
for predictive purposes. From the normative point of view, multiplicity weakens the
yolk concept because the yolk center fails to prescribe a single solution. A planner
who intends to select the yolk center as the societal solution would be stymied without
introducing a secondary tie-breaking criterion. We would therefore characterize non-
uniqueness as a negative feature in the normative sense. Several other solution concepts
based on minimization might be problematic in the same way. Owen and Shapley
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(1989) proved the existence anduniqueness of the strongpoint4, orCopelandwinner, in
2 dimensions, but uniqueness has remained an open question in 3 or more dimensions.
Likewise, it is an open question whether or not the Finagle point (Wuffle et al. 1989)
is unique in 2 or more dimensions (Tovey 2011). Uniqueness of the ε∗ − core (Eban
and Stephen 1990; Tovey 2010) is also unproved, and indeed the nonconvexity of the
associated ε-radius function (Tovey 2010) suggests non-uniqueness. Ironically, the
core solution concept is well-known to be problematic for the opposite reason: a core
exists with zero probability in 2 or more dimensions for n odd (Plott 1967), with zero
probability in 3 or more dimensions for n even (Rubinstein 1979; Schofield 1983),
and with positive but very small probability in 2 dimensions for n even (Tovey 2010).

In contrast, from the predictive point of view, multiplicity functions as a neutral
or positive feature. The two main results about the yolk as a predictor of the out-
come of majority-rule voting are McKelvey’s bound onMiller’s uncovered set and the
Ferejohn-McKelvey-Packel bounds on the stationary distribution ofMarkovian voting
processes. We now show that yolk multiplicity improves the former and has no effect
upon the latter.

The uncovered set, proposed byMiller (1980, 1983), contains all possible outcomes
of strategic voting under many sequential majority-rule voting protocols, because if
x is uncovered and y is any other point in R

k , either x defeats y or x defeats some
other point z that in turn defeats y. However, as reported by Joseph Godfrey (see
Miller 2007), only brute-force methods to compute it are known. One of McKelvey’s
motivations for inventing the yolk was to get a computational handle on the uncovered
set. In McKelvey (1986) he proves that a ball centered at the yolk center, with radius
4 times the yolk radius, contains the uncovered set. Scott et al. (1987) improved the
factor 4 to 3.7 for the case of k = 2 dimensions.) A reading of McKelvey’s proof
shows that it does not assume uniqueness of the yolk. Indeed, any ball that intersects
all median hyperplanes, if its radius is increased by a factor of 4, must contain the
uncovered set. Suppose now that U is the uncovered set, C is the set of yolk centers
and r is the yolk radius. Then

U ⊂ � =
⋂

c∈C
B(c, 4r).

That is, the intersection of all the expanded yolks contains the uncovered set. There-
fore, whenever the yolk is not unique, it provides a strictly smaller containment �

of the uncovered set. For the configuration of ideal points adopted in the proof of
Proposition 3,� consists of two spherical caps with b = 3r height (the darkest central
region on the Fig. 4). Indeed, C is the segment

[
c, c′] with length 2r .

With basic geometry, we obtain V (�) = 54πr3 which represents 63.28 % of the
volume of a sphere with radius 4r .

Ferejohn et al. (1984) prove that a Markov process that at each step replaces the
incumbent point in R

k by a uniform random choice from the set of points that defeat
the incumbent by majority vote has a limiting stationary distribution. They compute
lower bounds on the stationary probability within balls of radiusmr . In 2 dimensions,

4 See Owen (1990) for a presentation of these concepts and their links to solutions of side-payment games.
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Fig. 4 Implication of the non-uniqueness of the yolk on the uncovered set

the probability exceeds 70% at m = 4; for both 2 and 3 dimensions, the probability
exceeds 90% form = 7. A reading of their proofs shows that the ball center is assumed
to be a yolk center, but uniqueness is not assumed5. Therefore, yolk multiplicity does
not invalidate their bounds. On the other hand, it does not tighten the bounds. Let B̄6
and B̄

′
6 be balls of equal radius, centered at distinct yolk centers in R

3. According
to Table 1 in Ferejohn et al. (1984), the probability is at least 0.917 that the Markov
process resides in B̄6, and is at least 0.917 that it resides in B̄

′
6, but that does not imply

that the probability of residing in B̄6 ∩ B̄
′
6 is at least 0.917.

Several open questions remain: (1) it should be interesting to know whether or not
the example of Proposition 3 is pathological. Is the set of ideal point configurations
within a unit ball for which the yolk is not unique a set of measure zero? (2) It is easy to
show that the set of yolk centers cannot contain an open k-dimensional ball. However,
in our k = 3 dimensional example, the set of yolk centers is only 1-dimensional. Is the
set of yolk centers at most k − 2 dimensional for n odd? We suspect that the answers
to both questions are affirmative.
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