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Abstract Given a large enough population of voters whose utility functions sat-
isfy certain statistical regularities, we show that voting rules such as the Borda rule,
approval voting, and evaluative voting have a very high probability of selecting the
social alternative which maximizes the utilitarian social welfare function. We also
characterize the speed with which this probability approaches one as the population
grows.

1 Introduction

As a theory of social justice, utilitarianism is quite appealing. But as a practical crite-
rion for collective choice, it has serious shortcomings. To apply the utilitarian criterion,
we not only need accurate information about the cardinal utility functions of all indi-
viduals in society; wemust also know how tomake cardinal interpersonal comparisons
between these utility functions. Furthermore, an individual might inadvertently mis-
perceive her own utility function, either through lack of self-knowledge, or because
she does not fully understand the long-term consequences of the policies under con-
sideration. For these reasons (among others), collective decisions are almost never
made by trying to explicitly ascertain the utility functions of the members of society.
Instead, collective decisions are usually made by voting.

A scoring rule is a particular kind of voting rulewhere eachvoter assigns a “score” to
each alternative (with some constraints), and the alternative with the highest aggregate
score wins. Well-known scoring rules include the Borda rule, the plurality and anti-
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plurality rules, evaluative (or “range”) voting, and approval voting. Since they involve
maximizing a sum, scoring rules seem like a sort of “ersatz utilitarianism”. We will
show that this is more than just a superficial formal resemblance. If the probability
distribution of utility functions in a large society satisfies certain conditions, then we
will show that a well-chosen scoring rule has a very high probability of selecting the
alternative which maximizes the utilitarian social welfare function. For a sufficiently
large population, this probability can be made arbitrarily close to certainty. Thus, with
the right scoring rule, we can realize the utilitarian ideal, despite the informational
problems described above.

The remainder of this paper is organized as follows. Section 2 introduces notation
and assumptions which will be maintained throughout the paper. Section 3 consid-
ers evaluative voting. Section 4 considers approval voting. Section 5 considers rank
scoring rules, such as the Borda rule or the plurality rule. Each of these three sections
introduces one or more scenarios (described by hypotheses concerning the probabil-
ity distribution of utility functions), and then, for each scenario, gives an asymptotic
probability result. Appendix A reviews some results from Pivato (2016c) that are used
in the other proofs. Appendix B contains the proofs of all the results in the paper.

Related literatureThe results in this paper are complementary to those in Pivato (2015,
2016a, c). Like the present paper, Pivato (2015) considers conditions under which
ordinal voting rules maximize the utilitarian social welfare function (SWF) in a large
population. But whereas this paper focuses on scoring rules, Pivato (2015) focuses
on Condorcet consistent rules such as the Copeland rule or an agenda of pairwise
majority votes. Meanwhile, Pivato (2016c) considers a broader problem: how can
we compute (and maximize) the utilitarian SWF when we have only very imprecise
information about people’s utility functions and the correct system of interpersonal
utility comparisons? Under plausible conditions, Pivato (2016c) shows that, in a large
population, we can accurately estimate the utilitarian SWF despite these difficulties.
Indeed, Pivato (2016a) shows that this can be done in a strategy-proof way, using a
modified version of the Groves–Clarke pivotal mechanism.

We will evaluate ordinal voting rules from a utilitarian perspective. This approach
was pioneered by Laplace in 1795,1 but then apparently neglected for one hundred sev-
enty years. It was rediscovered by Rae (1969), Taylor (1969) and Weber (1978). Rae
and Taylor assumed that all voters had equal preference intensities over a dichotomous
choice, given by independent, identically distributed (i.i.d.) random {0, 1}-valued util-
ity functions. In this setting, they showed that simple majority vote maximized the
expected value of the utilitarian SWF, amongst all anonymous voting rules.2 Weber

1 See Black (1958), Chapter XVIII, Section 3 (pp. 180–185) and Tanguiane (1991), Chapter 4 for good
summaries of Laplace’s ideas; see also Tangian (2000), Section 1.4.
2 In fact, Rae and Taylor were interested in maximizing “responsiveness”: the probability that the outcome
agrees with the preference of a random individual. But if all voters have equal preference intensities, then
maximizing “responsiveness” is equivalent to maximizing the utilitarian SWF. See also Badger (1972),
Curtis (1972), Schofield (1972), Straffin (1977), and Dubey and Shapley (1979) for extensions of the Rae–
Taylor theorem. Riley (1990) appears to have independently intuited some of the same conclusions. But he
did not give any formal proofs. More recently, Fleurbaey (2009) has proved a far-reaching generalization
of the Rae–Taylor theorem to a setting where voters may have different preference intensities and arbitrary
correlations.
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(1978) considered a setting with many alternatives, and variable preference intensi-
ties. Assuming that the voters’ utilities for the different alternatives were independent,
uniformly distributed (i.u.d.) random variables, he sought the voting rule which maxi-
mized the expected value of the utilitarian SWF in a large population. He showed that
the Borda rule was the optimal rule in the class of rank scoring rules. The results in
Sect. 5 can be seen as a major generalization of this early insight. In the case of exactly
three alternatives,Weber (1978) also showed that the approval voting rule slightly out-
performs the Borda rule; we will study the utilitarian efficiency of approval voting in
Sect. 4.

Shortly afterWeber’s foundational work, Bordley (1983, 1985a) andMerrill (1984)
used computer simulations to estimate the expected value of the utilitarian SWF for
various voting rules. Bordley (1985b, 1986) computed utilitarian-optimal weighted
majority voting schemes for dichotomous decisions with correlated voters. But there
was no further utilitarian analysis of voting rules for the next 20years.

Starting in 2005, a literature emerged on the utilitarian analysis of federal rep-
resentative assemblies. Most of these papers focussed on dichotomous decisions,
and assumed that the utility functions of the citizens were i.i.d. random variables.
They asked: which voting rule will maximise the expected value of the utilitar-
ian SWF? First, Beisbart et al. (2005) computationally compared the performance
of seven benchmark rules, while Barberà and Jackson (2006) gave an exact for-
mula for the utilitarian-optimal weighted majority rule in terms of the distribution
of utility functions found within each region. Next, Beisbart and Bovens (2007) and
Bovens and Hartmann (2007) investigated the consequences of different population-
based weighting formulas with a mixture of theoretical analysis and computational
results. Laruelle and Valenciano (2008, Ch.3; 2010, §7) provided a utilitarian rational
for the classic Penrose “square root” weighting formula. Macé and Treibich (2012)
and Koriyama et al. (2013) derived analytical results in scenarios where voters have
non-separable preferences over a series of dichotomies. (This is represented by mak-
ing the utility of each region a concave function of its frequency of victory in a
long series of decisions.) In contrast to all the previously mentioned papers, Fleur-
baey (2009) and Beisbart and Hartmann (2010) considered models with correlated
voters. In Biesbart and Hartmann’s model, the profile of utility functions is drawn
from a multivariate normal distribution, whereas Fleurbaey’s model is extremely
general; the correlation structure between voters is completely arbitrary. Finally,
Maaser and Napel (2014) used computer simulations to find utilitarian-optimal vot-
ing weights in a setting with three or more alternatives arranged on a line (with
single-peaked preferences). The overall message of these papers is that, with i.i.d.
voters, the expected value of utilitarian social welfare is generally maximized by
a “degressive” weighted majority rule, where the weight of each region is a sub-
linear function (e.g. square root) of its population. With non-independent and/or
non-identical voters, the optimal weights can depend on the correlations and pref-
erence intensities.

More recently, a series of papers have considered direct democracies deciding
amongst three or more alternatives. Lehtinen (2007, 2008) used computer simulations
to show that strategic voting often improves the utilitarian efficiency of the Borda rule
and approval voting. Caragiannis and Procaccia (2011) estimated the “distortion” of
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the plurality, approval, and antiplurality voting rules—that is, the worst-case ratio
between the utilitarian social welfare of the optimal alternative, and the utilitarian
social welfare of the alternative which actually wins, where the worst case is com-
puted over all possible profiles of “normalized” utility functions. (A utility function
is “normalized” if it is positive and the utilities sum to one.) Procaccia and Cara-
giannis were particularly interested in the asymptotic growth rate of this distortion
ratio as the number of voters and/or alternatives becomes large. They showed that,
if voters randomly convert their cardinal utility functions into voting behaviours in
a plausible way, then the expected distortion ratio grows surprisingly slowly. Their
intended application was preference aggregation in a cooperating group of artificially
intelligent agents, but their results are also applicable to more traditional social wel-
fare problems. This approach has recently been extended by Boutilier et al. (2012),
who study the worst-case and average-case performance of randomized social choice
rules.

Given a social welfare function W , and the probability distribution of the voters’
cardinal utility functions, Apesteguia et al. (2011) asked: what ordinal voting rule
maximizes the expected value of W? In the case when W is the utilitarian SWF, and
the voters’ utilities are i.i.d. random variables, they showed that the W -optimal rule
is a rank scoring rule of the kind we consider in Sect. 5. In particular, if the voters’
utilities are i.u.d. random variables, then the W -optimal rule is the Borda rule. The
results in Sect. 5 of this paper can be seen as complementary to those of Apesteguia
et al. (2011); they showed that a certain scoring rule was better, on average, than any
alternative voting rule, whereas we show that, in a large population, it approaches
perfect agreement with the utilitarian social choice.

Giles and Postl (2014) conducted a similar investigation for (A, B)-voting rules, a
two-parameter family of rules introduced byMyerson (2002), which includes approval
vote as well as rank scoring rules. Giles and Postl suppose there are three alternatives,
whose utilities for each voter are privately known i.i.d. randomvariables on the interval
[0, 1]. Unlike Apesteguia et al. (2011), they allow strategic voting. Giles and Postl
first characterize the symmetric Bayesian Nash equilibrium (BNE) for the N -player
strategic voting game for any N ≥ 2. Then they numerically compute the expected
value of the utilitarian SWF at the three-player BNE for various (A, B) ∈ [0, 1]2
(where the three players’ utilities are i.i.d. random variables drawn from either a
uniform distribution or a beta distribution on [0, 1]). The results on approval voting
in Sect. 4 of this paper can be seen as complementary to the findings of Giles and
Postl (2014), but extended to an arbitrary number of alternatives and a large number
of voters.

Kim (2014) pushes this investigation further. In a setting with three or more alterna-
tives, and voters with independent (but not identically distributed) random utilities, he
characterizes the rules which are ex ante Pareto efficient in the class of ordinal voting
rules: they are “non-anonymous” rank scoring rules (where each voter has perhaps
a different score vector). He further shows that, in a “neutral” environment (i.e. all
alternatives are ex ante interchangeable), such rules are incentive compatible (i.e. truth-
revealing in BNE). Special cases of Kim’s analysis are the rank scoring rules which
maximize ex ante utilitarian social welfare over all ordinal rules. In particular, Kim
observes that the rank scoring rules ofApesteguia et al. (2011) are incentive-compatible
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in the i.i.d. environment of their paper.3 He then constructs incentive-compatible vot-
ing rules which, in terms of the utilitarian SWF, are superior to any ordinal rule (in
particular, any scoring rule), but which utilize only a limited amount of cardinal utility
information from the voters.

Azrieli and Kim (2014) perform a similar analysis for a dichotomous choice in
which voters have independent (but not identically distributed) random utilities. They
show that the rule which maximizes ex ante utilitarian social welfare over the class
of all incentive compatible rules is a weighted majoritarian rule (where the weight
of each voter is determined by the expected value of her utility function). They also
obtain a similar characterization of the ex ante and ex interim Pareto-optimal rules
in the class of incentive-compatible rules. Meanwhile, Krishna and Morgan (2012)
have considered a model where participation itself is a strategic choice. Assuming
that voting is costly and participation is voluntary, they showed that simple majority
vote will maximize utilitarian social welfare, because voters with weaker preferences
will abstain from voting.

The majority of the aforementioned papers deal only with dichotomous decisions,
whereas we allow an arbitrary number of alternatives.4 Also, except for Fleurbaey
(2009), all of the aforementioned papers assumed that cardinal interpersonal util-
ity comparisons are unproblematic. In contrast, we suppose that these interpersonal
comparisons themselves are ambiguous in practice (but still meaningful in principle).
Finally, except for Weber (1978) and Caragiannis and Procaccia (2011), all of the
aforementioned papers deal with “small” populations of voters, whereas we are inter-
ested in asymptotic probabilistic results for very large populations.5 It is not possible
here to adequately summarise the vast and growing literature on the large-population
asymptotic probabilistic analysis of voting rules. Instead, we will only briefly touch on
two strands of this literature. The first strand is the Condorcet Jury Theorem (CJT) and
its many generalizations.6 Like the CJT literature, the results of the present paper say
that, under certain probabilistic assumptions, a large population using a certain voting
rule is likely to arrive at the “correct” decision. But the goal for the CJT literature is
to find the correct answer to some objective factual question, whereas the goal in the
present paper is to maximize social welfare.

The second strand is the literature on strategic voting and/or strategic candidacy
in large populations with some kind of randomness or uncertainty in voters’ prefer-
ences. This literature is mainly concerned with characterizing the Nash equilibria of
certain large election games. These equilibria occasionally have surprising social wel-
fare properties. For example, Ledyard (1984), Lindbeck and Weibull (1987, 1993),

3 For i.u.d. utilities, this result had been anticipated by Weber (1978, p. 10).
4 However, approval voting and all rank scoring rules reduce to simple majority vote when there are only
two alternatives. Thus, in this setting, our results in Sects. 4 and 5 imply the utilitarian optimality of simple
majority voting, and are complementary to the Rae–Taylor theorem and its extensions.
5 Since they consider a democratic federation of regions, the papers byBarberà and Jackson (2006), Beisbart
et al. (2005), Beisbart and Bovens (2007), Beisbart and Hartmann (2010), Laruelle and Valenciano (2008;
2010), etc. presumably posit large populations. However, most of these papers represent each population
in reduced form as an averaged utility function, not as a set of individuals, and none of them engage in any
sort of asymptotic analysis.
6 See Nitzan (2009, Ch. 11–12) or Pivato (2013, 2016b) for surveys of this literature.
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Coughlin (1992; Theorem 3.7 and Corollary 4.4), Banks and Duggan (2004; §4) and
McKelvey and Patty (2006) have all shown that, in certain election games, there is a
unique Nash equilibrium (sometimes called a “political equilibrium”) where all the
candidates select the policy which maximizes a utilitarian SWF. But these utilitarian
SWFs are based on somewhat peculiar systems of interpersonal utility comparisons.
In these models, voter behaviour is described by a stochastic device: the probability
that voter i votes for candidate C (or in some cases, the probability that i votes at
all) is a function of the difference between the cardinal utility which i assigns to C
and the cardinal utility she assigns to other candidates. Although the different models
use different stochastic devices and seek to capture different phenomena (e.g. random
private costs for voting, or random private shocks to the utility functions, or random
individual errors due to bounded rationality, or other exogenous perturbations), each
model assumes that utility functions are translated into voting probabilities in the
same way for every voter. In this way, each model smuggles in a system of “implicit”
interpersonal utility comparisons via the stochastic device. As observed by Banks and
Duggan (2004, p. 29), thismeans that the normative significance of the “utilitarianism”
emerging from these political equilibria is somewhat unclear.

In contrast, this paper assumes that there is a pre-existing, normatively meaningful
system of cardinal interpersonal utility comparisions, explicitly described by a set
of “calibration constants” which exist independently of the voting rule and any other
random factors in themodel. The social planner does not know the exact values of these
calibration constants, so she regards them as random variables. Our results suggest
that it is still possible to closely approximate the utilitarian social choice, even with
this kind of uncertainty. However, unlike the political equilibrium literature, we treat
the social alternatives as exogenous, rather than endogenizing them as the result of
political candidates competing for popularity.

We also differ from the political equilibrium literature in that we do not grapple with
strategic voting. However, in a companion paper, Núñez and Pivato (2016) show that
all of the voting rules considered in this paper can be “approximately implemented” in
large populations. To be precise, given any voting rule F , there is a stochastic voting
rule ˜F which has two properties, for any sufficiently large population of voters. First,
˜F selects the same alternative as F , with very high probability. Second, each voter
will find it strategically optimal to vote honestly in ˜F , with very high probability. This
result holds underweak and plausible assumptions about the voters’ beliefs about other
voters. Thus, the problem of strategic voting essentially vanishes in a sufficiently large
population.

2 Assumptions and notation

We will now fix some notation and assumptions which will be maintained throughout
the paper. LetR denote the set of real numbers. For any setA and function f : A−→R,
let argmaxA( f ) denote the set of elements in A which maximize f . For any random
variable X , let E[X ] denote its expected value, and let var[X ] denote its variance.

LetAbe afinite set of social alternatives, letI be a set of voters, and let I := |I|. (We
will typically suppose that I is very large; indeed we will be interested in asymptotic
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phenomena as I→∞.) For every i in I, let ui : A−→R be voter i’s cardinal utility
function, and let ci > 0 be a “calibration constant”, which we will use to make
cardinal interpersonal utility comparisons. We suppose that the functions ci ui and
c j u j are interpersonally comparable for all voters i and j in I. In other words, for
any alternatives a, b, c, and d inA, if ci ui (b) − ci ui (a) = c j u j (d) − c j u j (c), then
the welfare that voter i gains in moving from alternative a to alternative b is exactly
the same as the welfare that voter j gains in moving from c to d. We would therefore
like to maximize the utilitarian social welfare function UI : A−→R defined by

UI(a) := 1

I

∑

i∈I
ci ui (a), for every alternative a inA. (1)

Themodelswhich appear belowdiffer in their assumptions about the functions {ui }i∈I .
In Sects. 4 and 5, we will suppose that {ui }i∈I are unknown to the social planner; from
her point of view, they are random functions. However, she knows certain features of
their distributions, and can exploit these features in the design of the voting rule.
She can then obtain partial and indirect information about {ui }i∈I from the voters’
responses to this voting rule. In contrast, in Sect. 3 we will suppose that {ui }i∈I
are known functions, ranging over [0, 1]; the only uncertainty lies in the calibration
constants {ci }i∈I . Throughout Sects. 3, 4 and 5, we will assume that {ci }i∈I are
unknown to the social planner. We formalize this with the following assumption:

(C) {ci }i∈I are real-valued random variables, which are independent, but not neces-
sarily identically distributed. There is some constant σ 2

c ≥ 0 (independent of I )
such that var[ci ] ≤ σ 2

c and E[ci ] = 1 for all i ∈ I.
For some of our results, it will also be convenient to assume the utility profile {ui }i∈I
satisfies the following technical property.

(�) There is a constant� > 0 (independent of I) such thatmaxA(UI)−UI(a) >

� for every a /∈ argmaxA(UI).

Here, � is the minimum social welfare gap between the optimal policy and the next-
best policy. If a voting rule acts as an “estimator” of the utilitarian SWF, then we need
the error of this estimate to be smaller than�, in order for the rule to select the optimal
policy, and not the next-best policy. (Of course, if � was very small, then selecting
the next-best policy would not be a catastrophe; thus, we will relax condition (�) in
Propositions 3.2, 4.3, and 5.3 below.)

It might seem strange that UI is defined in formula (1) as the per capita aver-
age utility, rather than the total utility. The extra 1/I factor makes no difference for
maximization purposes. So why is it there?

The reason is that we are concerned with assessing how far a particular policy
falls short of the theoretical maximum social welfare, and in a large (and growing)
population, it makes much more sense to measure such a welfare shortfall in terms
of per capita average utility rather than total utility. To see the problem, suppose our
voting rule selects some policy P which falls short of the optimal policy Q. If we
measure this shortfall as the per capita average utility disparity between P and Q,
then our assessment will be independent of the size of the population (ceteris paribus).
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But if we measured the shortfall as the total utility disparity between P and Q, then
an increase in the size of the population would mechanically cause a proportionate
increase in our assessment of the “suboptimality” of P , even though nothing else has
changed. If we judge the quality of voting rules by the social suboptimality of the
policies they produce, then we would spuriously conclude that the larger society had
a worse voting rule.

Indeed, policy evaluators usually normalize statistics by population size, precisely
to avoid this kind of spurious conclusion. For instance, suppose that a certain traffic
law X leads to 100 accidental traffic deaths per year in country A, while an alternative
traffic law Y leads to 300 accidental traffic deaths per year in another very similar
country B (and otherwise X and Y have identical effects on traffic flow, pollution,
etc.). We might naïvely conclude that the traffic law X is safer. But if the population
of country B is ten times bigger than country A, then in fact the law Y is safer, in per
capita terms.

3 Evaluative voting

The most natural “utilitarian” voting rule simply asks each voter to assign a numeri-
cal score to each alternative, presumably reflecting her cardinal utility function. The
obvious problem with this approach is that voters could strategically exaggerate these
scores. One partial solution is to rescale every voter’s utility function to range over
the interval [0, 1]. The resulting social choice rule has been called evaluative voting
(Núñez and Laslier 2014; Baujard et al. 2014), utilitarian voting (Hillinger 2005), or
range voting (Smith 2000; Macé 2013).

Formally, in evaluative voting (EV), the vote of each voter i in I takes the form
of a function vi : A−→[0, 1]. The EV rule then chooses the alternative(s) in A that
maximize the function VI : A−→R defined by

VI(a) :=
∑

i∈I
vi (a), for every alternative a in A. (2)

Meanwhile, for every voter i in I let wi : A−→R be her “true” utility function. We
suppose these utility functions admit one-for-one cardinal interpersonal comparisons.
In other words, for any alternatives a, b, c, and d in A, if wi (b) − wi (a) = w j (d) −
w j (c), then the welfare that voter i gains in moving from a to b is exactly the same as
the welfare that voter j gains in moving from c to d. We therefore want to maximize
the utilitarian SWF UI defined by

UI(a) := 1

I

∑

i∈I
wi (a), for every alternative a in A. (3)

Let wi := min{wi (a); a ∈ A}. By replacing wi with the function w̃i := wi − wi if
necessary, we can suppose that min{wi (a); a ∈ A} = 0, for every voter i in I. Clearly
this does not affect the maximizer of (3). Now let ci := max{wi (a); a ∈ A}, and then
define ui (a) := wi (a)/ci , for every voter i in I and every alternative a in A. Then
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formula (3) is clearly equivalent to formula (1). Roughly speaking, ci can be seen as a
crude measure of the “intensity” of voter i’s preferences regarding the social decision.
Of course, the social planner cannot accurately observe these preference intensities.
So we will assume that the planner regards {ci }i∈I is independent random variables,
as described by assumption (C) from Sect. 2.

Note that each ui ranges over the interval [0, 1]. If each voter i uses the full range
[0, 1] to express her utilities, but is otherwise accurate; then shewill set vi = ui . (In this
case, EV is equivilant to the relative utilitarian social welfare function axiomatized by
Dhillon (1998) and Dhillon and Mertens (1999).) However, voter i may misperceive
her own utility function. Thus, in general, vi = ui + εi , where εi : A−→R is a
random “error” function. Suppose ai and ai are the minimizer and maximizer of ui
(thus, ui (ai ) = 0 and ui (ai ) = 1). It is reasonable to suppose that vi (ai ) = 0 and
vi (ai ) = 1—that is, voter i reliably assigns a score of 0 to her worst alternative and a
score of 1 to her best alternative. Thus, εi (ai ) = εi (ai ) = 0. However, for the other
alternatives in A, the errors may be nonzero. We assume they satisfy the following
condition:

(E) For each alternative a inA, the random errors {εi (a)}i∈I are independent, but not
necessarily identically distributed. There is some constant σ 2

ε > 0 (independent
of I ) such that var[εi (a)] ≤ σ 2

ε and E[εi (a)] = 0 for all a ∈ A and i ∈ I. The
random variables {ci }i∈I are independent of the random functions {εi }i∈I .

(Note that we do not assume that, for a fixed voter i in I, the random errors εi (a) and
εi (b) are independent for different alternatives a and b in A.) Our first result says
that, despite the uncertainties surrounding {ci }i∈I and {εi }i∈I , evaluative voting has a
very good chance of maximizing the utilitarian social welfare functionUI in formula
(3), when the population is large.

Theorem 3.1 For every voter i in I, let ui : A−→ [0, 1] be a utility function. Suppose
that the profile {ui }i∈I satisfies (�), and suppose {ci }i∈I , {εi }i∈I and {vi }i∈I are
randomly variables satisfying (C) and (E). Then

lim
I→∞ Prob[argmaxA(VI) ⊆ argmaxA(UI)] = 1.

We can refine this result in three ways. First, we can drop condition (�). Second,
and relatedly, instead of demanding that the outcome of evaluative voting exactly
maximizes UI , we can allow the possibility that it only almost maximizes UI—
something which would be almost as good, for practical purposes. Third, we can
estimate how large the population needs to be in order to achieve such “almost-
maximization” with a certain probability. To achieve these refinements, we need some
more notation. For any utility profile {ui }i∈I , if UI is as in Eq. (3), then let

U∗
I := max {UI(a) ; a ∈ A} (4)

This is the theoretical maximum social welfare, which would be obtained from the
optimal social alternative. Let δ > 0 represent a “social suboptimality tolerance”, and
let p > 0 represent the probability that this tolerance will be exceeded (the social
planner wants both of these to be small). For any values of δ and p, we define
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I (δ, p) := 4 |A| σ 2
c + σ 2

ε

p δ2
. (5)

Our next result says that, for any population larger than I (δ, p), any VI -maximizing
social alternative will produce a utilitarian social welfare within δ of the theoretical
optimum, with probability at least 1 − p.

Proposition 3.2 For every voter i in I, let ui : A−→ [0, 1] be a utility function.
Suppose {ci }i∈I , {εi }i∈I and {vi }i∈I satisfy (C) and (E). For any δ > 0 and p ∈ (0, 1),
if I ≥ I (δ, p), then Prob

[

UI(a) < U∗
I − δ

]

< p, for every a in argmaxA(VI).

Remark on strategic votingTheorem3.1 assumes that everyone tries to vote honestly—
i.e. that vi = ui (plus perhaps some error) for all i ∈ I. But people may vote
strategically. Indeed, in a Myerson–Weber model of evaluative voting in a large-
population, each voter’s best strategy is to assign a score of either 0 or 1 to each
alternative inA (Núñez andLaslier 2014). In this case, evaluative votingwould reduces
to approval voting. However, Núñez and Pivato (2016, Theorem 4) show that in a suf-
ficiently large population, there is a stochastic voting rule which will produce the same
outcome as evaluative voting, with very high probability, and where almost all voters
will vote honestly. This result, combined with Theorem 3.1 above, suggests that in a
sufficiently large population satisfying hypotheses (C) and (E), this stochastic evalua-
tive voting rule will select the utilitarian-optimum outcome with very high probability,
even when voters are strategically sophisticated.

4 Approval voting

Approval voting was originally proposed by Ottewell (1977), Kellett andMott (1977),
and Weber (1978), but the first sustained formal analysis was by Brams and Fishburn
(1983), which is nowusually regarded as the locus classicus. Laslier and Sanver (2010)
provide a recent and comprehensive reference. Informally, the approval voting rule
works as follows:

1. Each voter i identifies a subset of alternatives in A which she “approves”.
2. For each social alternative a in A, count how many voters approve a.
3. Choose the alternative which is approved by the most voters.

Formally, for every voter i in I, let Gi ⊆ A be the set of alternatives which i approves;
we refer to Gi as her approval set. Let G := {Gi }i∈I be the profile of the voters’
approval sets. For any social alternative a in A, we define its approval score by:
VG(a) := #{i ∈ I; a ∈ Gi }. We then define Appr(G) := argmaxA(VG).7

Recall that ui : A−→R denotes the cardinal utility function of voter i , and that we
wish to maximize the utilitarian social welfare function UI defined in Formula (1). If
the approval set Gi is a “noisy signal” of ui (for every voter i in I), then the aggregate

7 Laslier (2012) discusses several other ways to assign “scores” to alternatives based on the voters’ approval
sets, e.g. by computing the stationary probability distribution of an associated Markov process. It might be
possible to prove “asymptotic utilitarian” results for these alternative approval scoring systems as well. But
for simplicity, we will confine the analysis in this paper to the standard approval scoring system.
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approval score VG could be seen as a “noisy signal” of the social welfare functionUI .
Thus, under the right conditions, approval voting should maximize utilitarian social
welfare. Indeed, Weber (1978) showed this was true when there are three alternatives,
for which the utilities of the voters are independent random variables uniformly dis-
tributed over an interval. The goal of this section is to make this intuition precise in a
much more general setting.

Each voter’s true utility function is unknown to the social planner. So is the process
by which each voter converts her utility function into an approval set. We capture
this lack of knowledge by treating these as random variables, described by some
probabalistic model. We will consider two different models: the Threshold Model
and the Selection Model. The Threshold Model (Sect. 4.1) first assigns each voter
a random utility for each social alternative, and then selects her approval set from
these alternatives by means of a randomly determined threshold. The Selection Model
(Sect. 4.2) first selects an approval set for each voter (this process may be random or
deterministic), and then randomly assigns utilities to each social alternative, according
to a probability distribution which depends on whether or not it is in the approval
set. Both models yield the same conclusion: in a large population, approval voting
maximizes the utilitarian social welfare function, with high probability.

4.1 The threshold model

In this section,wewill suppose that each voter i inI identifies an approval threshold θi .
She then defines her approval set Gi to be all social alternatives whose utility exceeds
θi . That is:

Gi := {a ∈ A ; ui (a) ≥ θi }. (6)

In addition to the assumptions (C) and (�) from Sect. 2, we will now make the
following two assumptions:

(�1) The utilities {ui (a); a ∈ A and i ∈ I} are i.i.d. random variables with finite
variance. The variables {ci }i∈I and {ui }i∈I are all jointly independent.

(�2) The thresholds {θi }i∈I are independent random variables (not necessarily iden-
tically distributed). For any i ∈ I, the random threshold θi may depend on
{ui (a)}a∈A. But {θi }i∈I and {ci }i∈I are independent. Finally, 0 < Prob[ui (a) ≥
θi ] < 1 for all a ∈ A.

Assumption (�1) describes the planner’s ignorance about people’s true utility func-
tions, while (�2) describes her ignorance about how they convert these utility
functions into approval sets, except for the fact that they follow rule (6). The con-
dition “0 < Prob[ui (a) ≥ θi ] < 1” simply guarantees that the output of rule (6) is
almost-surely nondegenerate. The next result says that, if a large population of vot-
ers satisfies these hypotheses, then with very high probability, approval voting will
maximize the utilitarian social welfare function UI in Eq. (1).

Theorem 4.1 Suppose {ui }i∈I , {θi }i∈I and {ci }i∈I satisfy (C), (�), (�1), and (�2),
and the approval profile G = {Gi }i∈I is defined by rule (6). Then
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lim
I→∞ Prob

[

Appr(G) ⊆ argmaxA(UI)
] = 1.

One notable difference between Theorems 3.1 and 4.1 is that the former places
essentially no conditions on the utility functions {ui }i∈I , whereas the latter requires
these utility functions to be i.i.d. random variables. The reason is that approval voting
provides us with less information about individual utility functions than evaluative
voting. A voter’s response in evaluative voting tells us her entire utility function, up to
a scalar multiple; the only uncertainty is the magnitude of this scalar. But her approval
set only tells us whether each she assigns a ‘high’ or ‘low’ utility to each alternative.
Thus, without further information about the conditional probability distributions of
these ‘high’ and ‘low’ utilities, it is not possible for us to estimate the utilitarian social
welfare function.

The total ignorance described by (�1) implies both a sort of a priori anonymity (i.e.
all voters are indistinguishible, a priori) and a priori neutrality (i.e. all social alternatives
are indistinguishible, a priori). Thus, it does not allow us to incorporate the knowledge
that certain alternatives (e.g. low taxes) tend to be favoured by certain classes of
voters (e.g. business owners). Nor does it allow us to incorporate the knowledge that
people’s preferences may be correlated (e.g. voters who favour low taxes tend to also
favour less regulation, because they are often business owners). Likewise, (�2) does
not allow us to incorporate knowledge that certain types of voters tend to set higher
thresholds than others for certain types of policy problems. Thus, when applied to a
specific policy problem, these assumptions may be less than optimal; a voting rule
more closely optimized to the specific probability distribution of utility functions in
a society might yield a higher expected social welfare.8 However, in many cases, we
might not have such specific information about the distribution of utility functions.

It is important to note that we do not assume that the random threshold θi is indepen-
dent of ui . For example, one very natural threshold for a voter would be the average
utility of all alternatives; that is:

θi = 1

A

∑

a∈A
ui (a). (7)

Note that a random threshold determined in this way is compatible with hypothesis
(�2).

4.2 The selection model

In our second model, the approval set of each voter is exogenous and arbitrary. Her
approval set might be fixed in advance, or it might be generated by some other random
process. (If the voters’ approval sets are random variables, then we do not need to
assume that they are either independent, or identically distributed.) Each voter assigns
random utilities to each alternative, conditional on whether or not it is in her approval
set.

8 For example, the scoring rules of Kim (2014; §5) and the weighted majority rules of Bordley (1985b;
1986), Fleurbaey (2009) and Azrieli and Kim (2014; §4) have this feature.
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Formally, for each i in I, let Gi be the (exogenous) approval set of voter i , and let
Bi := A\Gi . Let γ and β be two finite-variance probability measures on R, such that
the mean value of γ is strictly larger than that of β.9 In addition to assumptions (C)
and (�) from Sect. 2, we now make the following assumption:

(S) For all g in Gi , ui (g) is a γ -random variable. For all b in Bi , ui (b) is a β-random
variable. The random variables {ci ; i ∈ I} and {ui (a); i ∈ I and a ∈ A} are all
jointly independent.

The interpretation of (S) is the same as (�1); it implies both a sort of a priori
anonymity and a priori neutrality. The difference is that now we can distinguish
between those alternatives which are in a voter’s approval set and those which aren’t,
and give them different statistical treatments. Since the approval sets are exogenous,
this model is able to cope with situations where a voter’s approval choices are highly
correlated, both with other voters and with other known facts about that voter (e.g. the
fact that business owners tend to approve of tax reduction and also tend to approve
of deregulation). The model in effect makes no assumptions about the statistical dis-
tribution of approval sets (it doesn’t even treat them as random). However, the model
still does not allow correlations of utility within each voter’s approval set (e.g. a cor-
relation between the utility that a voter assigns to a tax reduction and the utility she
assigns to a deregulation policy, given that she has approved of both). Once again, if a
large population of voters satisfies these hypotheses, then with very high probability,
approval voting will maximize the utilitarian social welfare function UI in Eq. (1).
Theorem 4.2 LetG = {Gi }i∈I be an arbitrary approval profile. If {ui }i∈I and {ci }i∈I
satisfy hypotheses (C), (�), and (S), then

lim I→∞ Prob
[

Appr(G) ⊆ argmaxA(UI)
] = 1.

As in Sect. 3, we would like to refine Theorems 4.1 and 4.2 by dropping condition
(�). We would also like to estimate how large the population must be in order for
approval voting to “almost-maximize”UI with a certain probability, by analogy with
Proposition 3.2. For brevity, wewill present such a result only for the SelectionModel,
but a similar result can be proved for the Threshold Model. Let U∗

I := max{UI(a);
a ∈ A}.
Proposition 4.3 Let G = {Gi }i∈I be an arbitrary approval profile. If {ui }i∈I and
{ci }i∈I satisfy (C) and (S), then for any δ > 0, we have

lim
I→∞Prob

(

UI(a) ≥ U∗
I − δ for all a ∈ Appr(G)

) = 1. (8)

Furthermore, if the fourth moments of γ and β are finite,10 then there are constants
C1,C2 > 0 (determined by γ , β, and σ 2

c ) such that, for any p > 0, if I ≥ C1/p and
I ≥ C2/p δ2, then Prob

[

UI(a) < U∗
I − δ

]

< p for all a ∈ Appr(G).

9 Typically, γ and β would have nonoverlapping support; e.g. γ would be a measure on [0, ∞) while β

would be a measure on (−∞, 0]. But we don’t need to assume this. Note that γ and β are not assumed to
be Gamma or Beta distributions.

10 The fourth moment of a probability measure γ is the integral
∫ ∞
−∞

u4 dγ [u]. It is finite if dγ [u] decays
quickly enough as u→ ± ∞.
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Remark on strategic voting Theorems 4.1 and 4.2 assumed that each person votes
sincerely, meaning that she votes for all and only those alternatives whose utility
exceeds some threshold. Such sincerity should not be taken for granted; De Sinopoli
et al. (2006) and Núñez (2014) have constructed examples of mixed strategy Nash
equilibria and Poisson equilibria with insincere approval voting. However, Núñez
and Pivato (2016, Theorem 3) show that in a sufficiently large population, there is
a stochastic voting rule which will produce the same outcome as approval voting,
with very high probability, and where almost all voters will vote sincerely, using the
threshold defined by formula (7). This result, combined with Theorem 4.1, suggests
that in a large enough population satisfying hypotheses (C), (�), (�1), and (�2), this
stochastic approval voting rule will select the utilitarian-optimum outcome with very
high probability, even when voters have the option of being insincere.

5 Rank scoring rules

One concern with approval voting is that it gives each voter very little ability to
express the intensity of her preference for or against each alternative. For example, if
a voter does not include a certain alternative in her approval set, this may be because
she actively dislikes this alternative, or it may simply be because she has no strong
feelings either way, or perhaps inadequate knowledge of this alternative, and for this
reason she “abstains” from endorsing it. Approval voting is unable to distinguish
between voting against and abstention. For this reason, Alcantud and Laruelle (2014)
propose “dis&approval” voting, which allows a voter three choices for each alterna-
tive: approve, disapprove, or abstain. However, “dis&approval” voting still does not
distiguish between “strong” (dis)approval and “weak” (dis)approval. For this purpose,
we turn to rank scoring rules.

Let N := |A|. Let s1 ≤ s2 ≤ · · · ≤ sN be real numbers, and define s :=
(s1, s2, . . . , sN ). The s-rank scoring rule on A is defined as follows:

1. For every voter i in I, let 	i denote her (strict) ordinal preferences on A.
2. For every alternative a inA, if a is ranked kth place from the bottom with respect

to 	i , then voter i gives a the score sk . (In particular, i gives the score s1 to her
least-prefered alternative, and the score sN to her most prefered alternative.)

3. For each alternative in A, add up the scores it gets from all voters.
4. The s-rank scoring rule chooses the alternative(s) with the highest total score.

For example, the Borda rule is the rank scoring rule with s = (1, 2, 3, . . . , N ). The
standard plurality rule is the rank scoring rule with s = (0, 0, . . . , 0, 1).

Formally, for every voter i in I, if A = {a1, a2, . . . , aN } and a1 ≺i a2 ≺i · · · ≺i

aN , then define vi : A−→R by setting vi (ak) := sk for all k ∈ [1 . . . N ]. Let PI :=
{	i }i∈I be the profile of ordinal preferences of the voters. For every social alternative
a in A, define V s

PI (a) := ∑

i∈I vi (a). Then define Scores(PI) := argmaxA(V s
PI ).

Apestequia et al. (2011; Theorem 3.1) have shown that, amongst all voting rules,
rank scoring rules are the ones which maximize the expected value of the utilitarian
social welfare function (under certain conditions). Furthermore, they characterized the
optimal rank scoring rule in terms of the probability distribution of the voters’ utility
functions—to be precise, in terms of the expected order statistics of this distribution.
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Our results in this section are complementary. We work with a much broader class
of probability distributions than Apesteguia et al. (2011). We will show that, if the
profile {ui }i∈I arises from this class, then there exists a rank scoring rule which will
come arbitrarily close to selecting a utilitarian optimum, with very high probability as
I→∞. Thus, while Apesteguia et al. (2011) show that the optimal rank scoring rule
is “better on average” than any other voting rule, we show that it is, in fact “almost
perfect”, in the limit of a large population.11

As in Sect. 4, we will present two stochastic models of voter preference forma-
tion. In the Endogenous Preference model (Sect. 5.1), the voters’ utility functions are
i.i.d. random variables, and their ordinal preferences are determined by these utility
functions. In the Exogenous preference model (Sect. 5.2), the voter’s ordinal prefer-
ences are exogenous and arbitrary, and their utility functions are random variables
conditional on these preferences.

5.1 Endogenous preferences

For each voter i in I, wewill represent her utility function overA as an N -dimensional
vector ui := (uia)a∈A ∈ R

A (where uia := ui (a) for all a ∈ A). Letμ be a probability
measure on R

A which has finite variance (i.e. the variance of each one-dimensional
marginal of μ is finite). We will use μ to randomly generate the utility functions of
the voters. For any a, b ∈ A, we assume that μ{u ∈ R

A; ua = ub} = 0 (i.e. almost
surely, no two alternatives yield the same utility). In addition to hypotheses (C) and
(�) from Sect. 2, we will now make the following two assumptions.

(N1) The utility functions {ui }i∈I are independent, μ-random vectors. Also, {ui }i∈I
are independent of {ci }i∈I .

(N2) μ is symmetric under all coordinate permutations.

Note that we do not assume, for any particular voter i , that the utilities she assigns to
different alternatives a and b are independent random variables: the probability mea-
sure μ may allow for arbitrary correlations between uia and u

i
b. However, assumption

(N2) acts as a form of a priori neutrality. It implies that the expected values of the
utilities uia and uib are the same. Furthermore, the expected value of uia , conditional
on some information about the rank of b (say, that b is i’s favourite alternative) is the
same as the expected value of uib conditional on the same information about the rank
of a. Hypothesis (N1) is comparable to (S) or (�1): it is a sort of a priori anonymity,
saying that all voters are indistinguishable, a priori. However, (N1) supposes a richer
level of knowledge than (S) or (�1); for example, we might know that, on average,
each voter’s second-best and third-best alternatives obtain, respectively 90 and 75%
of the utility of her favourite alternative (assuming her worst alternative has utility 0).
We will now see how to incorporate such knowledge into the optimal rank scoring
rule.

11 Weber (1978) showed this was true for the Borda rule, when voters have independent, uniformly dis-
tributed random utility functions. In fact, this result had been anticipated by Laplace in 1795; see Black
(1958), Ch. XVIII, §3 and Tanguiane (1991), Ch. 4 for discussion.
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Let u ∈ R
A be a μ-random vector. Rearrange the coordinates of u in increasing

order, to get a vector ↑u := (↑u1, . . . , ↑uN ), where ↑u1 ≤ ↑u2 ≤ · · · ≤ ↑uN . For all
n ∈ [1 . . . N ], let sn be the expected value of ↑un ; this yields a vector s = (s1, . . . , sN ).
The next result says that, if a large population of voters satisfies our hypotheses, then
with very high probability, the s-rank scoring rule will maximize the utilitarian social
welfare function UI in Eq. (1).

Theorem 5.1 Suppose {ui }i∈I , and {ci }i∈I satisfy (C), (�), (N1) and (N2), and let
PI = {	i }i∈I be the ordinal preference profile defined by {ui }i∈I . Then

lim
I→∞ Prob

[

Scores(PI) ⊆ argmaxA(UI)
] = 1. (9)

Impartial cultureAswehave emphasized, hypothesis (N1) does not require the utilities
{uia}a∈A to be i.i.d. random variables, for any particular voter i . However, it is certainly
compatible with this additional assumption. This corresponds to the special case of the
model where μ is a Cartesian product of N copies of some underlying finite-variance,
nonatomic probability measure ρ onR. In this case, the utilities {uia ; i ∈ I and a ∈ A}
are all independent, ρ-random variables; this is a version of the so-called “Impartial
Culture” model. If we make the further assumption that ρ is absolutely continuous
and has compact support, and assume that ci := 1 for every voter i in I, then we
obtain the models considered by Weber (1978) and Apesteguia et al. (2011). But the
Endogenous Preferencemodel is muchmore general than the Impartial Culturemodel.
For example, in a large population Impartial Culture model, all elements of A end up
with roughly the same average utility (due to the Law of Large Numbers), so that
utilitarianism is effectively indifferent between them, and the use of any voting rule is
somewhat superfluous. The Endogenous Preference model avoids this unrealistically
trivial outcome.

5.2 Exogenous preferences

In our second model, the preference orders of the voters are exogenous and arbitrary.
These preference orders may themselves be random variables, or they may be deter-
mined in some other way. (If they are random variables, then we do not assume that
they are independent or identically distributed, unlike the Impartial Culture model.)
The model then assigns each voter a random utility for each alternative, conditional
on her preference order.

Formally, let
↑
U := {↑u ∈ R

N ; ↑u1 < ↑u2 < · · · < ↑uN }, and let λ be a finite-
variance probabilitymeasure on

↑
U. For every voter i inI, let	i denote i’s (exogenous)

preference order overA. In addition to assumptions (C) and (�) fromSect. 2, wemake
the following assumption:

(X) The utility vectors {ui }i∈I are independent random vectors, generated as follows.
For each i ∈ I, we obtain ui by taking a λ-random variable ↑ui in

↑
U, and

rearranging the coordinates to agree with the preference order 	i . The random
variables {ui }i∈I and {ci }i∈I are independent.
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Once again, we do not assume, for any particular voter i , that the utilities she assigns to
different alternativesa andb are independent randomvariables, even afterwe condition
on 	i ; the probability measure λ may allow for arbitrary correlations between uia and
uib. However, (X) has a consequence similar to (N2): given two voters i and j , and
two alternatives a and b, if a has the same rank with respect to 	i as b does with
respect to 	 j , then the expected value of uia is the same as that of u j

b . Hypothesis (X)
is also comparable to (N1): it is a sort of a priori anonymity, saying that all voters are
indistinguishable, a priori, except for their exogenous ordinal preferences.

For all k ∈ [1 . . . N ], let sk be the expected value of ↑uk , where (↑u1, . . . , ↑uN ) ∈ ↑
U

is a λ-random variable. Let s := (s1, s2, . . . , sN ). The next result says that, if a large
population of voters satisfies our hypotheses, then with very high probability, the s-
rank scoring rule will maximize the utilitarian social welfare function UI in equation
(1).

Theorem 5.2 Let PI = {	i }i∈I be an arbitrary ordinal preference profile. Suppose
{ui }i∈I , and {ci }i∈I satisfy (C), (�), and (X). Then the limit (9) holds as I→∞.

As in Sects. 3 and 4, we would like to refine Theorems 5.1 and 5.2 by dropping
condition (�). We would also like to estimate how large the population must be in
order for the rank scoring rule to “almost-maximize” UI with a certain probability,
by analogy with Propositions 3.2 and 4.3. For brevity, we will present such a result
only for the Exogenous Preference model, but a similar result can be proved for the
Endogenous Preference model. As usual, let U∗

I := max{UI(a); a ∈ A}.
Proposition 5.3 Let PI = {	i }i∈I be an arbitrary ordinal preference profile. If
{ui }i∈I and {ci }i∈I satisfy (C) and (X), then for any δ > 0, we have

( lim
I→∞Prob UI(a) ≥ U∗

I − δ for all a ∈ Scores(PI)) = 1. (10)

Furthermore, if the fourth moment of λ is finite,12 then there are constants C1,C2 > 0
(determined by λ and σ 2

c ) such that, for any p > 0, if I ≥ C1/p and I ≥ C2/p δ2,
then Prob

[

UI(a < U∗
I − δ

]

< p, for all a ∈ Scores(PI).

Conditional impartial culture Theorem 5.1 is actually a consequence of Theorem 5.2;
in effect, the Exogenous Preferencemodel can be intepreted as the Endogenous Prefer-
ence model, conditional on a particular realization of the (random) ordinal preference
profile {	i }i∈I . Theorem 5.2 says that limit (9) holds for any particular realization of
{	i }i∈I . Theorem5.1 follows from this fact by integrating over all possible realizations
of {	i }i∈I . (See Appendix B for details.)

At the end of Sect. 5.1, we explained how the “Impartial Culture” model was a
special case of the Endogenous Preferences model. If we condition on a particular

12 The fourth moment of the multivariate probability measure λ is the integral
∫

U

∑N

n=1
u4n dλ[u]. It is

finite if dλ[u] decays quickly enough as ‖u‖→∞. For example, the fourth moment of a multivariate normal
probability measure is finite.
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realization of {	i }i∈I , we obtain the Conditional Impartial Culture model. To be
precise, let ρ be a probability measure on R with finite variance and no atoms. For
every voter i in I, let 	i be voter i’s (exogenous) ordinal preference relation onA. In
this case, hypothesis (X) takes the following form:

(X′) Let {r i1, r i2, . . . , r iN } be a sample of N independent, ρ-random variables.
Rearrange this sample in increasing order, to obtain an N -tuple (↑r i1,

↑r i2, . . . ,
↑r iN )

with ↑r i1 < ↑r i2 < · · · < ↑r iN .
13 If A = {a1, a2, . . . , aN } and a1 ≺i a2 ≺i · · · ≺i

aN , then set ui (a1) := ↑r i1, ui (a2) := ↑r i2, . . ., and ui (aN ) := ↑r iN .

The rank scoring rule described prior to Theorem 5.2 now has the following construc-
tion. Take a random sample of N independent random variables drawn from ρ, and
compute the order statistics of this sample; this yields N new random variables (which
are neither independent, nor identically distributed). Let sN1 < sN2 < · · · < sNN be the
expected values of these random variables. Then set s := (sN1 , sN2 , . . . , sNN ).

It is convenient to “renormalize” sN1 , sN2 , . . . , sNN to range over the interval [−1, 1],
by defining

s̃ Nn := 2 sNn − sNN − sN1
sNN − sN1

, for all n in [1 . . . N ].

This ensures that s̃ NN = 1 and s̃ N1 = −1. (For example, if N = 3, then we have
s̃33 = 1 and s̃31 = −1, and only the value of s̃32 remains to be determined.) If ρ is a
probability distribution symmetrically distributed about some point in the real line,
then the values s̃ N1 , s̃ N2 , . . . , s̃ NN will be symmetrically distributed around zero—that
is, s̃ Nk = −̃sNN+1−k for all k in [1 . . . N ]. Thus, if N is odd and k = (N + 1)/2, then
s̃ Nk = 0. In particular, if N = 3, then wemust have s̃32 = 0, while s̃33 = 1 and s̃31 = −1.
Thus, we get the rank scoring rule defined by the scoring vector (−1, 0, 1), which is
just the Borda rule. Thus, Theorem 5.2 implies the next result, which says that the
Borda rule is asymptotically utilitarian-optimal for any symmetric measure ρ.

Corollary 5.4 Suppose |A| = 3, and let PI = {	i }i∈I be any profile of preference
orders on A. Let ρ be any symmetric, finite-variance probability distribution on R. If
{ui }i∈I , and {ci }i∈I satisfy (C), (�) and (X′), then

lim I→∞ Prob[Borda(PI) ⊆ argmaxA(UI)] = 1.

If |A| ≥ 4, then the Borda rule is no longer guaranteed to be asymptotically
optimal; the optimal rule will depend on the expected values of the order statistics for
ρ, which depend on the structure of ρ itself. For example, suppose ρ was a standard
normal probability distribution and |A| = 7. Thenwe get the following expected order
statistics (to 5 significant digits).

13 (↑r i1,
↑r i2, . . . ,

↑r iN ) are called the order statistics of the sample.
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s77 ≈ 1.35218,

s76 ≈ 0.75737,

s75 ≈ 0.35271,

s74 = 0,

s73 ≈ −0.35271,

s72 ≈ −0.75737,

and s71 ≈ −1.35218,

which renormalize to

s̃77 = 1,

s̃76 ≈ 0.56011,

s̃75 ≈ 0.26085,

s̃74 = 0,

s̃73 ≈ −0.26085,

s̃72 ≈ −0.56011,

and s̃71 = −1.

By comparision, the Borda rule uses the scoring vector (−1,−0.66,−0.33, 0, 0.33,
0.66, 1).

Unfortunately, the expected values of order statistics are quite hard to compute
for many probability distributions. Harter and Balakrishnan (1996) provide tables of
these expected values for most of the common probability distributions (e.g. normal,
exponential, Weibull, etc.); from this data it is easy to design the appropriate rank
scoring rule.

Remark on strategic voting Scoring rules are highly susceptible to strategic voting.
Theorems 5.1 and 5.2 do not address this issue. However, given any scoring rule F ,
Núñez and Pivato (2016, Theorem 1) show that, in a sufficiently large population,
there is a stochastic voting rule which will produce the same outcome as F , with very
high probability, and where almost all voters will vote honestly. This result, combined
with Theorems 5.1 and 5.2, suggests that in a sufficiently large population satisfying
hypotheses (C), (�), and either (X) or hypotheses (N1) and (N2), this stochastic
scoring rule will select the utilitarian-optimum outcome with very high probability,
even when we allow for strategic voting.

6 Conclusion

For a large enough population, our results suggest that simple and popular voting rules
such as the Borda rule or approval voting have a very high probability of selecting
an alternative which maximizes or almost-maximizes the utilitarian social welfare
function. However, our results depend on some substantive assumptions. We will now
briefly discuss some of these assumptions.

First, we have often assumed that the random variables associated with differ-
ent voters are independent. This assumption is shared by virtually all the literature
reviewed in Sect. 1.14 But it excludes the possibility that voters belonging to a par-
ticular community or social group might exhibit correlations in their utility functions,
preference intensities, errors, and/or approval thresholds. Empirical data suggests that
these independence assumptions are false (Gelman et al. 2004). But they were made
for expositional simplicity, rather than technical necessity. The results in this paper are

14 Exceptions are Bordley (1985b), Bordley (1986), Fleurbaey (2009), and Beisbart and Hartmann (2010).
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derived using results from Section 2 of Pivato (2016c), which assumes stochastically
independent voters. Section 3 of Pivato (2016c) extends these results to correlated
voters, assuming the correlation strength is not too strong.15 Using this extension, it
would be straightforward to extend the results of the present paper to correlated voters.

A major obstacle to any implementation of utilitarian social choice is strategic
voting. As we have already noted, Núñez and Pivato (2016) offers a possible solution,
which is particularly suitable for the large-population, probabilistic approach taken
in this paper. The mechanisms in Núñez and Pivato (2016) make truthful voting an
optimal strategy for almost all voters, but at a price: they introduce a tiny probability
that the rule will choose a socially suboptimal outcome. (In effect: they induce each
voter to reveal her true preferences by offering her a small chance to be a “random
dictator”.) This is very similar to the concept of virtual implementation introduced by
Matsushima (1988) andAbreu and Sen (1991). Virtual implementation is an extremely
powerful and versatile implementation technology; the main idea is that it is sufficient
to obtain a very high probability of selecting a socially optimal outcome, rather than
certainty. Thus, virtual implementation is alsowell-suited to the probabilistic approach
of the present paper. Another partial solution to strategic voting is suggested by Kim
(2014), who shows that, with stochastically independent voters, the rank scoring rules
considered in Sect. 5 are truth-revealing in Bayesian Nash equilibrium.

Finally, each of our results depends on specific assumptions about the statistical
distribution of utility functions in the population. Thus, to select the best rule, we
must know something about this distribution. The statistical distribution of utility
functions probably depends on both the society and the particular policy problem.
Thus, different voting rules may be optimal in different situations. In some situations,
none of the voting rules considered heremay be optimal, from a utilitarian perspective.
This suggests a two-stage approach. In the first stage, estimate the utility functions of
some statistically representative sample of the population (e.g. using a survey). Use
this data to estimate the statistical distribution of utilities, and then determine which
voting rule (if any) is optimal, given this distribution. If the statistical distribution of
utility functions satisfies the hypotheses of one of the results in this paper, then in the
second stage, we can use the corresponding voting rule tomake the collective decision.
Otherwise, we must resort to some other method.
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15 To be more precise, we need an asymptotic condition on the L1 norm of the covariance matrix of the
random variables {ci }i∈I and {ui }i∈I , as I→∞.
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Appendix 1: Background

The proofs in this paper depend on some results from Pivato (2016c). In this appendix,
we briefly review these results.

Pivato (2016c) considers the problem of a utilitarian social planner who can only
make noisy observations of the utility functions of the individuals in society and the
correct system of interpersonal comparisons. For every i in I, let ui : A−→R be the
true cardinal utility function for voter i , and let ci > 0 be a calibration constant, which
we will use to make cardinal interpersonal utility comparisons. We suppose that the
social planner wants to maximize the utilitarian social welfare function UI : A−→R

defined by Formula (1); however, she faces the following informational problems.

(U1) {ci }i∈I are unknown. The planner regards {ci }i∈I as independent (but not neces-
sarily identically distributed) real-valued random variables. There are constants
c > 0 and σ 2

c ≥ 0 (independent of I ) such that E[ci ] = c and var[ci ] ≤ σ 2
c , for

all i ∈ I.
(U2) The utility functions {ui }i∈I are not precisely observable. Instead, for each i in

I, the planner can only observe a function vi := ui + εi , where εi : A−→R is a
random “error” term. For each alternative a in A, the random errors {εi (a)}i∈I
are independent16 (but not necessarily identically distributed), and they all have
an expected value of 0 and a variance less than or equal some constant σ 2

ε > 0
(which is independent of I ).
Finally, the random variables {ci }i∈I are independent of the random functions
{εi }i∈I .

We assume that the utility profile {ui }i∈I satisfies one or both of the following
conditions.

(U3) There is a constant� > 0 (independent of I ) such thatmaxA(UI)−UI(a) > �

for every a /∈ argmaxA(UI).
(U4) There is a constant M > 0 (independent of I ) such that 1

I

∑

i∈I ui (a)2 < M2

for every a in A.

Note that, while we assume that {vi }i∈I and {ci }i∈I are random variables, we
make no assumptions about the mechanism generating the underlying profile of utility
functions {ui }i∈I . These utility functions might be fixed in advance, or they might
themselves be generated by someother randomprocess, as long as they satisfy (U4) and
(U3).Define the function VI : A−→R as inEq. (2), and define the SWFUI : A−→R

as in Eq. (1). Here is Theorem 1 of Pivato (2016c).

Theorem 6.1 For every i in I, let ui : A−→R be a utility function. Suppose the
profile {ui }i∈I satisfies (U3) and (U4). If {ci }i∈I , {εi }i∈I and {vi }i∈I are randomly
generated according to rules (U1) and (U2), then

lim I→∞ Prob
[

argmaxA(VI) ⊆ argmaxA(UI)
] = 1.

16 We do not assume that, for a fixed voter i in I, the random errors εi (a) and εi (b) are independent for
different alternatives a and b inA.
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For any δ > 0 and p ∈ (0, 1), we define

I (δ, p) := 4 |A| M
2 σ 2

c + σ 2
ε

p δ2
. (11)

Define U∗
I := max {UI(a) ; a ∈ A}. Here is Theorem 2 of Pivato (2016c).

Theorem 6.2 Suppose {ui }i∈I , {ci }i∈I , {εi }i∈I and {vi }i∈I satisfy (U1), (U2) and
(U4). For any δ > 0 and p ∈ (0, 1), if I ≥ I (δ, p), then Prob

[

UI(a) < U∗
I − δ

]

<

p, for all a in argmaxA(VI).

Appendix 2: Proofs

Proof of Theorem 3.1 We will derive this from Theorem 6.1. Recall that ui := wi/ci ,
so that wi = ci ui ; with this substitution, formulae (3) and (1) are equivalent. Observe
that hypothesis (C) implies (U1) (with c := 1), hypothesis (E) implies (U2), and
hypothesis (�) implies (U3). Meanwhile, hypothesis (U4) is true automatically, with
M = 1, because the functions {ui }i∈I range over [0, 1]. The asymptotic probability
claim now follows from Theorem 6.1. ��
Proof of Proposition 3.2 If we set M := 1 in formula (11), we obtain formula (5).
The asymptotic probability inequality now follows from Theorem 6.2. ��
Proof of Theorem 4.1 Let g := E[uia | uia ≥ θi ] and let b := E[uia | uia < θi ]; thus
g > b. By (�1) and (�2), these values do not depend on i or a. For all i ∈ I, define
vi : A−→R by

vi (a) :=
{

g if uia ≥ θi ;
b if uia < θi .

=
{

g if a ∈ Gi ;
b otherwise.

[The second equality is by Eq. (6).] Then define εi (a) := vi (a) − ui (a) for all a ∈ A.
Thus, vi = ui + εi . By construction, E[ui (a) | vi (a)] = vi (a), and thus E[εi (a)] = 0,
for all i ∈ I and a ∈ A. Let c := g − b; then c > 0. For all i ∈ I, let ũi :=
ui/c and c̃i := c · ci ; thus, ci ui = c̃i ũi . Thus, UI = 1

I

∑

i∈I c̃i ũi . For all i ∈
I, let ṽi := vi/c and ε̃i := εi/c; thus, ṽi = ũi + ε̃i . Let ˜VI = ∑

i∈I ṽi . Then
˜VI = VG+(a constant). Thus, argmaxA(˜VI) = argmaxA(VG). But argmaxA(VG) =
Appr(G); thus, it suffices to compute the asymptotic probability that argmaxA(˜VI) ⊆
argmaxA(UI), using Theorem 6.1. To do this, we must verify hypotheses (U1)–(U4).
First, let u := E[uia] and let σ 2

u := var[uia] for any i ∈ I and a ∈ A. By hypothesis
(�1), these values are finite and independent of i and a. Let M := u2 + σ 2

u . ��
Claim A lim

I→∞ Prob (M and the profile{ui }i∈I satisfy condition (U4)) = 1.

Proof Fix a ∈ A. For all i ∈ I, we have E[u2i (a)] = u2 + σ 2
u = M2. Thus,

1
I

∑

i∈I ui (a)2 is an average of I independent random variables (by (�1)), each with
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expected value M2. Thus, the Law of Large Numbers implies that

lim
I→∞ Prob

[

1

I

∑

i∈I
ui (a)2 < M2

]

= 1.

Thus, since A is finite, the claim follows. �
Hypotheses (�1) and (�2) imply that {̃ui }i∈I , {̃vi }i∈I and {̃εi }i∈I satisfy (U2).
Hypothesis (C) implies that {̃ci }i∈I satisfies (U1), and hypothesis (�) implies that
{̃ui }i∈I satisfies (U3) (with ˜� := �/c). Now apply Claim A and Theorem 6.1 to
{̃ui }i∈I , {̃vi }i∈I , {̃εi }i∈I and {̃ci }i∈I to derive the claimed asymptotic probability. ��
Proof of Theorem 4.2 The strategy is very similar to the proof of Theorem 4.1. Let g
be the mean value of γ , and let b be the mean value of β; thus g > b. For all i ∈ I,
define vi : A−→R by

vi (a) :=
{

g if a ∈ Gi ;
b if a ∈ Bi .

Then define εi (a) := vi (a)−ui (a) for all a ∈ A. Thus, vi = ui +εi . By construction,
E[ui (a)] = vi (a), and thus E[εi (a)] = 0, for all i ∈ I and a ∈ A. Let c := g − b;
then c > 0. For all i ∈ I, let ũi := ui/c and c̃i := c · ci ; thus, ci ui = c̃i ũi . Thus,
UI = 1

I

∑

i∈I c̃i ũi . For all i ∈ I, let ṽi := vi/c and ε̃i := εi/c; thus, ṽi = ũi + ε̃i . Let
˜VI = ∑

i∈I ṽi . Then ˜VI = VG+(a constant). Thus, argmaxA(˜VI) = argmaxA(VG).
But argmaxA(VG) = Appr(G); thus, it suffices to compute the asymptotic probability
that argmaxA(˜VI) ⊆ argmaxA(UI), using Theorem 6.1. ��

Let Mg := g2 + var[γ ] and Mb := b2 + var[β]. Let M := √

max{Mg, Mb} and
let ˜M := M/c.

Claim B lim
I→∞ Prob( ˜M and the profile {̃ui }i∈I satisfy condition (U4)) = 1.

Proof Fix a ∈ A. For all i ∈ I, if a ∈ Gi , then E[u2i (a)] = Mg . If a ∈ Bi , then
E[u2i (a)] = Mb. Either way, E[u2i (a)] ≤ M2. Thus, 1

I

∑

i∈I ui (a)2 is an average of I
independent random variables (by (S)), each with expected value M2. Thus, the Law
of Large Numbers implies that

lim
I→∞ Prob

[

1

I

∑

i∈I
ui (a)2 < M2

]

= 1.

Since ũi := ui/c for all i ∈ I, it follows that

lim
I→∞ Prob

[

1

I

∑

i∈I
ũi (a)2 < ˜M2

]

= 1.

Thus, since A is finite, the claim follows. �
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Hypothesis (C) implies that {̃ci }i∈I satisfies (U1). Define σ 2
ε := max{var(γ ),

var(β}/c2. Since ε̃i = ũi − ṽi , it follows that var(̃εi ) ≤ σ 2
ε for all i . Thus, hypothe-

sis (S) implies that {̃ui }i∈I , {̃vi }i∈I and {̃εi }i∈I satisfy (U2). Finally, hypothesis (�)

implies that {̃ui }i∈I satisfy (U3) (with ˜� := �/c). Now apply Claim B and The-
orem 6.1 to {̃ui }i∈I , {̃vi }i∈I , {̃εi }i∈I and {̃ci }i∈I to derive the claimed asymptotic
probability. ��
Proof of Proposition 4.3 Define {̃ui }i∈I , {̃vi }i∈I , {̃εi }i∈I and ˜VI as in the proof of
Theorem 4.2. From Theorem 6.2, along with Claim B, we immediately obtain the
limit Eq. (8). However, to obtain more precise estimates of the convergence speed, we
must first estimate the speed of the convergence in Claim B, using the next result. ��
Claim C Suppose the fourth moments of γ and β are finite. Then there is someC1 > 0
(determined by γ and β) such that, for any p ∈ (0, 1), if I > C1/p, then

Prob
(

˜M and {̃ui }i∈I violate condition (U4)
)

<
p

2
.

The proof is very similar to the proof of Claim E in the proof of Proposition 5.3
(below).

Recall that {̃ui }i∈I , {̃vi }i∈I and {̃εi }i∈I satisfy (U2), with σ 2
ε := max{var(γ ),

var(β}/c2. For any δ > 0 and p ∈ (0, 1), define I (δ, p) as in equation (11). Finally,
define C2 := 8 |A| ( ˜M2 σ 2

c + σ 2
ε ). Thus, for any p, δ ∈ (0, 1), if I > C2/p δ2, then

I > I (δ, p/2), so that, for any a ∈ Appr(G) = argmaxA(˜VI), Theorem 6.2 says

Prob
[

UI(a) < U∗
I − δ | ˜M and {̃ui }i∈I satisfy (U4)

]

<
p

2
. (12)

If I > C1/p also, then Claim C applies. This, together with inequality (12), implies
that Prob

[

UI(a) < U∗
I − δ

]

<
p
2 + p

2 = p, as desired.
Theorem 5.1 follows from Theorem 5.2, so we will prove that first.

Proof of Theorem 5.2 Since Scores(PI) = argmaxA(V s
PI ), it suffices to compute the

asymptotic probability that argmaxA(V s
PI ) ⊆ argmaxA(UI), as I→∞. As usual, we

will use Theorem 6.1. Hypothesis (C) implies (U1). For all i ∈ I and all a ∈ A, if we
know that i ranks a in kth place (in particular, if we know the preference order	i ), then
the expected value of ui (a), conditional on this information, is sk . But, by definition,
vi (a) = sk . Thus, E[ui (a)| 	i ] = vi (a). Thus, if we define εi (a) := ui (a) − vi (a),
then E[εi (a)| 	i ] = 0. By hypothesis, the variance of the random variable ui (a)

is finite; thus, the variance of εi (a) is finite. Finally, by hypothesis (X), the random
functions {ui }i∈I are independent of one another and independent of {ci }i∈I . Thus, the
random functions {εi }i∈I are independent of one another and independent of {ci }i∈I .
This establishes (U2). It remains to verify (U4).

Let ↑u = (↑u1, . . . , ↑uN ) ∈ U be a λ-random vector. The coordinates ↑u1, . . . , ↑uN

are themselves random variables (neither independent, nor identically distributed). Let
σ 2
1 , . . . , σ 2

N denote their variances. Since λ has finite variance, it is easy to check that
σ 2
1 , . . . , σ 2

N are all finite. Defineσ 2
ε := max{σ 2

1 , σ 2
2 , . . . , σ 2

N }. Also, let S := max{|s1|,
|s2|, . . . , |sN |}, and choose any M >

√

S2 + σ 2
ε . ��
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Claim D lim
I→∞ Prob(M and the profile {ui }i∈I satisfy condition (U4)) = 1.

Proof Fix a ∈ A. For all i ∈ I, if a is ranked kth from the bottom by 	i , then ui (a)

is a random variable with mean sk and variance σ 2
k . Thus,

E[u2i (a)] = (sk)
2 + σ 2

k ≤ S2 + σ 2
ε < M2. (13)

Thus, for any a ∈ A, the sum 1
I

∑

i∈I ui (a)2 is an average of I independent random
variables, each with expected value smaller than M2, by inequality (13). Thus, regard-
less of how the preferences {	i }i∈I are obtained, the Law of Large Numbers implies
that

lim
I→∞ Prob

[

1

I

∑

i∈I
ui (a)2 < M2

]

= 1.

Thus, since A is finite, the claim follows. �
Finally, hypothesis (�) implies that {ui }i∈I satisfy (U3). Now apply Claim 1 and
Theorem 6.1 to {ui }i∈I , {vi }i∈I , {εi }i∈I and {ci }i∈I to derive the limit (9). ��
Proof of Theorem 5.1 Define U as in Sect. 5.2, and let λ be the conditionalization
of μ on U. In the Endogenous Preference model of Sect. 5.1, the ordinal preference
profile PI = {	i }i∈I is a random variable (determined by the underlying cardinal
utility profile {ui }i∈I . (PI is almost surely a profile of strict preferences, because by
hypothesis onμ, no two alternatives yield the same utility for any voter, almost surely.)
However, if we fix a particular realization of PI , then conditional on this realization,
the probability distribution of the cardinal profile {ui }i∈I is described by λ via the
Exogenous preference model of Sect. 5.2. Thus, for any particular realization of PI ,
Theorem 5.2 implies that the limit (9) holds.17 Thus, integrating over all possible
realizations of PI , and applying Lebesgue’s dominated convergence theorem, we
conclude that the limit (9) holds unconditionally.18 ��
Proof of Proposition 5.3 We will apply Theorem 6.2. Define {εi }i∈I and M as in
the proof of Theorem 5.2. Claim 1 established that lim I→∞ Prob[M and the profile
{ui }i∈I satisfy condition (U4)]= 1. However, to obtain the more precise estimate of
convergence speed, we need the next observation.

Claim E Suppose the fourth moment of λ is finite. Then there is some C1 > 0 (deter-
mined by λ) such that, for any p ∈ (0, 1), if I > C1/p, then

Prob (M and {ui }i∈I violate condition (U4)) <
p

2
.

17 To be precise, we fix an infinite sequence (	n)∞n=1 of ordinal preferences. Then, for any particular value

of I , we identify I with [1 . . . I ] and let PI = {	n}In=1. Theorem 5.2 then applies for every possible
infinite sequence.
18 The set of all possible infinite sequences (	n)∞n=1 has a natural sigma-algebra (generated by “cylinder
sets”, which are defined by fixing values for any finite number of coordinates). The Endogenous preference
model defines a probability measure on this sigma algebra (in fact, it is a Bernoulli stochastic process). In
the last step of the proof, we integrate with respect to this probability measure.
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Proof If the fourth moment of λ is finite, then there is some C ′ > 0 such that for any
a ∈ A, the fourth moments of each of the random variables {ui (a)}i∈I is less than C ′.
In other words, the second moments of each of the random variables {ui (a)2}i∈I is
less than C ′. This implies that there is some C ′′ > 0 such that the variance of each of
{ui (a)2}i∈I is less than C ′′. Also, these random variables are independent. Thus,

var

[

1

I

∑

i∈I
ui (a)2

]

<
C ′′

I
. (14)

Next, inequality (13) says each of {ui (a)2}i∈I has expected value less than M2. Thus,

E

[

1

I

∑

i∈I
ui (a)2

]

< M2. (15)

Thus, Chebyshev’s inequality and inequalities (14) and (15) imply that there is some
C1 > 0 (determined by C ′′) such that, for any p > 0, if I > C1/p, then

Prob

[

1

I

∑

i∈I
ui (a)2 > M2

]

<
p

2|A| . (16)

Now, if the profile {ui }i∈I andM to violate condition (U4), then 1
I

∑

i∈I ui (a)2 > M2

for some a ∈ A. Thus, adding together |A| copies of inequality (16) proves the claim.
�

For any δ > 0 and p > 0, let I (δ, p) be as in Eq. (11). Finally, define C2 :=
8 |A| (M2 σ 2

c + σ 2
ε ). Thus, for any p, δ ∈ (0, 1), if I > C2/p δ2, then I > I (δ, p/2),

so that, for all a ∈ argmaxA(˜VI), Theorem 6.2 says that

Prob
[

UI(a) < U∗
I − δ | M and {ui }i∈I satisfy (U4)

]

<
p

2
. (17)

If I > C1/p also, then Claim E applies. This, together with inequality (17), implies
that Prob

[

UI(a) < U∗
I − δ

]

<
p
2 + p

2 = p for any a ∈ argmaxA(˜VI) = Scores(PI),
as desired. ��
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