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Abstract Westudy abstract decision problems by introducing an extended dominance
relation with respect to a set of alternatives. This extension is in between the tradi-
tional dominance relation as formulated by Von Neumann and Morgenstern (Theory
of games and economic behavior, Princeton University Press, Princeton, 1944) and
the transitive closure of it. Subsequently, stable sets are defined and studied for this
extended relation. We formulate a characterization of stable sets for this relation and
an existence theorem. Finally, we discuss its relation with VonNeumann–Morgenstern
stable sets and generalized stable sets.

1 Introduction

We study a variation of stable sets for abstract decision problems. An abstract deci-
sion problem is represented by a pair (X, R), where X is a set of alternatives and
R is a dominance relation on X . Here, we read x Ry as x dominates y for any x, y
belonging to X . Moreover, we limit our discussion to a nonempty finite X and asym-
metric R. The concept of stable set is offered in Von Neumann and Morgenstern
(1944) and interpreted in terms of accepted standards of behaviour based on two sta-
bility conditions. A subset V of X is called a stable set of (X, R) if it possesses two

B Weibin Han
w.han@fm.ru.nl

Adrian Van Deemen
a.vandeemen@fm.ru.nl

D. Ary A. Samsura
d.samsura@fm.ru.nl

1 Institute for Management Research, Radboud University Nijmegen, P.O.Box 9108, 6500 HK
Nijmegen, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00355-016-0958-z&domain=pdf


266 W. Han et al.

properties: (i) no alternative in V is dominated by another alternative in V (called
internal stabili t y); (ii) any alternative outside V is dominated by some alternative
inside V (called external stabili t y). However, these two stabilities fail to guarantee
the existence of stable sets for all abstract decision problems. For instance, stable set
will not exist in case of x1Rx2, x2Rx3, . . . , x6−1Rx7, x7Rx1. As for the existence of
stable sets, see Lucas (1992) for an excellent review of the state of knowledge at that
time.

To solve the existence problem of stable sets, several generalizations and modifica-
tions of the notion of stable sets have been proposed in the literature. These extensions
can be roughly divided into two categories. In the first category, the focus is on redefin-
ing dominance relation. Examples are generalized stable sets in Van Deemen (1991)
and socially stable sets in Delver and Monsuur (2001). As for generalized stable sets,
both internal stability and external stability are defined in terms of the transitive closure
of R while as for socially stable sets, internal stability is defined by the asymmetric
part of transitive closure of R with the restriction on this solution, but external sta-
bility is defined by R. The focus of the second category is on the reconstruction of
criteria of stabilities. Examples are absorbing set in Kalai et al. (1976) and generalized
optimal choice set in Schwartz (1986), admissible set in Kalai and Schmeidler (1977),
and m-stable set in Peris and Subiza (2013). All these modifications in this category
satisfy a weakened internal stability1 and an alternative notion of external stability.2

The relations between all these generalizations are summarized in Inarra et al. (2005),
Nicolas (2009) and Peris and Subiza (2013).

Here, we approach stable sets of abstract decision problems by introducing a new
dominance relation (denoted by Rω) that is an extension of R and a modification of
the transitive closure of R. The motivation for this is that R is so strong that stable
sets defined by it may not exist in some circumstances while the transitive closure of
R is so weak that a generalized stable set defined by it disagrees with stable set even
if R is acyclic.3 With Rω, we revisit the notion of stable sets and get an extension of
stable sets that we call extended stable sets. It will be verified that the solution of
extended stable sets not only solves every abstract decision problem, but also exactly
equals to the solution of stable sets when R is acyclic.

The outline of this paper is as follows. In Sect. 2, we recall some basic notations and
definitions concerning abstract decision problems and represent the concepts of stable
set and of generalized stable set. In Sect. 3, we first offer an extended dominance
relation Rw, then compare it with R and the transitive closure of R. Subsequently,
the concept of extended stable sets and the technique of contraction are introduced.
Sects. 4 and 5 are respectively devoted to the characteristics of extended stable sets and
their relations with stable sets and generalized stable sets. We give a short concluding
remark and directions for further research in Sect. 6.

1 That is, for any two alternatives x and y contained in this solution, if x dominates y (directly or indirectly),
then y also dominates x (directly or indirectly).
2 That is, an alternative inside a solution should not be dominated by any alternative outside this solution.
3 i.e., never x1Rx2, x2Rx3, . . . , xm−1Rxm , xm Rx1 where x1, x2, . . . , xm ∈ X .
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2 Notations, definitions and solutions

Consider an abstract decision problem (X, R). A dominance relation R defined on X
is called

asymmetric : ∀x, y ∈ X , if x Ry, then not yRx ;
complete : ∀x, y ∈ X , if x �= y, then x Ry or yRx ;
transitive : ∀x, y, z ∈ X , if x Ry and yRz, then x Rz;
cyclic : ∃ x1, x2, . . . , xm ∈ X such that x1Rx2, x2Rx3, . . . , xm−1Rxm, xm Rx1;
acyclic : if it is not cyclic.
We exclusively focus on abstract decision problems with a nonempty finite X and

asymmetric dominance relation R on X . Neither transitivity nor completeness are
required. Denote by Ω(X) the set of these abstract decision problems on X .

For any T ⊆ X , let RT denote the sub-relation of R with the restriction on T . That
is, for any x, y ∈ T , x RT y if x Ry and x, y ∈ T . For any (X, R) ∈ Ω(X), (X, R) can
be represented by a digraph where X is vertex set and R is the set of directed edges.

Let μ(X, R) be the set of alternatives which are maximal, where an alternative is
maximal if it is not dominated by any other alternative. That is,

μ(X, R) = {x ∈ X | not yRx, f or any y ∈ X}.

Any solution that includes μ(X, R) is called core-inclusive.
It is well-known that μ(X, R) may not exist if R is cyclic. The solution of stable

sets was offered in Von Neumann and Morgenstern (1944) which can be treated as an
extension of μ(X, R).

Let (X, R) ∈ Ω(X). A set V ⊆ X is called a stable set if

(i) ∀x, y ∈ V , not x Ry;
(ii) ∀y ∈ X\V , there is an x ∈ V such that x Ry.

Let S(X, R) denote the set of all stable sets of (X, R).
Condition (i), called internal stability, expresses the fact that no alternative x in V

is dominated by any other alternative y in V . Condition (ii), called external stability,
says that for any alternative outside V , there is an alternative in V that dominates it.

The main shortcoming of the solution of stable sets is that it may fail to exist if
the dominance relation R is cyclic. To deal with cyclic cases, Van Deemen (1991)
proposed the concept of generalized stable sets. Its point of departure is the transitive
closure of R.

For any x, y ∈ X , say x τ -dominates y, denoted by x Rτ y, if there is a sequence of
x, x1, x2, . . . , xm, y ∈ X such that x Rx1, x1Rx2, . . ., xm−1Rxm , xm Ry.

Let (X, R) ∈ Ω(X). A set V ⊆ X is called a generalized stable set if

(i) ∀x, y ∈ V , not x Rτ y;
(ii) ∀y ∈ X\V , there is an x ∈ V such that x Rτ y.

Let GS(X, R) denote the set of all generalized stable sets of (X, R).
Note that GS(X, R) = S(X, Rτ ) for any (X, R) ∈ Ω(X). Condition (i), called

generalized internal stability, states that no alternative in V can be τ -dominated by
another alternative y in V . This condition is stronger than internal stability. Condition
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Fig. 1 Example 1

(ii) expresses that any alternative outside V is τ -dominated by an alternative x in V .
This condition is weaker than external stability.

One main advantage of the solution of generalized stable sets is that it can deal
with every abstract decision problem. However, this solution may not coincide with
the stable set of (X, R) if dominance relation R is acyclic.

Example 1 Consider (X, R) described in Fig. 1. As for this example, we have that
S(X, R) = {{x1, x4}} while GS(X, R) = {{x1}}.

Clearly, {x1} is the unique generalized stable set and equals to μ(X, R). But, it is
not a stable set.

3 Extended stable sets

Hereby, we propose a new dominance relation that is an extension of R and a modifi-
cation of the transitive closure of R. For any x, y ∈ X , we say x and y are equipotent,
denoted by x I τ y, if either x = y or x Rτ y and yRτ x . In general, if x Rτ y is counter-
balanced by yRτ x , then it is difficult to find arguments for choosing between x and
y. The new dominance relation is defined as follows.

Definition 1 Let (X, R) ∈ Ω(X) and x, y ∈ X . Say x ω-dominates y, denoted by
x Rωy, if there are z, w ∈ X such that x I τ z, zRw and w I τ y.

The basic idea behind Rω is as follows: we say x Rωy if one of the equipotent
alternatives of x dominates an equipotent alternative of y. Usually, given (X, R) ∈
Ω(X) and x, y ∈ X , it is possible that x Rωy but not x Ry. Moreover, we may have
x Rτ y while neither x Rωy nor x Ry. The intuitive differences among R, Rτ and Rω

can be illustrated by the following example.

Example 2 Consider (X, R) ∈ Ω(X) where X = {x1, x2, x3, x4, x5, x6} and R, Rτ

and Rω are respectively described in Figs. 2, 3 and 4.

In Example 2, we have x1Rωx5, but not x1Rx5. Moreover, we have x1Rτ x6 while
neither x1Rx6 nor x1Rωx6. The relations between R, Rτ and Rω are summarized in
the following Theorem.4

Theorem 1 For any (X, R) ∈ Ω(X), we have R ⊆ Rω ⊆ Rτ .

4 For any (X, R1), (X, R2) ∈ Ω(X), say R1 ⊆ R2 if x R1y implies x R2y for any x, y ∈ X .
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Fig. 2 (X, R)

Fig. 3 (X, Rτ )
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Fig. 4 (X, Rω)

Proof Let x, y ∈ X . If x Ry, then x Rτ y. Take z = x, w = y, then x Rw y. If x Rωy,
there are z, t ∈ X with x I τ z, zRt and t I τ y. We get x Rτ y by the transitivity of Rτ .

��
The above theorem shows that Rω is a weaker dominance relation than R but a

stronger dominance relation than the transitive closure of R.
Next, we revisit the notion of stable set by using Rω and obtain an alternative

extension of stable set.

Definition 2 Let (X, R) ∈ Ω(X). A set W ⊆ X is called an extended stable set if

(i) ∀x, y ∈ W , not x Rωy;
(ii) ∀y ∈ X\W , there is an x ∈ W such that x Rωy.

Let ES(X, R) denote the set of all extended stable sets.

It is noted that ES(X, R) = S(X, Rω) for any (X, R) ∈ Ω(X). Condition (i),
called extended internal stability, shows that no alternative x in an extended stable
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set W is ω-dominated by any other alternative y in W . Condition (ii), called extended
external stability, expresses that for any y outside an extended stable set W , there is
an alternative x inside W such that x ω-dominates y.

Given (X, R) ∈ Ω(X) and x, y ∈ X . On the one hand, since not x Rωy implies not
x Ry and not x Rτ y implies not x Rωy (not vice versa), extended internal stability is
stronger than internal stability while weaker than generalized internal stability. On the
other hand, as x Rωy means x Rτ y and x Ry means x Rωy (not vice versa), extended
external stability is a less demanding constraint than external stability and a more
demanding constraint than generalized external stability.

Example 3 As for Example 1, we have that

ES(X, R) = S(X, R) = {{x1, x4}} while GS(X, R) = {{x1}}.

As for Example 2, there is no stable set. We have that

GS(X, R) = {{x1}, {x2}, {x3}}
while ES(X, R) = {{x1, x6}, {x2, x6}, {x3, x6}}.

Finally, we present the technique of contracting a relation which is adopted from
digraph theory. Here we use it as a tool for describing the characteristics of extended
stable sets.

For any (X, R) ∈ Ω(X) and T ⊆ X , let Rτ
T denote the sub-relation5 of Rτ with the

restriction on T . We say T is strongly connected if x Rτ
T y and yRτ

T x for any x, y ∈ T .
T is called a strong component of (X, R) if it is strongly connected and no proper
superset of T is strongly connected.

Let X∗ = {X∗
1, X

∗
2, . . . , X

∗
s } be the set of all strong components of (X, R). The

contraction of (X, R) is denoted by (X∗, Rcon), where X∗
i R

con X∗
j for any X∗

i , X
∗
j ∈

X∗ if there are x ∈ X∗
i and y ∈ X∗

j with x Ry.
Intuitively, the contraction of (X, R) is the collapsing of each strong component

into a single point enriched with a relation between those points. Thus, (X∗, Rcon) is
an abstract decision problemwhere alternatives are strong components and dominance
relation is Rcon . Let μ(X∗, Rcon) denote the set of maximal strong components and
S(X∗, Rcon) denote the set of stable sets of (X∗, Rcon).

Example 4 As for Example 2, the contraction of (X, R) is represented by Fig. 5, where
X∗
1 = {x1, x2, x3}, X∗

2 = {x4}, X∗
3 = {x5} and X∗

4 = {x6}.
The following lemma will be used in the sequel to show the characterization of

extended stable sets. It follows directly fromDefinition 1 and the notion of contraction.

Lemma 1 Let (X, R) ∈ Ω(X) and (X∗, Rcon) be the contraction of it. Then

(i) for any X∗
i ∈ X∗, x, y ∈ X∗

i if and only if x I τ y;

5 For any x, y ∈ T , x Rτ
T y, if and only if, there exist x, x1, x2, . . . , xm , y ∈ T such that

x Rx1, x1Rx2, . . . , xm Ry.
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Fig. 5 (X∗, Rcon)

X1

X2

X3

X4

(ii) for any X∗
i , X

∗
j ∈ X∗, X∗

i R
con X∗

j if and only if xi Rωx j for all xi ∈ X∗
i and

x j ∈ X∗
j

In the following two sections, we will focus on a characterization of extended stable
sets and their relations with stable sets and generalized stable sets.

4 A characterization of extended stable sets

The following proposition expresses that any extended stable set is core-inclusive.

Proposition 1 Let (X, R) ∈ Ω(X). μ(X, R) ⊆ ⋂
W∈ES(X,R) W.

Proof Let x ∈ μ(X, R). Suppose there is a W ∈ ES(X, R) such that x /∈ W . Then,
there exists a y ∈ W such that yRωx which implies yRτ x . Hence, there must be some
z ∈ X with zRx , which contradicts x ∈ μ(X, R). ��

It is easy to verify that if μ(X, R) is a stable set, it is an extended stable set and
a generalized stable set, but not vice versa. Furthermore, if μ(X, R) is an extended
stable set, then it is a generalized stable set while not necessarily a stable set.

The following lemmas will be used to show the characterization of extended stable
sets and the existence of extended stable sets.

Lemma 2 Let (X, R) ∈ Ω(X). Rcon is acyclic.

The proof of this lemma is given in Behzad et al. (1979, p 327–328).

Lemma 3 Let (X, R) ∈ Ω(X). Then S(X∗, Rcon) contains a unique set.

The proof of this lemma is given in Von Neumann and Morgenstern (1944, p 598–
599).

The following theorem characterizes the solution of extended stable sets. This result
is typically obtained by using the contraction of (X, R).

Theorem 2 Let (X, R) ∈ Ω(X) and S(X∗, Rcon) = {{X∗
1, X

∗
2, . . . , X

∗
k }}. W ∈

ES(X, R) if and only if W = {x1, x2, . . . , xk}, where xi ∈ X∗
i , 1 ≤ i ≤ k.

Proof Let V ∗ = {X∗
1, X

∗
2, . . . , X

∗
k } and W = {x1, x2, . . . , xk}, where xi ∈ X∗

i , 1 ≤
i ≤ k. For any xi , x j ∈ W , there are distinct X∗

i , X
∗
j ∈ V ∗ with xi ∈ X∗

i and x j ∈ X∗
j .

Since not X∗
i R

con X∗
j , we get that not xi R

ωx j by Lemma 1-(ii). For any yt ∈ X\W ,
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there exist an X∗
t such that yt ∈ X∗

t . If X
∗
t ∈ V ∗, there is a zt ∈ X∗

t such that xt I τ zt
and zt Ryt implying xt Rωyt . Otherwise X∗

t /∈ V ∗. Then there exists an X∗
s ∈ V ∗ such

that X∗
s R

con X∗
t , which means xs ∈ X∗

s and yt ∈ X∗
t with xs Rωyt by Lemma 1-(ii).

Conversely, let W ∈ ES(X, R). Denote W ∗ = {X∗
i ∈ X∗|x ∈ W, x ∈ X∗

i }.
Obviously, W ⊆ ⋃

X∗
i ∈W ∗ X∗

i . For any X∗
i , X

∗
j ∈ W ∗, there exist two distinct xi , x j

with xi ∈ X∗
i , x j ∈ X∗

j and not xi R
ωx j . If X∗

i R
con X∗

j , then xi R
ωx j by Lemma 1-(ii).

Contradiction. Thus, not X∗
i R

con X∗
j . For any X∗

j ∈ X∗\W ∗ and y j ∈ X∗
j , we have

that y j /∈ W . Then, there is an xi ∈ W and xi ∈ X∗
i ∈ W ∗ such that xi Rωy j , which

indicates x
′
i R

ωy j for all x
′
i ∈ X∗

i . Since X∗
i �= X∗

j , X
∗
i R

con X∗
j directly follows from

Lemma 1-(ii). Thus, W ∗ ∈ S(X∗, Rcon). We have to prove that |W ∩ X∗
i | = 1 for

any X∗
i ∈ W ∗. If there is an X∗

m ∈ W ∗ such that |W ∩ X∗
m | > 1, then there are two

distinct x, y ∈ W with x, y ∈ X∗
m ∈ W ∗. Thus x Rτ y and yRτ x , which implies x Rωy.

Contradiction. ��
The next theorem expresses that the solution of extended stable sets is applicable

to every abstract decision problem.

Theorem 3 For any (X, R) ∈ Ω(X), there exists a nonempty extended stable set.

Proof Lemma 2 guarantees that Rcon is acyclic and Lemma 3 guarantees the existence
of S(X∗, Rcon) for any (X, R) ∈ Ω . By Theorem 2, it can be concluded that nonempty
extended stable set always exists. ��

ByTheorem2,wemayget that extended stable setmaynot be unique. The following
corollary shows the cardinal number of extended stable sets and one feature about the
size of extended stable sets.

Corollary 1 Let (X, R) ∈ Ω(X) and S(X∗, Rcon) = {{X∗
1, X

∗
2, . . . , X

∗
k }}.

(i) |ES(X, R)| = |X∗
1 | × |X∗

2 | × · · · × |X∗
k |;

(ii) |W1| = |W2| for any W1,W2 ∈ ES(X, R).

5 The relations between extended stable sets, stable sets and generalized
stable sets

In the next theorem, we present sufficient conditions for extended stable sets to agree
with stable sets and generalized stable sets.

Theorem 4 Let (X, R) ∈ Ω(X). Then

(i) if R is acyclic, then ES(X, R) = S(X, R);
(ii) if R is complete, then ES(X, R) = GS(X, R);
(iii) if R is transitive, then ES(X, R) = S(X, R) = GS(X, R).

Proof (i) Take (X, R) ∈ Ω . If R is acyclic, {x} ∈ X∗ for any x ∈ X . Then
(X, R) = (X∗, Rcon) = (X, Rω). Thus ES(X, R) = S(X, R).

(ii) By Theorem 1, we have Rω ⊆ Rτ . Conversely, take any x, y ∈ X with x Rτ y.
Since R is complete, if x Ry, then x Rωy. Otherwise, yRx . In this case, x I τ y,
which implies x Rωy. Thus, Rτ ⊆ Rω. Therefore, (X, Rω) = (X, Rτ ) and
ES(X, R) = GS(X, R).
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(iii) If R is transitive, R is acyclic. Then, (X, Rω) = (X, R) = (X, Rτ ). Hence,
ES(X, R) = S(X, R) = GS(X, R). ��

It is noted that there may be differences between these three solutions if the under-
lying dominance relation is cyclic or incomplete.

The following lemma shows the characterization of generalized stable sets. It will
be useful in elaborating the relation between extended stable sets and generalized
stable sets.

Lemma 4 Let (X, R) ∈ Ω(X) and μ(X∗, Rcon) = {X∗
1, X

∗
2, . . . , X

∗
m}. Then V =

{x1, x2, . . . , xm} ∈ GS(X, R) if and only if xi ∈ X∗
i where 1 ≤ i ≤ m.

The proof of this lemma is given in Van Deemen (1991, p 258–259).
The following proposition shows that the notion of extended stable sets may be

considered as a combination of stable sets and of generalized stable sets.

Proposition 2 Let (X, R) ∈ Ω(X) and S(X∗, Rcon) = {{X∗
1, X

∗
2, . . . , X

∗
k }}. W ∈

ES(X, R) if and only if W = ⋃
1≤i≤k Vi , where Vi ∈ GS(X∗

i , RX∗
i
).

Proof For any X∗
i ∈ X∗, we have that either X∗

i is singleton or RX∗
i
is a cycle

involving every alternative of X∗
i . It is sufficient to prove that for any X∗

i ∈ X∗,
Vi ∈ GS(X∗

i , RX∗
i
) if and only if |Vi | = 1. This follows from Lemma 4. ��

The next proposition presents a sufficient and necessary condition for generalized
stable sets to coincide with extended stable sets.

Proposition 3 Let (X, R) ∈ Ω(X). GS(X, R) = ES(X, R) if and only if
μ(X∗, Rcon) ∈ S(X∗, Rcon).

Proof The proof follows directly from Theorem 2 and Lemma 4. ��
The following result accounts for the inclusiveness relation between stable set,

extended stable set and generalized stable set.

Theorem 5 Let (X, R) ∈ Ω(X) and S(X∗, Rcon) = {{X∗
1, X

∗
2, . . . , X

∗
k }}.

(i) For any V ∈ S(X, R), there is a W ∈ ES(X, R) with W ⊆ V if V ∩ X∗
i �= ∅

for any 1 ≤ i ≤ k;
(ii) For any V ∈ GS(X, R), there is a W ∈ ES(X, R) with V ⊆ W.

Proof (i) Let V ∈ S(X, R). Take xi ∈ V ∩ X∗
i where 1 ≤ i ≤ k. Then we get that

W = {x1, x2, . . . , xm} ∈ ES(X, R) and W ⊆ V by Theorem 2.
(ii) Let V ∈ GS(X, R) and μ(X∗, Rcon) = {X∗

1, X
∗
2, . . . , X

∗
m}. Assume xi =

X∗
i ∩ V where i = 1, 2, . . . ,m. Then, we have that V = {x1, x2, . . . , xm}

by Lemma 4. Since for the unique V ∗ ∈ S(X∗, Rcon), μ(X∗, Rcon) ⊆ V ∗.
Let V ∗\μ(X∗, Rcon) = {X∗

m+1, X
∗
m+2, . . . , X

∗
k }. Take x j ∈ X∗

j where j =
m + 1,m + 2, . . . , k and W = {x1, x2, . . . , xk}. Then by Theorem 2, we con-
clude that W ∈ ES(X, R) and V ⊆ W .

��
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Fig. 6 (X, R)

Let (X, R) ∈ Ω(X) with nonempty stable sets. Take V ∈ S(X, R), there may not
exist W ∈ ES(X, R) with W ⊆ V . Moreover, it is possible that for any V ∈ S(X, R)

and W ∈ ES(X, R), |V | ≤ |W |. Consider the following example.

Example 5 Consider (X, R) described in Fig. 6. We have that

S(X, R) = {{x1, x3}} and ES(X, R) = {{x1, x5, x6}}.

Obviously,

|{x1, x5, x6}| > |{x1, x3}|.

As a comparison, it is easy to verify that the size of any generalized stable set is
smaller than or equal to the size of any extended stable set.

6 Conclusion

In this paper, we introduced an extended dominance relation Rω on finite nonempty
X which is weaker than dominance relation R, but stricter than the transitive closure
of R. Then, we formulated a solution called extended stable set which appears to be
a stable set solution defined with respect to Rω. The solution of stable sets defined by
VonNeumann andMorgenstern (1944) with respect to R does not permits its existence
in all abstract decision problems. By contrast, nonempty extended stable sets always
exist for every abstract decision problem. In this aspect, it improves the theory of stable
sets. More important, the solution of generalized stable sets defined on the transitive
closure of R may fail to coincide with the sable set solution if dominance relation R
is acyclic. In this case, the solution of extended stable sets exactly agrees with stable
set. This implies that the solution of extended stable sets lies closer to the solution of
stable sets than the solution of generalized stable sets.

Our next research step will be to compare extended stable sets with the solutions in
which the criteria of stabilities are modified. We will also explore the characterization
of extended stable sets in the case that X is infinite. Another research topic in our
program is to investigate the relations between extended stable sets, Banks set (see
Banks 1985; Penn 2006) and the variations of uncovered set in Duggan (2013). We
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may explore under which condition an extended stable set is included in the Banks set
or the solution of uncovered set.
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